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Abstract. For a symmetric algebra A over a field K of characteristic p > 0 Külshammer con-

structed a descending sequence of ideals of the centre of A. If K is perfect this sequence was shown

to be an invariant under derived equivalence and for algebraically closed K the dimensions of their
image in the stable centre was shown to be invariant under stable equivalence of Morita type. Erd-

mann classified algebras of tame representation type which may be blocks of group algebras, and

Holm classified Erdmann’s list up to derived equivalence. In both classifications certain parame-
ters occur in the classification, and it was unclear if different parameters lead to different algebras.

Erdmann’s algebras fall into three classes, namely of dihedral, semidihedral and of quaternion type.

In previous joint work with Holm we used Külshammer ideals to distinguish classes with respect
to these parameters in case of algebras of dihedral and semidihedral type. In the present paper we

determine the Külshammer ideals for algebras of quaternion type and distinguish again algebras
with respect to certain parameters.

Introduction

Erdmann gave in [4] a list of basic symmetric algebras of tame representation type which include
all the algebras which may be Morita equivalent to blocks of finite groups of tame representation
type. She obtained these algebras by means of properties of the Auslander-Reiten quiver which are
known to hold for blocks of group rings with tame representation type. These algebras are subdivided
into three classes, those of dihedral type, of semidihedral type and of quaternion type, corresponding
to the possible defect group in case of group algebras, and actually defined by the behaviour of
their Auslander-Reiten quiver. Holm refined in [7] Erdmann’s classification of those algebras which
may occur as blocks of group algebras to a classification up to derived equivalence. However, in
[4, 7] the algebras are defined by quivers with relations, and the relations involve certain parameters,
corresponding mostly to deformations of the socle of the algebras. It was unclear in some cases if
different parameters lead to different derived equivalence classes of algebras. The question of non
trivial socle deformations appears to be a very subtle one in this special case, but also in general,
and little progress was made on this question until very recently.

In [18] we showed that a certain sequence of ideals of the centre of a symmetric algebra defined
previously by Külshammer [12] is actually invariant under derived equivalences if the base field is
perfect. We call this sequence of ideals the Külshammer ideals. In joint work [14] with Liu and
Zhou we showed that if the base field is algebraically closed, then the dimension of the image of
this invariant in the stable centre is also an invariant under stable equivalences of Morita type. In
joint work [9] with Holm we observed that the Külshammer ideals behave in a very subtle manner
with respect to the deformation parameters. Using this observation we showed that some of the
parameters are invariants under derived equivalence for certain families of algebras of dihedral and
of semidihedral type. The present paper is a continuation and completion of [9].

In order to apply the theory of Külshammer ideals we need to use the symmetrising form explicitly,
and in the present work we progress in avoiding the ad-hoc arguments used in our previous work to
determine the symmetrising form. In this note we compute the Külshammer ideals for algebras of
quaternion type and distinguish this way the derived equivalence classes of the algebras with two
simple modules. Over algebraically closed fields of characteristic different from 2 we can classify
completely the derived equivalence classes of the algebras of quaternion type occurring in Holm’s
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list, except for a case of very small parameters. If the field is algebraically closed of characteristic 2
then we have an almost complete classification in case of two simple modules. The result in this case
is displayed in Corollary 10 and Theorem 7. We also deal with the case of algebras of quaternion
type with three simple modules, where Külshammer ideals distinguish the isomorphism classes of
algebras in characteristic 2 with parameter d according to whether or not d is a square in K. The
invariance of Külshammer ideals under derived or Morita equivalence is proved only in case K is
perfect, which implies that all elements of K are squares when K is of characteristic 2. Hence, we
cannot say more about this case, and the derived equivalence classification remains open for this class
of 20-dimensional algebras. Derived equivalent local algebras are actually Morita equivalent (cf [22,
Proposition 6.7.4]), so that the derived equivalence classification of the class of algebras of quaternion
type with one simple module coincides with its classification up to isomorphism. Isomorphic algebras
have isomorphic Külshammer ideal structure.

For the reader’s convenience we give the somewhat technical result for the class of algebras with
two simples here. Blocks of quaternion type with two simple modules are derived equivalent to an
algebra Ak,s(a, c) for parameters a ∈ K× and c ∈ K and integers s ≥ 3 and k ≥ 1.

• In particular, if K is an algebraically closed field of characteristic different from 2, then
there is a′ ∈ K× such that Ak,s(a, c) ' Ak,s(a′, 0), and if (k, s) 6= (1, 3), then Ak,s(a, c) '
Ak,s(1, 0). Moreover, if Ak,s(1, 0) and Ak

′,s′(1, 0) are derived equivalent, then (k, s) = (k′, s′)
or (k, s) = (s′, k′).

• If K is a perfect field of characteristic 2, we have the following situation. The algebra
Ak,s(a, c) is not derived equivalent to Ak,s(a′, 0) for any a, a′, c ∈ K×. If K is algebraically
closed of characteristic 2, and if c 6= 0, then Ak,s(a, c) is isomorphic to Ak,s(a′′, 1) for some
a′′ ∈ K×, and if (k, s) 6= (1, 3), then Ak,s(a, 0) ' Ak,s(1, 0). Further, again for algebraically

closed K, if Ak,s(a′, c′) is derived equivalent to Ak
′,s′(a′′, c′′) then (k, s) = (k′, s′) or (k, s) =

(k′, s′).
We do not know for which parameters a, a′ ∈ K× we get Ak,s(a, 1) is derived equivalent

to Ak,s(a′, 1), and we do not know when A(1,3)(a, 0) is derived equivalent to A(1,3)(a′, 0) for
a, a′ ∈ K×.

The Külshammer ideal structure depends in a quite subtle way on the parameters, and we want
to stress the fact that we need to compute the ideals as ideals, and as in [9] it is not sufficient to
consider the dimensions only.

The paper is organised as follows. In Section 1 we recall basic facts about Külshammer ideals
and improve the general methods needed to compute the Külshammer ideal structure for symmetric
algebras. In Section 2 we apply the general theory to algebras of quaternion type, and we prove our
main result Theorem 7 there.

Acknowledgement. I wish to thank Oyvind Solberg for giving me during the Oberwolfach confer-
ence “Hochschild cohomology and applications” in February 2016 a GAP program to compute the
Külshammer ideals. The GAP program [5] uses the package “qpa” and encouraged me to study the
quaternion type algebras. I also wish to thank Rachel Taillefer for pointing out the particularity of
(k, s) = (1, 3) for two simple modules which I forgot to consider in a previous version. I thank the
referee for numerous very useful remarks, and in particular for alerting me on some mistake in the
initial version concerning symmetrising forms.

1. Review on Külshammer ideals and how to compute them

The aim of this section is to briefly give the necessary background on Külshammer ideals, as
introduced by B. Külshammer [12]. Morita invariance of Külshammer ideals (then named generalised
Reynolds’ ideals) was shown in [3, 6] for perfect fields K. Külshammer ideals were proved to be a
derived invariant in [18], were used in [8, 11, 2] to classify weakly symmetric algebras of polynomial
growth or domestic type up to derived equivalences, in [9] for a derived equivalence classification of
algebras of dihedral or semidihedral type, in [10] for deformed preprojective algebras of type L, and
in [17] for the derived equivalence classification of certain special biserial algebras. The concept was
generalised to general finite-dimensional algebras in [1], to an invariant of Hochschild (co)homology
for symmetric algebras [19] and in [20] for general algebras. The image of the Külshammer ideals
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in the stable centre were shown to be an invariant under stable equivalences of Morita type [14, 13].
An overview is given in [21, 22].

