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Abstract. Auslander and Kleiner proved in 1994 an abstract version of Green correspondence

for pairs of adjoint functors between three categories. They produce additive quotients of certain
subcategories giving the classical Green correspondence in the special setting of modular repre-

sentation theory. Carlson, Peng and Wheeler showed in 1998 that Green correspondence in the

classical setting of modular representation theory is actually an equivalence between triangulated
categories with respect to a non standard triangulated structure. In the present note we first define

and study a version of relative projectivity, respectively relative injectivity with respect to pairs of

adjoint functors. We then modify Auslander-Kleiner’s construction such that the correspondence
holds in the setting of triangulated categories.

Introduction

Green correspondence is a very classical and highly important tool in modular representation
theory of finite groups. For a finite group G and a field k of finite characteristic p, we associate to
every indecomposable kG-module M a p-subgroup D, called its vertex. Simplifying slightly, Green
correspondence then says that for H being a subgroup of G containing NG(D), restriction and
induction give a mutually inverse bijection between the indecomposable kH-modules with vertex
D and the indecomposable kG-modules with vertex D. It was known for a long time that this is
actually a categorical correspondence, and in case of trivial intersection Sylow p-subgroups it was
known to be more precisely actually an equivalence between the triangulated stable categories. Only
in 1998 Carlson, Peng and Wheeler showed in [13] that it is possible to define triangulated structures
also in the general case, and again the Green correspondence is an equivalence between triangulated
categories.

Auslander and Kleiner showed in [1] that Green correspondence has a vast generalisation, and
actually is a property of pairs of adjoint functors between three categories

D
S′ )) H
T ′
ii

S
(( G

T

ii

such that (S,T ) and (S′, T ′) are adjoint pairs and an additional mild hypothesis on the unit of
the adjunction (S,T ). Auslander-Kleiner show that then there is an equivalence between certain
additive quotient categories mimicking the classical Green correspondence. For more details we
recall the precise statement as Theorem 1.2 and Corollary 1.3 below.

Auslander-Kleiner do not study the question whether their abstract Green correspondence will
provide an equivalence between triangulated categories. The present paper aims to fill this gap.
Starting with triangulated categories D, H, G and pairs of adjoint triangle functors (S′, T ′) and
(S,T ) as above, we replace the additive quotient construction by Verdier localisation modulo the
thick subcategories generated by the subcategories for which Auslander and Kleiner take the additive
quotient. We obtain this way triangulated quotient categories and we show the precise analogue of
Theorem 1.2 for the Verdier localisations instead of the additive quotient categories. In case S is
left and right adjoint to T , and if in addition the unit of the adjunction is a monomorphism and the
counit is an epimorphism our result shows that the additive quotient category is actually already
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triangulated, and that therefore the Verdier localisation and the additive quotient coincide. This
way we directly generalise the result of Carlson, Peng and Wheeler [13].

In recent years classification results of thick subcategories of various triangulated categories were
obtained mainly by parameterisations with subvarieties of support varieties. However, most results
use those thick subcategories which form an ideal in an additional monoidal structure, so-called
tensor triangulated categories. Since many examples, such as non principal blocks of group rings
actually are not quite tensor triangulated, since a unit is missing we study more general a semigroup
tensor structure, which is basically the same as a monoidal structure, but without a unit object. We
study properties of our triangulated Green correspondence in this setting.

We further recall the classical situation and explain how we can recover parts of the results of
Wang-Zhang [33] and Benson-Wheeler [6] using our approach.

The paper is organised as follows. In Section 1 we recall the main result of Auslander-Kleiner.
Generalising the case of relative projective with respect to subgroups in the case of module categories,
Section 2 then introduces the notion of T -relative projective (resp. T -relatively injective) objects
in categories for functors T , and characterises this property in case of T having a left (resp. right)
adjoint S. Here we push further and generalise a result due to Broué [10, Theorem 6.8]. We illustrate
our constructions in the case of group algebras. Section 3 then compares Verdier localisation and the
additive quotient categories. We prove there as well our first main result Theorem 3.17, generalising
Auslander-Kleiner’s theorem to triangulated categories using Verdier localisations. In Section 4 we
revisit tensor triangulated categories and study their behaviour within our setting. In particular in
Subsection 4.3 we compare our results to existing results in the literature in the case of group rings,
their stable and derived categories, generalising various situations in this context.

Acknowledgement. I thank the referee for very careful reading and numerous suggestions which
improved greatly the paper, in particular Section 2, but also throughout. I also thank Olivier Dudas
for giving me the reference [10, Theorem 6.8]

1. Summary of Auslander-Kleiner’s theory

Let D, H, G be three additive categories and S,S′, T, T ′ be additive functors

D
S′ )) H
T ′
ii

S
(( G

T

ii

such that (S,T ) and (S′, T ′) are adjoint pairs. Let ε ∶ idH Ð→ TS be the unit of the adjunction (S,T ).
Assume that there is an endofunctor U of H such that TS = idH ⊕ U , denote by p1 ∶ TS Ð→ idH
the projection, and suppose that p1 ○ ε is an isomorphism. If ε is a split monomorphism, then this is
satisfied, but the condition is slightly weaker. Auslander-Kleiner [1] prove a Green correspondence
result for this situation.

Notation 1.1. ● For a functor F ∶ A Ð→ B and a full subcategory V of B denote for short
F −1(V) the full subcategory of A consisting of objects A such that F (A) ∈ add(V).

● For an additive category W and an additive subcategory V denote by W/V the category
whose objects are the same objects as those of W, and for any two objects X,Y of W we
put

(W/V)(X,Y ) ∶=W(X,Y )/IW
V

(X,Y ),
where

IW
V

(X,Y ) ∶= {f ∈W(X,Y ) ∣ ∃V ∈ obj(V), g ∈W(V,Y ), h ∈W(X,V ) ∶ f = g ○ h}.
● If S and R are subcategories of a Krull-Schmidt category W, then R − S denotes the full

subcategory of R consisting of those objects X of R such that no direct factor of X is an
object of S.

● Recall that a full triangulated subcategory U of a triangulated category is thick (épaisse), if
it is in addition closed under taking direct summands (and a fortiori under isomorphisms)
in T .
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● Let U be a thick (épaisse) subcategory of a triangulated category T . Then the Verdier
localisation TU (cf [31, Chapitre I, § 2, no1, no3, no4], [32]) is the category formed by the
same objects as the objects of T and morphisms in TU are limits of diagrams

X Z
soo f // Y

where f and s are morphisms in T , and where cone(s) is an object in U . The notation we
use for the Verdier localisation is not quite standard, however in order to distinguish from
the additive quotient above we decided to use this notation (cf Remark 3.4).

Theorem 1.2. [1, Theorem 1.10] Assume the hypotheses at the beginning of the section. Let Y be
a full additive subcategory of H and let Z ∶= (US′)−1(Y). Then the following two conditions (�) are
equivalent.

● Each object of S′T ′Y is a direct factor of an object of Y and of an object of U−1(Y).
● Each object of TSS′T ′Y is a direct factor of an object of Y.

Suppose that the above conditions hold for Y. Then

(1) S and T induce functors

H/S′T ′Y SÐ→ G/SS′T ′Y and G/SS′T ′Y TÐ→H/Y
(2) For any object L of D and any object B of U−1(Y) the functor S induces an isomorphism

H/S′T ′Y(S′L,B)Ð→ G/SS′T ′Y(SS′L,SB)
(3) For any object L of (US′)−1Y and any object A of G the functor T induces an isomorphism

G/SS′T ′Y(SS′L,B)Ð→H/Y(TSS′L,TA)
(4) The restrictions of S

(addS′Z)/S′T ′Y SÐ→ (addSS′Z)/SS′T ′Y
and T

(addSS′Z)/SS′T ′Y TÐ→ (addTSS′Z)/Y
are equivalences of categories, and

(addS′Z)/S′T ′Y TSÐ→ (addTSS′Z)/Y
is isomorphic to the natural projection.

(5) If each object of S′T ′US′D is a direct factor of US′D, then Y = US′D satisfies the hypothesis
of the theorem.

A main consequence is

Corollary 1.3. [1, Corollary 1.12] Let Y be a full additive subcategory of H satisfying (�) of The-
orem 1.2 and suppose that H and G are both Krull-Schmidt categories. Using the notations of
Theorem 1.2 then the following hold.

(1) For each indecomposable object N of (add(S′Z)) − S′T ′Y the object SN has a unique inde-
composable direct factor g(N) which is not a direct factor of an object in SS′T ′Y.

(2) For each indecomposable object M of (add(SS′Z)) − SS′T ′Y the object TM has a unique
indecomposable direct factor f(M) which is not a direct factor of an object in Y.

(3) f(g(N)) = N
(4) g(f(M)) =M .
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2. Relative projectivity and injectivity with respect to pairs of adjoint functors

2.1. Relative homological algebra revisited. We shall need to revise some facts from relative
homological algebra, following [5]. Recall that a full subcategory X of an additive category S
is contravariantly finite if for any object S of S there is an object X of addX and a morphism
f ∈ S(X,S) such that for any X ′ in X the induced map

S(X ′, f) ∶ S(X ′,X)Ð→ S(X ′, S)
is surjective. We call such an object X of S a right X -approximation of S. The dual notion, using
the covariant Hom-functor leads to the notion of a covariantly finite subcategory. With this notion
in mind we shall have the following

Lemma 2.1. (Auslander-Reiten [2, Proposition 1.2]) If the additive functor T ∶ S → T between the
additive categories S and T admits a left adjoint S`, then add(im(S`)) is a contravariantly finite
subcategory of S. If T admits a right adjoint Sr, then add(im(Sr)) is a covariantly finite subcategory
of S.

