DEFORMED PREPROJECTIVE ALGEBRAS OF TYPE L: KULSHAMMER
SPACES AND DERIVED EQUIVALENCES

THORSTEN HOLM AND ALEXANDER ZIMMERMANN

ABSTRACT. Bialkowski, Erdmann and Skowronski classified those indecomposable self-injective
algebras for which the Nakayama shift of every (non-projective) simple module is isomorphic to
its third syzygy. It turned out that these are precisely the deformations, in a suitable sense, of
preprojective algebras associated to the simply laced ADE Dynkin diagrams and of another graph
L., which also occurs in the Happel-Preiser-Ringel classification of subadditive but not additive
functions. In this paper we study these deformed preprojective algebras of type L, via their
Kiilshammer spaces, for which we give precise formulae for their dimensions. These are known
to be invariants of the derived module category, and even invariants under stable equivalences of
Morita type. As main application of our study of Kiilshammer spaces we can distinguish many (but
not all) deformations of the preprojective algebra of type L, up to stable equivalence of Morita
type, and hence also up to derived equivalence.

1. INTRODUCTION

Preprojective algebras have been introduced by Gelfand and Ponomarev [10] and nowadays occur
prominently in various areas in mathematics. For a quiver (i.e. a finite directed graph) @ its
preprojective algebra is defined by the following process: to any arrow a in ) which is not a loop
introduce a new arrow @ in the opposite direction; for a loop a set @ := a, leading to a new quiver
Q. Then the preprojective algebra P(Q) of type @Q over a field K is defined by the quiver with
relations K@Q/I where the ideal is generated by the relations, one for each vertex v in @, of the
form ES(G):U aa, where s(a) denotes the starting vertex of the arrow a. Note that the preprojective
algebra is independent of the orientation of the quiver (). The preprojective algebra for a quiver
associated to a tree is known to be finite-dimensional if and only if the quiver @ is a disjoint union
of some orientations of simply laced ADE Dynkin diagrams. The finitely generated modules of the
preprojective algebras for ADE Dynkin quivers have remarkable homological properties. Namely, by
a result of Schofield [22] each non-projective indecomposable module has Q-period at most 6, where
 denotes Heller’s syzygy operator; for proofs see [1], [5], [8].

In an attempt to characterise those selfinjective finite-dimensional algebras which share these re-
markable periodicity properties, Biatkowski, Erdmann and Skowroriski introduced in [2] deformations
of the preprojective algebras of ADE Dynkin quivers and of an additional graph of type L,, of the

following form
O

which already occurred in the Happel-Preiser-Ringel classification [11] of subadditive but not additive
functions.

The deformations P/(Q) are obtained by perturbing the usual preprojective relation Zs(a):v
at one particular vertex by adding a certain polynomial expression f. It turns out that proper
deformations occur only for the diagrams of types D, E, and L. For more details on the actual
relations we refer to [2, Section 3]. The Bialkowski-Erdmann-Skowroniski deformations are different
and should not be confused with the deformed preprojective algebras of Crawley-Boevey and Holland
[6].
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The main result of Biatkowski, Erdmann and Skowroniski gives the following surprising classifica-
tion of selfinjective algebras sharing the periodicity properties of preprojective algebras of Dynkin

type.

Theorem. ([2, Theorem 1.2]) Let A be a basic, connected, finite-dimensional, selfinjective algebra
over an algebraically closed field. Then the following statements are equivalent:
(i) A is isomorphic to a deformed preprojective algebra P (Q) for a quiver of type ADE or L.
(ii) Q3(S) =2 v=LS for every non-projective simple right A-module S, where v is the Nakayama
transformation.

In our present paper we shall study the deformed preprojective algebras of type L, in the
Biatkowski-Erdmann-Skowronski sense. Let us start by giving a precise definition of these algebras.

Let K be a field, let p(X) € K[X] be a polynomial and let n € N. Then let L? be the K-algebra
given by the following quiver with n vertices

€

ao al as Ap—2
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subject to the following relations
a;@; + a;—1a;—1 =0forallie {1,...,n— 2},
En,gan,g = 0 5 €2n = 0 y 62 + aoao + 63]9(6) = 0
These algebras are the deformed preprojective algebras of type L, , in the sense of Biatkowski, Erd-
mann and Skowroniski [2]. Note that the usual preprojective relations are deformed only at the vertex
0.

More details on these algebras are collected in Section 3 below. In particular we determine their
Cartan matrices and we provide an explicit K-basis of the algebra given by a set of paths in the
quiver. Moreover, we determine explicitly the centre and the commutator subspace of the deformed
preprojective algebras of type L,,.

An important structural property is that all deformed preprojective algebras of type L, are
symmetric algebras. This is a yet unpublished result of Bialkowski, Erdmann and Skowronski [3,
Corollary 4]; since we build on it in the present paper we give an independent and direct proof of
this fact for the sake of completeness (cf. Section 3.2).

It is a subtle question for which deformation polynomials p the deformed preprojective algebras
L? become isomorphic. This problem has now been solved by Biatkowski, Erdmann and Skowronski
[3, Theorem 2]: over a field K of characteristic different from 2 all deformed preprojective algebras
of type L, are isomorphic; however, in characteristic 2 the algebras corresponding to the set of
deformation polynomials p(X) = X2/ for j € {0,1,2,...,n — 1} give a complete classification up to
Morita equivalence.

We are not building on this classification in the present paper but we use it as a motivation
for restricting our computations of Kiilshammer spaces in Section 4 to the case of deformation
polynomials X2,

The Biatkowski-Erdmann-Skowronski characterisation of the selfinjective algebras where for each
non-projective simple module the third syzygy is isomorphic to the (inverse) Nakayama transfor-
mation can be seen as a condition on the stable module category; we therefore believe it is natural
to aim at a classification of the deformed preprojective algebras up to stable equivalence or up to
derived equivalence, rather than up to Morita equivalence.

Our main results in this paper provide partial answers to these problems. We are able to distin-
guish several of the deformed preprojective algebras L:X > up to stable equivalence of Morita type and
up to derived equivalence. Our main applications in this direction are summarised in the following
result.

Theorem 1.1. Let K be a perfect field of characteristic 2.

(a) If two deformed preprojective algebras LY, and L%, are stably equivalent of Morita type or
derived equivalent, then n = m.
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(b) Forn €N, let j,k € {0,1,...,n—1} be different numbers such that {j, k} # {n—2r,n—2r—1}
for every 1 <r < f"T*Q] Then the deformed preprojective algebras szy and Lffzk are not
stably equivalent of Morita type, and also not derived equivalent.

These results are obtained as a consequence of a detailed study of the Kiilshammer spaces for the
deformed preprojective algebras of type L. These spaces have been defined by Kiilshammer in the
1980’s for symmetric algebras over a field of positive characteristic; we recall briefly the construction
and some fundamental properties from [16]. For an algebra A over a field K let [A, A] be the K-
vector space generated by {ab—ba € A | a,b € A} and call this space the commutator subspace of A.
Kiilshammer defined for a K-algebra A over a perfect field K of characteristic p > 0 the K-vector
spaces Tj(A) := {x € A | P € [A, A]} for every integer i > 0. They form an ascending series

[A, A] = Ty(A) C Ty (A) C To(A) C ... C Ti(A) C Tiyr(A) C ...

In [27] it was shown by the second author that for symmetric algebras over a perfect field the
codimension of the commutator space of A in T;(A) is invariant under derived equivalences, and
in [17] Liu, Zhou and the second author showed that this codimension is an invariant under stable
equivalences of Morita type. In joint work with Bessenrodt [4] we showed that the codimension of
T;(A) in A is an invariant of the derived category of A for general (not necessarily symmetric) finite
dimensional algebras.

The derived invariance of the various codimensions of Kiilshammer spaces proved already to be
very useful to distinguish derived equivalence classes of symmetric algebras, see [12], [13], [14], and
also to distinguish stable equivalence classes of Morita type, see [24], [25].

For obtaining our above results on deformed preprojective algebras of type L, (over a perfect
field of characteristic 2) we determine the dimension of their Kiilshammer spaces T;(L:X Y ); our main
result in this direction is the following.

Theorem 1.2. Let K be a perfect field of characteristic 2. Then for every 0 < j < n we have
() dimpe T(LY™) — dime[LX”, LX) = n - max ([ 2@ 2u=C 0] o)

(b) dimg[LX, LX) = In(n —1)(2n +5).

The paper is organised as follows. In Section 2 we recall some results for selfinjective algebras and
we propose a method to compute the centre and the quotient of the algebra modulo the commutator
space for selfinjective algebras which we believe should be useful in other situations as well. In
Section 3 we study the deformed preprojective algebras LP, give a K-basis, the Cartan matrix, the
commutator space, and the centre of the algebras. In Section 4 we compute the Kiilshammer spaces
T,(LX”) and deduce the main results.

2. HOCHSCHILD HOMOLOGY AND NAKAYAMA AUTOMORPHISMS OF SELF-INJECTIVE ALGEBRAS

In this section we present some general methods to deal with selfinjective algebras, in particular for
getting a Nakayama automorphism and related bilinear forms explicitly. Strictly speaking the results
of this section are not used in this generality in the rest of this paper since the deformed preprojective
algebras of type L are symmetric (we give an independent proof of this result of Biatkowski, Erdmann
and Skowronski in Section 3.2 below). However, symmetricity of an algebra is usually not easy to
verify so that the methods of this section can be used to deal with Kiilshammer ideals in cases where
one only has selfinjectivity; therefore the methods of this section might be of independent interest.

We need to compute rather explicitly in the degree 0 Hochschild homology of self-injective algebras.
This needs some theoretical preparations in order to be able to determine a basis of the commutator
subspace of the algebras we need to deal with.

2.1. The Nakayama-twisted centre. Let K be a field and let A be a K-algebra. We need to get
alternative descriptions of the degree 0 Hochschild homology. By definition of Hochschild homology
(using the standard Hochschild complex) we have HHy(A) = A/[A, A].

If A is symmetric, then by definition A ~ Homg (A, K) as A-A-bimodules (i.e. as A @ A°P-
module), and so we get

Hompg (A/[A, A], K)

1

HOIHK(HHQ(A), K) ~ HOHlK(A QA e Aop A, K)
Hom g, o (A, Homg (A, K)) ~ Hom g, Acr (4, A)
HH°(A) ~ Z(A).

