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Abstract. We contribute to the classification of finite dimensional algebras under stable equiv-

alence of Morita type. More precisely we give a classification of Erdmann’s algebras of dihedral,

semi-dihedral and quaternion type and obtain as byproduct the validity of the Auslander-Reiten
conjecture for stable equivalences of Morita type between two algebras, one of which is of dihedral,

semi-dihedral or quaternion type.

Introduction

Stable categories were introduced very early in the representation theory of algebras and played
a major rôle in the development of Auslander-Reiten theory. Nevertheless, already in the 1970’s
Auslander and Reiten knew that equivalences of stable categories can behave very badly. For example
there are indecomposable finite dimensional algebras which are stably equivalent to a direct product
of two algebras none of which is separable [1, Example 3.5].

Around 1990 the concept of derived categories became popular in the representation theory of
groups and algebras by mainly two developments. First Happel interpreted successfully tilting theory
in the framework of derived categories and secondly Broué formulated his famous abelian defect group
conjecture in this framework. Many homological constructions are more natural in the language of
derived categories than in module categories. Work of Rickard [23] and Keller-Vossieck [15] show
that an equivalence between derived categories of self-injective algebras implies an equivalence of
a very particular shape between the stable categories of these algebras. The stable equivalences
coming from derived equivalences are induced by tensoring with bimodules which are invertible
almost as for Morita equivalences. This discovery in mind Broué defined two algebras A and B
to be stably equivalent of Morita type if there is an A-B-bimodule M and a B-A-bimodule N ,
which are projective considered as modules on either side only and so that there are isomorphisms of
bimodules M ⊗BN ' A⊕P for a projective A-A-bimodule P and N ⊗AM ' B⊕Q for a projective
B-B-bimodule Q.

It soon became clear that stable equivalences of Morita type are much better behaved than
arbitrary stable equivalences. Nevertheless, classes of algebras which are classified up to stable
equivalence of Morita type are rare. In recent joint work with Yuming Liu [20] we gave several
invariants which we shall apply in the present paper to classify algebras up to stable equivalences of
Morita type. These invariants were used in [25] to classify symmetric algebras of polynomial growth
up to stable equivalence of Morita type. The main additional problem with respect to derived
equivalences is that the number of non-projective simple modules is not proven to be an invariant
under stable equivalences of Morita type. This fact is the long-standing open Auslander-Reiten
conjecture.

Erdmann gave a list [6] of algebras which are defined by properties of their Auslander Reiten
quiver, the Cartan matrix and the representation type and which include all blocks of finite groups
of tame representation type. These algebras are given by a finite number of quivers and relations
which depend on various parameters. The so-defined algebras fall into three classes, called of dihedral,
of semi-dihedral and of quaternion type. In each class there are algebras with one, with two and
with three simple modules. Moreover, within each class and with a fixed number of simple modules
there are a number of finite so-called families of algebras. Each family is given by a fixed quiver with
relations depending on several parameters. Erdmann’s classification is up to Morita equivalences.
Holm pursued further this approach and classified the algebras in Erdmann’s list up to derived
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equivalences [10, 11]. Various algebras in different families are proved to be derived equivalent.
However the three classes of the algebras are closed under derived equivalences. We shall give an
account of his results in Section 2.

In the present work we classify the algebras of dihedral, semi-dihedral and quaternion type up to
stable equivalences of Morita type. Our classification is almost as complete as for derived equivalences
and the classification coincides roughly with the derived equivalence classification. In particular we
show the Auslander-Reiten conjecture for stable equivalences of Morita type between these classes of
algebras and we find that the classes of algebras are also closed under stable equivalences of Morita
type. Within each class of algebras with a fixed number of simple modules we are able to distinguish
in most cases two families up to stable equivalences whenever it is known to distinguish the families
up to derived equivalences. However, in a few cases (see Theorem 7.1 for the technical details) we
are not able to distinguish the families up to stable equivalences of Morita type even though the
families can be distinguished up to derived equivalences.

The paper is organised as follows. In Section 1 we recall some of the invariants under stable
equivalence of Morita type we use in the sequel. In Section 2 we recall Holm’s derived equivalence
classification of algebras of dihedral, semi-dihedral and quaternion type. In Section 3 we present
an independent classification for the case of tame blocks of group rings. The proof is much simpler
than the general case, and hence we decided to present the arguments separately, though, of course,
the general theorem includes this case as well. Moreover, a short summary of Holm’s result on
Hochschild cohomology of tame blocks is given there. In Section 4 we classify dihedral type algebras
up to stable equivalences of Morita type. The main tool is a result of Pogorza ly [22, Theorem 7.3].
This section is the first technical core of the paper. In Section 5 we compute the centres of the
algebras of semi-dihedral and of quaternion type. This section prepares the classification result for
these classes of algebras. In Section 6 we show how one can distinguish stable equivalence classes of
Morita type using basically invariants derived from the centre. This part is the second technical core
of the paper. In Section 7 we finally summarise large parts of what was proved before. This section
contains the main result Theorem 7.1 of the paper. Moreover, in this section we recall the results of
an earlier paper of Holm and the second author [13] which distinguishes derived equivalence classes
of algebras corresponding to one family and two different parameters in a very subtle situation. The
method of proof uses a derived invariant [27] which was shown [20] to be an invariant under stable
equivalences of Morita type.

Throughout this paper K denotes a field. Mostly we assume K to be algebraically closed. A
K-algebra is assumed to be finite dimensional associative algebra with unit over K and modules over
a K-algebra are always assumed to be finite dimensional.

1. Stable invariants

In this section we shall explain and state most of the various properties of algebras invariant under
stable equivalences of Morita type used in the sequel.

The stable category A-mod of a finite dimensional K-algebra A has the same objects as the
category of A-modules and morphisms, denoted by HomA(M,N) from M to N , are equivalence
classes of morphisms of A-modules modulo those factoring through projective A-modules.

The first reduction is a result of Keller-Vossieck and Rickard.

Theorem 1.1. (Keller-Vossieck [15] and Rickard [23]) Let K be a field and let A and B be two self-
injective K-algebras. If the bounded derived categories Db(A) and Db(B) of A and B are equivalent
as triangulated categories, then the algebras A and B are stably equivalent of Morita type.

Hence in order to give a classification of a class of self-injective algebras up to stable equivalences
of Morita type we can start from a classification up to derived equivalences and decide for two
representatives of the derived equivalence classes whether they are stably equivalent of Morita type.

In order to do so we use several criteria, some linked to invariants around the centres of the
algebras.
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We first recall a construction due to Broué. Let A and B be K-algebras. If A is stably equivalent
of Morita type to B, then the subcategory of the stable category of bimodules generated by A⊗KA

op-
modules which are projective on either side is equivalent to the analogous category of B ⊗K Bop-
modules. The A ⊗K Aop-module A is mapped to the B ⊗K Bop-module B under this equivalence.
Therefore

EndA⊗KAop(A) ' EndB⊗KBop(B).
Broué denotes by Zst(A) := EndA⊗KAop(A) the stable centre and by

Zpr(A) := ker
(
EndA⊗KAop(A) −→ EndA⊗KAop(A)

)
the projective centre of A, where Z(A) ' EndA⊗KAop(A) denotes the centre of A.

Theorem 1.2. (Broué [4, Proposition 5.4]) Let K be a field and let A and B be two K-algebras
which are stably equivalent of Morita type. Then Zst(A) ' Zst(B).

The centre is usually not known to be an invariant under stable equivalences of Morita type. One
of the main results of [20] deals with degree 0 Hochschild homology.

Theorem 1.3. (Liu, Zhou, Zimmermann [20, Theorem 1.1 and Corollary 1.2]) Let K be an alge-
braically closed field and let A and B be two indecomposable K-algebras which are stably equivalent
of Morita type. Then dimK(HH0(A)) = dimK(HH0(B)) if and only if the number of isomorphism
classes of simple A-modules equals the number of isomorphism classes of simple B-modules. If
the algebras are symmetric, then the invariance of the number of simple modules is equivalent to
dimZ(A) = dimZ(B).

The second point of the above theorem follows from the first one, because for a symmetric algebra
A, we have HomK(HH0(A),K) ' Z(A) as vector spaces, and hence we get a partial answer to the
invariance of the centre under stable equivalences of Morita type.

Moreover, a very useful criterion was given in [20] as well in order to estimate the dimension of
the projective centre.

Proposition 1.4. (Liu, Zhou, Zimmermann [20, Corollary 2.7]) Let K be an algebraically closed
field of any characteristic and let A be an indecomposable symmetric K-algebra with n isomorphism
classes of simple modules. Then the dimension of the projective centre equals the rank of the Cartan
matrix seen as linear mapping Kn −→ Kn.

If K is a field of characteristic p ≥ 0 then we shall denote in the sequel by p-rank of the Cartan
matrix the rank of the Cartan matrix seen as linear mapping Kn −→ Kn. Recall that for every A⊗K

Aop-module V the algebra Ext∗A⊗KAop(A, V ) is naturally a module over the centre Z(A). Define the
Higman ideal H(A) to be the intersection of the annihilators of the Z(A)-module Ext∗A⊗KAop(A, V )
for all A⊗K Aop-modules V (cf [9]).

