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Introduction

In this note we characterize certain types of semi—herediatry orders in a semisimple
artinian ring. The structures of such semi—hereditary orders happen to be some-
what similar to those of classical hereditary orders over complete discrete valuation
domains investigated in [Bru] and [Hara]. This might lead to a variety of exam-
ples to certain problems concerning the necessity on assumptions to be noetherian.
Moreover, we are able to give all the twosided ideals of these orders.

Our motivation for the interest in those semi-hereditary orders came from an
example we found while we were trying to find applications for the main theorem
in [P-R].

Let R, be the algebraic closure of the p—adic integers in the p"—th cyclotomic
extension field @p[gn] of the p—adic numbers, (,, denotes a primitive p"—th root
of unity. Let R be the union of all the R,, in an algebraic closure of the p-adic
numbers. Let J(R) be the Jacobson radical of R. Observe that J(R) is not finitely

generated as R—module. Let
R R
v (ol 1)

The two projective indecomposable modules are P, and P,. The complex P; &
(P, — P,), both copies of P; are in degree 0, is a tilting complex! with endomor-

hism rin
b ° Enda(T) ~ R R/J(R)
nda( )—<o R/J(R))

IThe fundamental theorem of Rickard [Ric] states as follows: Rings I and A are derived
equivalent if and only if there is a so called tilting complex T'. A tilting complex T is a bounded
complex of finitely generated projective A—modules such that the triangulated category generated
by summands of finite sums of T contains all projective indecomposable A—modules and such that
Ext} (T,T) =0 for i # 0 and Enda(T) ~T.
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which is generated by 3 elements as an R—module. We remind the reader that J.
Rickard proved in [Ric] that if A is finitely generated over a noetherian centre then
if I is derived equivalent to A, also I' is derived equivalent over the same noetherian
centre. The analogous statement appears to be false if one drops the assumption
that the centre is noetherian. In analogy to the paper [K-Z]| we tried to classify
all the rings derived equivalent to semi-hereditary orders with centre R contained
in the integral closure of the p—adic integers in the algebraic closure of the p—adic
numbers.

For generalities on triangulated categories we refer to [Hart] and [Ver].

By our structure theorem it turns out that the proof of [K-Z] on the derived
equivalences of hereditary orders carries through word by word and so we are able
to give the rings which are derived equivalent to those semi-hereditary orders. We
also present a whole series of pairs of rings (A,T") such that ' and A are derived
equivalent but I' is finitely generated over its centre, while A is not.

Also it would be interesting to compare the characterization of these semi-
hereditary orders with that of Bezout orders in the forthcoming paper [P-R].

The main theorem and its proof

We denote for any ring S by J(S) the Jacobson radical of S.

Theorem 1. Let A be a semi-hereditary prime PI-ring with the centre R, which
is local, integrally closed and contained in the algebraic closure @p of the p-adic
numbers. Let K be the field of fractions of R. Then A is Morita equivalent to an
order which is of the following shape,

A A
J(A) :
JA) ...oJa) A)

for a maximal R—order A in a skew field.

Since K is a subfield of the algebraic closure @p of the p—adics, K is the di-
rect limit of the finite extension fields K, of the p-adics Q,, partially ordered by
inclusion.

We define R, : = alg. int.(K,).

Note that A := KA is simple artinian (cf. [Row]).

Example 1. We cannot expect to obtain a hereditary order. Let R be the ring of
algebraic integers in Q,. Then, let

=ty )= ey &)
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The limit is taken over the set of finite extensions of Q,. Since J(R) is not finitely
generated over R ([P-R]), A is not hereditary.

Essentially for the proof is the following fact developed in [P-R].
Proposition 1. ([P-R]) Let A be a prime Pl-ring whose centre R = lim(R,) is
local, integrally closed and consists entirely of algebraic integers over Q,. Then A

is the limit of classical R,—orders A, for o > «g for some «g. Following [P-R| A is
then called a semi—order.

The proof can be found in [P-R].

Proof of Theorem 1.

By Proposition 1 the order A is the direct limit of the orders A,. First we shall
establish

Lemma 1. For all «, the orders A, are hereditary R,—orders in A, := K,A,.