Proof. Let X ∶= add(im(S`)). Consider the counit

η ∶ S`T Ð→ idS

of the adjoint pair (S`, T ). Evaluation on any object Q of S gives a morphism

ηQ ∶ S`TQÐ→ Q.

Now, given an object S`P in im(S`), we have

S(S`P,S`TQ)
S(S`P,ηQ) // S(S`P,Q)

T (P,TS`TQ)

≃

OO

T (P,TQ)

≃

OO

and the composite map is a split epimorphism by [25, IV Theorem 1.(ii)]. Since the property
holds true for direct factors of an object S`P as well, we showed that X is a contravariantly finite
subcategory of S.

By the dual argument, if T admits a right adjoint Sr, then add(imSr) is a covariantly subcategory
of S. �

Recall from Beligiannis and Marmaridis [5] that we may produce from contravariantly finite sub-
categories a relative homological algebra. Let X be a contravariantly finite subcategory of an additive
category S. Then a morphism g ∈ S(A,B) is said to be X -epic if for any object X of X the morphism

S(X,g) ∶ S(X,A)Ð→ S(X,B)
is surjective. By the very definition, a right X -approximation is an X -epic. If X is contravariantly
finite and if each X -epic has a kernel, [5, Theorem 2.12] shows that for any object S of S the
choice of a right X -approximation XS → S induces a left triangulation on the stable category S/X .
Moreover, two such choices give equivalent left triangulated categories. Hence, a contravariantly
finite subcategory X such that each X -epic has a kernel gives rise to the relative Extn-group with
respect to X , denoted by Extn

X
(A,B) namely the evaluation on the object B, of the n-th derived

functor of S(−,B), obtained by a X -resolution of A.

Lemma 2.2. Let S and T be additive categories, let T ∶ S → T be an additive functor admitting a
left adjoint S`. Then g ∈ S(A,B) is add(im(S`))-epic if and only if T (g) is a split epimorphism.

Proof. Let g ∈ S(A,B) be add(im(S`))-epic. Then for any object C of T we get

S(S`(C), g) ∶ S(S`(C),A)Ð→ S(S`(C),B)
is surjective. Hence, for any object C of T we get

T (C,Tg) ∶ T (C,TA)Ð→ T (C,TB)



GREEN CORRESPONDENCE FOR TRIANGULATED CATEGORIES 5

is surjective. In particular, for C = TB there is f ∈ T (TB,TA) with Tg ○ f = idTB . Hence Tg is a
split epimorphism.

Let g ∈ S(A,B) be such that Tg is a split epimorphism. Then there is f ∈ T (TB,TA) with
Tg ○ f = idTB . Let C be an object of T and let h ∈ S(S`(C),B). We need to show that there is
k ∈ S(S`C,A) such that S(S`(C), g)(k) = g ○ k = h, where

S(S`(C), g) ∶ S(S`(C),A)Ð→ S(S`(C),B).
Since T is right adjoint to S`, this is equivalent to

T (C,Tg) ∶ T (C,TA)Ð→ T (C,TB)
is surjective. For h ∈ T (C,TB) we get

h = (Tg ○ f) ○ h = Tg ○ (f ○ h) = T (C,Tg)(f ○ h) = S(S`C, g)(f ○ h).
Clearly we can pass to direct factors of S`C. Therefore, g is add(im(S`))-epic. �

Note that Lemma 2.2 has a dual version for functors T admitting right adjoint functors Sr.
Again, in the setting of [5] the add(im(S`))-relative projectives, are those objects Q with

Extnadd(imS`)
(Q,B) = 0

for all objects B and n > 0. By definition, this coincides with the objects Q for which the counit of
the adjunction (S`, T ) splits. These are precisely the objects in add(im(S`)).

The dual statement applies in case of T having a right adjoint Sr, and considering covariantly
finite subcategories and add(im(Sr))-coresolutions instead of contravariantly finite subcategories and
add(im(S`))-resolutions.

This motivates the following definition.

Definition 2.3. Let T and S be triangulated categories, and let T ∶ S → T be a triangle functor.

● Suppose T has a left adjoint. Then an object Q of S is T -relative projective if the natural
transformation

S(Q,−)→ T (TQ,T−)
induced by T is injective.

● Suppose T has a right adjoint. Then an object Q of S is T -relative injective if the natural
transformation

S(−,Q)→ T (T−, TQ)
induced by T is injective.

Remark 2.4. Recall that for a field k of finite characteristic p > 0 and a finite group G with a
subgroup H, an indecomposable kG-module M is called relatively H-projective if each epimorphism
N ↠ M of kG-modules, which is known to be split as kH-module morphism, splits as kG-module
morphism. This definition of relative projectivity was developed by Hochschild [23] in the situation
of a ring R, a subring S of R. Hochschild declares an R-module M to be (S,R)projective, if any
short exact sequence

0Ð→X Ð→ Y Ð→M Ð→ 0

which is known to be split as short exact sequence of S-modules, is automatically split as short
exact sequence of R-modules. Denoting by resRS ∶ R −Mod Ð→ S −Mod the exact functor given by
restriction to the subring S, this translates into slightly more modern terms into the statement that
M is (S,R)-projective if and only if

Ext1R(M,X)Ð→ Ext1S(resRS (M), resRS (X))
is injective for any R-module X. Hence, since resRS (X)[1] ≃ resRS (X[1]) we get that M is (S,R)-
projective if and only if

HomDb(R)(M,X[1])Ð→HomDb(S)(resRS (M), resRS (X[1]))
is injective for all objects X. Since each object X can be seen as an object X = Y [−1], Definition 2.3
could make sense in a broader context. We will not elaborate on this here (cf [35]).
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Remark 2.5. Grime [20] defines an object to be relative projective with respect to a functor F
admitting a left adjoint L as those which are direct factors of an object in the image of L. This
is a direct generalisation of Green’s definition [19], whereas our definition is closer to Hochschild’s
definition [23]. However, the concepts coincide, as will be shown in Proposition 2.10 below.

2.2. Relative projectivity for triangulated categories. We shall study the concept of T -relative
projectivity/injectivity from Definition 2.3 for triangle functors T between triangulated categories
admitting a left adjoint S` and a right adjoint Sr. Then the concept has a very nice interpretation.

Lemma 2.6. Let S and T be additive categories and let T ∶ S → T be an additive functor.

● If T has a left adjoint S`, then an object Q is T -relative projective if and only if the evaluation
on Q of the counit η of the adjuntion ηQ ∶ S`TQ → Q is an epimorphism. Any object in
add(im(S`)) is T -relative projective.

● If T has a right adjoint Sr, then an object Q is T -relative injective if and only if the evaluation
on Q of the unit η of the adjuntion εQ ∶ Q → SrTQ is a monomorphism. Any object in
add(im(Sr)) is T -relative injective.

Proof. Suppose that T has a left adjoint S`. Then the conuit ηQ ∶ S`TQ → Q is an epimorphism if
and only if for any object A the morphism

S(ηQ,A) ∶ S(Q,A)→ S(S`TQ,A)
is a monomorphism. This in turn is equivalent to the statement that the natural transformation of
functors S → Z −Mod

S(ηQ,−) ∶ S(Q,−)→ S(S`TQ,−)
is a monomorphism. Using the defining property of (S`, T ) being an adjoint pair, this is equivalent
to

S(ηQ,−) ∶ S(Q,−)→ T (TQ,T−)
being a monomorphism. Hence, the statement is equivalent to Q being T -relative projective. Now
ηS`Q′ is a split epimorphism for any object Q′ of T by [25, IV Theorem 1.(ii)].

Suppose that T has a right adjoint Sr. Then the unit εQ ∶ Q → SrTQ is a monomorphism if and
only if

S(A, εQ) ∶ S(A,Q)→ S(A,SrTQ)
is a monomorphism. This is equivalent to

S(−, εQ) ∶ S(−,Q)→ S(−, SrTQ) = T (T−, TQ)
is a monomorphism, which is equivalent to Q is T -relative injective. Now εSrQ′ is a split monomor-
phism for any object Q′ of T by [25, IV Theorem 1.(ii)]. �

Remark 2.7. Note that in a triangulated category S the notions of epimorphism (resp. monomor-
phism) and split epimorphism (resp. split monomorphism) coincide.

Proposition 2.8. Let T and S be triangulated categories and let T ∶ S Ð→ T be a triangle functor.
Suppose that T has a left (respectively right) adjoint S. Then an object Q is T -relative projective
(respectively injective) if and only if Q is in add(im(S)).

Proof. By Lemma 2.6 and Remark 2.7 Q is T -relative projective (respectively T -relative injective)
if and only if Q is in add(imS). �

Corollary 2.9. Let T and S be triangulated categories and let T ∶ S Ð→ T be a triangle functor.
Suppose that T has a left (respectively right) adjoint S, and let η ∶ ST Ð→ id be the counit (respectively
ε̃ ∶ id Ð→ ST the unit) of the adjunction. Then Q is T -relative projective (respectively injective) if
and only if ηQ is a split epimorphism (respectively ε̃Q is a split monomorphism).

Proof. This is precisely Proposition 2.8 in connection with Lemma 2.6 and Remark 2.7. �

We summarize the situation to an analogue of Higman’s lemma for pairs of adjoint functors
between triangulated categories.



GREEN CORRESPONDENCE FOR TRIANGULATED CATEGORIES 7

Proposition 2.10. Let T and S be triangulated categories and let T ∶ S Ð→ T be a triangle functor.
Suppose that T has a left (respectively right) adjoint S. Let M be an object of T . Then the following
are equivalent:

(1) M is T -relative projective (respectively injective).
(2) M is in add(imS).
(3) M is a direct factor of some S(L) for some L in S.
(4) M is a direct factor of some ST (M).