Proposition 1.5. ([20, Proposition 2.3] and [8, Lemma 4.1]) The projective centre of an algebra
equals the Higman ideal of A. For symmetric algebras the Higman ideal is in the socle of the algebra.

A classical invariant, popularised by Külshammer [18], is the Reynolds ideal defined for any K-
algebra A as R(A) := Z(A) ∩ Soc(A). For a perfect field K of characteristic p > 0 and a symmetric
K-algebra A define Tn(A) := {x ∈ A| xpn ∈ [A,A]} where [A,A] is the K-subspace of A generated
by all expressions ab − ba for a, b ∈ A. Then Tn(A)⊥ is the orthogonal complement of Tn(A) in A
with respect to the symmetrising bilinear form of A. These spaces T⊥n (A) form a decreasing sequence
of ideals of the centre Z(A) with intersection R(A), that is,

Zpr(A) ⊆ R(A) =
⋂
n

T⊥n (A) ⊆ · · · ⊆ T⊥1 (A) ⊆ T⊥0 (A) = Z(A).

Proposition 1.6. [20, Proposition 6.10] and [16, Proposition 5.8] Let K an algebraically closed
field of characteristic p > 0 and let A be a symmetric algebra. Then the ideals T⊥n (A)/Zpr(A) of
Zst(A) are an invariant, as ideals, under stable equivalences of Morita type via the isomorphism in
Theorem 1.2. In particular R(A)/Zpr(A) is an invariant under stable equivalences of Morita type.

The following result will be crucial in the sequel.
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Theorem 1.7. Let K be an algebraically closed field and let A and B be two finite dimensional
symmetric indecomposable K-algebras which are stably equivalent of Morita type. If K is of positive
characteristic or the Cartan matrix of A is non singular considered as a matrix over K, then we
have an isomorphism of algebras Z(A)/R(A) ' Z(B)/R(B).

Proof. The case of positive characteristic is contained in Proposition 1.6. In case of non-singular
Cartan matrix overK, by [24, Proposition 5.1] (or see Proposition 1.8 and the discussions afterwards),
B has also non-singular Cartan matrix over K. So the rank of the Cartan matrix is equal to the
number of isomorphism classes of simple modules and thus so is dim(Zpr(A)). Brauer shows [3,
Statement (3A)] that the number of simple A-modules equals the dimension of A/(J(A) + [A,A]),
where J(A) denotes the Jacobson radical. For a symmetric algebra A the orthogonal space of
J(A) + [A,A] with respect to the symmetrising form is R(A), as J(A)⊥ = Soc(A) and [A,A]⊥ =
Z(A). We obtain thus that the number of simple A-modules is the dimension of the Reynolds
ideal. By [8, Lemma 4.1] and [20, Proposition 2.4] we get Zpr(A) ⊆ R(A). The dimensions coincide
(cf Proposition 1.4) and so we have Zpr(A) = R(A) and Zst(A) = Z(A)/R(A). Now we use
Theorem 1.2. �

Let A be an indecomposable finite dimensional algebra and let CA be its Cartan matrix. The
Cartan matrix induces in a natural way a mapping of the Grothendieck group G0(A) of abelian
groups (the Grothendieck group taken in the sense of A-modules modulo exact sequences). The
stable Grothendieck group Gst

0 (A) is defined as the cokernel of CA:

G0(A) CA−→ G0(A) −→ Gst
0 (A) −→ 0.

Proposition 1.8. (Xi [24, Section 5]) Let A and B be finite dimensional indecomposable K-algebras
and suppose that A and B are stably equivalent of Morita type. Then Gst

0 (A) ' Gst
0 (A). In particular

the absolute value of the Cartan determinant is preserved.

It is clear by this statement that a stable equivalence of Morita preserves those elementary divisors
of the Cartan matrix which are different from 1, including their multiplicity. Note that in order to
avoid ambiguities the elementary divisors are supposed to be non negative.

We shall use frequently the following result of Pogorza ly. For basic facts about special biserial
algebras see [5].

Theorem 1.9. [22, Theorem 0.1 and Theorem 7.3] Let A be a special biserial algebra over an
algebraically closed field K. If a K-algebra B is stably equivalent to A, then A and B have the same
number of non-isomorphic non-projective simple modules. If furthermore, A is self-injective and is
not a Nakayama algebra, then B is also a self-injective special biserial algebra.

2. Algebras of dihedral, semi-dihedral and quaternion type

In this section we shall give Erdmann’s list of algebras of dihedral, semi-dihedral and quaternion
type.

By Theorem 1.1 of Keller-Vossieck and Rickard, for two self-injective algebras A and B, an equiv-
alence Db(A) ' Db(B) of the bounded derived categories implies that A and B are stably equivalent
of Morita type. Hence, as basis of our discussion we shall use the list of Holm [11] of algebras of
dihedral, semi-dihedral and quaternion type up to derived equivalences. There are three families:
the algebras of dihedral type, the algebras of semi-dihedral type, the algebras of quaternion type.
Each family is subdivided into three subclasses: algebras with one simple module, algebras with two
simple modules and algebras with three simple modules. Each subfamily contains algebras given by
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quivers and relations, depending on parameters.

dihedral semi-dihedral quaternion
1 simple K[X,Y ]/(XY,Xm − Y n), SD(1A)k

1 , k ≥ 2; Q(1A)k
1 , k ≥ 2;

m ≥ n ≥ 2,m+ n > 4;

D(1A)11 = K[X,Y ]/(X2, Y 2);

(charK = 2) (char(K) = 2) SD(1A)k
2(c, d) (charK = 2) Q(1A)k

2(c, d),
K[X,Y ]/(X2, Y X − Y 2); k ≥ 2, (c, d) 6= (0, 0); k ≥ 2, (c, d) 6= (0, 0);

D(1A)k
1 , k ≥ 2;

(charK = 2) D(1A)k
2(d),

k ≥ 2, d ∈ {0, 1};
2 simples D(2B)k,s(c), SD(2B)k,t

1 (c) Q(2B)k,s
1 (a, c)

k ≥ s ≥ 1, c ∈ {0, 1} k ≥ 1, t ≥ 2, c ∈ {0, 1}; k ≥ 1, s ≥ 3, a 6= 0;

SD(2B)k,t
2 (c)

k ≥ 1, t ≥ 2,
k + t ≥ 4, c ∈ {0, 1};

3 simples D(3K)a,b,c, SD(3K)a,b,c Q(3K)a,b,c

a ≥ b ≥ c ≥ 1; a ≥ b ≥ c ≥ 1, a ≥ 2; a ≥ b ≥ c ≥ 1, b ≥ 2,
(a, b, c) 6= (2, 2, 1);

D(3R)k,s,t,u, Q(3A)2,2
1 (d)

s ≥ t ≥ u ≥ k ≥ 1, t ≥ 2 d 6∈ {0, 1}
All algebras with one simple module in the above list have the quiver of type 1A

"!
# 

"!
# 

6•6X Y

and the relations are given as follows.

D(1A)k
1 : X2, Y 2, (XY )k − (Y X)k;

D(1A)k
2(d) : X2 − (XY )k, Y 2 − d · (XY )k, (XY )k − (Y X)k, (XY )kX, (Y X)kY ;

SD(1A)k
1 : (XY )k − (Y X)k, (XY )kX,Y 2, X2 − (Y X)k−1Y ;

SD(1A)k
2(c, d) : (XY )k − (Y X)k, (XY )kX,Y 2 − d(XY )k, X2 − (Y X)k−1Y + c(XY )k;

Q(1A)k
1 : (XY )k − (Y X)k, (XY )kX,Y 2 − (XY )k−1X,X2 − (Y X)k−1Y ;

Q(1A)k
2(c, d) : X2 − (Y X)k−1Y − c(XY )k, Y 2 − (XY )k−1X − d(XY )k,

(XY )k − (Y X)k, (XY )kX, (Y X)kY.

The quivers of the algebras of type 2B, 3K, 3A and 3R are respectively:
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The relations are respectively

D(2B)k,s(c) : βη, ηγ, γβ, α2 − c(αβγ)k, (αβγ)k − (βγα)k, ηs − (γαβ)k;

SD(2B)k,t
1 (c) : γβ, ηγ, βη, α2 − (βγα)k−1βγ − c(αβγ)k, ηt − (γαβ)k, (αβγ)k − (βγα)k;

SD(2B)k,t
2 (c) : βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα, γβ − ηt−1, α2 − c(αβγ)k, βη2, η2γ;

Q(2B)k,s
1 (a, c) : γβ − ηs−1, βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα,

α2 − a(βγα)k−1βγ − c(βγα)k, α2β, γα2;

D(3K)a,b,c : βδ, δλ, λβ, γκ, κη, ηγ, (βγ)a − (κλ)b, (λκ)b − (ηδ)c, (δη)c − (γβ)a;

D(3R)k,s,t,u : αβ, βρ, ρδ, δξ, ξλ, λα, αs − (βδλ)k, ρt − (δγβ)k, ξu − (λβδ)k;

SD(3K)a,b,c : κη, ηγ, γκ, δλ− (γβ)a−1γ, βδ − (κλ)b−1κ, λβ − (ηδ)c−1η;

Q(3K)a,b,c : βδ − (κλ)a−1κ, ηγ − (λκ)a−1λ, δλ− (γβ)b−1γ, κη − (βγ)b−1β, λβ − (ηδ)c−1η,

γκ− (δη)c−1δ, γβδ, δηγ, λκη;

Q(3A)2,2
1 (d) : βδη − βγβ, δηγ − γβγ, ηγβ − dηδη, γβδ − dδηδ, βδηδ, ηγβγ.