Let K be a field of characteristic p > 0. Any finite-dimensional symmetric K-algebra A has an
associative, symmetric, non-degenerate K-bilinear form 〈−,−〉 : A × A → K. For any K-linear
subspace M of A we denote the orthogonal space by M⊥ with respect to this form. Moreover, let
[A,A] be the K-subspace of A generated by all commutators [a, b] := ab − ba, where a, b ∈ A. For
any n ≥ 0 set

Tn(A) =
{
x ∈ A | xp

n

∈ [A,A]
}
.

Then, by [12], for any n ≥ 0, the orthogonal space Tn(A)⊥ is an ideal of the center Z(A) of A, called
n-th Külshammer ideal. These ideals form a descending sequence

Z(A) = [A,A]⊥ = T0(A)⊥ ⊇ T1(A)⊥ ⊇ T2(A)⊥ ⊇ . . . ⊇ Tn(A)⊥ ⊇ . . .
with intersection of all ideals Tn(A)⊥ for n ∈ N being the Reynolds’ ideal R(A) = Z(A) ∩ soc(A).
In [6] it has been shown that if K is perfect, then the sequence of Külshammer ideals is invariant
under Morita equivalences. Later, it was shown that the sequence of Külshammer ideals is invariant
under derived equivalences, and the image of the sequence of Külshammer ideals in the stable centre
is invariant under stable equivalences of Morita type. The following theorem recalls part of what is
known.

Theorem 1. • [18, Theorem 1] Let A and B be finite-dimensional symmetric algebras over a
perfect field K of positive characteristic p. If A and B are derived equivalent, then there is
an isomorphism ϕ : Z(A) → Z(B) between the centers of A and B such that ϕ(Tn(A)⊥) =
Tn(B)⊥ for all positive integers n.

• (cf e.g. [22, Proposition 6.8.9]) Let A and B be derived equivalent finite dimensional K-
algebras over a field K, which is a splitting field for A and for B. Then the elementary
divisors of the Cartan matrices of A and of B coincide. In particular, the determinant of
the Cartan matrices coincides.

• [14, Corollary 6.5] If A and B are stably equivalent of Morita type, and if K is an algebraically
closed field, then dimK(Tn(A)/[A,A]) = dimK(Tn(B)/[B,B]).

We note that in the proof of [18, Theorem 1] the hypothesis that K is algebraically closed is never
used. The assumption on the field K to be perfect is sufficient.

The aim of the present note is to show how these derived invariants can be applied to some subtle
questions in the derived equivalence classifications of algebras of quaternion type.

In order to compute the Külshammer ideals we need a symmetrising form. However, the Küls-
hammer ideals do not depend on the choice of the symmetrising form if K is perfect (cf [18, Proof
of Claim 3]). We showed in [10] (see also [22]) that every Frobenius form arises as in the following
proposition.

Proposition 2. [9, 10] Let A be a basic Frobenius algebra such that K is a splitting field for A,
and let {e1, . . . , en} be primitive idempotents with

∑n
i=1 ei = 1. Let Bi,j be bases of eiAej such that

B =
⋃n
i,j=1 Bi,j is a basis of A containing a basis of soc(A).

(1) Then the K-linear mapping ψ defined on the basis elements by

ψ(b) =

{
1 if b ∈ soc(A)
0 otherwise

for b ∈ B gives an associative non-degenerate K-bilinear form 〈−,−〉 for A by 〈x, y〉 := ψ(xy)
for all x, y ∈ A.

(2) Conversely, any Frobenius form arises this way for some choice of idempotents and some
choice of bases.

Note that different forms may necessitate different choices of primitive idempotents. Note that
the hypothesis in [9, 10] is slightly different, however equivalent to the one given here.

If A is a basic symmetric algebra over an algebraically closed field K, then A = KQ/I and
we want to determine those bases Bs of soc(A) which yield a symmetric form. This problem is
addressed in previous papers dealing with Külshammer ideals (cf [10, Remark 2.9], [9, Remark 3.2]).
The following remark indicates a necessary condition for the problem.
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Remark 3. If A is an indecomposable, basic symmetric algebra over an algebraically closed field K
and let {e1, . . . , en} be a choice of orthogonal primitive idempotents with

∑n
i=1 ei = 1. Suppose that

Bs is a K-basis of soc(A) and suppose that for each b ∈ Bs there is a unique ei such that eibei = b.
Using [22, Proposition 2.7.4] it is not hard to see that we can always find a basis Bs of soc(A) such
that the difference of two elements of Bs is in the commutator subspace. Moreover, since the elements
of Bs are uniquely determined up to scalars by this property, Proposition 2 then shows that we can
complete the basis Bs to a basis B as in the proposition. If ψ is a K-linear map as in Proposition 2,
then ψ([A,A]) = 0. In particular, if b, b′ ∈ soc(A) with b− b′ ∈ [A,A], then ψ(b) = ψ(b′).

2. Algebras of quaternion type

2.1. Two simple modules. Erdmann gave a classification of algebras which could appear as blocks
of tame representation type. These algebras fall in three classes, the algebras of dihedral, the algebras
of semidihedral and the algebras of quaternion type. Erdmann’s classification was up to Morita
equivalence. Holm [7, Appendix B] gave a classification up to derived equivalence and obtained for
non-local algebras of quaternion type two families, one containing algebras with two simple modules,
one containing algebras with three simple modules. The algebras in each family share a common
quiver, and the relations depend on a number of parameters.

The quiver for the algebras with two simples is the following.

• •
1 2-
�&%

'$
6 &%

'$
?α

β

γ
η

Let k ≥ 1, s ≥ 3 integers and a ∈ K×, c ∈ K. Then we get an algebra Q(2B)k,s1 (a, c) by the above
quiver with relations

βη = (αβγ)k−1αβ, ηγ = (γαβ)k−1γα, α2 = a · (βγα)k−1βγ + c · (βγα)k,

γβ = ηs−1, α2β = 0, γα2 = 0.

Remark 4. Using [7] we see that the centre of this algebra is of dimension k+ s+ 2 and the Cartan

matrix is

(
4k 2k
2k k + s

)
with determinant 4ks. Hence, using Theorem 1, if Db(Q(2B)k,s1 (a, c)) '

Db(Q(2B)k
′,s′

1 (a′, c′)), then 4ks = 4k′s′ and k + s+ 2 = k′ + s′ + 2. Therefore (k + s)2 = (k′ + s′)2

and (k − s)2 = (k′ − s′)2, which implies k = k′ and s = s′, or k = s′ and k′ = s.