Proof. (1)⇔ (2) is Proposition 2.8.
(2)⇔ (3) is the definition of add(imS).
(3)⇒ (4) is trivial.
(4)⇒ (1) is Corollary 2.9. �

Remark 2.11. Note that Corollary 2.9 generalises [34, Proposition 2.1.6, Proposition 2.1.8] to this
more general situation.

Remark 2.12. In case T has a left adjoint S, which is also assumed to be a right adjoint, and T is an
abelian or triangulated category Broué defined T -relative projective and T -relative injective objects
in [10, Theorem 6.8]. In this situation he showed a version of Higman’s lemma as Proposition 2.10
by completely different means.

Corollary 2.13. Let S and T be triangulated categories and let T ∶ S Ð→ T be a triangle functor
admitting a left (resp. right) adjoint S. Then all objects of S are T -relative projective (resp. injective)
if and only if S = add(im(S)).

Note that all objects of S are T -relative projective (resp. injective) if and only if the global
dimension of the relative homological algebra described in Section 2.1 is 0.

Example 2.14. Let G be a group, and let H be a subgroup of finite index n. Denote by ↓GH the
functor given by restriction of the G-action to the H-action, and by ↑GH the functor kG⊗kH− given by
induction. If n is invertible in the field k, then every object M in Db(kG) is ↓GH -relative projective.
Indeed, [34, Proposition 2.1.10] shows that the multiplication kG⊗kH kGÐ→ kG splits as morphism
of kG − kG-bimodules. The counit of the adjunction (↑GH , ↓GH) is kG ⊗kH kG ⊗kG − Ð→ kG ⊗kG −,
and by hypothesis this map splits.

2.3. Revisiting the case studied by Carlson-Peng-Wheeler. The purpose of this section is
to give a structural explanation of an argument in the proof of Carlson, Peng and Wheeler for the
statement that the relative stable category is triangulated (cf [13, page 304; proof of Theorem 6.2]).
Note that Grime gave a slightly less general structural explanation in [20, Example 3.6].

Remark 2.15. Carlson, Peng and Wheeler consider the classical case of group rings, namely let
k be a field of characteristic p > 0, let G be a finite group, let D be a p-subgroup of G and let H
be a subgroup of G containing the normalizer of D in G. They consider the additive quotient of
the module category modulo the morphisms which factor through ↓GE-projective modules, for some
E ∈ Y, where Y = {E ≤ H ∩Dg ∣ g ∈ G ∖H}, and show that this produces a triangulated category.
Carlson, Peng and Wheeler use the general approach given by Happel [21, Theorem I.2.6] which
shows that the additive quotient of any Frobenius category modulo relative injective-projectives is
triangulated. However, Carlson, Peng and Wheeler just mention that Happel’s proof for Frobenius
categories to have triangulated stable categories carries over to this more general situation. The
purpose of this section is to show that the fact that the proof carries over has a structural reason,
and uses more precisely the properties from Section 2.1 and Section 2.2.

Note that group rings are symmetric, hence the module category is Frobenius. Moreover, the
functors considered in classical Green correspondence, namely restriction and induction, are left and
right adjoint to each other. We note that in our general abstract situation relative injectives and
relative projectives do not coincide in general. The situation changes in case S is at the same time
left and right adjoint to T and the categories are already Frobenius categories.

Recall from [12, Definition 2.1] the concept of an exact category. Let A be an additive category.
Given three objects A1,A2,A3 in A and f ∈ A(A1,A2) and g ∈ A(A2,A3). Then (f, g) is a short
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exact sequence, denoted by

0 // A1
f // A2

g // A3
// 0,

(or occasionally by A1
� � f // A2

g // // A3, ) if ker(g) = f and g = coker(f).
An exact structure on the additive category A is given by a class EA of short exact sequences,

called admissible short exact sequences, satisfying the following axioms below. If

0 // A1
f // A2

g // A3
// 0,

is a short exact sequence in EA, then we say that f is an admissible monomorphism and g is an
admissible epimorphism.

● For all objects A the identity on A is admissible monomorphism and admissible epimorphism.
● Admissible monomorphisms are closed under composition, and admissible epimorphisms are

closed under composition.
● If α ∶ X → Y is an admissible monomorphism, and f ∶ X → Z is any morphism, then the

pushout

X
α //

f

��

Y

f̌
��

Z
α̌ // U

exists and α̌ is an admissible monomorphism.
● If α ∶ Y → X is an admissible epimorphism, and f ∶ Z → X is any morphism, then the

pullback

Y
α // X

U
α̂ //

f̂

OO

Z

f

OO

exists and α̂ is an admissible epimorphism.

An exact category is an additive category A with a class EA of short exact sequences, stable under
isomorphism and satisfying the above axioms. See [12] for an exhaustive development of exact
categories.

Proposition 2.16. Let (S,ES) and (T ,ET ) be exact categories with ES respectively ET being the
class of admissible exact sequences. If T ∶ S Ð→ T is a functor with a left adjoint S` and a right
adjoint Sr,

● then

ET ∶= {( X �
� f // Y

g // // Z ) ∈ ES ∣ ( TX �
� Tf // TY

Tg // // TZ ) ∈ ET }

defines an exact structure on S.
● If moreover the unit ε ∶ idS Ð→ SrT is an admissible monomorphism in ES and if the counit
η ∶ S`T Ð→ idS is an admissible epimorphism in ES ,

– then (S,ET ) has enough T -relative projectives and enough T -relative injectives.
– Suppose now in addition that S and T are abelian Frobenius (i.e. an abelian category

which is Frobenius with respect to the class of all exact sequences). Then the class of
T -relative projectives coincides with the class of objects in add(imS`) and the class of
T -relative injectives coincides with the class of objects in add(imSr).

Proof. We first show that ET is an exact structure. T (idA) = idTA, which implies the first con-
dition. T maps compositions to compositions, and hence compositions of admissible monics/epics
are admissible monics/epics. Sequences are closed under isomorphisms, as T is exact and hence
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maps isomorphisms to isomorphisms. Let X
α // Y

β // Z be an exact sequence in ES and let

X
f // X ′ be any morphism. Then, since ES is an exact structure, we may form the pushout

X
α //

f

��

Y
β //

g

��

Z

X ′ α̌ // Y ′
β̌ // Z

.

As ES is an exact structure, the lower row is an element of ES . The sequence

0 // X
(
f
−α) // X ′ ⊕ Y

(α̌ , g) // Y ′ // 0

is exact, since the above is a pushout and α, α̌ are monomorphisms. Since T is exact,

0 // TX
(
Tf
−Tα) // TX ′ ⊕ TY

(Tα̌ , Tg) // TY ′ // 0

is exact. Therefore

TX
Tα //

Tf

��

TY
Tβ //

Tg

��

TZ

TX ′ Tα̌ // TY ′
T β̌ // TZ

is a pushout diagram. Since the above row is in ET , and since ET is an exact structure, also the
lower row is in ET . This shows the third axiom. Dually also the fourth axiom holds.

We now assume the additional condition on the unit and the counit. The fact that add(imS`) are
T -relative injective objects and add(imSr) are T -relative projective objects is Lemma 2.6. The fact
that we then get enough T -relative projective objects follows from the hypothesis on the counit, and
the fact that we then get enough T -relative injective objects follows from the hypothesis on the unit.

The hypothesis on S and T being Frobenius with respect to all short exact sequences implies that
the stable categories modulo projective-injective objects S and T are triangulated (cf Happel [21,
Theorem I.2.6]). Proposition 2.8 applied to this triangulated category shows that add(imS`) are
precisely the T -relative projective objects and add(imSr) are precisely the T -relative injective objects
of this new exact structure. �

Remark 2.17. Note that the hypothesis of ε being a monomorphism and η being an epimorphism
for the adjunctions involved is very strong. For an abelian category S, if T ∶ S → T has left and
right adjoints S` and Sr, then T is exact. Further, Eilenberg-Moore [16, Proposition 1.5] (cf also
Grime [20, Lemma 2.1]) show that the unit id → SrT , as in Proposition 2.16, is a monomorphism if
and only if TX = 0 implies X = 0, if and only if the counit S`T → id is an epimorphism. The counit
S`T → id is an epimorphism if and only if T is faithful.

In order to assure all quotient categories in Theorem 1.2 being triangulated, using Proposition 2.16
we need to assume the hypothesis for all the functors S,S′, T, T ′, and hence get quite a few restrictions
on these functors.

Remark 2.18. The first item in Proposition 2.16 should be compared with the statement [16,
Theorem II.2.1] by Eilenberg-Moore.

Remark 2.19. Let (S,ES) and (T ,ET ) be exact categories, let T ∶ S → T be an exact functor
admitting a left adjoint S` and a right adjoint Sr, and suppose the unit ε ∶ idS Ð→ SrT of the adjoint
property (T,Sr) is a monomorphism, and the counit η ∶ S`T Ð→ idS of the adjoint property (S`, T )
is an epimorphism. Suppose moreover that add(im(Sr)) = add(im(S`)). If in addition S and T are
abelian Frobenius categories (i.e. an abelian category which is Frobenius with respect to the exact
structure given by all exact sequences, then Proposition 2.16 shows that

ET ∶= {( X �
� f // Y

g // // Z ) ∈ ES ∣ ( TX �
� Tf // TY

Tg // // TZ ) ∈ ET }
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is a Frobenius structure on S. We call this the T -relative Frobenius structure. Following Happel [21,

Theorem I.2.6] the stable category ST of S modulo the T -relative projectives is in this case a
triangulated category. The distinguished triangles are constructed as follows. Given two objects M
and N in S and f ∈ S(M,N). Then we may form the pushout diagram

0 // M
ε̃M //

f

��

SrTM //

��

Ω−1
T (M) // 0

0 // N
c1(f) // C(f)

c2(f) // Ω−1
T (M) // 0

(or analogously the pullback diagram along ηN ∶ S`TN Ð→→ N). Then ST is a triangulated category
with distinguished triangles being isomorphic to triangles of the form

M
f // N

c1(f)// C(f)
c2(f)// Ω−1

T (M)

for any f ∈ S(M,N).
We recall a result implicit in Grime [20].