The following result suggests that we only need to consider internally these three classes of algebras
in order to classify them up to stable equivalences of Morita type.

Proposition 2.1. If two indecomposable algebras A and B are stably equivalent of Morita type and
A is of dihedral (resp. semi-dihedral, quaternion) type, then so is B.

Proof. These classes of algebras are defined in terms of the nature of their Auslander-Reiten quiver
and the Cartan matrix. An algebra A is of one of these types if

• A is symmetric, indecomposable and tame;
• the Cartan matrix of A is non-singular;
• the stable Auslander Reiten quiver of A has the following components
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dihedral type semi-dihedral type quaternion type

tubes rank 1 and 3 rank at most 3 rank at most 2

at most two 3-tubes at most one 3-tube

others
non periodic components
of tree class A∞∞ or Ã1,2

ZA∞∞ and ZD∞

By a result of Yuming Liu ([19, Corollary 2.4])(resp. Krause ([17, last corollary of the article])),
if two algebras are stably equivalent of Morita type and one of them is symmetric (resp. tame),
so is the other. If two algebras are stably equivalent of Morita type, they are stably equivalent.
By [2, Chapter X, Corollary 1.9], two stably equivalent indecomposable self-injective algebras have
isomorphic stable Auslander-Reiten quivers, if they are of Loewy length at least three. Note that
all algebras of dihedral, semi-dihedral, quaternion type are of Loewy length at least three, so if two
algebras within these classes are stably equivalent, they have isomorphic stable Auslander-Reiten
quivers. By Xi’s result Proposition 1.8 if two algebras are stably equivalent of Morita type, the
fact that the Cartan matrix of one algebra is non-singular implies that the Cartan matrix of the
other algebra is non singular as well. Therefore, the defining properties are preserved by a stable
equivalence of Morita type between two indecomposable algebras. �

3. Tame blocks

3.1. Derived classification. The following is a classification of algebras of dihedral, semi-dihedral
and quaternion type up to derived equivalence, as given by Holm [10], which could occur as blocks of
group algebras. For some cases the question if there is a block of a group algebra with this derived
equivalence type is not clear yet. We include in this case the algebra as well. Now let K be an
algebraically closed field of characteristic two. Let A be a tame block of defect n ≥ 2. Then A is
derived equivalent to one of the following algebras.

dihedral semi-dihedral quaternion

1 simple D(1A)2
n−2

1 , n ≥ 2; SD(1A)2
n−2

1 , n ≥ 4; Q(1A)2
n−2

1 , n ≥ 3;

2 simples D(2B)1,2n−2
(c), SD(2B)1,2n−2

1 (c), Q(2B)2,2n−2

1 (a, c),
c ∈ {0, 1}, n ≥ 3; c ∈ {0, 1}, n ≥ 4; n ≥ 3, a ∈ K∗, c ∈ K;

SD(2B)2,2n−2

2 (c),
c ∈ {0, 1}, n ≥ 4;

3 simples D(3K)2
n−2,1,1, n ≥ 2; SD(3K)2

n−2,2,1, n ≥ 4; Q(3K)2
n−2,2,2, n ≥ 3.

3.2. Hochschild cohomology of tame blocks. If A and B are two algebras which are stably
equivalent of Morita type, then Xi shows [24, Theorem 4.2] that the Hochschild cohomology groups
HHm(A) and HHm(B) are isomorphic for any m ≥ 1. Furthermore, in a recent paper of the first
author with Shengyong Pan [21], we proved that a stable equivalence of Morita type preserves the
algebra structure of the stable Hochschild cohomology, that is, the Hochschild cohomology modulo
the projective centre.

For the sake of completeness we recall results of Holm [12] which allow to distinguish a certain
number of pairs of algebras up to stable equivalences of Morita type, although we could avoid using
these results in the sequel, mainly because they only deal with blocks of group rings with one or
three simple modules.

3.2.1. Dihedral type. By [12, Theorem 2.2] the Hochschild cohomology groups of a block with dihedral
defect group of order 2n with n ≥ 2 and one simple module has dimension dim(HHi(B)) = 2n−2 +
3 + 4i for i ≥ 0.
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By [12, Theorem 2.8] the Hochschild cohomology groups of a block with dihedral defect group of
order 2n with n ≥ 2 and three simple modules has dimension 2n−2 + 3 in degree 0, and dimension
2n−2 + 1 in degree 1. Further, for all i ≥ 1, dim(HH3i−1(B)) = 2n−2− 1 + 4i and dim(HH3i(B)) =
dim(HH3i+1(B)) = 2n−2 + 1 + 4i.

3.2.2. Semi-dihedral type. By [12, Theorem 3.2] the Hochschild cohomology groups of a block with
semi-dihedral defect group of order 2n with n ≥ 4 and one simple module has dimension 2n−2 + 3 in
degree 0, dimension 2n−2 + 6 in degree 1, dimension 2n−2 + 7 in degree 2, and dimension 2n−2 + 8
in degree 3. Further, dim(HHi+4(B)) = dim(HHi(B)) + 8 for all i ≥ 0.

By [12, Theorem 3.3] the Hochschild cohomology groups of a block with semi-dihedral defect
group of order 2n with n ≥ 4 and three simple modules has dimension 2n−2 + 4 in degrees 0 and 3,
dimension 2n−2 + 2 in degrees 1 and 2, and dimension 2n−2 + 5 in degree 4. Further, for all i ≥ 1 we
get dim(HHi+4(B)) = dim(HHi(B)) + 2 + x(i), where x(i) is 0 if 3 divides i, and x(i) = 1 else.

3.2.3. Quaternion type. By [12, Theorem 4.2] a block with one simple module and quaternion defect
group of order 2n with n ≥ 3 has periodic Hochschild cohomology groups with period 4 and dimension
2n−2 + 3 in degrees congruent 0 or 3 mod 4 and of dimension 2n−2 + 5 in degrees congruent 1 or 2
mod 4.

By [12, Theorem 4.6] a block with three simple modules and quaternion defect group of order 2n

with n ≥ 3 has periodic Hochschild cohomology groups with period 4 and dimension 2n−2 + 5 in
degrees congruent 0 or 3 mod 4 and of dimension 2n−2 + 3 in degrees congruent 1 or 2 mod 4.

3.3. Blocks of dihedral defect groups.

Proposition 3.1. Let K be an algebraically closed field of characteristic 2 and let A be a dihedral
block of defect n ≥ 2. Then A is stably equivalent of Morita type to one and exactly one of the
following algebras: D(1A)2

n−2

1 ; D(2B)1,2n−2
(c) (for n ≥ 3) with c = 0 or c = 1; D(3K)2

n−2,1,1. As
a consequence, the derived classification coincides with the classification up to stable equivalences of
Morita type.

Remark 3.2. Before giving the proof, we remark that for a dihedral block with two simple modules,
we don’t know whether the case c = 1 really occurs. All known examples have zero as the value of
this scalar. But this doesn’t influence our result, since D(2B)k,s(0) is NOT derived equivalent to
D(2B)k,s(1). There are several proofs of this fact (cf [14, Corollary 5.3] [13, Theorem 1.1]). One
can also use the second part of Theorem 1.9, which says that an algebra stably equivalent to a
self-injective special biserial algebra which is not a Nakayama algebra is itself a selfinjective special
biserial algebra. Notice that D(2B)k,s(0) is a symmetric special biserial algebra, but D(2B)k,s(1) is
not. As a consequence the algebras D(2B)k,s(1) cannot be stably equivalent to any algebra of the
other classes.

Proof. Since Holm’s result [11] implies that any algebra of dihedral type is derived equivalent to one
in the list we gave, we just need to show that any two algebras in the list are not stably equivalent
of Morita type.

We prove that for different parameter s 6= t, D(2B)1,s(1) is NOT stably equivalent of Morita type
to D(2B)1,t(1). To this end, one computes the dimension of the stable centre, that is, the quotient
of the centre by the projective centre. By Proposition 1.4, for a symmetric algebra, the dimension of
the projective centre is the 2-rank of the Cartan matrix, that is the rank of the Cartan matrix seen as
linear mapping over the field K of characteristic p = 2. We thus have that for A = D(2B)1,2n−2

(1),
dim(Zst(A)) = 2n−2 + 2 for n ≥ 3 (for the dimension of the centre and the Cartan matrix, see the
appendix of [6]). Since n ≥ 3 this dimension distinguishes two algebras with different parameters
in this class. Another way to see this is to use the absolute value of the determinant of the Cartan
matrix, which is invariant under stable equivalences of Morita type, by Proposition 1.8. In fact, the
absolute value of the determinant of the Cartan matrix of D(2B)1,s(1) is 4s.