Proof. We choose a left ideal I, of A,,. Of course, I, is finitely generated. For each
B > a we set Ig := Ag - I, which is clearly also finitely generated, over Ag. The
limit [ := limg>a1p is hence also finitely generated and by the semi-hereditarity
of A, projective as A-lattice. There exists a surjection

T A" —T

which is split by a morphism o. Now, since I is finitely generated, o is already
defined over § which may be larger than . We furthermore observe that

I6 - A(SIa - R5AaIa - R(S ®Ra Iou

I5 being Rs—free. Similarly, A = Rs ®g_ Aa.
For some projective As—lattice Cs we have

?2[5@05

and invoking that Rs ® g, — is a morphism between the Grothendieck group of pro-
jective A,—lattices, Ko(proj.lat(Ay)), to that for Ay, denoted by Kq(proj.lat(As)),
we see that also Cj is isomorphic to Rs ® g, C,, for some projective A,lattice C,.
We now use the Noether-Deuring theorem as extended in [Rog] to see that

Co®I,~A.
We have shown that A, is hereditary and the lemma is proved.

Notation. Pick an arbitrary a. Let A, = Mat,_(D,) for a skewfield D, and a
natural number n,. Then the unique maximal order in D, is denoted by A, and

J(A,) is denoted by J,.



Claim 1. If A is basic, also A, is basic for each a.

In fact, if A, has multiplicities greater than 1 in the projective indecomposable
summands as left modules then also A = R®pr_ A, would have multiplicities in the
indecomposable projective summands greater than 1 as left module.

We construct injective systems from the datas. We start with ag and look at all
o> Q.

Claim 2. The triple (Da,,Aays Ja,) transforms, tensoring with Rg over R, for
B > ap, to the triple (Dg, Ag, J3).

Proof of Claim 2. We have the standard form of A, being a hereditary order in A,,.
Then, RgA,, is a maximal order in K3D,, and RgJ, is its radical if and only if Ag is
hereditary ([Rei]). To prove that fact, we take an indecomposable projective module
of Ag and an indecomposable projective module of RgA,. The endomorphism rings
are firstly Ag and secondly RgA,. These are hence isomorphic. The fact that Ag
is hereditary, however, is the statement of Lemma 1.

The set {(RgAny, R3Jag, KgDa, )} forms an injective system. Let (A, J, D) be
their injective limit. Observe that lim D, = D where A = KA is a full matrix ring
over the skew field D.

Claim 3. A is a maximal order in D.

In fact, surely A is an order since it is generated by the same elements as A,, over
R. Let I' be an order containing A. Then, take an = € T'\ A. z belongs to some
A,/ Since I' is an order, x is integral over R. It satisfies the monic polynomial

m
Zrixi with r,, =1 and r; € R.
i=0

We take o > o’ such that all of the r; belong to R,. We claim that
Qo =An+Apz+--+Az™ 1 CT

is an order in D,. Since z is integral this is a subring of D, generating D, over
K. On the other hand, since A, is finitely generated as R,—module, the same is
true for €,. This proves the claim.

Claim 4. J = J(A).

In fact, let x € J. Then x € J, for some large enough a. Let a,b € A. Then
a,b,xz € Ag, enlarging o to 3 if necessary. Since Jg is the radical of Ag, 1 — axb is
invertible in Ag, hence also in A. This proves that J C J(A). The same argument
yields the other inclusion, hence the claim.



It is now immediate to see that

A A
e
J(A) J(A) A

The twosided ideals

The following may be well known, however, the corresponding statement in [Rei] is
formulated only for R to be noetherian.

Lemma 2. Let A be as above and let furthermore assume that A is basic. Then
there is a unique maximal left ideal M of A and this is also a two sided ideal of A.

Proof. Each of the A, is a maximal order in D,. The limit of the radicals of
A, is the radical of A, as proved in Claim 4. Let there be two simple A-modules
S1 and S3. Then, take non zero elements x; and x5 from S; and S5 respectively.
Both simples are modules over the field F' := R/J(R). Surely, J(R,) is contained
in J(R). Hence, F is a field extension of F,, := R,/J(R,). Let S; o = Ay - x;
for i = 1,2. Then, these are simple A,—modules. In fact, any submodule keeps on
being a submodule of lower dimension by tensoring with F', F' being flat over F,.
Let ¢, be an isomorphism from S; o to S o. Tensoring with F' over Fi, this yields
an isomorphism from S; to S3. We proved that J(A) is a maximal left ideal of A,
which asserts the lemma.

Recall that we abbreviated J(A) = J.

Theorem 2. Let A be a semi—hereditary order with integrally closed and local
centre R contained in the algebraic integers of the algebraic closure @p of the p—
adic numbers. Every twosided ideal I of A is of the following form: It equals the set
of n by n matrices with entries in the i, j—th position contained in a twosided ideal
I; j of A such that there is an element a(I) € A with [; ; = a(l)-Aor I; ; = a(I)-J.
Moreover, if I; ; = a(I) - A, then I, ; = a(I) - A for each k > i and [ > j.

If R is a complete discrete valuation ring, it is noehterian and the statement is
proved. So let us assume that R is not discrete.