Proposition 2.20. (cf [20, Theorem 3.3]) Let (S,ES) and (T ,ET ) be exact categories and let
T ∶ S → T be a functor which admits a left adjoint S` and a right adjoint Sr. Assume that the counit
S`T → idS of the adjoint pair (S`, T ) is an admissible epimorphism in the exact category (S,ES)
and that the unit idS → SrT of the adjoint pair (T,Sr) is an admissible monomorphism in the exact
category (S,ES). Putting

ET ∶= {( X �
� f // Y

g // // Z ) ∈ ES ∣ TX �
� Tf // TY

Tg // // TZ is split exact in T }

then (S,ET ) is an exact category with enough projective and enough injective objects. The full sub-
category of projective objects coincides with the full subcategory add(im(S`)) and the full subcategory
of injective objects coincides with the full subcategory add(im(Sr)).

Grime’s proposition follows from Proposition 2.16 when it is applied to the case of the split exact
structure on T .

2.4. Relative projectivity for derived categories of group rings. We shall apply our concept
of relative projectivity to the special case of the derived category of a block of a group ring kG. We
first note that if A is a finite dimensional k-algebra over a field k, then Db(A) is a Krull-Schmidt
category. Let G be a finite group, let H be a subgroup of G, let k be a field of characteristic p > 0.
Then we consider the functors ↑GH and ↓GH . Note that both functors are exact functors between
kG − mod and kH − mod. These functors form an adjoint pair, in the sense that (↑GH , ↓GH) and
(↓GH , ↑GH) are both adjoint pairs. Note that since both functors are exact, they provide functors

S ∶=↑GH ∶Db(kH)Ð→Db(kG)
and

T ∶=↓GH ∶Db(kG)Ð→Db(kH).
We define G ∶= Db(kG) and H ∶= Db(kH). Moreover, (↑GH , ↓GH) and (↓GH , ↑GH) are both adjoint pairs
also between the derived categories. As for its restriction to the module categories we have

Lemma 2.21. Let K ≤H ≤ G be an increasing sequence of groups. Then for the functors

↑GH ∶ Db(kH)Ð→Db(kG),
↑HK ∶ Db(kK)Ð→Db(kH),
↓GH ∶ Db(kG)Ð→Db(kH),
↓HK ∶ Db(kH)Ð→Db(kK)

we get
↑GH ○ ↑HK=↑GK and ↓HK ○ ↓GH=↓GK .

Proof. This follows trivially from the module case. �
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Note that the notion of ↓GH -relative projectivity in Db(kG) corresponds to the similar concept of
relative projectivity with respect to a subalgebra as developed in [34, Section 2.1.1]. We shall need
to extend the statements from there to our more general situation.

Lemma 2.22. Let G be a finite group, and let k be a field of characteristic p > 0. Let D be a minimal
subgroup of G such that the bounded complex of kG-modules M is ↓GD-relative projective. Then D is
a p-group.

Proof. Let D ∈ Sylp(G). By Example 2.14 every object M of Db(kG) is ↓GD-relative projective
since ∣G ∶ D∣ is prime to p by the definition of a Sylow subgroup. If M is ↓GH -relative projective,
by Proposition 2.8 it is in add(im ↑GH) and if D′ ∈ Sylp(H), then M is also ↓HD′-relative projective,
whence in add(im ↑HD′) by Proposition 2.8 again. Therefore M is in add(im ↑GD′), and therefore
↓GD′-relatively projective, again by Proposition 2.8. �

Definition 2.23. Let G be a finite group, and let k be a field of characteristic p > 0. Then, an
indecomposable object M of Db(kG) has vertex D if M is relatively kD-projective, and if D is
minimal with this property.

Proposition 2.24. The vertex D of an indecomposable object M of Db(kG) is a p-subgroup of G,
and D is unique up to conjugacy.

Proof. Using Lemma 2.22 we only need to show unicity up to conjugation.
The unicity part up to conjugation can be shown completely analogous to the classical case.

Suppose that M is a direct summand of L ↑GK and of N ↑GH for two subgroups H and K of G and
two indecomposable objects L in Db(kK) and N in Db(kH). By Proposition 2.10 we may suppose
L =M ↓GK and N =M ↓GH . Then M is a direct factor of

M ↓GH↑GH↓GK↑GK = ⊕
KgH∈K/G/H

gM ↓GH↓HgH∩K↑GgH∩K

= ⊕
KgH∈K/G/H

gM ↓GgH∩K↑GgH∩K

Using the Krull-Schmidt property, M is a direct factor of gM ↓GgH∩K↑GgH∩K for some g, and since K
is minimal, there is g ∈ G such that gH =K. �

Remark 2.25. The statements of the above results should remain true when we replace this quite
specific setting by a Mackey functor with values in the functor category between triangulated cate-
gories.

Lemma 2.26. Let G be a finite group, and let k be a field of characteristic p > 0. Let M be an
indecomposable object of Db(kG). If M is kH-projective, then each indecomposable direct factor of
Hn(M) for all n ∈ N is relatively H-projective.

Proof. By Proposition 2.8 we see that M is relatively Db(kH)-projective if and only if M is a direct
factor of L ↑GH for some L in Db(kH). Since ↑GH is exact, also Hn(L ↑GH) has a direct factor Hn(M).
However, Hn(L ↑GH) = Hn(L) ↑GH and hence Hn(M) is a direct factor of Hn(L) ↑GH . Hence, by
Higman’s lemma [34, Proposition 2.1.15] from modular representation theory, each direct factor of
Hn(M) is relatively H-projective. �

3. Localising on triangulated subcategories

As in [1] we consider the situation of three triangulated categories with functors

D
S′ )) H
T ′
ii

S
(( G

T

ii

such that (S,T ) and (S′, T ′) are adjoint pairs. Let ε ∶ idH Ð→ TS be the unit of the adjunction
(S,T ) and suppose that the unit is a split monomorphism. Hence

idH
ε // TS

π // U
0 // idH [1]

is a distinguished triangle of functors. In particular, TS = idH ⊕U .
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Remark 3.1. Let T and S be triangulated categories, and let F ∶ S Ð→ T be a triangle functor.
Then with the convention of Notion 1.1 for any full triangulated subcategory U of T the category
F −1(U) is not necessarily triangulated. However, if U is in addition closed under direct summands,
then this is true, as is shown in Proposition 3.2 below.

Proposition 3.2. Let T and S be triangulated categories, and let F ∶ S Ð→ T be a triangle functor.
Then for any thick subcategory U of T the category F −1(U) is a triangulated subcategory of S.

Proof. Let X be an object of S such that F (X) is a direct factor of the object U of U . Hence,
F (X) ⊕ U ′ = U for some object U ′ of T . Since U is closed under direct factors, F (X) and U ′ are
actually already objects of U . Let X1 and X2 be two objects of S such that F (X1) and F (X2) are
objects of U . If

X1
α // X2

// C(α) // X1[1]
is a distinguished triangle in S, since F is a triangle functor, also

FX1
Fα // FX2

// FC(α) // FX1[1]

is a distinguished triangle in T , and hence F (C(α)) ≃ C(F (α)). Since U is triangulated C(F (α)) is
an object in U , and since U is closed under isomorphisms, F (C(α)) is an object of U . Hence C(α)
is an object of F −1(U). Therefore, F −1(U) is a triangulated subcategory of S. �

Lemma 3.3. Let Y be a full triangulated subcategory of H. Then Z ∶= (US′)−1(Y) satisfies S′(Z) =
S′(D) ∩U−1(Y). Moreover, Z is triangulated if Y is thick.

Proof. By definition S′(Z) is the full subcategory of H formed by objects S′M such that US′M ∈
add(Y). Hence S′(Z) is contained in S′(D)∩U−1(Y). Moreover, an object X in S′(D)∩U−1(Y) is
an object of the form S′M , since X ∈ S′(D) and such that US′M ∈ add(Y) since X ∈ U−1(Y). The
rest follows from Proposition 3.2. �

Remark 3.4. We remind the reader that we have two different localisation or quotient constructions
of a triangulated category T by a triangulated subcategory U (cf Notion 1.1).

● First we have the additive quotient, denoted traditionally S/U having the same objects as S
but we consider morphisms between two objects as residue classes of morphisms in T modulo
those factoring through an object of U .

● Second, the Verdier localisation [31, 32] which we denote by SU . In the literature the Verdier
localisation is often denoted by S/U . In order to distinguish from the additive quotient we
decided to use the symbol SU , contrary to the established convention in the literature.

Lemma 3.5. Let S be a triangulated category, and let U be a thick subcategory of S. Then there is

a unique and natural functor S/U LUÐ→ SU making the diagram

S
QU

}}

VU

��
S/U

LU
// SU

commutative. Here we denote S QUÐ→ S/U and S VUÐ→ SU the canonical functors given by the respective
universal properties.