Now consider other classes of algebras. Pogorza ly proved the Auslander-Reiten conjecture for
self-injective special biserial algebras (see the first part of Theorem 1.9). Thus two indecomposable
non-simple self-injective special biserial algebras with different numbers of simple modules cannot
be stably equivalent. By Theorem 1.3, we know that for symmetric algebras, this is equivalent to
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saying that their centres have the same dimension. Now by computing the dimension of the centre,
we obtain easily that the number of simple modules and the defect n characterise equivalence classes
under stable equivalences of Morita type of dihedral blocks which are special biserial. On can also use
the computations of Holm about Hochschild cohomology of dihedral blocks resumed in Section 3.2
to distinguish dihedral blocks with one simple module from those with three simple modules. �

3.4. Blocks with semi-dihedral defect groups.

Proposition 3.3. Let K be an algebraically closed field of characteristic 2 and let A be a semi-
dihedral block of defect n ≥ 4. Then A is stably equivalent of Morita type to an algebra in the
following families (1), (2), (3):

(1) SD(1A)2
n−2

with n ≥ 4;
(2) (a) SD(2B)1,2n−2

1 (c) with n ≥ 4, c ∈ {0, 1};
(b) SD(2B)2,2n−2

2 (c) with n ≥ 4, c ∈ {0, 1};
(3) SD(3K)2

n−2,2,1, n ≥ 4.
Two algebras with different number of simple modules in the above list are not stably equivalent of
Morita type. Two algebras in the above list with the same number of isomorphism classes of simple
modules and different parameter n are not stably equivalent of Morita type.

Remark 3.4. In the above classification we still have an unsolved scalar problem, that is, as in
the case of derived equivalence classification, we cannot determine whether SD(2B)1,2n−2

1 (0) (resp.
SD(2B)2,2n−2

2 (0)) is stably equivalent of Morita type to SD(2B)1,2n−2

1 (1) (resp. SD(2B)2,2n−2

2 (1)) or
not. Therefore, up to these problems, the derived classification coincides with the classification up
to stable equivalences of Morita type.

Proof. Since a derived equivalence between self-injective algebras induces a stable equivalence of
Morita type, the first part of the statement of the proposition is true simply by the derived equivalence
classification of Holm. We now prove that the classification is complete up to the problems cited
above.

By the result of Holm on Hochschild cohomology of semi-dihedral blocks, a semi-dihedral block
with one simple module can not be stably equivalent of Morita type to a semi-dihedral block with
three simple modules. The dimension of the centre and the Cartan matrix can be obtained from
the appendix of [6]. The dimension of the stable centre of SD(1A)2

n−2
with n ≥ 4 is 2n−2 + 3, it

is 2n−2 + 2 for SD(2B)1,2n−2

1 (c) and is 2n−2 + 4 for SD(2B)2,2n−2

2 (c), while for SD(3K)2
n−2,2,1, it is

2n−2 +3. This invariant distinguishes semi-dihedral blocks with two simple modules from those with
one or three simple modules and it also distinguishes SD(2B)1,2n−2

1 (c) from SD(2B)2,2n−2

2 (c). �

3.5. Blocks with quaternion defect groups.

Proposition 3.5. Let K be an algebraically closed field of characteristic 2 and let A be a block with
generalised quaternion defect groups of defect n ≥ 3. Then A is stably equivalent of Morita type to
one of the following algebras:

(1) Q(1A)2
n−2

with n ≥ 3;
(2) Q(2B)2,2n−2

1 (a, c) with n ≥ 3, a ∈ K∗, c ∈ K;
(3) Q(3K)2

n−2,2,2 with n ≥ 3.
Two algebras of quaternion type with different number of simple modules in the above list are not
stably equivalent of Morita type. Two algebras of quaternion type with the same number of simple
modules and different parameters n in the above list are not stably equivalent of Morita type.

Remark 3.6. The above classification is complete up to some scalar problem, that is, as in the case
of derived equivalence classification, we cannot determine whether Q(2B)2,2n−2

1 (a, c) is not stably
equivalent of Morita type to Q(2B)2,2n−2

1 (a′, c′) for (a, c) 6= (a′, c′). Therefore, up to these scalar
problems, the derived classification coincides with the classification up to stable equivalences of
Morita type.
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Proof. Since a derived equivalence between self-injective algebras induces a stable equivalence of
Morita type, the statement of the proposition is true simply by the derived equivalence classification
of Holm. We now prove that the classification is complete up to the scalar problem.

The dimension of the stable centre is 2n−2 + 3 for Q(1A)2
n−2

, is 2n−2 + 4 for Q(2B)2,2n−2

1 (a, c)
and is 2n−2 + 5 for Q(3K)2

n−2,2,2 (for the dimension of the centre and the Cartan matrix, see the
appendix of [6]). This invariant thus distinguishes these algebras up to stable equivalences of Morita
type up to the scalar problem. One can also use the result of Holm on Hochschild cohomology of
blocks with generalised quaternion defect groups to distinguish blocks with generalised quaternion
defect groups having one simple module from those having three simple modules. �

4. Algebras of dihedral type

We classify algebras of dihedral type up to stable equivalences of Morita type in this section.
Notice that all algebras of dihedral type except B1 = K[X,Y ]/(X2, Y 2 −XY ) and D(1A)k

2(d) are
special biserial. As B1 and D(1A)k

2(d) are local algebras and by the result Theorem 1.9 of Pogorza ly,
one only needs to consider separately dihedral algebras with one, two or three simple modules.

4.1. One simple module. The Morita equivalence classification of algebras of dihedral type with
one simple module is displayed in Section 2.

Proposition 4.1. Let K be an algebraically closed field of characteristic p ≥ 0 and let A be an
algebra of dihedral type with one simple module. Then A is stably equivalent of Morita type to an
algebra in one and only one of the families (1), (2), (3), (4) or (5) in the following list:

(1) A1(m,n) := K[X,Y ]/(XY,Xm − Y n) with m ≥ n ≥ 2 and m+ n > 4;
(2) D(1A)11;
(3) D(1A)k

1 with k ≥ 2;
(4) if p = 2, B1

(5) if p = 2, D(1A)k
2(d) with k ≥ 2 and d ∈ {0, 1}.

If A1(m,n) is stably equivalent of Morita type to A1(m′, n′) then (m,n) = (m′, n′).
If D(1A)k

1 is stably equivalent of Morita type to D(1A)k′

1 then k = k′.
If D(1A)k

2(d) is stably equivalent of Morita type to D(1A)k′

2 (d′) then k = k′.

Remark 4.2. We do not know whether D(1A)k
2(0) and D(1A)k

2(1) are stably equivalent of Morita
type or not.

The proof combines the following five claims below using some invariants of these algebras shown
in the following tables. The tables can be obtained as follows: The dimensions of the centres and
the Cartan matrices can be obtained from the list at the end of Erdmann’s book [6]. The dimension
of the projective centre is the rank of the Cartan matrix, seen as linear map of a K-vector space,
the so-called p-rank (Proposition 1.4). Further, by definition dimZst(A) + dimZpr(A) = dimZ(A).
The stable Grothendieck group is the cokernel of the Cartan mapping, seen as endomorphism of the
ordinary Grothendieck group (cf e.g. [20, Section 4]).

Characteristic zero case
algebra A A1(m,n) D(1A)11 D(1A)k

1

dimZ(A) n+m 4 k + 3
dimZpr(A) 1 1 1
dimZst(A) n+m− 1 3 k + 2

CA [n+m] [4] [4k]
Gst

0 Z/(n+m) Z/4 Z/4k
Characteristic two case

algebra A A1(m,n) D(1A)11 D(1A)k
1 B1 D(1A)k

2(d)
dimZ(A) n+m 4 k + 3 4 k + 3
dimZpr(A) 0 or 1 0 0 0 0
dimZst(A) n+m or n+m− 1 4 k + 3 4 k + 3

CA [n+m] [4] [4k] [4] [4k]
Gst

0 Z/(n+m) Z/4 Z/4k Z/4 Z/4k
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Characteristic p > 2 case

algebra A A1(m,n) D(1A)11 D(1A)k
1

dimZ(A) n+m 4 k + 3
dimZpr(A) 0 or 1 1 0 or 1
dimZst(A) n+m or n+m− 1 3 k + 3 or k + 2

CA [n+m] [4] [4k]
Gst

0 Z/(n+m) Z/4 Z/4k
By Pogorza ly’s result (Theorem 1.9), if two finite dimensional self-injective algebras A and B over

an algebraically closed field are stably equivalent, and if A is special biserial and not a Nakayama
algebra, then B is special biserial as well. Hence we only need to compare A1(m,n) and D(1A)11
with D(1A)k

1 , since they are special biserial, and compare B1 with D(1A)k
2(d), since they are not

special biserial.