Lemma 5. Let K be a field, and let Ak,s(a, c) := Q(2B)k,s1 (a, c). Then, Z(Ak,s(a, c)) has a K-basis
formed by the disjoint union

{η− (αβγ)k−1α}
·
∪ {ηt |2 ≤ t ≤ s}

·
∪ {(αβγ)u + (βγα)u + (γαβ)u | 1 ≤ u ≤ k− 1}

·
∪ {1, (αβγ)k, α2}

and is isomorphic, as commutative K-algebra, with

K[U, Y, S, T ]/(Y s+1, Uk − Y s − 2T, S2, T 2, SY, SU, ST, UY, UT, Y T )

where

U := (αβγ) + (βγα) + (γαβ)

Y := η − (αβγ)k−1α

S := α2

T := (αβγ)k
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Proof. First, η − (αβγ)k−1α commutes trivially with η, since ηα = 0 = αη. Now

α(η − (αβγ)k−1α)− (η − (αβγ)k−1α)α = α2(βγα)k−1 − (αβγ)k−1α2

= (a(βγα)k−1βγ + c(βγα)k)(βγα)k−1

−(βγα)k−1(a(βγα)k−1βγ + c(βγα)k)

= a
(
(βγα)k−1βγ(βγα)k−1 − (βγα)2k−2βγ

)
= a(βγα)k−1

(
βγ(βγα)k−1 − (βγα)k−1βγ

)
.

This is trivially 0 if k = 1, and if k > 1, then

(βγα)2k−2βγ = β(γαβ)2k−2γ = β(γαβ)k(γαβ)k−2γ = βηs(γαβ)k−2γ = 0.

Hence

a(βγα)k−1
(
βγ(βγα)k−1 − (βγα)k−1βγ

)
= a(βγα)k−1βγ(βγα)(βγα)k−2

= a(βγα)k−1βηs−1(γα)(βγα)k−2

= a(βγα)k−1βηs−2(γαβ)k−1γα2(βγα)k−2

= 0

since γα2 = 0. The relations βη = (αβγ)k−1αβ and ηγ = (γαβ)k−1γα = γ(αβγ)k−1α show that

η − (αβγ)k−1α commutes with β and with γ. Now, if k > 1, then
(
η − (αβγ)k−1α

)2
= η2, and if

k = 1, then
(
η − (αβγ)k−1α

)2
= η2 + α2. Since α2β = γα2 = 0, it is clear that α2 is central. Hence

ηt is central for each t ≥ 2. Now,

αβγβ = αβηs−1 = α(αβγ)k−1αβηs−2 = 0

since α2β = 0. Likewise γβγα = 0. Hence

βU = β ((αβγ) + (βγα) + (γαβ)) = βγαβ = ((αβγ) + (βγα) + (γαβ))β = Uβ

and
γU = γ ((αβγ) + (βγα) + (γαβ)) = γαβγ = γ ((αβγ) + (βγα) + (γαβ)) = Uγ.

Now,

ηU = η ((αβγ) + (βγα) + (γαβ))

= η(γαβ) = (γαβ)k−1γα2β

= 0

= γα(αβγ)k−1αβ

= γαβη

= ((αβγ) + (βγα) + (γαβ)) η

= Uη

and
αU = α ((αβγ) + (βγα) + (γαβ)) = αβγα = ((αβγ) + (βγα) + (γαβ))α = Uα.

Hence U is central, and then we only need to compute Uu to get the result. Finally, socle elements
in basic symmetric algebras over splitting fields are always central, and 1 is central of course. We
know by [7] that the centre is (2 + k + s)-dimensional, and obtain therefore the result.

Remark 6. Erdmann and Skowroński show in [15, Lemma 5.7] that if K is an algebraically closed

field, then Q(2B)k,s1 (a, c) ' Q(2B)k,s1 (1, c′) for some c′ ∈ K and if K is of characteristic different

from 2, then Q(2B)k,s1 (a, c) ' Q(2B)k,s1 (a, 0). We can examine their computations again to get
slightly better results. We assume here k + s > 4.

Suppose that K admits any k-th root, i.e. for all x ∈ K there is y ∈ K with yk = x. We want
to simplify the parameters a, c. Replace α by xαα, β by xββ, γ by xγγ and η by xηη for non zero
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scalars xα, xβ , xγ , xη. Then the relations above are equivalent to

xηβη = xkα(xβxγ)k−1(αβγ)k−1αβ,

xηηγ = xkα(xβxγ)k−1(γαβ)k−1γα,

x2αα
2 = a · xk−1α (xβxγ)k(βγα)k−1βγ + c · xkα(xβxγ)k(βγα)k,

xγxβγβ = xs−1η ηs−1,

α2β = 0,

γα2 = 0.

We first choose xβ such that xβxγ = xs−1η to get the system

βη = xkαx
(k−1)(s−1)−1
η (αβγ)k−1αβ,

ηγ = xkαx
(k−1)(s−1)−1
η (γαβ)k−1γα,

α2 = a · xk−3α xk(s−1)η (βγα)k−1βγ + c · xk−2α xk(s−1)η (βγα)k,

γβ = ηs−1,

α2β = 0,

γα2 = 0.

Then we put xα = x
− (k−1)(s−1)−1

k
η and obtain the system

βη = (αβγ)k−1αβ,

ηγ = (γαβ)k−1γα,

α2 = a · x−
(k−1)(s−1)−1

k ·(k−3)+k(s−1)
η (βγα)k−1βγ + c · x−

(k−1)(s−1)−1
k (k−2)+k(s−1)

η (βγα)k,

γβ = ηs−1,

α2β = 0,

γα2 = 0.

Now, − (k−1)(s−1)−1
k · (k − 3) + k(s − 1) = 0 implies k = 3 and s = 1, or k = 1 and s = 3, which

are excluded parameters, where the first case is already excluded since the algebra is defined only
for s ≥ 3, and where both cases are excluded by our hypothesis. This number can be simplified and
we therefore define u(k, s) := (k − 3) + (4k − 3)(s− 1) > 0 for our admissible parameters. Hence if

there is an element ya ∈ K such that y
u(k,s)
a = a−k, then we may choose such a parameter xη, such

that we may assume a = 1. This holds in particular if K is algebraically closed. We obtain this way

Ak,s(a, 0) ' Ak,s(1, 0) if K is sufficiently big, i.e. there is an element ya satisfying y
u(k,s)
a = a−k.

Moreover, since s ≥ 3 and k ≥ 1 we get

− (k − 1)(s− 1)− 1

k
(k−2)+k(s−1) =

(k − 2) + (3k − 2)(s− 1)

k
≥ (k − 2) + 2(3k − 2)

k
=

7k − 6

k
> 0.

Let v(k, s) := (k − 2) + (3k − 2)(s − 1). If there is yc ∈ K such that y
v(k,s)
c = c−k, then we can

therefore choose xη such that we can assume c = 1 if c 6= 0. Again, this is trivially true if K is
algebraically closed.

As a consequence, combining our computation and the result [15, Lemma 5.7], if K is algebraically

closed of characteristic different from 2, then Q(2B)k,s1 (a, c) ' Q(2B)k,s1 (1, 0).

Theorem 7. Let Ak,s(a, c) be the algebra Q(2B)k,s1 (a, c) over a field K of characteristic p. Let
a, c ∈ K \ {0}. We get the following cases.

(1) Suppose p = 2.
(a) If k = 1, and

(i) if s is even or if a is not a square in K, then

dimK(T⊥1 (Ak,s(a, c))) = dimK(T⊥1 (Ak,s(a, 0))),

(ii) if s is odd and a is a square in K, then

dimK(T⊥1 (Ak,s(a, c))) = dimK(T⊥1 (Ak,s(a, 0)))− 1.
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(b) If k > 1 is odd, and
(i) if s is even and if c is a square in K, then

dimK(T⊥1 (Ak,s(a, c))) = dimK(T⊥1 (Ak,s(a, 0))),

(ii) if s is odd or if c is not a square in K, then

dimK(T⊥1 (Ak,s(a, c))) = dimK(T⊥1 (Ak,s(a, 0)))− 1.