Proof. The proof is implicit in [27, Proposition 1.3]. The statement follows from the well-known fact
that for any additive category A and any additive functor F ∶ S Ð→ A such that F (U) = 0 for any
object U of U , there is a unique additive functor F ∗ ∶ S/U Ð→ A with F = F ∗ ○QU . For A = SU , we
observe that F = VU ∶ S → SU is additive with F (U) = 0 for any object U of U . Indeed, a morphism
in the localisation becomes invertible if its cone is in U . Hence, for an object U of U the cone of
the zero morphism on U is in U . Therefore the image VU(0U) of the zero morphism 0U on U in the
localisation is invertible in SU . The only object with invertible zero endomorphism is the zero object
in SU . This proves the statement. �
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Remark 3.6. We need to recall from Verdier [32, Chapitre II, Section 2.1, 2.2], or alternatively
from Stacks project [29, Part 1, Chapter 13, Section 13.6], some properties of Verdier localisation. If
F ∶ S Ð→ T is a triangle functor between triangulated categories, then the full subcategory ker(F )
of S generated by those objects X of S such that F (X) = 0 is thick. If U is a full triangulated
subcategory of some triangulated category T , then the Verdier localisation defined by inverting all
morphisms f in T with cone in U is triangulated, and there is a canonical functor VU ∶ T Ð→ TU
with U is a full triangulated subcategory of ker(VU). Moreover, ker(VU) is thick, namely the smallest
thick subcategory of T containing U , the thickening thick(U).
Remark 3.7. We see that even if Y is a thick subcategory of the triangulated category C and if H
is a triangle functor C → D for some triangulated category D, then H(Y) is triangulated, but is not
thick anymore in general. The Verdier localisation of D at H(Y) has good properties with respect
to thick subcategories. Since ker(VH(Y)) = thick(H(Y)), we need to consider thick(H(Y)). Then

ker( T
Vthick(HY) // Tthick(H(Y)) ) = thick(H(Y)) = ker( T VHY // THY ).

Lemma 3.8. Let C and D be triangulated categories, let Y be a subcategory of C, and let H ∶ C → D
be a triangle functor. Then H extends to a unique functor C/Y → DthickH(Y), also denoted by H,
such that H ○QY = VthickHY ○H, i.e. making the diagram

C H //

QY
��

D

VthickHY
��

QHY

yy
C/Y H //

H

33D/HY // DthickHY

commutative. The functor D/HY Ð→ D/thickHY combined with the functor LthickHY ∶ D/thickHY Ð→
DthickHY make the right triangle of the above diagram commutative.

Proof. Consider

C H // DVthickHY// DthickHY .

Then for all objects X of Y we get (VthickHY ○H)(X) = 0. Likewise consider

C H // D QHY // D/HY.

Again, for all objects X of Y we get (QHY ○H)(X) = 0. Hence there is a unique functor C/Y H1Ð→
DthickH(Y) satisfying H1 ○ QY = VthickHY ○ H and a unique functor C/Y H2Ð→ D/H(Y) satisfying
H2 ○QY = QHY ○H. Moreover, by the universal property of D/HY the functor H1 factors through
H2 and through LthickHY . �

Lemma 3.9. Let F ∶ C Ð→ D be a triangle functor between triangulated categories, let X be a full
subcategory of C, and let Y be a full subcategory of D. If F (X ) ⊆ Y, then there exists a unique
additive functor CthickX Ð→ DthickY , still denoted by F , making the following diagram commutative.

C/X

F

��

// C/thickX

F

��

LthickX // CthickX

F

��
D/Y // D/thickY

LthickY
// DthickY

Proof. Since F is a triangle functor,

F (thickX ) ⊆ thickFX ⊆ thickY
and the left square is commutative. By Lemma 3.8 the right square is commutative as well. �
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For a triangulated category T and a full subcategory X there is a natural functor T /X Ð→
T /thickX . For simplicity the composition

T /X // T /thickX LthickX// TthickX

is also denote by LthickX .

Proposition 3.10. Let D, H, G be three triangulated categories and triangle functors S,S′, T, T ′

D
S′ )) H
T ′
ii

S
(( G

T

ii

so that (S,T ) and (S′, T ′) are adjoint pairs. Let ε ∶ idH Ð→ TS be the unit of the adjunction (S,T ).
Assume that there is an endofunctor U of H such that TS = idH ⊕U , denote by p1 ∶ TS Ð→ idH the
projection, and suppose that p1 ○ ε is an isomorphism.

Let Y be a thick subcategory of H, and suppose that each object of TSS′T ′Y is a direct factor of
an object of Y. Then S and T induce triangle functors

HthickS′T ′Y
SÐ→ GthickSS′T ′Y and GthickSS′T ′Y

TÐ→HY
making the diagram

H/thickS′T ′Y S //

LthickS′T ′Y
��

G/thickSS′T ′Y

LthickSS′T ′Y
��

T // H/Y

LY
��

HthickS′T ′Y
S // GthickSS′T ′Y

T // HY
commutative.

Proof. The existence of the functors in the left square and the commutativity of the left square follow
from Lemma 3.8. From Lemma 3.8 we get natural functors giving a commutative diagram

H/S′T ′Y S //

LthickS′T ′Y
��

G/SS′T ′Y

LthickSS′T ′Y
��

T // H/TSS′T ′Y

LthickSS′T ′Y
��

HthickS′T ′Y
S // GthickSS′T ′Y

T // HthickTSS′T ′Y

For X = SS′T ′Y, Theorem 1.2 shows that T (X ) ⊆ Y. Using Lemma 3.9 and the fact that Y is thick,
and therefore thickY = Y, we obtain a commutative diagram

H/S′T ′Y S //

LthickS′T ′Y
��

G/SS′T ′Y

LthickSS′T ′Y
��

T // H/Y

LY
��

HthickS′T ′Y
S // GthickSS′T ′Y

T // HY
as requested.

The fact that

HthickS′T ′Y
SÐ→ GthickSS′T ′Y and GthickSS′T ′Y

TÐ→HY
are triangle functors comes from the universal property of the Verdier localisation (cf [32, Chapitre
II, Theorème 2.2.6]). �

Corollary 3.11. Let D, H, G be three triangulated categories and triangle functors S,S′, T, T ′

D
S′ )) H
T ′
ii

S
(( G

T

ii

so that (S,T ) and (S′, T ′) are adjoint pairs. Let ε ∶ idH Ð→ TS be the unit of the adjunction (S,T ).
Assume that there is an endofunctor U of H such that TS = idH ⊕U , denote by p1 ∶ TS Ð→ idH the
projection, and suppose that p1 ○ ε is an isomorphism.
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Let Y be a thick subcategory of H, and suppose that each object of TSS′T ′Y is a direct factor of
an object of Y. Then we have a commutative diagram

HthickS′T ′Y S //

can

��

GthickSS′T ′Y

T

ww
HY

H/S′T ′Y S //

can

��

LthickS′T ′Y

ii

G/SS′T ′Y

T

xx

LthickSS′T ′Y

ii

H/Y

LY

ii

Proof. Indeed, since each object of TSS′T ′Y is a direct factor of an object of Y, each object of S′T ′Y
is a direct factor of an object of Y. Hence, there is a natural functor can as indicated. The rest of
the statement is an immediate consequence of Proposition 3.10. �

Corollary 3.12. Let D, H, G be three triangulated categories and triangle functors S,S′, T, T ′

D
S′ )) H
T ′
ii

S
(( G

T

ii

so that (S,T ) and (S′, T ′) are adjoint pairs. Let ε ∶ idH Ð→ TS be the unit of the adjunction (S,T ).
Assume that there is an endofunctor U of H such that TS = idH ⊕U , denote by p1 ∶ TS Ð→ idH the
projection, and suppose that p1 ○ ε is an isomorphism.

Let Y be a thick subcategory of H, put Z ∶= (US′)−1(Y), and suppose that each object of TSS′T ′Y
is a direct factor of an object of Y. Then the restriction of S to the subcategory addS′Z/S′T ′Y and
the restriction of T to the subcategory addSS′Z/SS′T ′Y are equivalences and gives a commutative
diagram

thickS′ZthickS′T ′Y S //

can

��

thickSS′ZthickSS′T ′Y

T

uu
thickS′ZY

addS′Z/S′T ′Y S //

can

��

LthickS′T ′Y

kk

addSS′Z/SS′T ′Y

T

uu

LthickSS′T ′Y

jj

addTSS′Z/Y

LY

kk

where the lower triangle consists of equivalences.

Proof. The fact that the lower triangle exists and is commutative follows from Theorem 1.2. Since
for any subcategory X of T we get that addX is a full subcategory of thickX , we have a commutative
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diagram

(thickS′Z)/S′T ′Y S //

can

��

(thickSS′Z)/SS′T ′Y

T

uu
(thickS′Z)/Y

addS′Z/S′T ′Y S //

can

��

kk

addSS′Z/SS′T ′Y

T

uu

jj

addTSS′Z/Y

kk

By Lemma 3.8 we obtain a commutative diagram

thickS′ZthickS′T ′Y S //

can

��

thickSS′ZthickSS′T ′Y

T

uu
thickS′ZY

(thickS′Z)/S′T ′Y S //

can

��

LthickS′T ′Y

kk

(thickSS′Z)/SS′T ′Y

T

uu

LthickSS′T ′Y

kk

(thickS′Z)/Y

LY

kk

Composition of the two diagrams yields the statement. �

Proposition 3.13. Let T and U be two triangulated categories, let F ∶ T Ð→ U be a triangle functor,
let X be a full additive subcategory of T and let Y be a full additive subcategory of X . Then the

restriction of F to X /Y FXÐ→ (addFX )/FY extends to a functor (thickX )/Y FthickXÐ→ (thickFX )/FY
such that FthickX coincides with FX on the subcategory X /Y.