1

1
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This chain of isomorphisms is one of the main tools for the proof of the main theorem in [26].

If A is only a Frobenius algebra we shall give an analogous description. So we need to understand
Hompg (4, K) as A ® g A°P-module. If A is a Frobenius K-algebra then still A ~ Homg (A, K) as a
left A-module. Hence, Homg (A, K) is a free left A-module of rank 1. Moreover,

Ends( s Homg (A, K)) ~Enda( 44) ~ A

and so Hompg (A, K) is a progenerator over A with endomorphism ring isomorphic to A, hence
inducing a Morita self-equivalence of A. Therefore the isomorphism class of Homg (A, K) is in the
Picard group Pick(A). Moreover, as Homg (A, K) is free of rank 1 as left-module one gets that
Hompg (4, K) is in the image of

Outg (A) := Autg(A)/Inn(A)
in Pick(A), where this identification is given by sending o € Autg (A4) to the invertible bimodule

14, which is A as vector space, on which a € A acts by multiplication on the left and by a(a) on
the right (cf. [20, (37.16) Theorem]). Hence, there is an automorphism v € Autg(A) so that

HOHlK(A7 K) ~ 1141,
as A-A-bimodules and v is unique up to an inner automorphism.

Definition 2.1. Let A be a Frobenius K-algebra. Then there is an automorphism v of A so that
Hompg (4, K) ~ 1A, as A-A-bimodules. This automorphism is unique up to inner automorphisms
and is called the Nakayama automorphism.

For the dual of the degree 0 Hochschild homology we get

Hompg (A/[A, A, K) ~ Homg(HHy(A),K)~Homg (A ®agyacr A, K)
Hom ag , aor (A, Homg (A, K)) ~ Hom g, a0 (4, 14,)
{a€Alb-a=a-v)foralbe A}

where the last isomorphism is given by sending a homomorphism to the image of 1 € A.

1

12

Definition 2.2. Let A be a Frobenius K -algebra with Nakayama automorphism v. Then the Nakayama
twisted centre is defined to be

Z,(A):={a€A|b-a=a-v(D) forallbe A}.
Remark 2.3. (1) The automorphism v is unique only up to an inner automorphism. If v is inner,
let v(a) =u-a-u~t. Then
{acAlb-a=a-v(b)forallbe A} = {acA|b-a=a-u-b-u"'foralbc A}

= {a€A|b-(a-u)=(a-u)-bforalbdbe A}

= {acA|la-uecZ(A)}=2A) u?!
and likewise the twisted centres with respect of two different Nakayama automorphisms differ by
multiplication by a unit.

(2) In general the Nakayama twisted centre will not be a ring. However, if z € Z(A) and a € Z,(A)
then
b-za = zba = za - v(b)

and za € Z,(A). Hence Z,(A) is a Z(A)-submodule of A. The module structure does not depend
on the chosen Nakayama automorphism, up to isomorphism of Z(A)-modules.

We summarise the above discussion in the following Lemma.

Lemma 2.4. If A is a Frobenius K -algebra, then there is an automorphism v of A, unique up to an
inner automorphism so that Homg (A, K) ~ 1A, as an A-A-bimodule and Homy (HHy(A), K) ~
Z,(A) as Z(A)-modules.

The Frobenius algebra A is symmetric if and only if the Nakayama automorphism v is inner. ®

Remark 2.5. (1) The automorphism » is the well-known Nakayama automorphism. (The diligent
reader might observe that we are dealing with left modules while originally Nakayama in [19] dealt
with right modules, so our v would be the inverse of the original Nakayama automorphism.)

(2) Using that HHy(A) = A/[A, A], the dimension of the commutator subspace of a selfinjective
algebra A can therefore be expressed as

dlmK[A,A] = dimK A— dimK Z,,(A)



DEFORMED PREPROJECTIVE ALGEBRAS 5

2.2. How to get the Nakayama automorphism explicitly. Let K be a field and let A be
a Frobenius K-algebra. In order to compute the Nakayama automorphism v we need to find an
explicit isomorphism A — Hompg (A, K) as A-modules. Suppose we get two isomorphisms aj :
A — Hompg (A, K) and a3 : A — Hompg (A4, K). Then a;l ooy : A — A is an automorphism
of the regular A-module A. Hence, o will differ from ay by multiplication by an invertible element
u € A. The corresponding Nakayama automorphisms vy and vs computed from «a; and from ay will
then differ by the inner automorphism given by conjugation with w. It is therefore sufficient to find
one isomorphism « : A — Hompg (A, K). Given such an isomorphism « of A-modules, the form
(x,9)a = (a(y))(x) for z,y € A is a non degenerate associative bilinear form on A.

Let (, ): Ax A — K be a non-degenerate associative K-bilinear form on A (which exists since
A is Frobenius), then we get a vector space isomorphism

A % Homg (A, K) , a — (—,a).

Lemma 2.6. A non-degenerate associative bilinear form { , ) : Ax A — K induces an isomorphism
A — Hompg (A, K) as left A-modules by mapping a € A to the linear form

A>bw— (ba) € K.

Proof. By the above discussions the map is an isomorphism of vector spaces. For verifying the
module homomorphism property recall the action of A on the dual space Homg (A4, K); it is given
by (b ¢)(c) = @(cb) for all b,c € A and all ¢ € Homg (A, K). Then, using that the bilinear form is
associative we get

a(b-a)(e) = {c,b- a) = (c-b,a) = (b- a(a)) (¢)
for all a,b,c € A, so the map is a homomorphism of left A-modules. O

Proposition 2.7. Let K be a field and let A be a Frobenius K -algebra. Then the Nakayama auto-
morphism v of A satisfies (a,b) = (b,v(a)) for all a,b € A, and any automorphism satisfying this
formula is a Nakayama automorphism.

Proof. There is a non-degenerate associative bilinear form on A, which induces an isomorphism
between A and the linear forms on A as A-modules by Lemma 2.6. The isomorphism gives an
isomorphism of A-A-bimodules of 1 4, and Homg (A, K) by

1AV L HOIHK(A,K) , @ <_’a’> = (p(a’)

By the twisted bimodule action on ; A, we have that (1) -a = ¢(1-a) = p(v(a)) and b- p(1) =
o(b-1) = @(b). Since for f € Homg (A, K) the A-A-bimodule action on Homg (A, K) is given by
(fa)(d) = f(ab) and (af)(b) = f(ba) for all a,b € A, one gets

(a,b) = (p(b))(a) = (b- ¢(1))(a) = ¢(1)(ab) = (¢(1) - a)(b) = ¢(v(a))(b) = (b,v(a)).
Hence, the Nakayama automorphism has the above property. Conversely, if an automorphism v
satisfies (a,b) = (b,v(a)) for all a,b € A, then the mapping A — Hompg (A, K) given by a — (—, a)
gives an isomorphism of A and Homg (A, K) as A-modules, inducing the element ; A, in the Picard
group of A. O

We shall later need such a bilinear form explicitly. The following very useful result can be found
in [27, Proposition 2.15]; see also [14, Proposition 3.1] for a proof in the case of weakly symmetric
algebras.

Proposition 2.8. Let A = KQ/I be a Frobenius algebra given by the quiver Q and ideal of relations
I, and fix a K-basis B of A consisting of pairwise distinct non-zero paths of the quiver Q). Assume
that B contains a basis of the socle soc(A) of A. Define a K-linear mapping v on the basis elements
by

[ 1 ifbesoc(A)\ {0}
w(b) = { 0 otherwise

for b € B. Then an associative non-degenerate K -bilinear form (—,—) for A is given by (z,y) =
U(zy).

Remark 2.9. The above bilinear form is in general not symmetric, even if the algebra A is symmetric.
For explicit examples we refer to [13, Section 4, proof of main theorem, part (3)] and [27].

Actually, this form is basically the only possible form, at least for finite dimensional basic selfin-
jective algebras over an algebraically closed field K.
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Proposition 2.10. Let A be a finite dimensional basic Frobenius K-algebra over an algebraically
closed field K. Then for every non degenerate associative bilinear form (..) : A x A — K there is
a K-basis B containing a K-basis of the socle so that (x, y) = ¥ (xy) where

R A

forbe B.

Proof. Given an associative bilinear form (.,.) : A x A — K there is a linear map ¢ : A — K
defined by ¥ (x) := (1, z) and for any =,y € A one gets (x,y) = (1,zy) = (vy). Hence 1) determines
the associative bilinear map and the associative bilinear map determines .

The algebra is basic and so the socle of A is a direct sum of pairwise non-isomorphic one-
dimensional simple A-modules. Let {s1,...,,} € A so that s;A is simple for every i € {1,2,...,n}
and so that soc(A) =< s1,...,8, >k

Given an associative non degenerate bilinear form (.,.) then (., s;) : A — K is a non zero linear
form on A, since the bilinear form is non degenerate. Hence there is an element a € A so that
(a,s;) # 0. Now, by the Wedderburn-Malgev theorem, there is an element p € rad(A4) so that
a = > " \e; + p for scalars \; € K, and where e? = e; is an indecomposable idempotent of A,
where e,-1(;y8; = s;, and where e,-1(jys; = 0 for j # i. Hence,

(a,5:) = (1,asi) = (1, \y-1(58:) = A\p—1(i)
We replace s; by )\;,11( )Si and get (1,s;) = 1. Take a K-basis B; of ker((.,s;)) in Ae,-1(;). Then,

i
since A = @)_, Ae;,
n
B:= UBiU{Sl,SQ,...,Sn}
i=1
is a K-basis of A satisfying the hypotheses of Proposition 2.8. Moreover, if zy € B, then there is a
unique €? = ¢; so that zye; = 2y, and so

(r,y) = (Lay) = S (1 ayes) = { L iy € soe(4)

i=1
This shows the statement. (]

3. DEFORMED PREPROJECTIVE ALGEBRAS OF TYPE L

3.1. K-bases of the deformed preprojective algebras of type L. The aim of this section is to
obtain an explicit vector space basis for any deformed preprojective algebra of type L and to deduce
some structural properties. In particular we shall get the Cartan matrices and give an independent
and constructive proof of a result of Biatkowski, Erdmann and Skowroriski [3, Corollary 4] that the
deformed preprojective algebras of type L are symmetric algebras.