(c) If k is even, and
(i) if c is a square in K, then

dimK(T⊥1 (Ak,s(a, c))) = dimK(T⊥1 (Ak,s(a, 0))),

(ii) if c is not a square in K, then

dimK(T⊥1 (Ak,s(a, c))) = dimK(T⊥1 (Ak,s(a, 0)))− 1.

(2) Suppose K is a perfect field of characteristic p = 2.
(a) Then Ak,s(a, 0) ' Ak,s(1, 0) and

(i) if k and s are even, then

Z(Ak,s(a, 0))/T⊥1 (Ak,s(a, 0)) ' K[U, Y, S]/(Uk/2 − Y s/2, S2, UY, US, Y S),

(ii) if k > 1 or s is odd, then

Z(Ak,s(a, 0))/T⊥1 (Ak,s(a, 0)) ' K[U, Y, S]/(Udk/2e, Y ds/2e, S2, UY, US, Y S).

(b) If c 6= 0, then
(i) if k and s are even, then

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y ]/(Uk/2 − Y s/2, UY ),

(ii) if k > 1 or s is odd, then

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y ]/(Ud(k+1)/2e, Y d(s+1)/2e, UY ).

(c) If k = 1, then
(i) if (s is odd and c = 0) or (s is even and c 6= 0),

Z(A1,s(a, c))/T⊥1 (A1,s(a, c)) ' K[Y, S]/(Y d(s+1)/2e, S2, Y S),

(ii) if (s is odd and c 6= 0) or (s is even and c = 0),

Z(A1,s(a, c))/T⊥1 (A1,s(a, c)) ' K[Y ]/(Y ds/2e).

(3) If p 6= 2, and if K is algebraically closed, then Ak,s(a, c) ' Ak,s(a′, 0) for some a′ ∈ K×, and
if moreover (k, s) 6= (1, 3), then Ak,s(a, c) ' Ak,s(1, 0).

(4) If p > 3 or n ≥ 2, then the dimension of the Külshammer ideal Tn(Ak,s(a, c))⊥ does not
depend on the parameters a, c.

Suppose that K is algebraically closed. Then Ak,s(a, 0) ' Ak,s(1, 0) if (k, s) 6= (1, 3) and if c 6= 0
then Ak,s(a, c) ' Ak,s(a′, 1) ' Ak,s(1, c′) for some a′, c′ ∈ K×.

Remark 8. Consider the case s = 3 and k = 1. The computations in Remark 6 show that if K is
algebraically closed, and c 6= 0, then for each a′ there is a such that A1,3(a′, c) ' A1,3(a, 1).

This case is quite particular which allows an alternative argument for distinguishing derived
equivalence classes. If c = 0, then the relations of A1,3(a, 0) are homogeneous. Therefore the algebra
A1,3(a, 0) is graded by path lengths with semisimple degree 0 component. A theorem of Rouquier [16,
Theorem 6.1] shows that if A1,3(a, 0) is derived equivalent to another algebra B, then the induced
stable equivalence of Morita type induces a grading on B. Moreover, by [16, Lemma 5.21] the degree
0 component of A1,3(a, 0) is of finite global dimension if and only if the degree 0 component of B is
of finite global dimension.

Remark 9. The hypothesis that K is algebraically closed is stronger than required. A more precise,
somewhat technical statement is given at the end of Remark 6.
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Proof of Theorem 7. The isomorphisms Ak,s(a, 0) ' Ak,s(1, 0) for (k, s) 6= (1, 3) and if c 6= 0 then
Ak,s(1, c′) ' Ak,s(a, c) ' Ak,s(a′, 1) for some a′, c′ ∈ K× follow from Remark 6.

Define the following subsets of Q(2B)k,s1 (a, c).

B1 := {α(βγα)n, (βγα)nβγ, (βγα)m, e1(αβγ)` | 0 ≤ ` ≤ k, 1 ≤ m ≤ k − 1, 0 ≤ n ≤ k − 1},
B2 := {e2ηt, (γαβ)m | 0 ≤ t ≤ s, 1 ≤ m ≤ k − 1},
B3 := {(βγα)nβ, α(βγα)nβ | 0 ≤ n ≤ k − 1},
B4 := {(γαβ)nγ, (γαβ)nγα | 0 ≤ n ≤ k − 1}.

The (disjoint) union of these sets forms a basis of Q(2B)k,s1 (a, c), using the known Cartan matrix of

Q(2B)k,s1 (a, c).
As a next step we need to compute the commutator space. Clearly, non closed paths are

commutators, since if eipej 6= 0 for some path p and ei 6= ej , then p = eip − pei. Hence
B3 ∪ B4 ⊆ [Ak,s(a, c), Ak,s(a, c)]. Moreover,

α(βγα)n = α(βγα)n − (βγα)nα ∈ [A(a, c), A(a, c)] ∀n ≥ 1,

(βγα)m = (αβγ)m = (γαβ)m ∈ Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)] ∀m ≥ 0,

(βγα)mβγ = γ(βγα)mβ = 0 ∈ Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)] ∀m ≥ 1,

and hence
Bcomm := {α, (αβγ)m, ηt, e1, e2 | 1 ≤ t ≤ s− 1, 1 ≤ m ≤ k}

is a generating set of Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)]. Since the dimension of the centre of Ak,s(a, c)
equals the dimension of Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)], the algebra Ak,s(a, c) being symmetric, and
both are of dimension 2 + k + s, by [7], we get that the classes represented by the elements Bcomm
form actually a basis of Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)].

We only need to work in Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)], and therefore we need to consider linear
combinations of paths in Bcomm only. We can omit idempotents, since computing modulo the radical
these idempotents remain idempotents, and are hence never nilpotent modulo commutators. Hence
we only need to consider linear combinations of elements in the set

{ηt, α, (βγα)m | 1 ≤ t ≤ s− 1, 1 ≤ m ≤ k}.
We deal with the case p = 2. Let hence p = 2. In the commutator quotient squaring is semilinear

(cf e.g. [12],[22, Lemma 2.9.3]).
If k > 1 is odd, then

0 =

(
s−1∑
t=1

xtη
t + uα+

k∑
m=1

ym(βγα)m

)2

=

s−1∑
t=1

x2tη
2t + u2c(βγα)k +

k∑
m=1

y2m(βγα)2m

=
∑

1≤t≤s/2

x2tη
2t + u2c(βγα)k +

(k−1)/2∑
m=1

y2m(βγα)2m,

which implies xt = 0 for all t ≤ s
2 , ym = 0 for all m ≤ k−1

2 . If c = 0 then there is no other constraint.