Note that every onesided ideal of A is a twosided ideal since this is true for each
Ag.

We first need to describe the ideals of A.
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Lemma 3. Every twosided ideal X of A, which is not finitely generated, equals

X =wu-JNA for some element u in A, where A denotes the J (A)—adic completion
of A.

Remark. Recall that a ring is left Goldie if there is no infinite direct sum of non—
zero left ideals and it satisfies the ascending chain condition on left annihilators. If
u is not a unit, then A/X is not left Goldie.

Proof. To make the proof more readable we develop first the special case where
KA = (K), with K = lim Q,[(,].

Let I =,y R-u; be the non finitely generated ideal of R. We have a valuation
v defined on the whole of K. Let m := inf {v(u;) | i € N} (observe that if there is
an x € I with m = v(x), then I is principal.) So, we take an element u € R (observe
that we are in a complete situation) with v(u) = m. Then, since v(I - u~1!) > 0,
all of the elements in I -u~! =: I’ are integral. We claim that I’ = J. We have a
local ring and therefore I’ C J. Hence, we have to prove that m; € I’ for all i. By
definition, v(m;) = p~*. By construction we have inf v(I') = 0 and therefore there
exists for all i € N a w; € I’ such that 0 < v(w;) < p~*. Hence, 7; is a multiple of
w; and m; € I'. Therefore, J C I’ C J.

We now turn back to the general setup of the lemma.

Let, as usual, 7, be a prime element of A, we also choose primes p, € R,. We
know that we may choose 7, such that 77 = p,.

We need one more observation.

Claim 5. Let v > v_ and let e be the ramification index of R, over R, . Then
WiAW =7, A,

Proof of Claim 5. Recall that an extension of the valuation v,  of R, to a
valuation on R, is given by v,_(N[k_ .k, (%)) =: vy (z). Recall moreover, that the
valuation on A,_, also denoted by v,_ is given by v,_ (Nyx, a, )k, (x))/n* =
v,_(x) and that on A, is defined analously.

Obviously, for x € A,_, we have Nyx. A, y.r, () = Nk, a. )k, (T) since
we may take the same basis over the centre. Henceforth,

Uy (my_) = U’Y(N[(K»YAW):KW](W’Y—))/H’Q = evy_ Ny, Aw,)in,](Wv—))/Tﬂ = U’y(ﬂ's)-l

This completes the proof of the claim.

Let X = > ,cyA - u; be the non finitely generated ideal of A. We have a
valuation v defined on the whole of KA. Let m := inf {v(u;) | i € N} (observe that
if there is an x € X with m = v(z), then X is principal.) So, we take an element
u € A (observe that we are in a complete situation) with v(u) = m. Then, since
v(X -u~1) >0, all of the elements in X - u~! =: X’ are integral.

We claim that X’ = J. Recall, J =" _ 7oA. We have a local ring and therefore
X’ C J. We hence have to prove that m, € X’ for all a. By construction we
have inf v(X’) = 0. Since X is not finitely generated, there exists a sequence in



v(X)\ {inf v(X)} converging to inf v(X). Hence, there exists a w, € X’ for all
a such that 0 < v(ws) < v(m,). Hence, 7, is a multiple of w, and 7, € X'
Therefore, J C X’ C J.

We describe the non trivial twosided ideals of A.

Multiplying from the left and the right by matrices 1; ; which have entries only
0 except at one place (7, j) in the upper triangular submatrix where there is a 1, we
see that the twosided ideals are of the following shape: I consists of the full matrix
ring with entries in the ¢, j—th position in some twosided ideal I; ; of A satisfying
some appropriate conditions determined in the sequel.

For all r € J we form the matrix r; ; consisting of 0 at every position except one
in the lower triangular submatrix at the position ¢, j. multiplying by r; ; from the
left and multiplying from the right, we see that

J - Ij,k g Iz’,k and Ik,i -J g Ilc,j-

were ¢ < j and k arbitrary between 1 and n.
Multiplying by 1;; from the right and multiplying from the left, we get

I ; €Iy and ;g C 1 k.

Still, ¢ < j and k arbitrary. Hence, Iy, ;- J C I}, ; C Iy ; and J -1, C I; ), C I; 1, for
all k£ and 7 < j.

Firstly, if an ideal I; ; is finitely generated, then it is principal. In fact, all
generators lie in A, for large enough «, and hence, since the statement is true
there, it is true in A.

Secondly, the above relations assure that surely if I is non zero then also all of
the I; ; are non zero.

Third, for any ideal X different from 0 of A, the ideals J - X = X - J are not
finitely generated.

Fourth, J? = J.