For the convenience of the reader we start by recalling from the introduction the definition of the
deformed preprojective algebras of type L.

Let K be a field. For any n € N and any polynomial p(X) € K[X] let LE be the K-algebra given

by the following quiver with n vertices 0,1,...,n — 1 of the form
€
ao al a2 Ap—2
—_— — — —_—
° ° Y ° e e “en Y )
-— — —— R
p G0 | a1 402 4 an—2

subject to the following relations
asas +as_1as—1 =0forall s e {1,...,n -2},
Tp_o0n_2=0, " =0, €+ aptp + >p(e) = 0.
Recall that the deformed preprojective algebras of type L are selfinjective (cf [2, Lemma 3.2]),
and hence Frobenius.
Our first aim is to give a K-basis of the algebra LP. We start by providing a generating set.

Considering a path starting at the vertex ¢ and ending at the vertex j, we have two cases.
Firstly suppose that the path does not contain e.
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If i < j, then using the relations asas + as_1as—1 = 0 for all s € {1,...,n — 2} in L? we may
replace the path, up to a sign, by one of the following elements of LP:

e the path a;a;11...a;1

e or the path a;a;11...a;-16;...a;Ga—1 ...a; (for some j <1 <n—2)

e or by 0.

In fact up to a sign we can order the arrows in the path so that all a,’s come first and then all
the @,’s; we can do this unless we hit a subpath ...@a,_2a,_5... in which case the path becomes 0
in LP.

Similarly, if ¢ > j we may replace the given path, up to a sign, by one of the following elements:

e the path Aj—1Gi—2 .. .Ej

o or the path a;a,11...ae@@—1...G;...G; (for some i <1 <n—2)

e or by 0.

Secondly, suppose the path contains e.

Suppose such a path p contains € at at least two positions, i.e. it is of the form p = pie®paetps
where ps is a closed path starting and ending at the vertex 0. Using the relations asas+as_1as—1 =0
for all s € {1,...,n — 2} and the fact that agay commutes with e (because agag = —(€2 + €>p(e)))
we see that ps commutes with € and hence p = pypoesttps. Thus for any path containing € we may
suppose that it contains some power of € at exactly one position.

Moreover, using the relations €2 + €3p(€) + apap = 0 and €*" = 0 we may replace any path
containing powers of € by a linear combination of paths containing only e.

In fact, the relation above reads €2(1+ ep(€)) = —agap. Obviously, ep(e) is nilpotent and therefore
1 + ep(e) is invertible. Let m be minimal such that (ep(e))™*! = 0; then we get

¢ = —(aoto)(1+ ep(€)) ™" = —(aodo) (1 — ep(e) + (ep(€))” — ... + (=1)™ (ep(e))™) -

In particular, €2 is a linear combination of (desired) paths involving € at most once and a term of

the form agage?p(e) for some polynomial p. The crucial observation is that in the latter term the
paths involving €2 have longer length than before. But the algebra is finite-dimensional thus there
is a number N so that all paths with length bigger than N represent the 0 element. So given a path
p1e®py with s > 2 one can successively replace €2 by the above expression until one reaches a linear
combination of paths involving € only once.

Using again the relations asas + Gs—1as—1 = 0 for all s € {1,...,n — 2} and the fact that agao
commutes with € (because agap = —(e? + €3p(€))) we can move all a,’s in the path to the right of e.
(Note that by combining these two reductions we can indeed guarantee that in each path occurring
in the linear combination e occurs only once.) Thus the given path represents the same element in
L? as a linear combination of paths of the following forms

®a; 1G;—2...00€00G1 ... 051

® U 1G;—2...Gp€QOAT - .. Qr—10¢0eG¢—1 - .. G5 (for some j <1 <n—2).

If i < j these paths are all non-zero and they will be part of the basis to be given below. However,
if ¢ > j some of the paths of the latter type vanish, so we shall now derive a different expression for
these.

To this end observe that by using the relations asas + as_1as_1 = 0 we can successively move the
a,’s to the left and obtain

— = — = = ) = - — \l—j+1
A;—10;—2 ...00€00A] ... ApGgay—1 .. A5 = + A;—1Q;—2 ... a0€(aoa0) J apay ... Aj—1.

Moreover, using that agag commutes with € and then moving the a,’s to the left we get

Q;—1G5—2...0Q0€EAQAT - - - Ag—10¢Apag_1 - - - G

_ — = — — \l—j+1
= =+ A;—1Q;—92 ... ao(aoao) J €aopdy ... aj—1

—j+1-

= :I:El-_lﬁi_g e (ano) ap€apdy ... aj;—1

+ a;Ai41 - .- aiM,jEiH,jﬁiM,j,l ...a1ap€apay . . . aj—1 if 4 + f— j S n—2
0 else

The following result provides explicit vector space bases for the deformed preprojective algebras
L? of type L. Note that the bases do not involve the deformation polynomial p, i.e. the bases is
independent of the polynomial.
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Proposition 3.1. A K-basis of L? is given by the following paths between the vertices i and j, where
i,7€{0,1,...,n—1}.

(1) Q;Qiy1 - Q1 fO’Fi <jJ

(2) @iyt ... aj_1a; ... agGeGe—1 ... G fori < j and some j <l <n-—2
(3) Ai—1QA5—9 . . .E]‘ fOTi Z ]

(4) aiaiy1 ... ae@eGo—1 ... Q... Gy fori>j and somei <{<n-—2
(5) @i—1@i—2 ... Ao€QOAT - .. A1 for any i,j

(6) A;—1Q;—2 . ..00€EAQAY - . . Ag—10¢QQ¢—1 - . . Qj fori < j and some j <l <n-—2
(7) @i@iq1 - - . ag@eGr—1 - .. A1G0€EAYAT - - . Gj—1 fori>j and somei <{f<n-—2

Remark 3.2. (1) In type (3) the case ¢ = j yields an empty product which has to be interpreted as
the trivial paths e; for every vertex i.

(2) The longest paths in this basis of L are of length 2n — 1, occurring in (5) fori =j =n—1
and in (7) for ¢ = j € {0,1,...,n — 2} and | = n — 2, respectively. These elements span the
socles of the projective indecomposable modules corresponding to the vertices ¢ € {0,1,...,n — 1}.
Indeed, these elements are annihilated by multiplication by any arrow. This implies that they are
in the socle. Since the algebras L are self-injective (cf [2, Lemma 3.2]), the socle of each projective
indecomposable module is one-dimensional.

(3) The socle element of the projective indecomposable module corresponding to the vertex 0 can
also be expressed in terms of powers of the loop € (recall that €2 = 0 in the algebra L2). In fact it
is not hard to check that we have €2"~1 = qgay ... an_20n_2Gn_3 . . . GLA0E. (Note that lower powers
of € are not necessarily occurring as paths in the above list, but are linear combinations of these, the
precise shape depending on the deformation polynomial p.)

(4) The above basis seems very suitable for making the following inductive proof work. However,
later in the paper we will also use slightly different bases involving powers of the loop e.

Proof. The above discussion proves that the given elements form a generating set. We need to show
that these elements are linearly independent. Since the defining relations of the algebra LP are
relations between closed paths, we may suppose that a linear combination of paths starting at ¢ and
ending at j is 0. By symmetry we may suppose that ¢ > j and hence we get a linear combination

0 = vy -@_1Gi_o.. LG5 + V1 - Qi—1G;—2 - .. Ap€EAQAT - . . Q51 +

n—2

+ E Ao - QiQig ... QpQeQY—1 - - . Qi 1Qj - - .aj +
=i
n—2

—+ Mo - AiQ541 - .. ApQyQp—1 ...Q100€000Q7 - .. Q51

J

=i

with scalars vg,v1, A\g, by € K. Note that the paths occurring have the following lengths: length
1 — j for the summand of type (3) with coefficient vy, length i 4+ j + 1 for the summand of type (5)
with coefficient vy, length 2¢ — i — j + 2 for the summand of type (4) with coefficient A¢, and length
2¢ — i+ j + 3 for the summand of type (7) with coefficient pu,.

Denote by J = J(L) the two-sided ideal of L?. generated by the arrows of the quiver.

From the lengths of the paths we observe that all summands in the above expression are contained
in Ji=7+! except the one with coefficient 9. So considering the above equation modulo J*~7+1 we
can deduce that vy = 0.

The remaining summands are given by paths which pass through the vertex i + 1 (recall that
£ > 1), except for the summand with coefficient v4. So considering the above expression modulo the
two-sided ideal LPe; 1 LP we get that also v; = 0.

Hence we are left to consider the equation

n—2
0= E AiGit1 -+ QpAPag—1 - - - U410 - - - O ()\g + Q1052 ... A100€AQGT - - - aj_l) .
=i

We shall prove by induction on ¢ that all coefficients are 0. Observe that for each ¢ =i,...,n —2
the paths with coefficients A\, and py pass through the vertex £+ 1 but not through the vertex ¢+ 2.
For ¢ = i we consider the above equation modulo the two-sided ideal LPe; 2 LP and obtain that

0=\ -a;a;a;_1 .. L@+ g Q05— .. Qj ... QOEQQAT . . - Q51
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Since the first path is strictly shorter than the second we again consider the equation modulo a
suitable power of the ideal J and can deduce that A\; = 0, and then also that u; = 0.

By a completely analogous argument we can immediately deduce inductively that all coefficients
A¢ and py are 0. O

Remark 3.3. From Proposition 3.1 one can derive the Cartan matrix of the deformed preprojec-
tive algebras of type L,. For any basic K-algebra A with primitive idempotents eg, ey, ..., e, the
coeflicients of the Cartan matrix are the dimensions of e;Ae;. Hence, if we may choose an explicit
basis of e;Ae; for all 4,5 € {0,1,...,n} we can just read off the Cartan matrix by counting these
elements. Since the basis found above for L? is independent of the deformation polynomial p the
Cartan matrices of LY and LP coincide; this has already been observed by Bialkowski, Erdmann and
Skowroriski [2, Lemma 3.2]. The Cartan matrix C,, of the deformed preprojective algebras of type
L,, actually has the following form

n n—1 2 1

n—1 n-—1 2 1

Cn =2 : : IR
2 2 o201

1 1 o101

From this shape one easily computes that the determinant of the Cartan matrix is det C,, = 2™ for
all n € N. Moreover, the vector space dimension of L is $n(n+ 1)(2n + 1) for all n € N.