Claim 1. D(1A)11 cannot be stably equivalent of Morita type to A1(m,n) or D(1A)k
1 .

Indeed, the stable Grothendieck groups differ, because m+ n > 4 and k ≥ 2.

Similarly one proves
Claim 1’. B1 cannot be stably equivalent of Morita type to D(1A)k

2(d).

Claim 2. A1(m,n) cannot be stably equivalent of Morita type to D(1A)k
1 .

Compare their stable centres and their stable Grothendieck groups.

Claim 3. A = A1(m,n) is not stably equivalent of Morita type to A′ = A1(m′, n′) for (m,n) 6=
(m′, n′)

Now suppose that A = A1(m,n) is stably equivalent of Morita type to A′ = A(m′, n′), then by
comparing their stable Grothendieck groups, n + m = n′ + m′. The algebra A is commutative and
rather easy to describe. A basis of the algebra is given by {Xu, Y v | 0 ≤ u ≤ m; 1 ≤ v ≤ n − 1}.
Hence the Loewy length of A = Z(A) is m+ 1 (recalling that m ≥ n by hypothesis). The projective
centre is {0} if and only if the characteristic divides m + n and equals the 1-dimensional socle
otherwise. Hence the Loewy length of the stable centre of A(m,n) is m if the characteristic p divides
m+ n and is m+ 1, otherwise. Hence m = m′ and this implies n = n′.

Claim 4. D(1A)k
1 cannot be stably equivalent of Morita type to D(1A)l

1 for k 6= l
Comparing the orders of the stable Grothendieck groups gives the result.

Claim 5. D(1A)k
2(d) cannot be stably equivalent of Morita type to D(1A)l

2(d′) for k 6= l.
Consider the stable Grothendieck groups or the stable centres.

4.2. Two simple modules. For algebras of dihedral type with two simple modules, we have the
following result of Holm.

Proposition 4.3. ([11, Proposition 3.1]) Let K be an algebraically closed field of characteristic p ≥ 0
and let A be an algebra of dihedral type with two simple module. Then A is derived equivalent to
D(2B)k,s(0) with k ≥ s ≥ 1 or (when p = 2) D(2B)k,s(1) with k ≥ s ≥ 1.

Proposition 4.4. Let K be an algebraically closed field of characteristic p ≥ 0 and let A be an
algebra of dihedral type with two simple module. Then A is stably equivalent of Morita type to one
and exactly one of the following algebras: D(2B)k,s(0) with k ≥ s ≥ 1 or if p = 2, D(2B)k,s(1) with
k ≥ s ≥ 1.

Proof. By the result of Pogorza ly (Theorem 1.9), in case of characteristic two, the algebrasD(2B)k,s(0)
and D(2B)k,s(1) are not stably equivalent of Morita type.

Erdmann [6, Tables page 294 ff] shows that the centre of D(2B)k,s(c) is of dimension k + s + 2.
The dimension of the Reynolds ideal is 2, since the algebras have 2 simple modules. Now for any
characteristic p and for different parameters (k, s) 6= (k′, s′) such k ≥ s ≥ 1 and k′ ≥ s′ ≥ 1,
if D(2B)k,s(c) is stably equivalent to D(2B)k′,s′(c), then comparing the dimension of the centre
modulo the Reynolds ideal gives k+ s = k′ + s′. Erdmann shows (cf [6, Tables page 294ff]) that the
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Cartan determinant of the algebra D(2B)k,s(c) is 4ks. Since the absolute values of the determinants
of the Cartan matrices are the same, we get ks = k′s′. This implies that k = k′ and s = s′. �

4.3. Three simple modules.

Proposition 4.5. Let K be an algebraically closed field of characteristic p ≥ 0 and let A be an
algebra of dihedral type with two simple modules. Then A is stably equivalent of Morita type to
one and exactly one of the following algebras: D(3K)a,b,c with a ≥ b ≥ c ≥ 1 or D(3R)k,s,t,u with
s ≥ t ≥ u ≥ k ≥ 1 and t ≥ 2.

Proof. Again, we consider different parameters of type D(3K)a,b,c or of type D(3R)k,s,t,u. By The-
orem 1.7, one can use the algebra structure of the centre modulo the Reynolds ideal to distinguish
stable equivalences classes of Morita type.

Using the explicit basis of the centres [11, Lemma 3.16] allows by a very straightforward identifi-
cation to determine the quotient

Z(D(3K)a,b,c)/R(D(3K)a,b,c) ' K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC)

and hence two algebras of type D(3K)a,b,c can only be stably equivalent of Morita type if the
parameters a, b, c coincide (cf Theorem 1.7).

Using [11, Lemma 3.17], we also get that

Z(D(3R)k,s,t,u)/R(D(3R)k,s,t,u) ' K[U, V,W, T ]/(Us, V t,Wu, T k, UV, UW,UT, V W, V T,WT )

and again two algebras of type D(3R)k,s,t,u can only be stably equivalent of Morita type if the
parameters coincide.

Holm shows [11, Remark after Lemma 3.17] that the stable Auslander-Reiten quivers of algebras of
type D(3K)a,b,c and of algebras of type D(3R)k,s,t,u are different. Hence algebras of these two types
cannot be stably equivalent of Morita type. Another method is as follows. If D(3R)k,s,t,u is stably
equivalent of Morita type to D(3K)a,b,c, then the quotients of the algebras modulo the Reynolds
ideals coincide, and hence k = 1, a = s, b = t and c = u. The Cartan matrix of D(3R)1,a,b,c is
displayed in [6, Tables page 294ff] and its determinant is ab+ac+ bc+abc. Now, since a ≥ b = t ≥ 2
and c ≥ 1, we get that abc ≥ ab, abc > bc and abc > ac, so that 0 < ab+ac+bc+abc < 4abc, whereas
the Cartan determinant of D(3K)a,b,c is 4abc. Since the absolute values of the Cartan determinants
coincide (cf Proposition 1.8), we obtain a contradiction. �

Although our results Proposition 4.1, Proposition 4.4 and Proposition 4.5 are only a complete
classification up to a scalar problem in the case of an algebra with one simple module, we can prove
nevertheless the following special case of the Auslander-Reiten conjecture.

Corollary 4.6. Let A be an indecomposable algebra which is stably equivalent of Morita type to an
algebra of dihedral type. Then this algebra has the same number of simple modules as the algebra of
dihedral type.

Proof. By Proposition 2.1, A is necessarily of dihedral type. Then apply our classification results
above. Notice that although we cannot determine whether D(1A)k(0) and D(1A)k(1) are stably
equivalent of Morita type or not, they have the same number of simple modules. �

5. Centres of semi-dihedral and quaternion type algebras

We shall study the centres and the stable centres of the involved algebras.

5.1. Semi-dihedral type. An algebra of semi-dihedral type with one simple module is Morita
equivalent to SD(1A)k

1 with k ≥ 2 or to (in case of characteristic 2) SD(1A)k
2(c, d) with k ≥ 2

and (c, d) 6= (0, 0). Recall from [6, Corollary III.1.3] that for each of these algebras, the centre has
dimension k + 3. Indeed, more precisely denote by A one of the above algebras. Then the centre
Z(A) has a K-basis given by

{1; (XY )i + (Y X)i; (XY )k;X(Y X)k−1; (Y X)k−1Y | 1 ≤ i ≤ k − 1}.
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Lemma 5.1. Let K be an algebraically closed field and let A be one of the algebras SD(1A)k
1 with

k ≥ 2 or (in case of characteristic 2) SD(1A)k
2(c, d) with k ≥ 2 and (c, d) 6= (0, 0).

If K is of characteristic 2, then

Z(A) ' K[U, T, V,W ]/(Uk, T 2, V 2,W 2, UT, UV, UW, TV, TW, VW )

and R(A) = Z(A) ∩ Soc(A) = K · T .
If K is of characteristic different from 2, then

Z(A) ' K[U, V,W ]/(Uk+1, V 2,W 2, UV, UW, VW )

and R(A) = Z(A) ∩ Soc(A) = K · Uk.

Proof. We need to identify U with XY +Y X, observe that ((XY ) + (Y X))i = (XY )i + (Y X)i, and
identify T with (XY )k, the element V with X(Y X)k−1 and the element W with (Y X)k−1Y . If K
is of characteristic 2, then Uk = (XY )k + (Y X)k = 0, and if K is of characteristic different from 2,
then Uk = (XY )k + (Y X)k = 2(XY )k 6= 0. �

The Cartan matrix of the algebra A is the matrix (4k) of size 1× 1.

Now we turn to the case of two simple modules. Recall from the table at the beginning of Section 2
that an algebra of semi-dihedral type with two simple modules is derived equivalent to SD(2B)k,s

1 (c)
with k ≥ 1, s ≥ 2 and c ∈ {0, 1} or to SD(2B)k,s

2 (c) with k ≥ 1, s ≥ 2, k + s ≥ 4 and c ∈ {0, 1}.