Suppose c 6= 0. Then, if s is odd we get u = 0. If s is even, then x2s/2 + cu2 = 0 which has a non

trivial solution if and only if c is a square in K. Hence, computing in Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)]
we get

T1(Ak,s(a, c)) =


〈α, ηt, (βγα)m | t > s

2 ,m > k−1
2 〉K if c = 0

〈ηt, (βγα)m | t > s
2 ,m > k−1

2 〉K if s is odd and c 6= 0
〈ηt, (βγα)m | t > s

2 ,m > k−1
2 〉K if s is even and 0 6= c 6∈ K2

〈ηt, (βγα)m, ηs/2 + dα | t > s
2 ,m > k−1

2 〉K if s is even and 0 6= c = d2
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If k is even, then

0 =

(
s−1∑
t=1

xtη
t + uα+

k∑
m=1

ym(βγα)m

)2

=

s−1∑
t=1

x2tη
2t + u2c(βγα)k +

k∑
m=1

y2m(βγα)2m

=
∑

1≤t≤(s−1)/2

x2tη
2t + u2c(βγα)k +

k/2∑
m=1

y2m(βγα)2m,

which implies ym = 0 for 1 ≤ m < k/2 and xt = 0 for t ≤ s−1
2 .

If c = 0, then xs/2 + yk/2 = 0 in case s is even, and yk/2 = 0 in case s is odd.

Suppose c 6= 0. If s is odd, then y2k/2 + cu2 = 0, and if s is even, then y2k/2 +x2s/2 + cu2 = 0. Again

y2k/2 + cu2 = 0 and y2k/2 + x2s/2 + cu2 = 0 has non zero solutions if and only if c is a square.

Computing in Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)] we get

T1(A(a, c)) =



〈α, ηt, (βγα)m | t > s−1
2 ,m > k

2 〉K if s is odd and c = 0
〈α, ηs/2 + (βγα)k/2, ηt, (βγα)m | t > s

2 ,m > k
2 〉K if s is even and c = 0

〈ηt, (βγα)m | t > s−1
2 ,m > k

2 〉K if s is odd and 0 6= c 6∈ K2

〈ηt, (βγα)m, (βγα)k/2 + dα | t > s−1
2 ,m > k

2 〉K if s is odd and 0 6= c = d2

〈ηt, (βγα)m, (βγα)k/2 + ηs/2 | t > s
2 ,m > k

2 〉K if s is even and 0 6= c 6∈ K2

〈ηt, (βγα)m, (βγα)k/2 + ηs/2, ηs/2 + dα | t > s
2 ,m > k

2 〉K if s is even and 0 6= c = d2

If k = 1, then, since βγ = γβ = ηs−1 in the commutator quotient,

0 =

(
s−1∑
t=1

xtη
t + uα+ y1(βγα)

)2

=

s−1∑
t=1

x2tη
2t + u2aηs−1 + u2c(βγα)

which implies xt = 0 for 1 ≤ t ≤ s−2
2 .

If c = 0, then xs/2 = 0 in case s is even, and x2(s−1)/2 +au2 = 0 in case s is odd. This last equation

has non zero solutions if and only if a ∈ K2.
Suppose c 6= 0. If s is even, then x2s/2 + cu2 = 0. This has non zero solutions if and only if c ∈ K2.

If s is odd, then cu2 = 0 and x2(s−1)/2 + au2 = 0. Hence s odd implies u = 0 = x(s−1)/2. Computing

again in Ak,s(a, c)/[Ak,s(a, c), Ak,s(a, c)],

T1(Ak,s(a, c)) =



〈η(s−1)/2 + bα, ηt, (βγα) | t > s−1
2 〉K if s is odd, a = b2 and c = 0

〈ηt, (βγα) | t > s−1
2 〉K if s is odd, a 6∈ K2 and c = 0

〈ηt, (βγα) | t > s
2 〉K if s is even and c = 0

〈ηt, (βγα) | t > s−1
2 〉K if s is odd and c 6= 0

〈ηt, (βγα) | t > s
2 〉K if s is even and 0 6= c 6∈ K2

〈ηt, (βγα), ηs/2 + dα | t > s
2 〉K if s is even and 0 6= c = d2

It is easy to see that computing Tn(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] for n ≥ 2 (and any p ≥ 2 in
this case) yields expressions which are independent of a, c.

In order to compute the Külshammer ideal T1(Ak,s(a, c))⊥ we need to give the symmetrising form

of Ak,s(a, c). Recall that we have a basis B =
⋃4
i=1 Bi of A(k,s)(a, c) given by

B1 := {α(βγα)n, (βγα)nβγ, (βγα)m, e1(αβγ)` | 0 ≤ ` ≤ k, 1 ≤ m ≤ k − 1, 0 ≤ n ≤ k − 1},
B2 := {e2ηt, (γαβ)m | 0 ≤ t ≤ s, 1 ≤ m ≤ k − 1},
B3 := {(βγα)nβ, α(βγα)nβ | 0 ≤ n ≤ k − 1},
B4 := {(γαβ)nγ, (γαβ)nγα | 0 ≤ n ≤ k − 1}.

We define a trace map

A(a, c)
ψ−→ K
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by

ψ(ηs) = ψ((αβγ)k) = 1, and ψ(x) = 0 if x is a path in the quiver such that x ∈ B \ soc(Ak,s(a, c)).

Note that (αβγ)k = βηγ = (βγα)k. Remark 3 indicates that ψ should coincide on these socle
elements for ψ to define a symmetric form. Indeed, ηs = ηγβ = (γαβ)k and hence

ηs − (αβγ)k = (γαβ)k − (αβγ)k = [γ, αβ(γαβ)k−1]

is a commutator. We need to prove that ψ(c1c2) = ψ(c2c1) for all elements c1, c2 ∈ B.
Case (c1, c2) ∈ B1×B1: We obtain α(βγα)n1 ·α(βγα)n2 = 0 if n1+n2 > 0, and the case n1 = n2 = 0
is clearly symmetric.

α(βγα)n1 · (βγα)n2βγ = (αβγ)n1+n2+1 = (βγα)n2βγ · α(βγα)n1 ,

α(βγα)n1 · (βγα)m2 = (αβγ)n1+m2α ∈ (B1 ∪ {0}) \ soc(A(k,s)(a, c)

is mapped to 0 by ψ, and m2 > 0 implies

(βγα)m2 · α(βγα)n1 = 0.

Now, if `2 > 0, then
α(βγα)n1 · (αβγ)`2 = 0

and
(αβγ)`2 · α(βγα)n1 = (αβγ)`2+n1α ∈ (B1 ∪ {0}) \ soc(A(k,s)(a, c)

is mapped to 0 by ψ. If `2 = 0, then the two elements commute trivially.

(βγα)n1βγ · (βγα)n2βγ = 0 = (βγα)n2βγ · (βγα)n1βγ

and
(βγα)n1βγ · (βγα)m2 = 0

whereas
(βγα)m2 · (βγα)n1βγ = (βγα)m2+n1βγ ∈ (B1 ∪ {0}) \ soc(A(k,s)(a, c)

is mapped to 0 by ψ. If `2 > 0, then

(βγα)n1βγ · (αβγ)`2 = (βγα)n1+`2βγ ∈ (B1 ∪ {0}) \ soc(A(k,s)(a, c)

is mapped to 0 by ψ, whereas
(αβγ)`2 · (βγα)n1βγ = 0.

Clearly e1 commutes with (βγα)n1βγ. Now, trivially

(βγα)m1 · (βγα)m2 = (βγα)m2 · (βγα)m1

and
(αβγ)`1 · (αβγ)`2 = (αβγ)`2 · (αβγ)`1 .

Finally, if `1 > 0 then
(αβγ)`1 · (βγα)m2 = 0 = (βγα)m2 · (αβγ)`1 .