3.2. Deformed preprojective algebras of type L are symmetric. The aim of this section is
to show that for any deformation polynomial p € K[X] and any n € N the deformed preprojective
algebra LP is a symmetric algebra. This is a result of Biatkowski, Erdmann and Skowronski [3,
Corollary 4]. For the convenience of the reader we include an independent direct proof of this fact
in this section.

According to Lemma 2.4 it suffices to show that the identity is a Nakayama automorphism for
the algebra LP. Recall from Proposition 2.7 that a Nakayama automorphism v for a self-injective
algebra A over a field K is characterized by the property (a,b) = (b,v(a)) for all a,b € A where (., .)
is a non-degenerate associative K-bilinear form on A.

The following general observation turns out to be useful when verifying that a certain automor-
phism is indeed a Nakayama automorphism; namely, it suffices to check the crucial property on
algebra generators of A.

Lemma 3.4. Let A be a self-injective algebra, with a non-degenerate associative K-bilinear form
(.,.). If an automorphism v of A satisfies (a;,b) = (b,v(a;)) for a set of algebra generators
{a1,...,a,} and all b € A then v is a Nakayama automorphism of A.

Proof. Every element of A can be expressed as a product of the algebra generators. We show that
(a,by = (b,v(a)) for all a,b € A by induction on the length of such an expression for a. For any
algebra generator a; and a,b € A we have

(aaj, b) = (a,a;0) = (a;b,v(a)) = (a;,bv(a)) = (bv(a),v(a;)) = (b,v(a)v(a;)) = (b,v(aa;))
where for the first, third and fifth equality we used the associativity of the form, for the second

we used the induction hypotheses, for the fourth equality we used the assumption on v for algebra
generators, and the last equality holds because v is an algebra homomorphism. O

Recall from Proposition 2.8 the construction of an associative non-degenerate bilinear form on a
self-injective algebra, depending on the choice of a suitable basis. For a basis B consisting of non-
zero distinct paths and containing a basis of the socle this bilinear form has been defined on basis
elements by (a,b) = ¢(ab) where ¢)(z) = (1) ii ; Zgzgﬁg Rg

For our aim of proving that the identity is a Nakayama automorphism for L? we shall show that
the bilinear form (.,.) corresponding to the basis B given in Proposition 3.1 is indeed symmetric.
By the previous lemma we therefore have to verify that (a,b) = (b,a) for every algebra generator
a€{eg,...,€n_1,€60a0,...,an_2,00,...,0n—2}, and b running through the basis of Proposition 3.1.

It is immediate from the definition of the form (.,.) that (e;,b) = (b,e;); in fact, the value on
either side is 1 precisely if b is a basis element from the socle, and 0 otherwise.

So it remains to deal with the cases where a is an arrow of the quiver of L2.
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We start with the loop e. By definition the value in both (e,b) and (b, €) is 0 unless b € egLEey.
By Proposition 3.1, for the latter space a basis is given by the elements eq, €, ag...asay . ..ay and
ag - - agayg . ..age where 0 < £ < n — 2. Using the defining relations asas + as_1as—1 = 0 it is not
difficult to see that in LP we have ag ... as@ . .. Gp = +(apdp)***. From this we can deduce, by using
the relation €2 + €2p(€) + apag = 0, that € commutes with every element of egLPeq. But then we
clearly have for all b € egLP e that

(€,b) = tp(eb) = 1h(be) = (b, €).
We now consider the case a = a, (for some 0 < r < n — 2). Again by definition the value in both
(ar,b) and (b,a,) is 0 unless b € e,1LPe,.. Moreover, for a basis element b € e,1LPe, the value
in both (a,,b) and (b,a,) is also 0 unless a,b (resp. ba,) is a nonzero element in the socle of LP.
According to Remark 3.2 (2) we know that a,b and ba, can only be a nonzero element in the socle

if b is a path of length 2n — 2. However, it is immediately checked that the only basis element
b € ey41LPe, in Proposition 3.1 of length 2n — 2 is

b=ar410r42...0p—2Gy_2Gn_3...00€00A] - ..CQp_1.

For this element we have that a,-b is the socle element in B (of type (7)) corresponding to the vertex
r and that ba, is the socle element corresponding to the vertex r + 1 (of type (7) if r < n —2 and of
type (5) if r =n — 2), i.e. we can deduce

<arv b> = 7/’(%5) =1= w(bar) = <ba ar>‘
Since by the above remarks in all other cases for b both values (a,,b) and (b, a,) vanish we get the
desired statement (a,,b) = (b, a,) for all basis elements b from Proposition 3.1.

Finally we consider the case where a = @, for some 0 < r < n — 2. This is mainly analogous to
the previous case but at a certain point pointed out below one has to be careful. Again by definition
the value in both (a,,b) and (b, a,) is 0 unless b € e,.LPe,;1 and @,b and ba, are nonzero elements
in the socle. By Remark 3.2 (2) the products @b and ba, can only be nonzero elements in the socle
if b is a path of length 2n — 2. The only basis element b € e, LPe, 11 of length 2n — 2 in Proposition
3.1 occurs in type (6) (for r < n — 2) and in type (5) (for r = n — 2) and has the form

b=G,_1G,_9...Q0€a0 ... Ap—2Gn—2...Cp41-
Now, when calculating the values of (a,.,b) and (b, a,) one has to be careful since the products
b =a,Gr_1Gr—9...Go€AQ . . . Qp—2Gp—2 ...0r+1 € 67-+1L§167~+1
and
ba, = Gr_1Gr—2...G0€AQ . . .Cp—20n—2...0r+10r € e,anleT.

are not elements of the basis B given in Proposition 3.1; the only exception is for » = n — 2 where
@n—2b is a basis element of type (5). However, Lemma 3.6 (1) below shows how to express these
in terms of the basis B; namely for all » € {0,...,n — 2} we have that @,b and ba, are equal
(not only up to a scalar!) to the socle elements occurring in the basis B. Hence we obtain that
(@, by = ¥(a,b) =1=1(ba,) = (b,a,), as desired.

Summarizing our above arguments we have now shown that the associative non-degenerate bi-
linear form (.,.) corresponding (in the sense of 2.8) to the basis B of Proposition 3.1 is symmetric.

We therefore have given an independent proof of the following result, which is originally due to
Biatkowski, Erdmann and Skowronski [3, Corollary 4].

Theorem 3.5. Let K be a field (of any characteristic). For alln € N and every polynomial p € K[X]
the deformed preprojective algebra LP is a symmetric algebra.

We complete this section by providing an auxiliary result on relations in the algebras LP; the first
part provides the missing calculations in the last part of the above proof, the second part will be
used in later sections.

Lemma 3.6. The following identities hold in the algebra L? .
(a) For allr € {0,...,n — 2} we have that
Ap—1Qr—2...00€AQ - ..Ap—20p—2 ... 0r410r = QpQp41 -..Ap—20p—20p_3 . ..A0€EAQAT - .. Ap_1
(b) For alll € {0,1,...,n — 2} we have that Gp_oayn_3...aa; = 0.
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Proof. (a) We shall use frequently the relations asas + @s_1as—1 = 0 for s € {1,...,n — 2} and
carefully keep track of the signs occurring.

In the expression on the left hand side of assertion (a) we start by successively moving G, o, ..., G,
to the left (but still right of €); note that each such move gives a minus sign. Setting ¢ := (n — 2) +
(n—=3)+...4 (r+1) 4+ r for abbreviation we obtain that

(1) Ap—1Qp—_2...00€0Q ...0p_—20p_9 .. .ETHET = (—1)Car,167«,2 .. .Eoe(aoﬁo)”’rflaoal e Q1.
It follows directly from the defining relation €2 + €3p(€) + agag = 0 that € commutes with agag, so

the expression on the right hand side of (1) is equal to

(2) (—1)06r,1ﬁr,2 .. .Eo(aoao)"_r_leagal e Qp_1.

The part to the right of € already has the desired shape. To the left of ¢ we now successively move
ag’s to the left; for the first ag we need r such moves and obtain that the expression in (2) equals

(3) (—1)6(—1)TGTETET,1 .. .6160(%60)”_"_26@0@1 e Q1.

For moving the next ag we need r + 1 moves etc and eventually get another sign of (—1)¢; more
precisely the expression in (3) is equal to

(4) (71)6(71)60,,0&7“_._1 e Qp—20p_—20p—3...00€0Q00471 . . .Qr_1
where the signs cancel so that this is precisely the right hand side in the assertion of part (a) of the
lemma.

(b) We show this by reverse induction on I. For [ = n — 2 this is just the relation @,_2a,_2 = 0.
For I < n — 2 we use the defining relation a;a; = a;+1a;4+1 and obtain

Up—20p—3 .. Q41010] = Gp—20p—3 - - Q+101+10]+1

where the latter is zero by induction hypothesis. (I

3.3. Linking L? 41 and LF. For proving statements about the algebras L? we shall often argue by
induction and then the following result will turn out to be useful. As usual we denote the trivial
path of length zero corresponding to the vertex i by e;.

Lemma 3.7. For any n > 1, there is an algebra epimorphism m, : LZH — L satisfying
mn(e) =¢€; forall0<i<n-—1, m,(e,) =0, m,(e) =¢,
n(a;) = a;y, mp(a@;) =a; for all0<i<n-—2, my(an-1)=0, 7 (@,-1)=0.
Moreover, m, induces an algebra isomorphism

L£+1/(LZ+1%L£+1) ~ L} .

Proof. The map , is well-defined since the defining relations for the algebra L? | are clearly
verified in LP (perhaps the only not entirely obvious check is that m,(an—1Gn—1 + Gn_2an—2) =
Tn(@n—1)Tn(Gn-1) + Tn(Gp—2)mn(an—2) = 0 + @y _2a,—2 which is zero in LP).