Lemma 5.2. Let A be the algebra SD(2B)k,s
1 (c) or the algebra SD(2B)k,s

2 (c).
(1) If K is of characteristic 2, then

Z(A) ' K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

and R(A) = K · uk ⊕K · w.
(2) If K is of characteristic different from 2, then

Z(A) ' K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)

and R(A) = K · uk ⊕K · vs.

Proof. By [6, IX 1.2 LEMMA], a basis of the centre of SD(2B)k,s
1 (c) is given by

{1; (αβγ)i + (βγα)i + (γαβ)i; (βγα)k−1βγ; (αβγ)k; ηj | 1 ≤ i ≤ k − 1; 1 ≤ j ≤ s}
Now let

u = αβγ + βγα+ γαβ, v = η, t = (βγα)k−1βγ,w = (αβγ)k.

If char(K) = 2, then uk = vs; otherwise, uk = vs + 2w. Hence, w may be eliminated from the
relations by the equation uk = vs + 2w in case char(K) 6= 2. It is easy to verify all other relations.
An argument of comparing dimensions gives the result.

As for SD(2B)k,s
2 (c), by [6, IX 1.2 LEMMA], a basis of the centre of SD(2B)k,s

1 (c) is given by

{1; (αβγ)i + (βγα)i + (γαβ)i; (βγα)k−1βγ; (αβγ)k; η + (αβγ)k−1α; ηj | 1 ≤ i ≤ k − 1; 2 ≤ j ≤ s}
Now let

u = αβγ + βγα+ γαβ, v = η + (αβγ)k−1α, t = (βγα)k−1βγ,w = (αβγ)k.

A similar argument as above gives the result. �

It is important to know that in this presentation the element t is not in the socle of SD(2B)k,s
1 (c)

and can therefore not be in the projective centre (cf Proposition 1.5).
The Cartan matrix of SD(2B)k,s

1 (c) with k ≥ 1, s ≥ 2 and c ∈ {0, 1} and of SD(2B)k,s
2 (c) with

k ≥ 1, s ≥ 2, k + s ≥ 4 and c ∈ {0, 1} is (
4k 2k
2k s+ k

)
The determinant of this matrix is 4ks.

Recall that Holm proved in [11, Lemma 4.16] that the centre of SD(3K)a,b,c with a ≥ b ≥ c ≥ 1
and a ≥ 2 has a basis given by

{1, (βγ + γβ)i1 ; (κλ+ λκ)i2 ; (δη + ηδ)i3 ; (βγ)a; (λκ)b; (δη)c | 1 ≤ i1 < a, 1 ≤ i2 < b, 1 ≤ i3 < c}
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and so we get

Lemma 5.3.

Z(SD(3K)a,b,c) ' K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S2 − S3, B
b − S3 − S1,

Cc − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})
and R(SD(3K)a,b,c) = K · S1 ⊕K · S2 ⊕K · S3.

Proof. Let

A = βγ + γβ,B = κλ+ λκ,C = δη + ηδ, S1 = λβδ, S2 = δλβ, S3 = βδλ.

Then it is a straight forward verification that A,B,C, S1, S2, S3 satisfy the relations on the right-
hand side. Now the isomorphism follows from a dimension argument. It is clear that the elements S1,
S2 and S3 are in the socle. The socle is three-dimensional, hence S1, S2 and S3 span the Reynolds
ideal. �

The Cartan matrix of SD(3K)a,b,c equals (cf [6, tables pages 294ff]) a+ b a b
a a+ c c
b c b+ c


which has determinant 4abc.

5.2. Quaternion type. As displayed in the table at the beginning of Section 2 an algebra of quater-
nion type with one simple module is Morita equivalent to Q(1A)`

1 with ` ≥ 2 or to Q(1B)`
2(c, d) with

` ≥ 2 and (c, d) 6= (0, 0). Again, by [6, IX.1.1 Proposition] the centre is of dimension ` + 3 and the
algebra is of dimension 4`.

Let A be one of the above algebras. In the above presentation, the centre has a K-basis given by

{1; (XY )i + (Y X)i; (XY )`;X(Y X)`−1; (Y X)`−1Y | 1 ≤ i ≤ `− 1}.

Lemma 5.4. (1) If K is of characteristic 2, then

Z(A) ' K[U, T, V,W ]/(Uk, T 2, V 2,W 2, UT, UV, UW, TV, TW, VW )

and R(A) = Z(A) ∩ soc(A) = K · T .
(2) If K is of characteristic different from 2, then

Z(A) ' K[U, V,W ]/(Uk+1, V 2,W 2, UV, UW, VW )

and R(A) = Z(A) ∩ soc(A) = K · Uk.

Proof. The proof is a straight forward verification. �

As displayed in the table at the beginning of Section 2 an algebra of quaternion type with two
simple modules is derived equivalent to Q(2B)k,s

1 (a, c) with k ≥ 1, s ≥ 3 and a 6= 0. By [6, IX 1.2
LEMMA], the centre of Q(2B)k,s

1 (a, c) has a basis

{1; (αβγ)i + (βγα)i + (γαβ)i, (βγα)k−1βγ, (αβγ)k, η + (αβγ)k−1α, ηj | 1 ≤ i ≤ k − 1; 2 ≤ j ≤ s}.
By a similar proof as that of Proposition 5.2, we have

Lemma 5.5. (1) If char(K) = 2, then

Z(Q(2B)k,s
1 (a, c)) ' K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

and R(A) = Z(A) ∩ soc(A) = K · uk ⊕K · w.
(2) If char(K) 6= 2, then

Z(Q(2B)k,s
1 (a, c)) ' K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)

and R(A) = Z(A) ∩ soc(A) = K · uk ⊕K · vs.
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The Cartan matrix of Q(2B)k,s
1 (a, c) is(

4k 2k
2k k + s

)
.

As displayed in the table at the beginning of Section 2 an algebra of quaternion type with three
simple modules is derived equivalent to Q(3K)a,b,c with a ≥ b ≥ c ≥ 1, b ≥ 2 and (a, b, c) 6= (2, 2, 1)
or to Q(3A)2,2

1 (d) with d 6∈ {0, 1}.
The dimension of the centre of Q(3K)a,b,c is a+ b+ c+ 1 and the centre has a basis

{1, (βγ + γβ)i1 , (κλ+ λκ)i2 , (δη + ηδ)i3 ; (λκ)b; (βγ)b; (δη)c | 1 ≤ i1 < a; 1 ≤ i2 < b; 1 ≤ i3 ≤ c}.
The Cartan matrix of the algebra Q(3K)a,b,c is a+ b a b

a a+ c c
b c b+ c


The dimension of the centre of Q(3A)2,2

1 (d) is 6 and the centre has a basis

{1, βγ + γβ + dηδ, βγ + ηδ + δη, (βγ)2, (γβ)2 = d(δη)2, (ηδ)2}.
The Cartan matrix of Q(3A)2,2

1 (d) is  4 2 2
2 3 1
2 1 3


Indeed, the fact that the above elements are central is readily verified and the dimensions are as they
should be. The statement on the Cartan matrix is taken from [6, Tables p.294 ff].

Lemma 5.6. We have for a ≥ b ≥ c ≥ 1 and b ≥ 2

Z(Q(3K)a,b,c) ' K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S2 − S3, B
b − S3 − S1,

Cc − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})
Z(Q(3A)2,2

1 ) ' K[A,B,C, S1, S2, S3]/(A3, B3, C2, A2 − S2 − S3, B
2 − S3 − S1,

C − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})
and R(Q(3K)a,b,c) = K · S1 ⊕K · S2 ⊕K · S3.

Proof. The proof for Q(3K)a,b,c is identical to the one of Lemma 5.3. For Q(3A)2,2
1 (d), let

A := βγ + γβ + dηδ,

B := βγ + ηδ + δη,

C := (1− d)(δη)2 + d2(ηδ)2,
S1 := (1− d)(δη)2,
S2 := d2(ηδ)2,
S3 := (βγ)2 + d(δη)2.

The rest is a straight forward verification. �

Note that, in order to simplify the notation we may allow the parameters (a, b, c) = (2, 2, 1) in
Q(3K)a,b,c and obtain the centre and Cartan data of this algebra then becomes the centre and Cartan
data of Q(3A)2,2

1 (d).
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6. Algebras with stable centres and Cartan data as for semi-dihedral and
quaternion type

In the sequel we shall develop properties for algebras of semi-dihedral and quaternion type which
will only depend on the Cartan data, the structure of their centre and the Reynolds ideal. We denote
by Aa,b,c

3 , Ak,s
2 and A`

1 algebras having this particular centre, Reynolds ideal and these Cartan data.
All results developed for these algebras apply then automatically to the corresponding algebras of
semi-dihedral and quaternion type. In particular we shall not need to give a separate treatment for
algebras of semi-dihedral and of quaternion type. Here are the details.