Proof. Let A and B be full subcategories of a triangulated category V, then as in [4] we denote by
A ∗ B the full subcategory of V generated by C(t)[−1] where

A
f // C(t)[−1] s // B

t // A[1]

is a distinguished triangle, and where A is an object of A, B is an object of B, and t ∈ T (B,A[1]).
Since F ∶ T Ð→ U is a triangle functor, F sends distinguished triangles to distinguished triangle.
Therefore F (A ∗ B) is a subcategory of F (A) ∗ F (B). Hence F induces a functor

A ∗ B F // (FA) ∗ (FB).

Let X1 ∈ addFA and X2 ∈ addFB. Then for any t ∈ U(X2,X1[1]) we get

C(t)[−1] ∈ add(F (A) ∗ F (B)).
Indeed, denote by

X1
f // C(t)[−1] s // X2

t // X1[1]
the distinguished triangle given by t. Let X ′

1 and X ′

2 be objects of U such that X1 ⊕X ′

1 ∈ F (A) and
X2 ⊕X ′

2 ∈ F (B). Then

X1 ⊕X ′

1

⎛

⎜
⎜
⎜
⎜

⎝

f 0
0 idX′

1

0 0

⎞

⎟
⎟
⎟
⎟

⎠

// C(t)[−1]⊕X ′

1 ⊕X ′

2

⎛

⎜

⎝

s 0 0
0 0 idX′

2

⎞

⎟

⎠

// X2 ⊕X ′

2

⎛

⎜

⎝

t 0
0 0

⎞

⎟

⎠

// (X1 ⊕X ′

1)[1]
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is a distinguished triangle. Hence C(t)[−1] ∈ add(F (A) ∗ F (B)). This shows

add(F (A)) ∗ add(F (B)) ⊆ add(F (A) ∗ F (B)),
and therefore

add (add(F (A)) ∗ add(F (B))) = add(F (A) ∗ F (B)).
If we define (Z)n ∶= (Z)n−1 ∗Z for any subcategory Z of U , and (Z)1 ∶= Z, then

thick(F (X )) = ⋃
n∈N

add((add(F (X )))n) = ⋃
n∈N

add((F (X ))n) = add(⋃
n∈N

(F (X ))n).

Now,

thickX = ⋃
n∈N

addXn = add(⋃
n∈N
Xn)

and F (Xn) ⊆ (FX )n. Hence

F (thickX )/FY = F (add(⋃
n∈N
Xn))/FY

⊆ add(⋃
n∈N

F (Xn)) /FY

⊆ add(⋃
n∈N

(F (X )n)) /FY

= thick(F (X ))/FY
Therefore F extends to a functor

thick(X )/Y FthickXÐ→ thick(F (X ))/FY.
By construction the restriction of FthickX to X /Y coincides with FX . �

Remark 3.14. If in Proposition 3.13 the functor F induces an equivalence X /Y Ð→ (addFX )/FY,
then there is no reason why this should imply an equivalence

thick(X )/Y Ð→ thick(F (X ))/FY.
Lemma 3.15. Let Y be a subcategory of X admitting finite direct sums. Then the natural projection
X /Y Ð→ X /(addY) is an equivalence of categories.

Proof. Since Y is a subcategory of addY, if a morphism f factors through an object of Y, it factors
also through an object of addY. Hence, the natural projection is well-defined and full. If f factors
through an object X of addY, then there is an object X ′ of addY, such that X ⊕X ′ is an object of
Y. Extending by the zero morphism to and from X ′, hence f factors also through the object X ⊕X ′

of Y. This shows that the natural projection is faithful as well.
From the above it also follows that the natural projection is dense, since the objects of both

quotient categories coincide, and the natural projection is the identity on objects. �

Proposition 3.16. Let T and U be triangulated categories, let Y be a subcategory of T , and let
F ∶ T Ð→ U be a triangle functor. Suppose that F induces an equivalence

FQ ∶ T /(thickY)Ð→ U/(thickF (Y)).
Then F induces a dense and full triangle functor

FV ∶ T(thickY) Ð→ U(thickF (Y)).

If in addition F (thickY) is thick in U then FV is a triangle equivalence.

Proof. The functor FV exists by the universal property of the Verdier localisation [32, Chapitre II,
Corollaire 2.2.11.c].

We shall now show that FV is dense. The objects of U/(thickF (Y)) coincides with the
objects of U(thickF (Y)), since they both coincides with the objects of U . By hypothesis, for every
object U of U there is an object T of T , and f ∈ U(FT,U) as well as g ∈ U(U,FT ) such that
g ○ f − idFT factors through an object Y ′ of thick(FY) and f ○ g − idU factors through an object
Y of thick(FY). Hence, applying LthickFY to these equations, and observing that LthickFY(Y ) = 0,



18 ALEXANDER ZIMMERMANN

respectively LthickFY(Y ′) = 0 for all objects Y in thick(FY), respectively all objects Y ′ in thick(FY),
we get that the image of f in the Verdier localisation is an isomorphism. Hence FV is dense.

We will show now that FV is full.
First step: Let f ∈ U(FZ,FX). Since FQ is full, there is f ′ ∈ T (Z,X) such that f − Ff ′ factors

through an object M of thick(FY). Hence there is g ∈ U(M,X) and h ∈ U(Z,M) with f −Ff ′ = g ○h

in U . We denote by (1, f) the morphism represented by the diagram FZ FZ
idFZoo f // FX .

Then (1, f − Ff ′) = (1, g) ○ (1, h) in U(thickF (Y)). Since M ≃ 0 in U(thickF (Y)), we get

(1, f) − (1, Ff ′) = (1, f − Ff ′) = 0

in U(thickF (Y)) and therefore

(1, f) = (1, Ff ′) = FV (1, f ′).
Hence f = FQf ′ in U/thickFY implies (1, f) = FV (1, f ′) in U(thickF (Y)).

Second step: Let FX Ẑ
soo f // FY represent a morphism in U(thickF (Y))(FVX,FV Y ). Since

FV is dense, we may suppose that Ẑ = FZ for some object Z of U . Then s = FQs
′ for some

s′ ∈ T (Z,X), and f = FQf ′ for some f ′ ∈ T (Z,Y ), giving (1, s) = FV (1, s′), and (1, f) = FV (1, f ′) by
the first step. Now,

F (cone(s′)) ≃ cone(F (s′)) ≃ cone(s) ∈ thick(F (Y))
and therefore F (cone(s′)) = 0 in U/(thickFY). Since F induces an equivalence

U/(thickFY) ≃ T /(thickY),

we get cone(s′) = 0 in T /(thickY), which shows that cone(s′) ∈ thickY. Hence X Z
s′oo f ′ // Y

maps to FX FZ
soo f // FY . Therefore FV is full.

We now assume that in addition F (thickY) is thick in U .
We need to show that FV is faithful. Since F (thickY) is thick in U , we get thick(F (Y)) =

F (thickY). Hence, using the notation from [28], and using that FQ is an equivalence, ker(FV ) = 0.
By a result of Rickard [26, first paragraph on page 446] or Ringel and Zhang [28, Proposition 3.1,
Proposition 3.3, Theorem 1.1] we see that FV is faithful. This finishes the proof. �

Theorem 3.17. (Green correspondence for triangulated categories) Let D, H, G be three triangulated
categories and let S,S′, T, T ′ be triangle functors

D
S′ )) H
T ′
ii

S
(( G

T

ii

such that (S,T ) and (S′, T ′) are adjoint pairs. Let ε ∶ idH Ð→ TS be the unit of the adjunction (S,T ).
Assume that there is an endofunctor U of H such that TS = idH ⊕U , denote by p1 ∶ TS Ð→ idH the
projection, and suppose that p1 ○ ε is an isomorphism.

Let Y be a thick subcategory of H, put Z ∶= (US′)−1(Y), and suppose that each object of TSS′T ′Y
is a direct factor of an object of Y.

(1) Then S and T induce triangle functors SZ and TZ fitting into the commutative diagram

(thick(S′Z))(thick(S′T ′Y)) SZ //

can

��

(thick(SS′Z))(thick(SS′T ′Y))

TZ

ss
(thick(S′Z))Y

of Verdier localisations.
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(2) There is an additive functor Sthick, induced by S, and an additive functor Tthick induced by
T , making the diagram

(S′Z)/(S′T ′Y) π1 //

S

��

(thick(S′Z))/thick(S′T ′Y)

Sthick

��
(SS′Z)/(SS′T ′Y) π2 //

T

��

(thick(SS′Z))/thick(SS′T ′Y)

Tthick

��
S′Z/Y π3 // thick(S′Z)/thick(Y)

commutative. Moreover, the restriction to the respective images of π1, respectively π2, re-
spectively π3 of functors Sthick and Tthick on the right is an equivalence.

(3) S and T induce equivalences SL and TL of additive categories fitting into the commutative
diagram

(thick(S′Z))(thick(S′T ′Y)) SZ //

can

((

(thick(SS′Z))(thick(SS′T ′Y))

TZ

qq

LS′T ′Y((S′Z)/(S′T ′Y)) SL //

can

��

?�

O

LSS′T ′Y((SS′Z)/(SS′T ′Y))

TL

ss

% �

3

LY((S′Z)/Y)� _

�
(thick(S′Z))Y

where the outer triangle consists of triangulated categories and triangle functors, and the
inner triangle are full additive subcategories.

(4) If S and T induce equivalences of additive categories

(thick(S′Z))/thick(S′T ′Y) Sthick
//

can

��

(thick(SS′Z))/thick(SS′T ′Y)

Tthick

rr
(thick(S′Z))/thickY

,

then the restriction SZ of S to the triangulated category (thick(S′Z))thick(S′T ′Y) and the

restriction TZ of T to the triangulated category (thick(SS′Z))thick(SS′T ′Y) are equivalences

of triangulated categories, making the diagram

(thick(S′Z))(thick(S′T ′Y)) SZ //

can

��

(thick(SS′Z))(thick(SS′T ′Y))

TZ

ss
(thick(S′Z))Y

.

commutative.