For the second statement we need to determine the kernel of m,, (since m, is surjective by defini-
tion). By definition of 7, we have that L?  je,L? | is contained in the kernel. On the other hand,
the dimension of the kernel is the difference of the dimensions of the algebras L? | and L?. These
are given in Remark 3.3 and we obtain

dimker m,, = é(n +1)(n+2)(2n+3) — %n(n +1)(2n+1) =2(n+1)2

However, in the basis of L? 41 provided in Proposition 3.1, there are already 2(n + 1)? basis elements
which pass through the vertex n, i.e. are contained in L? HeanL +1- (More precisely, there are n
such paths of type (1), % of type (2), n+ 1 of type (3), % of type (4), 2n + 1 of type (5),
@ of type (6) and % of type (7), respectively.)

Since L? e, LY | C kerm, and dimensions agree, the second claim of the lemma follows. g

Remark 3.8. Since 2" = 0 in LP, also €?” is in the kernel of 7,,. The dimension arguments in the

n?

above proof thus show that €*" is contained in L? e, L? | i.e., € is a linear combination of paths
passing through the vertex n (which could also be checked directly).
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3.4. Generating the commutator subspace. We start with some computations on the basis
elements occurring in Proposition 3.1.

The basis in Proposition 3.1 of L? is actually a union of bases of e;LPe; for i,j € {0,1,...,n—1}.
We consider the case i = j in Proposition 3.1. Only the basis elements of type (3), (4), (5) and (7)
admit ¢ = j. Up to signs (which are not essential since we are only interested in generating sets) we
have

(a:@;)° = +a;0i418i410;

(a;@;)® = £a;0i110i428i12Gi11T;
(aﬁi)“l = £a;0it1...Qi40Cite ... Q4105
(aiﬁi)H? = =+ (aﬁi)(aiaiﬂ . aiHEZ—H N ai+1a7;)

= £aiQiq1-. QO p 100 41Qigp - - Gip104

for all £. Hence the basis elements of type (4) for i = j can be expressed as +(a;a;)™ for certain m.
In particular, for ¢ = 0 one gets

(agap)™ = + (62m(1 +ep(€))™) .
Moreover, we see that

(@i, Qig1 ... QeGeGe—1 ... G1GYEGYAT - . . Qj—1] =

= QiQi41..-QeQpQp—1 - .. A1AQEQQAT - - . Aj—1 — Qg1 - .. QgQpQp—_1 ... A1A0EAQAT - . . Aj—10Q;
for some i < ¢ < n — 2. Hence, two different basis elements of type (7) for ¢ = j differ by a
commutator. Therefore, modulo commutator [L?, LP] we need to consider the basis elements of type
(7) only for i = j = 0:

agay .. .Aag_10pG¢Gg_1 . ..a100€ for some 0 < £ <n —2
But now,
apQy . ..Qap_1GpGeGg—1 ... G1AQE = :i:(aoﬁo)“le = :|:€(€2 + e3p(e))e+1 = 62é+3(1 + ep(e))“l

Therefore, the basis of egLP eq in Proposition 3.1 consists of one element of type (3), one element of

type (5), elements of type (7) which have the form e2*+3(1 + ep(e€))“*! and elements of type (4) of
the form €2+2(1 + ep(e))“*1. Hence the set

{eo} U{e} U{E43(1 4 ep(€)™1 |0 < £ < n— 1} U{+2(1 4+ ep(e))+! [0 < € < n—1}
forms a basis of egL? eo.
Lemma 3.9. The set {¢! | 0 < ¢ < 2n} is a K-basis of egL2eq.
Remark 3.10. Of course, we put € = ¢g in Lemma 3.9.

Proof. We know that the set
Si={eo} U{e} U{* A+ ep(e)) T 0<l<n—13U{e (1 +epe) ™ |0<l<n—1}

forms a basis of egLEeg. Expressing these elements as linear combinations of the set {e/ | 0 < £ < 2n}
one obtains a square lower triangular matrix with diagonal entries 1. Hence since S is a basis, also
{€*]0 < ¢ < 2n}is a K-basis of egLPe. O

Lemma 3.11. For all n > 0 the factor space LY | /[L? | L ] has a K-linear generating set
{eg,e1,...,eny U{e™TH 10 <m < n}.

Proof. Tt is a general fact that every non-closed path (i.e. a path with different start and end point)
is a commutator; in fact, take the commutator with the trivial path corresponding to the start point
(or end point). Moreover, it is easy to see that the cosets of the trivial paths are always linearly
independent modulo the commutator subspace.

In view of Lemma 3.7 we only need to detect elements outside the commutator of L? which become
a commutator in L? | and determine which elements of L e, L? | are commutators.

We shall proceed by induction on n. The lemma is clearly true for n = 0. For n > 0 we can use
the list of closed paths given in Proposition 3.1. We shall start by identifying certain closed paths
as being commutators.
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e For all m € {0,1,...,n — 1} we have

am)
—(@p—1Tp—2 - T ) (A Qa1 - - - Qp—1)
(L1 L]

since (Gp—1@n—2- .. 0m)(@mGmy1 ... ap—1) = 0 by Lemma 3.6.

AmAm+1 - - - Ay 10pe10p—2 « . . Ay = (amam+1 N an_l)(an_lan_g e

m

e Using the defining relation @,_1a,-1 = 0 in L} | we have that

Ap—10p—1 = Ap—10p—1 — Ap—10p—1 = [an—lvan—l] [L;Z+13L£L+1]'
Moreover, using the relation a;a; = a;41a;4+1 for all : € {0,1,...,n — 2} we have that
[ai, @;] = a;@; — @ia; = a;G; — Qi 1Tiq1-

Inductively we can assume that a;41@;41 € [L} |, L? ] and hence we deduce that a;a; € (L}, L? ]
foralli e {0,1,...,n—1}.

Moreover, consider a power (a;a;)™ for some integer m > 2. Then for all i € {0,1,...,n — 2} we
have

lai, @ia)™ @] = (ai@)™ — (@)™ = (@i@)™ = (aiy1@ig1)™

Inductively, we obtain that (a;a@;)" = (@n—1Gn—1)™ mod [L} ,,L? ]; but (ap_1Gn—1)" = 0 for
m > 2 (using the defining relation @, _ja,—1 = 0).

Together with the above arguments for the case m = 1 we can thus deduce

(5) (aia)™ € [Lh (LY ] foralli € {0,1,...,n — 1} and all m > 1.
e In particular the preceding arguments imply that (€2 + e3p(e))m = —(agap)™ € [LY |, LY ] for

all integers m > 1.

In a second step after showing certain closed paths to be commutators we now examine (nontrivial)
closed paths in L +1€nLn 41 and in particular determine the dimension of the image in the factor
space LY e, LV /(LY LY \]NLY e, LP ). According to Proposition 3.1 there are two types

of such paths, the long paths a;a;y1...ap—1Gp—1...ap€ag...a;—1 fori € {0,1,...,n} corresponding
to socle elements and the short paths a;a;41...an-18n—1...a@; for i € {0,1,...,n —1}.
For the latter we already observed at the beginning of the proof that they are all commutators,
i.e. that AiQi41 - - - Ap—1Qp—1 - ..0; € [Lﬁ+1, n+1] for all i € {0 1 ,n— 1}
For the former paths, corresponding to socle elements, con51der for i€ {1,...,n} the commutator
[ai...an_lan_l ...Eoﬁ,ao...ai_l] = Q;Q;41 e Qp—1Gp—1...00€0Q ... A;—1

—ag...0;—10;Q;417 - - Ap—10p—1 - .. QQE

_ I — 2n+1
= Q;Qi41...0p-10p—1...00€00...0;—1 — €

where for the last equation see Remark 3.2 (3). Therefore, all the long paths corresponding to socle
elements are equivalent to €2”*! modulo the commutator space.

Therefore, the image of LY e, L | in LY\ /[LY |, L¥ ] is 2-dimensional with a basis given by
the cosets of {e,, "1},

The assertion of the lemma now follows by induction, using that L? |/ (L?,  e,LY_ ) = L? by
Lemma 3.7. O

Remark 3.12. We did not yet prove that this generating set is actually a K-basis. This fact is
going to be shown in Proposition 3.14.

3.5. The centre. The aim of this section is to have a look at the centres of the deformed preprojec-
tive algebras LP of type L. The centre will be important to us by the following observation. It is not
so difficult to write down quite a lot of commutators, as we have seen in Section 3.4. It is however
difficult in general to show that these commutators actually generate the commutator space. By the
discussion in Section 2.1, for a symmetric algebra A we get

dimK A= dimK[A, A] + dimK Z(A)
Since the canonical projection m, : L? | — L? from Lemma 3.7 is a surjective algebra homomor-
phism, the restriction of 7, to the centre Z(L? ) induces a ring homomorphism Z (L} ) — Z(L%).

In principle, we could use this to determine the centre of L? inductively although this might become
quite technical.
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Fortunately, with the methods developed in this paper we shall not really need to determine the
entire centre; it will turn out that it suffices to find one central element whose powers generate a
large enough central subspace.

Lemma 3.13. The following holds for the deformed preprojective algebra LP.

(1) The element € + €3p(e) + >, 3( 1) Ggay is contained in the centre of LE.
(2) The following subset is a K free subset of the centre

{(e + 3p(e +Z Hlagag) |O§s§n1}gZ(Lﬁ).

(3) soc(Ly) € Z(Ly).

Proof. (1) For proving that A := €2 + €p(e) + Y, ( 1)**1Ggay is a central element it is sufficient
to show that it commutes with the algebra generators of LP. This is clear for the trivial paths e;
since all paths occurring in \ are closed paths. For the loop € we get e = €3 + e¢*p(€) = Ae. For the
arrow ag we have, using the defining relation €? + €3p(e) + apap = 0, that

Aag = (2 + €¥ple))ag = (—apaop)ag = ap.
Similarly, for the arrow @y have
\ay = —apaglo = Go(€> + €p(e)) = T A.
For the arrows a; where 1 <1i < n — 2, we use the relations @;_1a;_1 + a;a; = 0 and get
a; = (=1)'@;_1a;_10; = (1) a;aa; = a;\.
Finally, we get in a similar fashion for the arrows a; where 1 < i < n — 2 that
Aa; = (—1)° g aa; = (1) 2, 10,1 = = (=1)'@@;_1a;_1 = G\

(2) The fact that the powers of €2 4+ €3p(e) + >, ( 1)**'@a, form a linearly independent set
comes from the fact that the powers of € form a hnearly independent set (cf Lemma 3.9).