• For ` ≥ 2, let A`
1 be a basic indecomposable symmetric algebra of dimension 4` so that in

case K is of characteristic 2,

Z(A`
1) ' K[U, T, V,W ]/(U `, T 2, V 2,W 2, UT, UV, UW, TV, TW, VW )

and the Reynolds ideal R(A`
1) = K · T and if K is of characteristic different from 2, then

Z(A`
1) ' K[U, V,W ]/(U `+1, V 2,W 2, UV, UW, VW )

and R(A`
1) = K · U `.

• For k, s ≥ 1, let Ak,s
2 be a basic indecomposable symmetric algebra with Cartan matrix(

4k 2k
2k s+ k

)
with determinant 4ks. In case K is of characteristic 2, the centre is of the form

Z(Ak,s
2 ) ' K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

and the Reynolds ideal is R(Ak,s
2 ) = Kuk ⊕Kw. If K is of characteristic different from 2,

then
Z(Ak,s

2 ) ' K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)

and the Reynolds ideal is R(Ak,s
2 ) = Kuk ⊕Kvs.

• For a, b, c ≥ 1, let Aa,b,c
3 be a basic indecomposable symmetric K-algebra with centre iso-

morphic to

Z(Aa,b,c
3 ) ' K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S2 − S3, B

b − S3 − S1,

Cc − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})
and Cartan matrix  a+ b a b

a a+ c c
b c b+ c


with determinant 4abc and the Reynolds ideal R(Aa,b,c

3 ) = KS1 ⊕KS2 ⊕KS3.
Observe that

dim(Z(A`
1)) = `+ 3, dim(Z(Ak,s

2 )) = k + s+ 2 and dim(Z(Aa,b,c
3 )) = a+ b+ c+ 1.

The next result gives the precise structure of the centre modulo the Reynolds ideal for the above
three classes of algebras.

Proposition 6.1. (1) For A`
1 we get

Z(A`
1)/R(A`

1) ' K[U, V,W ]/(U `, V 2,W 2, UV, UW, VW ).

(2) For Ak,s
2 we get

Z(Ak,s
2 )/R(Ak,s

2 ) ' K[u, v, t]/(uk, vs, t2, uv, ut, vt).

(3) For Aa,b,c
3 we get

Z(Aa,b,c
3 )/R(Aa,b,c

3 ) ' K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC)
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Proof. Since the one-dimensional socle of A`
1 is in the centre, the result follows for A`

1.
In case of the algebra Ak,s

2 and K is of characteristic 2, the Reynolds ideal is generated by uk and
w, and so the result follows in this case. If K is of characteristic different from 2, the result follows
immediately as well.

For Aa,b,c
3 the Reynolds ideal is generated by S1, S2 and S3. Hence Aa = S2 + S3 ∈ R(A),

Bb = S1 + S3 ∈ R(A) and Cc = S1 + S2 ∈ R(A). This implies

Z(Aa,b,c
3 )/R(Aa,b,c

3 ) ' K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC).

�

We shall study the centre of Aa,b,c
3 in a little more detail.

Let K be of characteristic different from 2. Concerning the relations of Z(Aa,b,c
3 ) we see that

the elements S1 + S2, S2 + S3, S3 + S1 generate the same space as S1, S2, S3, since the base field is
assumed to be of characteristic different from 2. Therefore we get

Z(Aa,b,c
3 ) ' K[A,B,C]/(Aa+1, Bb+1, Cc+1, AB,AC,BC)

in this case.
In case the characteristic of K is 2 the subspace of the socle of the algebra Aa,b,c

3 generated by
S1 + S2, S2 + S3, S1 + S3 is of codimension 1, namely given by the condition

(S1 + S2) + (S2 + S3) + (S1 + S3) = 0

and so Aa +Bb + Cc = 0. Hence, in characteristic 2 we get

Z(Aa,b,c
3 ) ' K[A,B,C, S]/(Aa+1, Bb+1, Cc+1, S2, Aa +Bb + Cc, AS,BS,CS,AB,AC,BC),

where we put S := S1.

Theorem 6.2. Let K be an algebraically closed field of characteristic p ≥ 0. Then we get the
following statements.

(1) (a) Aa,b,c
3 cannot be stably equivalent of Morita type to Ak,s

2 .
(b) Ak,s

2 cannot be stably equivalent of Morita type to A`
1.

(c) Aa,b,c
3 cannot be stably equivalent of Morita type to A`

1.
(2) (a) Suppose A`

1 is stably equivalent of Morita type to A`′

1 for `, `′ ≥ 2. Then ` = `′

(b) Suppose Ak,s
2 is stably equivalent of Morita type to Ak′,s′

2 for k, s, k′, s′ ≥ 1. Then
(k, s) = (k′, s′) or (k, s) = (s′, k′).

(c) Suppose Aa,b,c
3 is stably equivalent of Morita type to Aa′,b′,c′

3 for a ≥ b ≥ c ≥ 1 and
a′ ≥ b′ ≥ c′ ≥ 1. Then (a, b, c) = (a′, b′, c′).

Proof. We shall use Proposition 1.4, Proposition 1.8, Theorem 1.7 and Theorem 1.2. For the three
classes of algebras which we discuss in the theorem, either the characteristic of the base field is
positive or the Cartan matrices are always non-singular in case that the characteristic of the base
field is zero. In each case, the hypothesis of Theorem 1.7 holds.

We shall now prove the statement (1a). Suppose that Ak,s
2 and Aa,b,c

3 are stably equivalent of
Morita type.

The equality of the absolute values of Cartan matrices (cf Proposition 1.8) gives abc = ks. Now
Theorem 1.7 implies that Z(Ak,s

2 )/R(Ak,s
2 ) ' Z(Aa,b,c

3 )/R(Aa,b,c
3 ). By Proposition 6.1 we know that

Z(Ak,s
2 )/R(Ak,s

2 ) ' K[u, v, t]/(uk, vs, t2, uv, ut, vt)

and
Z(Aa,b,c

3 )/R(Aa,b,c
3 ) ' K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC).

Then, comparing the radical series, one gets {k, s, 2} = {a, b, c}, taken with multiplicities. But this
implies that abc = 2ks, which contradicts the equality of the absolute values of Cartan matrices.
This shows statement (1a).
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We shall show the statement (1b). Suppose Ak,s
2 with k, s ≥ 1 is stably equivalent of Morita type

to A`
1 with ` ≥ 2.

Recall from Proposition 6.1 that

Z(Ak,s
2 )/R(Ak,s

2 ) ' K[u, v, t]/(uk, vs, t2, uv, ut, vt)

and
Z(A`

1)/R(A`
1) ' K[U, V,W ]/(U `, V 2,W 2, UV, UW, VW ).

Hence, comparing the radical structure of these rings, taking into account that they need to be
isomorphic by Theorem 1.7, we get that (k = 2 and s = `) or (s = 2 and k = `). Suppose without
loss of generality that k = ` and s = 2. The Cartan determinant of A`

1 is 4` whereas the Cartan
determinant of A`,2

2 is 4ks = 8`. The absolute values of the Cartan determinants have to be equal
by Proposition 1.8. This contradiction shows the statement (1b).

We shall prove (1c) now. Suppose Aa,b,c
3 is stably equivalent of Morita type to A`

1 with ` ≥ 2,
and suppose without loss of generality a ≥ b ≥ c ≥ 1. We apply Proposition 6.1 and Theorem 1.7
which determines the quotient of the centres modulo the Reynolds ideal and which shows that these
quotients have to be isomorphic. We compare the radical series of the centres modulo the Reynolds
ideals and obtain a = ` and b = c = 2. The absolute values of the Cartan determinants of the two
algebras have to coincide by Proposition 1.8. The Cartan determinant of Aa,b,c

3 is 4abc = 8`. The
Cartan determinant of the local algebra A`

1 coincides with its dimension 4`. This is a contradiction
and proves (1c).

Finally we shall prove (2). As in (1b) and (1c), we use the two invariants: the algebra structure of
the centre modulo the Reynolds ideal and the absolute value of the Cartan determinant. Therefore,
(2) is actually an immediate consequence of Proposition 6.1 applied to the various situations. �

Although we cannot classify completely algebras of semi-dihedral and quaternion type up to stable
equivalences of Morita type, we can nevertheless prove the following

Corollary 6.3. Let A be an indecomposable algebra which is stably equivalent of Morita type to
an algebra B of semi-dihedral type or of quaternion type. Then A has the same number of simple
modules as B.

Proof. This is an immediate consequence of the above Theorem 6.2. �

7. The main theorem and concluding remarks

We summarise the results of this paper in a single theorem. We use the notations introduced
above, which coincides with the notations in [6] or [11].

Theorem 7.1. Let K be an algebraically closed field.
Suppose A and B are indecomposable algebras which are stably equivalent of Morita type.
• If A is an algebra of dihedral type, then B is of dihedral type. If A is of semi-dihedral type,

then B is of semi-dihedral type. If A is of quaternion type then B is of quaternion type.
• If A and B are of dihedral, semi-dihedral or quaternion type, then A and B have the same

number of simple modules.
• Let A be an algebra of dihedral type.