Case (c1, c2) ∈ B1 × B2: Since B1 ⊆ e1A
k,s(a, c)e1, and since B2 ⊆ e2A

k,s(a, c)e2 we get ψ(c1c2) =
ψ(c2c1) = 0 for c1 ∈ B1 and c2 ∈ B2.
Case (c1, c2) ∈ B1 × B3: Since B1 ⊆ e1A

k,s(a, c)e1, and since B3 ⊆ e1A
k,s(a, c)e2 we get c1c2 = 0

and c2c1 ∈ e1Ak,s(a, c)e3 for c1 ∈ B3 and c2 ∈ B1. Non closed paths are mapped to 0 by ψ.
Case (c1, c2) ∈ B1×B4: Since B4 ⊆ e2Ak,s(a, c)e1 the same arguments as in the case (c1, c2) ∈ B1×B3
apply.
Case (c1, c2) ∈ B2 × B2: Clearly ηt1 · ηt2 = ηt2 · ηt1 and (γαβ)m1 · (γαβ)m2 = (γαβ)m2 · (γαβ)m1 .
Moreover, if t > 0 then

ηt · (γαβ)m = 0 = (γαβ)m · ηt.
If t = 0, then trivially ηt · (γαβ)m = (γαβ)m · ηt.
Case (c1, c2) ∈ B2 × B3: Since then c1c2 and c2c1 are non closed paths, the same arguments as in
the case (c1, c2) ∈ B1 × B3 apply.
Case (c1, c2) ∈ B2 × B4: Again since then c1c2 and c2c1 are non closed paths, the same arguments
as in the case (c1, c2) ∈ B1 × B3 apply.
Case (c1, c2) ∈ B3 × B3: Then c1c2 = 0 = c2c1.
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Case (c1, c2) ∈ B3 × B4:

(βγα)n1β · (γαβ)n2γ = (βγα)n1+n2βγ ∈ (B1 ∪ {0}) \ soc(A(k,s)(a, c)

is mapped to 0 by ψ, and

(γαβ)n2γ · (βγα)n1β = (γαβ)n2(γβ)(γαβ)n1 = 0.

Now,

(βγα)n1β · (γαβ)n2γα− (γαβ)n2γα · (βγα)n1β = (βγα)n1+n2+1 − (γαβ)n1+n2+1.

and the value of ψ on each of the summands is equal.

α(βγα)n1β · (γαβ)n2γ = (αβγ)n1+n2+1

and
(γαβ)n2γ · α(βγα)n1β = (γαβ)n2+n1+1

both have identical values under ψ. Finally

α(βγα)n1β · (γαβ)n2γα = (αβγ)n1+n2+1α ∈ (B1 ∪ {0}) \ soc(A(k,s)(a, c)

is mapped to 0 by ψ and
(γαβ)n2γα · α(βγα)n1β = 0.

Case (c1, c2) ∈ B4 × B4: Then c1c2 = 0 = c2c1.
Altogether this shows that ψ is symmetric. The fact that ψ defines a non degenerate form follows

as in the proof of Proposition 2. For the reader’s convenience we recall the short argument. Suppose
that the form defined by ψ is degenerate. Then there is a 0 6= x ∈ Ak,s(a, c) with ψ(xy) = 0 for
all y, and since 1 = e1 + e2 there is a primitive idempotent e ∈ {e1, e2} of Ak,s(a, c) such that we
may suppose that x ∈ eAk,s(a, c). Let S be a simple submodule of xAk,s(a, c) and there is y such
that 0 6= s = xy ∈ S. Since S ≤ eAk,s(a, c) is one-dimensional, and included in the socle, and since
eBe contains a basis of S we get ψ(xy) 6= 0. The form defined by ψ is trivially associative. Hence ψ
defines a symmetrising form.

We come to the main body of the proof. Recall from Lemma 5 that dimK(Z(Ak,s(a, c))) = k+s+2.
We proceed case by case.

k > 1 odd and c = 0: Recall that in this case

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
α, ηt, (βγα)m | t > s

2
;m >

k − 1

2

〉
K

.

Hence

dimK(T1(Ak,s(a, 0))/[Ak,s(a, 0), Ak,s(a, 0)]) =

{
1 + s

2 + k+1
2 − 1 if s is even

1 + s+1
2 + k+1

2 − 1 if s is odd

=

{
s
2 + k+1

2 if s is even
s+1
2 + k+1

2 if s is odd

observing that (βγα)k − ηs ∈ [Ak,s(a, c), Ak,s(a, c)]. Therefore

dimK(T1(Ak,s(a, 0))⊥) = k + s+ 2−
{

s
2 + k+1

2 if s is even
s+1
2 + k+1

2 if s is odd

=

{
s
2 + 1 + k+1

2 if s is even
s+1
2 + k+1

2 if s is odd

But, in case s is even,{
ηt, (αβγ)u + (βγα)u + (γαβ)u, (αβγ)k | u ≥ k + 1

2
, t ≥ s

2

}
⊆ T1(A(a, c))⊥,

and in case s is odd,{
ηt, (αβγ)u + (βγα)u + (γαβ)u, (αβγ)k | u ≥ k + 1

2
, t ≥ s+ 1

2

}
⊆ T1(A(a, c))⊥.
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This is a basis of a subspace of the centre of the dimension as required, and hence the set above is a
basis of T1(Ak,s(a, c))⊥. Hence, with these parameters, if s is even then

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y, S]/(Y s/2, U (k+1)/2, S2, Y S, US,UY ),

and if s is odd, then

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y, S]/(Y (s+1)/2, U (k+1)/2, S2, Y S, US,UY ).

k > 1 odd, c 6= 0, and s is odd: Recall

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
ηt, (βγα)m | t > s

2
;m >

k − 1

2

〉
K

.

In this case we get α2 ∈ T1(Ak,s(a, c))⊥, and using the preceding discussion we get that{
α2, (βγα)k, ηt, (αβγ)u + (βγα)u + (γαβ)u | u ≥ k + 1

2
, t ≥ s+ 1

2

}
is a K-basis of T1(Ak,s(a, c))⊥. Hence in this case

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y ]/(Y (s+1)/2, U (k+1)/2, UY ).

k > 1 odd, d2 = c 6= 0, and s is even. Recall

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
dα+ ηs/2, ηt, (βγα)m | t > s

2
;m >

k − 1

2

〉
K

.

Then (
ηs/2 + dα

)
·
(
ηs/2 +

d

ca
α2

)
= ηs +

d2

ca
α3 = ηs +

c

ca
α3 = ηs +

1

a
· a(αβγ)k

and this is mapped to 0 by ψ. Hence,{
d

ca
α2 + ηs/2, (αβγ)k, ηt, (αβγ)u + (βγα)u + (γαβ)u | u ≥ k − 1

2
, t ≥ s

2
+ 1

}
is a K-basis of T1(Ak,s(a, c))⊥. Therefore in this case

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y ]/(Y
s
2+1, U (k+1)/2, UY ).

k even and c = 0 and s is odd. Recall

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
dα+ (βγα)k/2, ηt, (βγα)m | t > s− 1

2
;m >

k

2

〉
K

.