So, take ideals I; ; = a; ;J or I; ; = a; ;A; ;. The above relations ensure, that for
all 4, j we have v(a; ;) =v(a11) =v(a) with a :=ay ;. If I; ; = aA, then I;; = aA
for k >4 and [ > j. All of these so formed ideals are however twosided ideals.

An application



In order to give an application to the derived category of A analogous to that in
[K-Z] we recall the main result of [K-Z].

In [K-Z] there is given a complete and fully combinatorial description of the set of
rings being derived equivalent to a given hereditary order over a complete discrete
valuation domain. We sketch the result here. For the moment let {2 be a hereditary
order over a complete discrete valuation domain S.

Let n be the number of simple 2-modules. Write n = ny + ng as a sum of
two non negative integers. We fix a circle with n distinguished vertices numbered
consecutively from 1 to n, n; stars and ny arrows. Each star is attached to a vertex,
each arrow goes from one vertex to another vertex. At each vertex there is at most
one star. The arrows and stars are drawn in the circle obeying to the following
rules:

(0) There is a star at 1 and if the number of the ending vertex of an arrow is
smaller than the number of the starting vertex then the ending vertex is vertex 1.

(1) Two different arrows do not intersect in inner points.

(2) Each arrow lies on an open polygon path (that is a tree consisting of straight
lines which are arrows) which contains exactly one star. There are no closed polygon
paths.

(3) If an arrow leads from i to j, a star attached to some vertex in the circle
segment between ¢ and j can only be attached to 7 or to j.

The figures satisfying those rules are called cascades of fans. The rings attached
to a cascade of fans is prescribed by the following procedure. For each vertex we
write a matrix of size the number of arrows ending or starting at that vertex plus
the number of stars (0 or 1) attached to that vertex. For each vertex we insert a
A :=A/J(A) in the main diagonal, the arrows with starting vertex at the present
one contribute a full lower triangular matrix, the arrows with ending vertex the
present vertex contribute as upper triangular matrix. An occasionally present star
is written in the first entry with a A and the positions that belong to the arrows
starting at the present vertex we insert a A at the first row, lower diagonal, at
those ending at the vertex the dual procedure. We finally add a hereditary matrix
in standard form of size “number of stars in the circle” and we take the subring
of the direct sum of those matrix rings that consists of those elements with equal
entries at those diagonal parts which belong to the same vertex or star. For more
details and a more illustrative description we refer to [K-Z].

The rings derived equivalent to A are describable in almost the same manner as
done in [K-Z]. We also get the description by cascades of fans as is done in [K-Z].
The proof there basically used only the fact that the projective indecomposable
modules Py, Ps, ..., P, have the property that rad P; ~ P, 1 and rad P, ~ P, as
well as the fact that for the endomorphism rings A of the projective indecomposable
modules P; we have a structure as is proved for our A in Lemma 2. For the proof of
[K-Z] it is also essential to have minimal mappings P; — P; for all 4, j. Since our
J(A) for the semi—hereditary case is not finitely generated, we have a cascade of
fans in a semicircle rather than a circle. In fact, there is no minimal mapping from
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P; to P; if j < i. The rule (0) must be changed to (Osepmi) and the rules (1gems),
(25emi) and (3sem:) are as stated below.

(Osems) There is at least one star and for all the arrows the index of the starting
vertex is smaller than the index of the ending vertex.
For the other rules we have (15¢mi) = (1), (2semi) = (2) and (3semi) = (3).

The proof of [K-Z] carries then through word by word.

Corollary 1. If T is a tilting complex over A with endomorphism ring isomorphic
to A, then T is isomorphic to a module, rather than a complex.

Proposition 2. ([Ric, Proposition 9.4]). If A and I' are derived equivalent rings,
and A is finitely generated as a module over a noetherian centre, then I' is also
finitely generated over a noetherian centre.

Example 2. The property that a ring is finitely generated as module over its
centre is not preserved by derived equivalences if one does not have the centre
being noetherian. Let

R = limy, 00 Zp[Cnl

where ¢, is a primitive p™ th root of unity. The radical J(R) of R is not finitely
generated as R—module. Let A be the semi-hereditary order

R R
a=| % |
JR) ... JR) R/,

The derived equivalence by a cascade of fans takes A to a ring which is finitely
generated over its centre if and only if there is only one star in the cascade of fans.
Observe that R/J(R) is isomorphic to the prime field of p elements.

Corollary 2 The injective limit of a tilting complex need not be a tilting complex.

A cascade of fans with arrows ending at 1 for classical hereditary orders and the
limit over these leads not to a tilting complex since for semihereditary orders we
have a cascade of fans in the semicircle rather than a circle.
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