(1) If A is local, then A is stably equivalent of Morita type to an algebra in exactly one of
the families (a), (b), (c), (d) or (e) in the following list:

(a) A1(m,n) with m ≥ n ≥ 2 and m+ n > 4;
(b) D(1A)11;
(c) D(1A)k

1 with k ≥ 2;
(d) D(1A)k

2(d) with k ≥ 2 and d ∈ {0, 1}, in case the characteristic of K is 2.
(e) B1, in case the characteristic of K is 2.
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If A(m,n) is stably equivalent of Morita type to A(m′, n′) for m ≥ n ≥ 2 and m′ ≥ n′ ≥
2 and (m,n) 6= (2, 2) 6= (m′, n′), then (m,n) = (m′, n′).
If D(1A)k

1 is stably equivalent of Morita type to D(1A)k′

1 for k, k′ ≥ 2, then k = k′.
If p = 2 and D(1A)k

2(d) is stably equivalent of Morita type to D(1A)k′

2 (d′) for k, k′ ≥ 2
and d, d′ ∈ {0, 1}, then k = k′.

(2) If A has two simple modules, then A is stably equivalent of Morita type to one and exactly
one of the following algebras: D(2B)k,s(0) with k ≥ s ≥ 1 or if p = 2, D(2B)k,s(1) with
k ≥ s ≥ 1.

(3) If A has three simple modules then A is stably equivalent of Morita type to one and
exactly one of the following algebras: D(3K)a,b,c with a ≥ b ≥ c ≥ 1 or D(3R)k,s,t,u

with s ≥ t ≥ u ≥ k ≥ 1 and t ≥ 2.
• Let A be an algebra of semi-dihedral type.

(1) If A has one simple module then A is stably equivalent of Morita type to one of the
following algebras: SD(1A)k

1 for k ≥ 2 or SD(1A)k
2(c, d) for k ≥ 2 and (c, d) 6= (0, 0)

if the characteristic of K is 2. Different parameters k yield algebras in different stable
equivalence classes of Morita type.

(2) If A has two simple modules then A is stably equivalent of Morita type to SD(2B)k,s
1 (c)

for k ≥ 1; s ≥ 2; c ∈ {0, 1} or to SD(2B)k,s
2 (c) for k ≥ 1; s ≥ 2; c ∈ {0, 1}; k + s ≥ 4.

If SD(2B)k,s
1 (c) is stably equivalent of Morita type to SD(2B)k′,s′

1 (c′) for k, k′ ≥ 1, for
s, s′ ≥ 2, and for c, c′ ∈ {0, 1}, then (k, s) = (k′, s′) or (k, s) = (s′, k′).

(3) If A has three simple modules, then A is stably equivalent of Morita type to one and
only one algebra of the type SD(3K)a,b,c for a ≥ b ≥ c ≥ 1.

• Let A be an algebra of quaternion type.
(1) If A has one simple modules, then A is stably equivalent of Morita type to one of the

algebras Q(1A)k
1 for k ≥ 2 or Q(1A)k

2(c, d) for k ≥ 2, (c, d) 6= (0, 0) if the characteristic
of K is 2. Different parameters k yield algebras in different stable equivalence classes
of Morita type.

(2) If A has two simple modules then A is stably equivalent of Morita type to one of the
algebras Q(2B)k,s

1 (a, c) for k ≥ 1; s ≥ 3; a 6= 0.
If Q(2B)k,s

1 (a, c) is stably equivalent of Morita type to Q(2B)k′,s′

1 (a′, c′) for k, k′ ≥ 1, for
s, s′ ≥ 3 and for a, a′ 6= 0, then (k, s) = (k′, s′) or (k, s) = (s′, k′).

(3) If A has three simple modules, then A is stably equivalent of Morita type to one of the
algebras Q(3K)a,b,c for a ≥ b ≥ c ≥ 1; b ≥ 2; (a, b, c) 6= (2, 2, 1) or Q(3A)2,2

1 (d) for
d ∈ K \ {0, 1}. Different parameters a, b, c yield algebras in different stable equivalence
classes of Morita type.

Proof. The first point is Proposition 2.1 and the second point is Corollary 4.6 and Corollary 6.3. The
third point is Proposition 4.1, Proposition 4.4 and Proposition 4.5. The fourth point is Theorem 6.2
together with Section 5.1 and the fifth point is Theorem 6.2 together with Section 5.2. �

Remark 7.2. For algebras of dihedral type, we proved in Section 4 that the classification up to
stable equivalences of Morita type coincide with derived equivalence classification, up to a scalar
problem in D(1A)k

2(d). The only piece that is missing for a complete classification is the question if
D(1A)k

2(0) is stably equivalent of Morita type to D(1A)k
2(1).

Remark 7.3. Derived equivalent local algebras are Morita equivalent as is shown by Roggenkamp
and the second author (cf [26]). Observe that tame local symmetric algebras are classified in [6,
Chapter III]. Actually, the classification coincides with the algebras with one simple module we
already dealt with in the text. So, a complete classification of the algebras of dihedral, semi-dihedral
or quaternion type with one simple module up to stable equivalence of Morita type would give a
classification up to stable equivalence of Morita type of tame local symmetric algebras.

Corollary 7.4. The Auslander Reiten conjecture holds for tame local symmetric algebras, i.e. if A
is a tame local symmetric algebra and if B is an algebra without simple direct factor which is stably
equivalent of Morita type to A, then B is local tame symmetric as well.
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Proof. By Liu [19] B is indecomposable since A is indecomposable. Erdmann classified tame local
symmetric algebras [6, III.1 Theorem]. The classification coincides with the list of local algebras of
dihedral, semi-dihedral or quaternion type. �

We cannot give any answer to the classification of algebras of dihedral, semi-dihedral or quaternion
type up to derived equivalence beyond the information that is already known. Nevertheless, one more
statement for algebras of semi-dihedral type was obtained by Holm and the second author.

Theorem 7.5. (Holm and Zimmermann [13]) Let K be an algebraically closed field of characteristic
2.

(1) For any given integers k, s ≥ 1, consider the algebras of semi-dihedral type SD(2B)k,s
1 (c)

for the scalars c = 0 and c = 1. Put Bk,s
c := SD(2B)k,s

1 (c). Suppose that if k = 2 then
s ≥ 3 is odd, and if s = 2 then k ≥ 3 is odd. Then the factor rings Z(Bk,s

0 )/T1(Bk,s
0 )⊥ and

Z(Bk,s
1 )/T1(Bk,s

1 )⊥ are not isomorphic.
In particular, the algebras SD(2B)k,s

1 (0) and SD(2B)k,s
1 (1) are not derived equivalent.

(2) For any given integers k, s ≥ 1, consider the algebras of semi-dihedral type SD(2B)k,s
2 (c) for

the scalars c = 0 and c = 1. Put Ck,s
c := SD(2B)k,s

2 (c). If the parameters k and s are both
odd, then the factor rings Z(Ck,s

0 )/T1(Ck,s
0 )⊥ and Z(Ck,s

1 )/T1(Ck,s
1 )⊥ are not isomorphic.

In particular, for k and s odd, the algebras SD(2B)k,s
2 (0) and SD(2B)k,s

2 (1) are not derived
equivalent.

We get the following positive result.

Corollary 7.6. Let K be an algebraically closed field of characteristic 2.
(1) For any given integers k, s ≥ 1, consider the algebras of semi-dihedral type SD(2B)k,s

1 (c) for
the scalars c = 0 and c = 1. Suppose that if k = 2 then s ≥ 3 is odd, and if s = 2 then
k ≥ 3 is odd. Then the algebras SD(2B)k,s

1 (0) and SD(2B)k,s
1 (1) are not stably equivalent of

Morita type.
(2) For any given integers k, s ≥ 1, consider the algebras of semi-dihedral type SD(2B)k,s

2 (c)
for the scalars c = 0 and c = 1. If the parameters k and s are both odd, then the algebras
SD(2B)k,s

2 (0) and SD(2B)k,s
2 (1) are not stably equivalent of Morita type.

Proof. Since the quotients Zst(A) := Z(A)/Zpr(A) and T⊥n (A)st := Tn(A)⊥/Zpr(A) are invariants
under stable equivalences of Morita type (cf Theorem 1.2 and Proposition 1.6), so are the quotients
Zst(A)/T⊥n (A)st = Z(A)/T⊥n (A).

Hence the parameters in the theorem yield not only algebras in different derived equivalence
classes, but also algebras in different equivalence classes up to stable equivalences of Morita type. �

References

[1] Maurice Auslander and Idun Reiten, Stable equivalence of Artin algebras. Proceedings of the Conference on

Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972), 8-71. Springer Lecture Notes

in Mathematics 353 (1973).
[2] Maurice Auslander, Idun Reiten and Sverre O. Smalø, Representation Theory of Artin Algebras, Cambridge

Studies of Advanced Mathematics, 36, Cambridge Univ. Press, 1995.

[3] Richard Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, Mathematische Zeitschrift 63 (1956)
406-444.
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