Then the discussion of the case k > 1 odd and c = 0 shows that{
ηt, (αβγ)k, (αβγ)u + (βγα)u + (γαβ)u | u ≥ k

2
, t ≥ (s+ 1)

2

}
is a K-basis of T1(Ak,s(a, c))⊥. Hence in this case

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y, S]/(Y (s+1)/2, Uk/2, S2, Y S, US,UY ).

k even and c = 0 and s is even. Recall

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
α, ηs/2 + (βγα)k/2, ηt, (βγα)m | t > s

2
;m >

k

2

〉
K

.

Then {
(αβγ)k, ηt, (αβγ)u + (βγα)u + (γαβ)u, ηs/2 + (βγα)k/2 | u ≥ k

2
+ 1, t ≥ s

2
+ 1

}
is a K-basis of T1(Ak,s(a, c))⊥. Hence in this case

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y, S]/(Y s/2 − Uk/2, S2, Y S, US,UY ).

k even, 0 6= c = d2, s odd: Recall

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
dα+ (βγα)k/2, ηt, (βγα)m | t > s− 1

2
;m >

k

2

〉
K

.
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Since dim(Z(Ak,s(a, c))) = k + s+ 2, and since

dim(T1(Ak,s(a, c)))/[Ak,s(a, c), Ak,s(a, c)] =
k

2
+
s+ 1

2
,

we get

dim(T1(Ak,s(a, c))⊥) = 2 + k + s− k

2
− s+ 1

2
=
k

2
+
s+ 1

2
+ 1.

Moreover, (
d

c
α2 + Uk/2

)
·
(
dα+ (βγα)k/2

)
=
d2

c
α3 + dUk/2α+

d

c
(βγα)k/2 + (βγα)k

and this maps to 0 by the map ψ. Therefore{
(βγα)k,

d

c
α2 + (αβγ)k/2 + (βγα)k/2 + (γαβ)k/2, ηt, (αβγ)u + (βγα)u + (γαβ)u | u ≥ k

2
+ 1, t ≥ s+ 1

2

}
is a K-basis of T1(Ak,s(a, c))⊥, and therefore

Z(Ak,s(a, c))/T1(Ak,s(a, c))⊥ ' K[U, Y ]/(Uk/2, Y (s+1)/2, UY ).

k even, c = d2 6= 0, and s even: Recall

T1(Ak,s(a, c))/[Ak,s(a, c), Ak,s(a, c)] =

〈
dα+ ηs/2, (βγα)k/2 + ηs/2, ηt, (βγα)m | t > s

2
;m >

k

2

〉
K

.

Then{
α2 + dηs/2, (βγα)k, ηt, (αβγ)u + (βγα)u + (γαβ)u, ηs/2 + (βγα)k/2 | u ≥ k

2
+ 1, t ≥ s

2
+ 1

}
is a K-basis of T1(Ak,s(a, c))⊥. Hence in this case

Z(Ak,s(a, c))/T⊥1 (Ak,s(a, c)) ' K[U, Y ]/(Y s/2 − Uk/2, UY ).

If k = 1 and c = 0 and s odd: Since dim(Z(A1,s(a, c)) = 3 + s, and since

dim(T1(A1,s(a, c))/[A1,s(a, c), A1,s(a, c)]) = 3 +
s− 1

2
,

we obtain dim(T1(A1,s(a, c))⊥) = s+1
2 . Observe that ηs = (αβγ) + (βγα) + (γαβ) = U . Then we get{

βγα, ηt, | t ≥ s+ 1

2

}
is a K-basis of T1(A1,s(a, c))⊥. Therefore

Z(A1,s(a, c))/T⊥1 (A1,s(a, c)) ' K[Y, S]/(Y (s+1)/2, S2, Y S).

If k = 1 and c = 0 and s even: Since dim(Z(A1,s(a, c)) = 3 + s, and since

dim(T1(A1,s(a, c))/[A1,s(a, c), A1,s(a, c)]) = 1 +
s

2
,

we obtain dim(T1(A1,s(a, c))⊥) = 2 + s
2 . Hence{
α2, βγα, ηt, | t ≥ s

2

}
is a K-basis of T1(A1,s(a, c))⊥ and

Z(A1,s(a, c))/T⊥1 (A1,s(a, c)) ' K[Y ]/Y s/2.

If k = 1 and c 6= 0 and s odd: Since dim(Z(A1,s(a, c)) = 3 + s, and since

dim(T1(A1,s(a, c))/[A1,s(a, c), A1,s(a, c)]) = 2 +
s− 1

2
,

we obtain dim(T1(A1,s(a, c))⊥) = 1 + s+1
2 . Hence{
α2, βγα, ηt, | t ≥ s+ 1

2

}
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is a K-basis of T1(A1,s(a, c))⊥ and

Z(A1,s(a, c))/T⊥1 (A1,s(a, c)) ' K[Y ]/Y (s+1)/2.

If k = 1 and c 6= 0 and s even: Since dim(Z(A1,s(a, c)) = 3 + s, and since

dim(T1(A1,s(a, c))/[A1,s(a, c), A1,s(a, c)]) = 2 +
s

2
,

we obtain dim(T1(A1,s(a, c))⊥) = 1 + s
2 . Hence{
βγα, ηt, | t ≥ 1 +

s

2

}
is a K-basis of T1(A1,s(a, c))⊥ and

Z(A1,s(a, c))/T⊥1 (A1,s(a, c)) ' K[Y, S]/(Y (s+2)/2, S2, Y S).

In order to be more concise we summarise the results from Theorem 7 and Remark 4 in case K
is algebraically closed in the following corollary.

Corollary 10. Let K be an algebraically closed field of characteristic p ∈ N ∪ {∞}, and let a, a′, c
be non-zero elements in K, and let c′, c′′ ∈ K.

• If p 6= 2, then there is a′ ∈ K× such that Q(2B)k,s1 (a, c) ' Q(2B)k,s1 (a′, 0), and if (k, s) 6=
(1, 3), then Q(2B)k,s1 (a, c) ' Q(2B)k,s1 (1, 0).

• If p = 2, then Db(Q(2B)k,s1 (a, c)) 6' Db(Q(2B)k,s1 (a′, 0)). Moreover, there is a′′ ∈ K×

such that Q(2B)k,s1 (a, c) ' Q(2B)k,s1 (a′′, 1) and if (k, s) 6= (1, 3), then Q(2B)k,s1 (a′, 0) '
Q(2B)k,s1 (1, 0).

• For any characteristic of K we get(
Db(Q(2B)k,s1 (a, c′′)) ' Db(Q(2B)k

′,s′

1 (a′, c′))
)
⇒ ((k = k′ and s = s′) or (k = s′ and s = k′).)

Proof. The first statement is an immediate consequence of Theorem 7 item (3) and [15, Lemma
5.7]. The second statement follows from Theorem 7 item (2)(a), (2)(b), (2)(c), and Theorem 1.
Indeed, the isomorphism type of the centre modulo the first Külshammer ideal differs in case c = 0
and c 6= 0. More precisely, the commutative algebras from case (2)(a) (i) and (2)(a) (ii) are non
isomorphic since the dimensions of the socles of these algebras differ by 1. Likewise, the commutative
algebras from case (2)(b) (i) and (2)(b) (ii) are non isomorphic since the dimensions of the socles of
these algebras differ by 1. The dimension of the socle of the centre modulo the Külshammer ideal
distinguish the algebras also in case (2)(c), i.e. k = 1. The third statement follows from Remark 4.