Proof. We first recall from Lemma 3.3 that Z is triangulated. By Corollary 3.12 the functors coming
from Theorem 1.2 extend to functors on the localisations. Now S and T are equivalences on the
additive quotient constructions. Using Proposition 3.10 and Proposition 3.13, the functors extend
to triangle functors

(thick(S′Z))(thick(S′T ′Y)) SZ //

can

��

(thick(SS′Z))(thick(SS′T ′Y))

TZ

ss
(thick(S′Z))(Y)

.
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The functors S and T are triangle functors on the ambient categories, and hence they induce functors
Sthick and Tthick as required.

Since Theorem 1.2 shows that S is an equivalence with quasi-inverse T on the above subcategories,
the functor Tthick is also a quasi-inverse to Sthick on the images under π1, π2 and π3. Corollary 3.12
shows item (3).

Suppose now that S and T induce equivalences

(thick(S′Z))/(thick(S′T ′Y)) Sthick
//

can

��

(thick(SS′Z))/(thick(SS′T ′Y))

Tthick

rr
(thick(S′Z))/thickY

,

Since by hypothesis each object of TSS′T ′Y is a direct factor of an object of Y, the right vertical
functor can is the identity. The restriction of the functors S and T in the statement of item (4) are
full and dense by Proposition 3.16. Since their composition TS is the identity, the functors are also
faithful. The statement follows. �

Remark 3.18. Note that in Theorem 3.17.(1) and 3.17.(3) the functor T maps from the localisation
at the thick subcategory of images under S to the localisation at the thick subcategory of images
under T . Note that by Proposition 2.10 we get a functor from the localisation at the thick subcategory
generated by T -relative injective objects to the localisation at the thick subcategory generated by
S-relative projective objects.

Remark 3.19. Consider the special situation when G is a finite group and k is a field of characteristic
p > 0. Then, following Carlson, Peng and Wheeler [13] the classical Green correspondence is an
equivalence of full additive subcategories of triangulated categories.

More precisely, let D be a p-subgroup of G and let H be a subgroup of G containing NG(D), the
normalizer of D in G.

Consider G = kG −mod, H = kNG(D) −mod, and D = kD −mod, the stable categories of kG-
modules, kH-modules, and kD-modules. Here the stable categories are taken modulo morphisms
factoring through projective modules. Let

S = kG⊗kH − = indGH ∶ kH −modÐ→ kG −mod
and

S′ = kH ⊗kD − = indHD ∶ kD −modÐ→ kH −mod
be the induction functors. These have left and right adjoints, namely the restriction

T ∶=HomkH(kG,−) = resGH ∶ kG −modÐ→ kH −mod
is left and right adjoint to S. Similarly,

T ′ ∶=HomkH(kG,−) = resGH ∶ kH −modÐ→ kD −mod
is left and right adjoint to S′.

Since group algebras are symmetric, following Remark 2.19 the stable categories G = kG−mod, H =
kNG(D)−mod, and D = kD−mod are triangulated and moreover, the functors indGH , indHD , resGH , resHD
come from exact functors of the corresponding module categories, and hence are triangle functors.
Further,

resGH indGH = idkH−mod ⊕U
for U =⊕HgH∈H/G/H∖{H} kHgH ⊗kH −.

Therefore Theorem 3.17 applies for appropriate choices of Y. Following [1, page 311, Section 3]
we fix a collection Y of subgroups of H, closed under H-conjugation and under taking subgroups,
we consider Y the full subcategory of H given by indHY , i.e. those kH-modules induced from kY -

modules for some Y ∈Y. By [1, Corollary 3.4 (a) and (b)] we may put Y ∶= {Y ∣ Y ≤H ∩ gDg−1 ; g ∈
G ∖ H} which satisfies the hypotheses of Theorem 3.17. Moreover, the functors SL and TL in
item (3) of Theorem 3.17 implies the classical Green correspondence. Furthermore, the bijection of
indecomposable kG-modules and kH-modules with vertex D is the restriction of a triangle functor
between triangulated categories, namely the Verdier localisation of triangulated subcategories.
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However, if D is TI, i.e. D ∩ Dg ∈ {1,D} for all g ∈ G, the stable categories involved in the
theorem are the usual stable categories modulo projectives, which are already triangulated, and
by the universal property of the Verdier localisation ([31, §2, no 3] or [32, Chapitre II, Corollaire
2.2.11.c]) there is an inverse functor to L (which was introduced in Lemma 3.5).

By the same argument, for general D, the Verdier localisation in item (3) of Theorem 3.17 is the
W -stable category from Carlson-Peng-Wheeler [13] (cf also Grime [20, Example 3.6]).

4. Tensor triangulated categories—Green correspondence abstractly and for
group rings

We had to deal with thick subcategories of triangulated categories. Our main model was the case
of versions of derived or stable categories of group rings. Classification results are known in this
case, but mainly in presence of an additional monoidal structure.

4.1. Recall Balmer’s results. We first recall some results from Balmer [3].

● A tensor triangulated category K is an
– essentially small
– triangulated category K together with a
– symmetric monoidal structure (K,⊗,1),
– such that the functor ⊗ ∶ K ×K → K is assumed to be exact in each variable.

● A tensor triangulated functor is an exact functor between tensor triangulated categories
sending the identity object to the identity object and respecting the monoidal structures.

● A ⊗-ideal P of K is a
– thick triangulated subcategory
– such that if an object M is in P and X is an object in K, then M ⊗X is in P.

● An ideal P is prime if A⊗B being an object in P if and only if A is an object in P or B is
an object in P.

● The spectrum Spec(K) is defined to be the set (!) of prime ideals of K.
● The support of an object M of K is

supp
K
(M) ∶= {P ∈ Spec(K) ∣M is not an object of P}.

● For any family of objects S of K let Z(S) ∶= {P ∈ Spec(K) ∣ S ∩P = ∅}. The sets Z(S) form
the closed sets of a topology, the Zariski topology on Spec(K).

● The radical
√
P of an ideal P is the class of objects M in K such that there is n ∈ N so that

M⊗n is an object of P. An ideal P is called radical if
√
P = P.

One of the main results of [3] is

Theorem 4.1. [3, Theorem 4.10] Let S(K) denote the subsets Y ⊆ Spec(K) such that Y = ⋃i∈I Yi
with all Yi closed and Spec(K)∖Yi quasicompact. Let R(K) be the set of radical thick ⊗-ideals of K.
Then the following maps are mutually inverse bijections

S(K) ←→ R(K)
Y ↦ KY ∶= {M ∈ K ∣ supp(M) ⊆ Y }

⋃
M∈J

supp(M) =∶ supp(J ) ↤ J

4.2. Green correspondence of the spectrum in a tensor triangulated category. Recall that,
following [17] a tensor subcategory of a tensor category still has a unit element. We shall need to
define a concept without this restriction since for our natural examples we do not necessarily have
a unit element. Note that a semigroup is a set with a binary associative structure, and a monoid is
a semigroup with a unit. We transport this vocabulary to the world of tensor categories under the
name of semigroup category (cf [9]).

Definition 4.2. ● A semigroup category is a category C with a symmetric binary operation
⊗ ∶ C × C → C satisfying the associative pentagon axiom.

● A triangulated semigroup category is
– an essentially small triangulated category C,
– which is in addition a semigroup category (C,⊗)
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– such that ⊗ ∶ C × C → C is exact in each variable.
● A ⊗-ideal P of a triangulated semigroup category C is a

– thick triangulated subcategory
– such that if an object M is in P and X is an object in C, then M ⊗X is in P.

● Let (C,⊗) and (D,⊗) be semigroup categories.
– A functor F ∶ C → D is called semi-tensor functor if F allows a natural equivalence
J ∶ F (V ⊗W )→ F (V )⊗F (W ) which satisfies the associahedron diagram [17, Diagram
2.23].

– If (C,⊗) and (D,⊗) are triangulated semigroup categories, then a semi-tensor functor
F ∶ C → D is called triangle semi-tensor functor if F is in addition a triangle functor.

Lemma 4.3. If Y is a thick semigroup triangulated subcategory (respectively ⊗-ideal) of a triangu-
lated semigroup category H, and if F ∶ D Ð→ H is a triangle semi-tensor functor, then Z ∶= F −1(Y)
is again a thick semigroup triangulated subcategory (resp. ⊗-ideal) of D.

Proof. By Proposition 3.3 Z is triangulated. By definition, Z is thick. We need to show that Z is a
semigroup tensor category. Let X be an object of Z and Y be an object of Z (resp. H). Then there
are objects X ′ and Y ′ such that F (X)⊕X ′ and F (Y )⊕ Y ′ are objects of Y. But then

(F (X)⊕X ′)⊗ (F (Y )⊕ Y ′) ≃ (F (X)⊗ F (Y ))
⊕(X ′ ⊗ F (Y ))⊕ (F (X)⊗ Y ′)⊕ (X ′ ⊗ Y ′)

≃ F (X ⊗ Y )
⊕(X ′ ⊗ F (Y ))⊕ (F (X)⊗ Y ′)⊕ (X ′ ⊗ Y ′)

Since Y is tensor triangulated, F (X ⊗Y ) is a direct factor of the object (F (X)⊕X ′)⊗ (F (Y )⊕Y ′)
of Y. Therefore X ⊗ Y is an object of Z. �

Lemma 4.4. If H is a tensor triangulated category, if Y is a ⊗-ideal in H, then the tensor triangu-
lated structure on H induces a tensor triangulated structure on HY . Moreover, the natural functor
ν ∶H →HY is a functor of tensor triangulated categories.