(3) This holds since multiplication from the left or right of any basis element of the socle with a
path of length at least 1 gives 0. Moreover, the algebras L are weakly symmetric, i.e. the socle has
a basis consisting of closed paths, so any socle element also commutes with the trivial paths. ([l

We are now in the position to give a basis of the commutator space [L£, L2] of the deformed
preprojective algebras L? of type L. As a consequence we can strengthen the statement in Lemma
3.11; namely the cosets of {eg,...,e,_1} U {€*1]|0 < ¢ < n — 1} are a basis (and not only a
generating set) of the factor space LE /[LE, LP].

Proposition 3.14. For any polynomial p(X) € K[X] and n > 2 the following holds for the deformed
preprojective algebras LP .

(a) The commutator space has dimension
1
dimg [LP, LP] = dimg LE — 2n = gn(n —1)(2n +5).

(b) The centre has dimension dimg Z(LX") = 2n.
(c) The cosets of {eg,...,en—1} U {24110 < ¢ < n — 1} form a basis of the factor space
L2 /ILY" 13].
(d) In terms of the basis B of L given in Proposition 3.1, a K-basis of [LP, L] is given by
1) all non-closed paths in i.e. with starting vertex different from the ending vertex),
i) all losed paths in B (i ith ' di h di
11) all closed paths in b of even length at least 2 with starting vertex different from vertex
ii) all closed paths in B length at | 2 with j di
0,
iii) the difference of two closed paths in B of equal odd length with consecutive starting
iii) the di t losed paths in B l odd length with tive starti
vertices i and i + 1 where 0 < i <n — 2,
(iv) the elements apay .. .apGeas—1 ... ag where 0 < € <n — 2.

Proof. (a) For every symmetric algebra A we have
since Homg (A/[A, A], K) ~ Z(A) as Z(A)-modules.
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In our situation for A = L? we get from Lemma 3.11 the lower bound
(7) dimg[A, A] > dimg LP — 2n.

We shall now produce sufficiently many linear independent elements in the centre to obtain this also
as an upper bound. The centre Z(LP) contains the K-free subset

n—3 8
{ <62 +e3ple) + Z(l)”lamg> [0<s<n-— 1} C Z(LP)
£=0

of cardinality n. The K-vector space generated by these elements intersects with soc(LP) only in
{0} since €2*72 is not in the socle for s € {0,1,...,n —2}. However, soc(LE) belongs to the centre.
Hence we get that Z(L2) is of dimension at least 2n.

Altogether, we get a lower bound for the dimension of the centre, namely

dimg (Z(LY)) > (n—1)+n+1=2n.

Plugging this into formula (6) and combining with (7) proves the first equality in part (a) of the
lemma.

The second equality then follows by a direct calculation from the formula for the dimension of L?
given in Remark 3.3.

(b) The statement in part (b) now follows directly from part (a) by using formula (6).
(c) Follows by combining part (a) and Lemma 3.11.

(d) For each of the types (i)-(iv) we shall first verify that all these elements are actually contained
in the commutator space, and then count their number. At the end it will turn out that the total
number of elements in (i)-(iv) is (dimg LP? — 2n), i.e. equal to the dimension of the commutator
space, cf. part (a). Since the elements are linearly independent (being part of a basis), the claim of
part (d) then follows.

(i) Non-closed paths are always commutators (take the commutator with the trivial path corre-
sponding to the starting vertex).

The number of non-closed paths in B can be read off from the Cartan matrix of L? given in
Remark 3.3. Namely as the dimension of L? minus the trace of the Cartan matrix, i.e. we get
dimg L2 — n(n 4 1) non-closed paths in B.

(ii) Such paths of even length only occur in type (4) of Proposition 3.1 and are of the form
;@11 - .. gQgQy—1 ... a; where ¢ # 0 and i < ¢ < n—2. Up to a sign, these paths are equal to (aiai)l
(using the relations Gra, + a,11@,+1) and these have been shown to be in the commutator space in
the proof of Lemma 3.11.

Summing over the possibilities for the various i # 0 there are W such paths.

(iii) Such a difference of closed paths with starting vertices ¢ and i + 1 occurs as a difference of
a path of type (7) for vertex ¢ with a path of type (5) or (7) for vertex i + 1. More precisely, these
differences are of the form

Qi1 - - QpQpQp—1 - .. AQEAQ . . . Aj—1 — Qjp1 - - - QpQpQp—1 - . . Ag€EAQ - . . Gy,

where i < ¢ < n — 2. This element is a commutator, namely [a;, a;11 ...agGeG¢—1 . .. Go€qq . .. a;—1].
n(n—1)
2

(iv) Up to a sign, these paths are equal to (a;a;)" (using the relations @,a, + a,41@,+1) and these
have been shown to be in the commutator space in the proof of Lemma 3.11. Obviously, there are
n — 1 such paths.

Summing over the possibilities for the various ¢ there are such differences.

The total number of elements in (i)-(iv) is easily computed to be dimg L:X - 2n, which is the
dimension of the commutator space by part (a). Thus part (d) follows. O

4. THE KULSHAMMER SPACES AND THE MAIN RESULT

We now restrict to the case where the deformation polynomial p has the form X2/ for some integer
j > 0. Tt has been shown in [2, Proposition 6.1] that the deformed algebras L? for the polynomials
p = X2 where j € {0,1,...,n—1} form a family of pairwise non-isomorphic deformed preprojective
algebras of type L. Note that for all j > n — 1 the algebra wa is the (undeformed) preprojective
algebra of type L; in fact, the only relation involving the polynomial p reads

2 _ 3 2 — 2j+3 _ 2 —
€2 + aplp + €°p(e) = € + aplp + €73 = € + agap

because €2" =0 in LP.
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Moreover, it is shown in [3, Theorem 2] that the algebras szJ for j € {0,1,...,n — 1} actually
form a complete list of representatives of the isomorphism classes of deformed preprojective algebras
of type L. Therefore, focussing on the case of deformation polynomials p = X 2J is not a restriction.

We continue to consider the deformed preprojective algebras A = LX * over a field of character-
istic 2. The Kiilshammer spaces are defined as T,.(A7) = {x € Al |2?" € [AJ, AJ]} for any integer
r >0 (cf. the introduction).

In this section we shall derive the main results of the paper. Firstly, we shall give formulae for the
dimensions of the Kiilshammer spaces T;.(A47), see Theorem 4.1 below. Secondly, as an application
we can distinguish certain of the deformed preprojective algebras of type L,, (over a perfect field of
characteristic 2) up to derived equivalence, see Theorem 4.2 below.

The crucial link to distinguish algebras up to derived equivalence by means of Kiilshammer spaces
has been provided by the second author in [26]. There it is shown that for K being a perfect field
of characteristic p > 0 and for A; and As being finite dimensional K-algebras which are derived
equivalent the codimensions of the Kiilshammer spaces are an invariant, i.e. for all » > 0 one has

(8) dlmK A1 - dlmK TT<A1) == dlmK A2 - dlmK TT(AQ)

In [17] Liu, Zhou and the second author showed that for any field K of characteristic p > 0 and
any two finite dimensional K-algebras A; and Ao, if A} and A, are stably equivalent of Morita type,
then

(9) dimK TT(Al) - dimK[Al, Al] = dimK TT(AQ) — dim[( [AQ, AQ}
for all » > 0.

4.1. Dimensions of Kiilshammer spaces. In this section we shall prove the main result on the
dimensions of the Kiilshammer spaces ﬂ(LfQJ) for the deformed preprojective algebras. Before
embarking on the general proof we shall give some explicit examples which hopefully help the reader
later by illustrating the technicalities of the general arguments.

An example: the case n = 2. Let us look at the algebras A} = L * as an illustration. These

algebras are given by a quiver with two vertices and relations e* = 0, Gyag = 0 and €2+ €13 4 qpay =
0. Note that for j > 1 we get the undeformed algebra Al with relation €? + ag@p = 0, whereas for
j = 0 we get a deformed preprojective algebra AY with relation €2 + €% + agap = 0.

According to Proposition 3.1 and Remark 3.3 the algebras Aé are 10-dimensional with a basis
given by the paths

€o, €1, €, ag, ag, Aag, €Ag, Y€, AgAQE, AQEQQ.
By Proposition 3.14 the commutator spaces [Aé, AJQ] are of dimension 6 and have a basis consisting
of the elements
aop, ag, apag, €ag, Ag€, A0Ao€ — AQEAQ.

Note that all these bases are independent of j. 4 4 o

Now we consider the first Kiilshammer space T1(A?%) = {z € A} |22 € [4}, A}]}. For any j > 0
it is immediate from the relations that the following seven basis elements of A} are contained in the
first Kiilshammer space

- e j
{ao, o, €ag, ape, agap, apape, Goeag t C T1(AJ).

On the other hand, it is a general observation that the trivial paths eg,e; can not be summands
of an element in a Kiilshammer space (since trivial paths can’t occur as summands in an element
from the commutator space). This leave us with the remaining basis element €. Here the situation
changes for different j. o ‘

In the undeformed case j > 1 we have that €2 = agay = [ag, @] € [A3, A}] and hence € € T (AJ).

On the other hand, in the deformed case j = 0 we have the relation €2 = % + ag@y where agag is
a commutator but €2 = agage & [A9, AY]. Therefore, e & T} (A9)

In summary we have dimg T} (A9) = 7 whereas dimg T (A%) = 8 for all j > 1.

Using the result from [26] quoted above in (8) we can deduce that the undeformed preprojective
algebra Al = L§(2 and the deformed preprojective algebra A9 = Lg‘o are not derived equivalent.
Even in this small case n = 2 this seems to be a nontrivial fact.

Another example: Kiilshammer spaces for n = 3. The algebras Ag have dimension 28, and
their commutator spaces have dimension 22. There are many basis elements which are obviously in
each of the Kiilshammer ideals T;.(A%), for » > 1, namely
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e all non-closed paths in B, giving 16 basis elements (since they square to zero)

e closed paths of length > 3 (since the algebras have radical length 6 they also square to zero);
so another six such basis elements are agage, Gpeag, aga1a1ag€, a1a1a00€QY, G1AYEAYAT, AoaA1a1AY.

e the two basis elements ag@p and a;@; (since (a;@;)? = 0 and (ag@p)? is in the commutator space
by the proof of Lemma 3.11).