Remark 11. Let K be an algebraically closed field of characteristic 2. We do not know for which

pair of parameters a, a′ ∈ K× we get that Q(2B)k,s1 (a′, 1) is derived equivalent to Q(2B)k,s1 (a, 1).

We do not know for which parameters k, s the algebras Q(2B)k,s1 (a, c) and Q(2B)s,k1 (a, c) are derived
equivalent.

Remark 12. The case p = 3 is special if K is not perfect. Let p = 3 and use the notations used
in the proof of Theorem 7. Then α3 = a(βγα)m. In the commutator quotient taking third power is
semilinear (cf e.g. [12],[22, Lemma 2.9.3]), and therefore

0 =

(
s−1∑
t=1

xtη
t + uα+

k∑
m=1

ym(βγα)m

)3

=

s−1∑
t=1

x3tη
3t + u3a(βγα)k +

k∑
m=1

y3m(βγα)3m

=
∑

1≤t≤(s−1)/3

x3tη
3t + u3a(βγα)k +

∑
1≤m≤k/3

y3m(βγα)3m.

We have again various cases. If 3 does not divide k and 3 does not divide s, then xt = 0 for all
t ≤ s/3 and ym = 0 for all m ≤ k/3 and u = 0. If 3 does not divide k but 3|s, then xt = 0 for all
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t < s/3 and ym = 0 for all m ≤ k/3 and x3s/3 + au3 = 0, which has a non zero solution if and only

if a is a cube. If 3 divides k and 3 does not divide s, then xt = 0 for all t ≤ s/3 and ym = 0 for all
m < k/3 and y3m/3 + au3 = 0, which has a non zero solution if and only if a is a cube. If 3 divides k

and 3 divides s, then xt = 0 for all t < s/3 and ym = 0 for all m < k/3 and x3s/3 + y3m/3 + au3 = 0,

which has a non zero solution if and only if a is a cube.
As seen above, the first Külshammer ideal detects if the parameter a is a third power in case k

or s is divisible by 3. This shows that the isomorphism Ak,s(a, 0) ' Ak,s(1, 0), which we proved for
algebraically closed base fields, is false if the base field is not perfect.

2.2. Three simple modules. Holm shows that there are two families of algebras Q(3K)a,b,c and

Q(3A)2,21 (d) with three simple modules such that any block with quaternion defect group and three
simple modules is derived equivalent to an algebra in one of these families. According to [7] the
derived classification of the case Q(3K)a,b,c is complete, whereas the classification for the case

Q(3A)2,21 (d) is complete up to the scalar d ∈ K \ {0, 1}.
The quiver 3A is

• • •
1 2 3

- -
� �

β δ

γ η

B(d) := Q(3A)2,21 (d) is the quiver algebra of 3A modulo the relations

βδη = βγβ, δηγ = γβγ, ηγβ = d · ηδη, γβδ = d · δηδ, βδηδ = 0, ηγβγ = 0

for d ∈ K \ {0, 1}.

Following [4] the Cartan matrix of B(d) is

 4 2 2
2 3 1
2 1 3

 and the centre is 6-dimensional. The

Loewy series of the projective indecomposable modules are given below.

1

2

1 3

2

1

�
�

@
@

@
@

�
�

2

1 3

2 2

3 1

2

�
�

@
@

H
HHHH

�
����

@
@

�
�

3

2

3 1

2

3

�
�

@
@

@
@

�
�

We obtain a basis of the socle of B(d) by

{s1 := βδηγ, s2 := ηγβδ, s3 := γβδη}.
The closed paths of the algebra are

{e0, e1, e2, βγ, γβ, δη, ηδ, βδηγ, ηγβδ, γβδη}.
The centre is formed by linear combinations of closed paths and has a basis

{1, βγ + γβ +
1

d
ηδ, βγ + δη + ηδ, βδηγ, ηγβδ, γβδη}

as is easily verified. Non closed paths are clearly commutators. Obviously

βδηγ ≡ ηγβδ ≡ γβδη mod [B(d), B(d)].
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Moreover,
βγ − γβ ∈ [B(d), B(d)] and δη − ηδ ∈ [B(d), B(d)].

Since the dimension of the centre of B(d) coincides with the dimension of the commutator quotient,
we get a basis of B(d)/[B(d), B(d)] by

{e0, e1, e2, βγ, δη, βδηγ}.
We now suppose that the characteristic p of K is p = 2. If x is a square in K, then denote y =

√
x

if y2 = x. We compute

(βγ)2 = βγβγ = βδηγ and (δη)2 = δηδη =
1

d
δηγβ.

If d is a square in K, then

((γβ) +
√
d(ηδ))2 = γηγβ + dηδηδ = δηγβ + ηγβδ ∈ [B(d), B(d)]

so that T1(B(d))/[B(d), B(d)] is 1-dimensional. If d is not a square, then T1(B(d)) = [B(d), B(d)].
Let us consider the centre. Denote βγ + γβ + 1

dηδ = x and βγ + δη + ηδ = y. Then we get

x2 = (βγ + γβ +
1

d
ηδ)2 = βδηγ +

1

d
δηγβ +

1

d
ηγβδ = s1 +

1

d
s2 +

1

d
s2,

y2 = (βγ + δη + ηδ)2 = βδηγ + δηγβ +
1

d3
ηγβδ = s1 + s2 +

1

d3
s3,

xy = (βγ + δη + ηδ) · (βγ + γβ +
1

d
ηδ) = βδηγ + δηγβ +

1

d2
ηγβδ = s1 + s2 +

1

d2
s3.

The coefficient matrix above has determinant (d−1)2
d4 and since d 6= 1, the elements x2, y2, xy are lin-

early independent, and hence Z(B(d)) ' K[x, y]/(x3, y3, x2y, xy2). Moreover, choose the Frobenius
form given by

ψ(βδηγ) = ψ(δηγβ) = ψ(ηγβδ) = 1 and ψ(c) = 0 if c is a path of length at most 3,

following Remark 3. The relations are homogeneous, which shows that in order to prove symmetry
of the form we only need to consider paths c1 and c2 such that the lengths of c1 and c2 sum up to
4. The verification is a trivial and short computation which can be left to the reader.

Suppose now that K is a perfect field. An elementary computation gives that T⊥1 (B(d)) has a
basis {x, s1, s2, s3}, and therefore Z(B(d))/T⊥1 (B(d)) ' K[y]/y2, independently of d.

Theorem 13. Let K be a field of characteristic 2, and let B(d) be the algebra Q(3A)2,21 (d). Then
dimK(T⊥1 (B(d))/R(B(d))) = 1 if d is a square in K, and dimK(T⊥1 (B(d))/R(B(d))) = 0 if d is not
a square in K.

Proof: is done above.

Remark 14. Unlike in case of Theorem 7 and its Corollary 10, using Külshammer ideals we cannot
distinguish the derived category of Q(3A)2,21 (d) from the derived category of Q(3A)2,21 (d′) for two
parameters d, d′. If K is perfect of characteristic 2, then all elements of K are squares. Theorem 1
needs that K is perfect for the invariance of Külshammer ideals under derived equivalences and K
is even algebraically closed for the invariance under stable equivalences of Morita type. We can only
say that the algebra Q(3A)2,21 (d) is not isomorphic to the algebra Q(3A)2,21 (d′) if d is a square and
d′ is not.
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