Proof. The objects of H coincides with the objects of HY . We need to define a tensor product ⊗
on HY . Denote by ν ∶ H → HY the natural functor. We define for any two objects M,N in HY the
object M⊗N ∶= ν(M ⊗N) in HY .

Since Y is an ideal, this construction is also well-defined on morphisms. Since idH is the neutral
element of ⊗, we get ν(idH) is the neutral element of ⊗. Since ⊗ is monoidal symmetric, also ⊗ is
monoidal symmetric. The functor is tensor triangulated by construction. �

Recall that every thick subcategory is a full triangulated subcategory, but a full triangulated
subcategory is thick only if it is in addition closed under taking direct summands. A full triangulated
subcategory A of D is strict if any object of D which is isomorphic in D to an object in A is also an
object of A.

Proposition 4.5. Let (T ,⊗,1) be a tensor triangulated category and let P and Q be ⊗-ideals of T .
Suppose moreover that Q is a full triangulated subcategory of P. Suppose that P is strictly full in T .

Then the following hold.

● The tensor triangulated structure on T induces a tensor triangulated structure ⊗ on the
Verdier localisation TQ.

● Furthermore, consider the natural functor ν ∶ T Ð→ TQ. Let ν′ be the restriction of ν to P,
as indicated in the commutative diagram

T ν // TQ

P
?�

OO

ν′ // ν(P)
?�

OO

Denote by P(Q) the image ν(P) of P in TQ under ν, and denote by PQ the Verdier localisation
of P at Q. Then

P(Q) = PQ.
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● PQ is a ⊗-ideal of TQ.

Proof. Lemma 4.4 is precisely the first statement.

Denote by ι ∶ P → T the inclusion functor. As for the second statement we have the Verdier
localisation PQ of P at Q. Denote by µ ∶ P → PQ the natural functor. Then, the universal property
of Verdier localisations ([31, §2, no 3] or [32, Chapitre II, Corollaire 2.2.11.c]) induces a unique
functor σ ∶ PQ → P(Q) such that σ ○µ = ν ○ ι. This shows that the functor σ is dense since µ, ν, ι are
the identity on objects.

We need to show that σ is fully faithful. Let Z be an object of T , let P1 and P2 be objects of P,
and a diagram of morphisms of T

Z

α

  

γ

~~
P1 P2

representing a morphism ω in TQ(P1, P2). If γ has cone in Q, since P is triangulated, and since Q is
a triangulated subcategory of P, also Z is isomorphic to an object of P, and since P is strictly full
in T , the object Z is actually an object of P. Hence σ is full.

If λ is represented by

Z

α

  

γ

~~
P1 P2

for some object Z of P, and if σ(λ) = 0 in PQ, then there is an object Z ′ of T and a morphism
δ ∶ Z ′ → Z with cone(δ) in Q, and with α ○ δ = 0. But, again Q is a triangulated subcategory of P,
and P being strictly full triangulated subcategory of T implies Z ′ is an object of P. Since P is a
full subcategory of T , the morphism δ is actually already in P. Hence λ = 0. This shows that σ is
faithful. Altogether we get the second statement.

Since P is a ⊗-ideal, for any P in P, and any X in T we get P ⊗X is in P. Hence

ν(P )⊗ν(X) = ν(P ⊗X)
is an object of P(Q) = PQ. This proves the third statement. �

4.3. Thick tensor triangulated categories and tensor ideals in the special case of group
rings. Various results are known for classification of thick subcategories of various triangulated
categories (cf e.g. [30, 7, 8, 15, 18]), giving mostly a parametrisation with certain subsets of support
varieties. For a fixed, essentially small triangulated category D a general result describing the relation
between full triangulated essentially small subcategories A and thick(A) = D is given by Thomason.

Theorem 4.6. (Thomason [30, Theorem 2.1]) Let D be an essentially small triangulated category.
Consider the set U of strictly full triangulated subcategories A in D, having the property that each
object of D is isomorphic to a direct summand of an object in A. Then U is in bijection with the
set of subgroups of the Grothendieck group K0(D). The isomorphism is given by mapping A to the
subgroup K0(A) of K0(D).

Thomason also gives [30, Theorem 3.15] a classification of tensor triangulated thick subcategories
of the derived category of perfect complexes over a quasi-compact quasi-separated scheme.

We focus on those dealing with group rings. Let k be an algebraically closed field of characteristic
p > 0 and let G be a finite group with order divisible by p. Let H●(G) be ⊕i≥0H

2i(G,k) if p is odd,
and H●(G) = H∗(G,k) if p = 2. Then H●(G) is a graded commutative algebra, and Ext∗kG(M,M)
is a finitely generated H●(G)-module. Let VG(k) be the maximal ideal spectrum of H●(G). A set
X of closed subvarieties of VG(k) is said to be closed under specialisation if whenever W ∈ X and
W ′ ⊆W , then we also get W ′ ∈ X . For a set X of closed subvarieties of VG(k) which is closed under
specialisation we let C(X ) be the thick subcategory of kG −mod consisting of modules M with

VG(M) ∶= {m ∈ VG(k) ∣ AnnH●(G)(Ext∗kG(M,M)) ⊆ m} ∈ X .
Benson, Carlson and Rickard showed in [7] the following.
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Theorem 4.7. [7, Theorem 3.4] Let k be an algebraically closed field, and let G be a finite group.
Let VG(k) be the maximal ideal spectrum of H●(G). Then the thick tensor ideals I in kG−mod are
of the form C(X ) for some non empty set X of homogeneous subvarieties of VG(k), closed under
specialisation and finite unions.

Carlson and Iyengar [15] determined the thick subcategories of the derived category of the group
algebra of a finite group. For each object M of Db(kG) there is a morphism of k-algebras H∗(G,k)→
Ext∗kG(M,M). Again Ext∗kG(M,M) is a finitely generated H●(G)-module. Then

VDb(kG)(M) ∶= SuppH●(G)(M) ∶= {℘ ∈ Spec(H●(G)) ∣H(M℘) ≠ 0} ⊆ Spec(H●(G)).

Theorem 4.8. [15, Theorem 6.6 and Corollary 6.7] For an algebraically closed field k of character-
istic p > 0 and a finite group G with order divisible by p, and two objects M and N in Db(kG) with
VDb(kG)(M) ⊆ VDb(kG)(N) we have that M is in the thick tensor ideal generated by N . In particular,

if C is a thick tensor ideal of Db(kG), then there is a specialisation closed subset V of VDb(kG)(k)
such that C equals the subcategory obtained by all those M in Db(kG) with VDb(kG)(M) ⊆ V .

Carlson [14] studied thick subcategories of what he calls relatively stable categories of group rings.
Let H be a set of subgroups of G. A kG-module M is called H-projective if M is ↓GH -relative projective
for all H ∈ H. It is classical that a module M is H-projective if and only if M is a direct summand
of modules which are induced from modules over elements of H. The category kG −modH has the
same objects as kG −mod. However, the set of morphisms from M to N is the set of equivalence
classes of kG-module morphisms modulo those factoring through H-projective modules.

Carlson, Peng and Wheeler [13, Theorem 6.2] show that kG −modH is actually a triangulated
category. Moreover, an immediate consequence is that Green correspondence is the restriction of
a functor between triangulated categories to certain subcategories, namely those full subcategories
generated by indecomposable modules with a specific vertex. This restriction is then an equivalence
of categories.

Benson and Wheeler extend the concept to infinitely generated modules, and show in [6, Propo-
sition 2.3] that we get again triangulated categories and a Green correspondence, which is an equiv-
alence between triangulated categories.

These results are special cases of our more general approach, when applied to bounded derived
categories of modules over the respective group rings and appropriate choices for Y, as is shown by
the following.

Proposition 4.9. Let D be a p-subgroup of G, let H be a subgroup of G containing NG(D), and let
Y ∶= {S ≤H ∩ gD ∣ g ∈ G ∖H} as well as X ∶= {S ≤D ∩ gD ∣ g ∈ G ∖H}.

Then for Y being the class of complexes having indecomposable factors with vertex in Y, the
natural functors

LSS′T ′Y ∶ kG −modX →Db(kG)thick(SS′T ′Y)

and
LY ∶ kH −modY →Db(kH)thick(Y)

are equivalences of triangulated categories.

Proof. Using [33, Lemma 4.1], Lemma 3.5 defines LSS′T ′Y and LY . Since the subcategory of bounded
complexes of finitely generated projectives is a subcategory of Y, the category Db(kG)thick(SS′T ′Y) is
a localisation of the singularity category Dsg(kG) of kG. The singularity category of a self-injective
algebra is just the stable category of the algebra modulo projective-injectives (cf Keller-Vossieck [24],
Rickard [27], Buchweitz [11]). Likewise Db(kH)thick(Y) is a localisation of the stable category of kH.
Since the categories kG−modX and kH−modY are triangulated, the universal property of the Verdier

localisation ([31, §2, no 3] or [32, Chapitre II, Corollaire 2.2.11.c]) gives the quasi-inverse functors to
LSS′T ′Y and LY respectively. �

Observe that now Theorem 3.17 item (3) gives Carlson, Peng and Wheeler’s theorem.
Moreover, Harris in [22] and independently Wang and Zhang in [33] give a blockwise version of

the Green correspondence.
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Localising subcategories are a vast variety in this setting. Carlson [14] shows for example that for
p = 2 and a collection C of subgroups H of G all of which containing an elementary abelian subgroup
of rank at least 2, then the spectrum of the relatively C-stable category is not Noetherian.

Note that for a non principal block we do not get a monoidal category but only a semigroup
category in the sense of Definition 4.2. Indeed, the unit element is the trivial module, which belongs
to the principal block.
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