Hence, dimg Tr(Aé) > 24 for all > 1 and all j.

Given that the three trivial paths are not involved in any element of the Kiilshammer space, there
is only one remaining basis element to consider, namely .

We start with the first Kiilshammer space T (A3).

For j = 2 we have €2 = agag € [A2, A3], i.e. € € Ty(A)).

For j = 1 we get the following congruences modulo the commutator space

€2 =€ +agag = € = & + agape® = agao(® + agaoe) = aglpaotoe # 0

ie. e Ti(A}).
For j = 0 we similarly get the following congruences modulo the commutator space

2 3

e =é + apag = €° = et + agage = € + aOEOGQ + agage = €6 + a06063 + a06062 + agape

= a06063 + apag (63 + aoao) + agape = agage Z 0
ie. e ¢ T1(A9). Altogether we get dimg T (A%) = { 24 Z:f ] =01
25 ifj=2

Now we consider the second Kiilshammer space Ty(A%) = {z € A} |2* € [A}, A}]}. Again it only
remains to consider the basis element e.

For j = 2 there is nothing to check since T»(A3) already attained the maximal possible dimension
25.

For j = 1 we get the following congruences (modulo commutator space)

64 = 67 + aoa()EZ = a060€5 + apgapagag = 0

le. € € TQ(A;))

Similarly we get for j = 0 (modulo commutator space)
et =¢ + aoﬁoéz =8 + CL()E()ES + (105063 + agagagag = 0
ie. e € Ta(AY). _

Altogether we get dimg Th(A3) = 25 for all j.

We now formulate the main result of this section.

Theorem 4.1. Let K be a perfect field of characteristic 2. Then for all 0 < j < n we have

- an (2141 — 2)j — (21 — 1)} | 0) '

dimg (LX) — dimg [LX7, LX) = o
Proof. Lemma 3.11 provided a set of coset generators of the commutator space [Lffzj,L§2j} in
LX¥ | namely {eg,...,en_1} U {e@**D| 0 < k < n —1}. For our purpose of determining the
Kiilshammer ideals we can discard the trivial paths since they can never be involved in any element
of a Kiilshammer ideal. Therefore in order to compute T;(L:X 2j) we need to see when a 2¢-th power of
a linear combination of elements {¢2**1| 0 < k < n — 1} lies in the commutator space [LX ", LX™].

Note that € € eowa eo, and that by Proposition 3.14 a basis of the intersection eOwa eo N
[Lff%,LﬁfQj] is given by the paths aga; . ..agagas—1 ... a9 where 0 < ¢ < n — 2. Moreover, we have
that

agay ...ap0pQp—1 ...00 = (a050)£+1 = (62 + 62j+3)z+1

(no signs occurring since we are in characteristic 2). This means that in order to obtain the desired

formula for the dimension of T;(L:X 2j) one needs to consider the K-vector space

n—1

n—1 2!
Tos(i) o= 4 D b (Z bke%“) E((E+eM 1 <m <n—1),
k=0 k=0

whose dimension is equal to the dimension of the factor space T;(LX")/[LX™ LX”]. Indeed, the
remarks at the beginning of the proof imply that as vector spaces we have a decomposition

T;(LX%) _ [LXZJ LX2j] P Tn’j(l>

n n ? n
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i

In order to determine this dimension we therefore have to express an element (ZZ;& bke%“)

as a linear combination of the form Y7 ¢, (€2 + €2 +3)™ for ¢, € K.

First Step. We shall reduce the problem to the case of K being the prime field of characteristic 2.
As is described in the remarks preceding the statement of the theorem we have to give the
dimension of the K-vector space

n—1 n—1 2!
> bt e Ke] (Z bke%“) e((E+eTH)™ meN),
k=0 k=0
Let ‘
U:=((€+eT)™ me N), C Kle]/e*™.
Then let

V= <e2k+1>K C Kle]/e*"
and let p : K[e]/e® — K][e]/€*" given by u(z) := x2. Then

n—1 n—-1 -
> bre?tt e K¢ (Z bk€2k+1> e((@+e M meN), b =V () (©).
k=0 k=0

Now, U = Uy ®r, K and V := V) ®p, K for Uy and Vj) being defined as U and V, but with Fy as
base field. If K is perfect, then

V(i) (U) = (Vo 2r, K) N (1) (U @, K) = (Vo (1) ™ (Us)) @, K

Hence the dimension of the vector space can be computed in Fs. We hence may assume that
K =T,.

Since K is assumed to be the prime field, we get b*> = b for all b € K, and so we need to find
coefficients ¢,,, € K so that

n—1 n—1 2! n—1
(Z bkéQi(2k+1)> = (Z bke(2k+1)> = Z Cm, (62 + €2j+3)m )
k=0 k=0 m=1

Second step. In the course of the proof we shall need to know whether certain binomial coefficients
are even or odd. More precisely, write a natural number as 2*v with v odd and @ € NU {0}. Then

we have that
2% . 2%y
{UEN\{O}‘(U>Odd}g2aZ and mln{ueN\{O} (u)odd}:T‘.

In fact, both statements follow easily from the following well-known result on binomial coefficients,
going back to Lucas [18]; for a proof see e.g. [9]: Let p be a prime, and let natural numbers M =
> M;p* and N =3 N;p' be given in their p-adic expansion. Then () = [, (N) mod p.

We remark further that binomial coefficients are integers. Hence, seen in K they actually belong
to the prime field. If K is of characteristic 2, then a binomial coefficient can only have values 0 or 1.

Third step. We need to study for which by, ...,b,_1 given, there exist coefficients ¢,, € K so that
n—1 ) n—1
(10) Z b2 GEHD) — Z Con (€2 4 2T13)™,
k=0 m=1
We first determine a lower bound for the indices of the non-vanishing coefficients b;. Denote by
ko the smallest integer k so that by # 0. Then formula (10) reads

n—1 n—1

(11) Do b B = B (e ™

k=ko m=1
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Comparing the smallest powers of € occurring on either side of equation (11) we can deduce that
cm = 0 for m < 2712k + 1) and cpi-1(2p,41) # 0. Hence equation (11) now reads

n

n—1
(12) Z bk€21(2k+1) _ Z

—1
Cm(€2 + 62j+3)m'
k=ko m=2—1(2ko+1)

Using the statements on the parity of binomial coefficients from the second step and the fact that
the base field is of characteristic 2 we have that

i ; i—1 i—1 i i
(62 + 62]‘4-3,)2“1(21c()4-1) = 2'(kot1) 4 (21 (;Ijol"' 1)) ) (62)2 (2ko+1)—2""" (62j+3)2 ! +
+ higher powers of 2" '

i i—1 ; . i1
= 2 (Ckotl) 4 27 (4ho+2j43) 4 higher powers of €2 .

Hence as long as 201 (4ky + 2j + 3) < 2n (ie. €2 (4ko+2i+3) does not vanish), a non-zero scalar
multiple of €2 (4k0+2i+3) occurs on the right hand side of equation (12). However, it can not occur
on the left hand side of equation (12) since 211 (4ko 4 2j +3) is not divisible by 2i. So €2 (4ho+2+3)
would also have to be a term of some other summand in ZZ_:1217*1(21¢0+1) Cm (€2 + €273)™ (50 that
the terms can cancel out).

For i = 1 this is impossible, since for m > 2¢71(2ky + 1) the smallest possible odd exponent
in (e2 + €2 +3)™ is already larger than 271(4kg + 25 + 3). Hence for i = 1 we must have that
4ko + 2j + 3 > 2n which implies that ko = max ([22=22=2],0) . Note that we indeed have to take
the maximum with 0 here since the index k¢ is non-negative by definition.

Suppose now that ¢ > 2. Then we claim that the only possibility to cancel the above term
6277’1(4k0+2j+3) is to put

Coi=2(4kg+2j43) = C2i=1(2ko+1) 7 0-
In fact, on the one hand we have that
(62 + 62j+3)2i’2(4k0+2j+3) — 27 (4ko+2)+3) + higher powers of 27

so that the desired term cancels; on the other hand, it could not cancel for a smaller index m since
this would have to satisfy m > 2071(2ky + 3) (note that the exponents on the left hand side of
equation (10) are divisible by 2%) and then by Lucas’ theorem above (cf. second step) the second
term in (€2 + ¢2773)™ already has exponent
20(2ko + 2) + (25 +3)2°7 1 = 207 (ko + 25 + 7) > 207 (4ko + 25 + 3).
In a similar way, again using the second step and that the base field is of characteristic 2, we
further get

; i—2 ; i—1 ; 2072 (4ko+2j+3)—20 2 ; 2i=2
(€2+623+3)2 (4ko+2j+3) _ 2 (4k0+2]+3)+(62) .(62g+3) +

+ higher powers of €2
= 2T (Akot2543) 4 (2P (Bko+654T) 1 Yigher powers of €2 .

Completely analogous to the case i = 1 above we can deduce that for ¢ = 2 we have 8ko+6j+7 > 2n

and therefore ky = max ([%] ,O) in the case ¢ = 2. This is the second correction step.

We shall show by induction on s, that the lowest power of € appearing in the sum on the right
hand side of equation (12) after s corrections is

62i’5(25ko+(25—2)»j+(25—1)).

The cases s € {1, 2} have been treated above. Suppose the formula is shown for some s < i. Then
we shall show the formula for s + 1: We shall need to correct with coi—s-1(2sgg4 (20 —2)j4(2:-1)) # 0
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and get higher error terms as follows:
(62 + €2j+3)2i_5_1(25k0+(2572)j+(2571)) _ 62“'*(2Sk0+(2572)j+(2571)) +

n (62)2i—s—1(2Sk0+(2s72)j+(2571))72i—s—1 . (62j+3)2i7871 N

+ higher powers of €2 "'
_ 62“5(25k0+(2572)j+(2571))+

i—s—1/0s+1 (95 _ 9\l 9.(95_1_ i—s—1(0,;
+e2 (25T ko42- (25 —2)j+2-(2° —1—1))42 (25+3) 4

s—1

+ higher powers of €2’
= 27Tk H+(27-2)5+(2°-1))
_,'_62"’5’1(2S+1k0+(25“—4+2)j+(25+1—4+3))+

+ higher powers of €'
= 27Tk +(27-2)j+(2°-1)

—s—1

ims—1 0541 SH1 oy (osdl_
4e2 (2°7 ko +(2 2)j+(2 1)) 4

s—1

+ higher powers of €2

which shows the formula for s + 1.

Hence, we may correct the error terms by successively choosing appropriate ¢, for higher and
higher m, as long as s < 4. If s =4 then the error term cannot be annihilated, and therefore it must
be 0. Therefore

2i+1k0 + (2i+1 _ 2) i+ (2i+1 _ 1) >
which means ) )
2n — (201 — 2)5 — (2¢+1 — 1)

ko = Qi+1
and therefore - -
2n — (27 —2)7 — (2" —1
k‘o:max(’r ( 221‘]1 ( )-‘, 0).

Fourth step. Suppose

kaozmax<{

We shall prove that then

2n — (20F — 2)5 — (2¢HL — 1)D .

2i+1

2kt ¢ (€ + 3™ m e N>K .
To this end we put cpi-1(2,41) = 1 and get by the second step that

. i—1 (o) ; i1 _oi—1 ) i—1 ) i
(€ + 62J+3)2 @GR+ _ 2i2k+1) (62)2 (2k+1)-27 (627+3)2 + higher order powers of €2

i—1 . . i—1
= & UkH+243) 4 higher order powers of €2
Hence, we can choose coefficients cyi-1,,, for certain m so that

k3 . i—1
(20 (2k+1) _ ZCQiflm(EQ e

is a direct sum of terms €2 ¢ where _€ >4k + 25+ 3.
If = 1, we are done since then 2" = 0 since £ was chosen in a way that
>4k +2j+3>4ko+2j+3 > 2n.

1—1 i—1 . . .
2"°¢ of the powers of €2 occurring in the above difference

% . i—1
21 (2h+1) _ chilm(ez T A L

We know that each of these ¢ satisfies £ > 4k + 2j + 3, so that all the coefficients 2~2¢ are bigger
than 2072 (4ky + 25 + 3).

If ¢ > 2, put cgi-2p = 1 for all terms €



DEFORMED PREPROJECTIVE ALGEBRAS 21

We compute

9\ 2072 i—1 2i=2¢ 2i=2p_2i=2 133272
(€ +e72) = & '+ <2i—2 ) (%) ()T
+ higher order powers of €2

i— 2i—2¢ i— : i
= &7y (2i2 )62 2027+ 4 higher order powers of €2

2

Again, if i = 2 we are done since
204+2j+1>2(4ko+2j+3)+2j+1=8ko+6j+7>2n
and hence €2 "(26+2i+1) =  for all £ which may occur by definition of k.

We use induction on s on the statement that we may choose cyi-s,, so that only powers e
occur in the difference

2i=5y

n—1
621(2k+1) _ Z C2iism(€2 + 62j+3)21—sm
m=1
with £ > (2%ko + (2° —2) - 7 4+ (2° — 1)).
The statement is true for s = 1 and s = 2 by the above discussion. Suppose it is true for s < i.
We shall prove it for s + 1.

i—s . .
For every term €2 ¢ which occurs as a summand in
27 (2k+1 , 2 | _2j43\2°"°m
2 ) — E Coi—sp (€2 + €772
m=1

we put cgi-s—1, = 1 and then we compute

) i—s— s 9i—s—1 i—s—1) oi—s— . i—s—
@ e T e (D)@ T ey

s—1

+ higher order powers of €2

i—s 21;75716 i—s5— - i—
= &7ty <2i_s_1 >62 "(2642741) 4 higher order powers of €2

Now, by induction hypothesis £ > (2°kq + (2° — 2) - j + (2° — 1)). Hence
20425 +1>2-(2%kg+(2°—2)-j+(2° = 1))+ 25 + 1 =25 kg + (257 — 2)5 + (2511 — 1)

which is the statement for s + 1.
But now, finally for s = i we get that the error terms are ¢! where

t> 2 g + (27 —2)5 4+ (2T — 1) > 2n

by definition of ky and hence the error terms are 0.

Therefore,
) n—1 n—1 2! ‘
@ R € &N " bt € K] (Z bke%“) e((E+e)™ meN), o forall k> k.
k=0 k=0

Fifth step. Now we are able to compute the dimension of

n—1

n—1 2!
T, (i) = ¢ > et € K[e] (Z bke2k+1> e (2 +eHT3)m meN)
k=0 k=0

We know by the third and fourth step that

T,.;(i) = {Ti bre?* € Kle|

k=0

9it1

 (oitl o\ (oitl
bk:Ofork<F” (2 2)j — (2 ﬂ}

The dimension of this space is therefore

. 24 2 o x2i A on — (2H —2)5 — (¢ —1
dim (T;(Lf )/[Lf 7L1‘)f ]) = dlanJ‘(Z) =n — ’V ( 213_1 ( )-‘

This finishes the proof. (]
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4.2. Consequences for derived equivalence and stable equivalence of Morita type. In
this section we shall address the main motivational question for this paper, namely when deformed
preprojective algebras of type L are derived equivalent or stably equivalent of Morita type. As main
application of our results on Kiilshammer spaces we can obtain partial answers to these problems.

For both notions of equivalence it is in general a difficult question to decide whether two algebras
are equivalent or not.

For the deformed preprojective algebras of type L,, Biatkowski, Erdmann and Skowroriski show
in [3, Theorem 2] that for an algebraically closed field K the set of algebras {LX~ |0 < j <n —1}
gives a complete set of representatives for the Morita equivalence classes.

As an application of our result on Kiilshammer spaces we can now distinguish several of these
algebras up to derived equivalence, and up to stable equivalence of Morita type.

Theorem 4.2. Let K be a perfect field of characteristic 2.

(a) If two deformed preprojective algebras LP. and L%, are stably equivalent of Morita type or
derived equivalent, then n = m.

(b) ForneN,letj ke {0,1,...,n—1} be different numbers such that {j, k} # {n—2r,n—2r—1}
for every 1 <r < f%] Then the deformed preprojective algebras Lff2j and Lff% are not
stably equivalent of Morita type, and also not derived equivalent.

Proof. (a) It is well-known that the number of simple modules is a derived invariant.

Moreover, by a result of C. Xi [23, Proposition 5.1], the absolute value of the determinant of the
Cartan matrix of an algebra is invariant under stable equivalence of Morita type. For the deformed
preprojective algebras L? the Cartan determinant is 2", see Remark 3.3, so the result follows.

(b) We use the first Kiilshammer space or more precisely the following difference occurring in
Theorem 4.1 for the case i = 1,

(13) dimy (Tl(Lff”)) — dimg ([LnX”,LnX”]) — 71— max (F”jfj_ﬂ ,0) .

By a result of Liu, Zhou and the second author [17, Corollary 7.5] this number is invariant under
stable equivalences of Morita type. Since the numerator 2n — 25 — 3 is congruent to 1 or 3 modulo

4 we have
2n—2j-3] [2n—-2j—-2] [n—j-1
4 - 4 - 2 ’

Note that for all the values j € {0,...,n — 1} this number is non-negative, so that equation (13)
reads

dimg (Tl(L§2J)) — dimg ([sz’,sz’}) I [”_;_ﬂ :
For fixed n, this invariant becomes equal for two different values j, k € {0,...,n — 1} precisely when
{j,k} = {n—2r,n—2r —1} for some 1 < r < [252]. This proves the assertion on stable equivalence
of Morita type.
The statement on derived equivalence follows immediately by using a result by Rickard [21] and
Keller and Vossieck [15] saying that for selfinjective algebras (recall that our algebras LP are even
symmetric by Theorem 3.5) any derived equivalence induces a stable equivalence of Morita type. O

Remark 4.3. (1) In the above theorem we have for simplicity only exploited the first Kiilshammer
space, but of course one could also use higher Kiilshammer spaces for distinguishing algebras up
to derived equivalence, or up stable equivalence of Morita type. For explicit examples of deformed
preprojective algebras of type L see Example 4.4 below.

(2) Note that part (b) of the above theorem in particular applies whenever |j — k| > 2.

" is not stably equivalent of

(3) For any n € N the (undeformed) preprojective algebra LX™ " |
Morita type, and also not derived equivalent, to any of the algebras L§2J for j € {0,...,n — 2}.
In fact, by the preceding remark it suffices to distinguish the algebras L:X 2D ond LZ(Z("*%; but

j=n—1andk=n—2 are not of the form {n — 2r,n — 2r — 1} for some 1 < r < [252].

Example 4.4. (1) The case n = 2 revisited. Up to Morita equivalence there are two de-
formed preprojective algebras of type Lo, namely La * and L¥ ° They are not stably equiv-
alent of Morita type (and hence not derived equivalent) by the Example in Section 4.1. So
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we have a complete classification of deformed preprojective algebras of type Lo, up to stable
equivalence of Morita type (and up to derived equivalence)

(2) The case n = 3 revisited. There are three deformed preprojective algebras of type Ls,
namely L?O, L ® and L§(4. The algebra L " is not stably equivalent of Morita type (and
hence not derived equivalent) to the other two algebras.

But with the Kiilshammer spaces we can not distinguish the algebras LY and LY . We
don’t know whether these are stably equivalent of Morita type (or derived equivalent), or
not.

(3) The case n = 5. For the five algebras (up to Morita equivalence) L?zJ where j €
{0,1,2,3,4} we get the following numbers for the differences

dimyc (E(Lyj)) ~ dimg ([Lgfzj’ngsz — 5 _— max (PO — (271 —2)j — (2" — 1)-‘ 70)

9it1
which are invariants under derived equivalence and under stable equivalence of Morita type.
LiNjJoJ1[2][3]4]

1 3134145

2 ||[4]5|5]5(|5
>3 |5|5|5|5]|5

Therefore the algebras Lg ° L¥ : L " and L¥ ® are pairwise not stably equivalent of Morita
type (and hence pairwise not derived equivalent). Note that L?O and L?Q can only be
distinguished by the second Kiilshammer spaces.

It remains open whether L " and L¥ ° are stably equivalent of Morita type (or derived
equivalent), or not.
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