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Abstract. Clifford theory relates the representation theory of finite groups to those of a fixed

normal subgroup by means of induction and restriction, which is an adjoint pair of functors. We

generalize this result to the situation of a Krull-Schmidt category on which a finite group acts
as automorphisms. This then provides the orbit category introduced by Cibils and Marcos, and

studied intensively by Keller in the context of cluster algebras, and by Asashiba in the context

of Galois covering functors. We formulate and prove Clifford’s theorem for Krull-Schmidt orbit
categories with respect to a finite group Γ of automorphisms, clarifying this way how the image of

an indecomposable object in the original category decomposes in the orbit category. The pair of

adjoint functors appears as the Kleisli category of the naturally appearing monad given by Γ.

1. Introduction

Clifford theory for finite groups links the representation theory of a normal subgroup N of G to the
representation theory of G. It is known that large parts of this classical theory does not depend on the
coefficient domain R. The crucial part is the notion of the inertia group IG(M) of an indecomposable
RN -module M , which is defined as the subgroup of G formed by those elements g ∈ G, such that
the twisted RN -module gM is isomorphic to M as an RN -module. The most elementary part of
the theory shows that then for any indecomposable direct factorM0 of the induced RIG(M)-module

M ↑IG(M)N we get that M0 ↑GIG(M) is indecomposable. A Krull-Schmidt situation really is natural,

and indeed necessary, for this statement.
Orbit categories arise in representation theory at three places at least. Cluster categories are

constructed using orbit categories of triangulated categories, as it was made precise by Keller [26].
Similarly, Peng and Xiao [30, 31] used quotient categories for their construction of quantum groups
as Hall algebras of derived categories of hereditary algebras. Further, Riedtmann [32], Cibils, Solotar
and Redondo [14, 15, 16] study Gabriel’s Galois covering technique in an abstract fashion. More
systematically Cibils and Marcos [13], and later Asashiba [1] use orbit categories to explain and
actually define clearly these categories. Further, we mention that the setting appears in the context
of braided tensor categories and fusion categories (cf [20] and [21]).

The present paper uses arguments from Clifford theory of finite group representation to answer
the question what is the decomposition of the image of indecomposable objects in the orbit category.
First, orbit categories tend to be non idempotent complete. Hence one needs to consider the Karoubi
envelope of the orbit categories. Then, we use techniques from category theory, namely the Kleisli
adjunction of a monad, to give an analogue of Clifford’s theory for orbit categories.

In a sense the present result can also be seen as a continuation of our previous results [37, 38] on
a categorical framework for Green correspondence for adjoint functors. Clifford theory and Green
correspondence are two of the main building blocks of modular representation theory of finite groups.
Giving a framework in a category framework, opening hence the possible applications is a desirable
task. Auslander-Kleiner [3] showed that classical Green correspondence can be formulated and
proved as a property of a pair of adjoint functors between additive categories. This was then put in
the framework of triangulated categories in [37, 38]. Alternative approaches were given by Benson,
Carlson, Grime, Peng, Wheeler, Wang and Zhang in a series of joint papers [8, 24, 6, 9, 36]. Another
different approach is given by Balmer and del-Ambrogio [5] in the context of tensor triangulated
categories and Mackey 2-functors.
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We start with a Krull-Schmidt category H on which a finite group Γ acts. The orbit category
G ∶= H[Γ] is then actually the Kleisli construction of the corresponding monad and provides a pair
of adjoint functors (S,T )

H
S
(( G

T

ii

such that TS = ⊕i∈I Ei is the direct sum of automorphisms Ei of H, which forms the group Γ. We
replace the inertia group in the group algebra situation by the orbit category H[ΓM ] with respect
to the subgroup ΓM of those elements of Γ which fix the isomorphism class of a given object M . We
first show that Γ lifts to a group of automorphisms of G and of H[ΓM ]. We obtain that the lift Γ̂ of
Γ as group of automorphisms of G fixes isomorphism classes of objects.

These orbit categories H[ΓM ] and G do not have split idempotents in general, but replacing them
with their Karoubi envelope, we can show a precise analogue of Clifford’s theorem. This is our main
result Theorem 5.11. We note that our main Theorem 5.11 starts with an R-linear Krull-Schmidt
category and an action of a finite group Γ on H. Then Theorem 5.11 determines how indecomposable
objects in H behave in the orbit category H[Γ] with respect to indecomposability.

The paper is organised as follows. In Section 2 we recall the necessary notations and background
on monads, the Kleisli category, the Eilenberg-Moore adjunctions and their properties as far as we
need them. The short Section 3 recalls the group algebra situation. In Section 4 we define categories
which model a normal subgroup in our setting, and we prove our first main result, Theorem 4.8,
which is the Clifford theorem for monads in the case when analogue of the inertia subgroup does
not exceed the normal subgroup. This situation does not need all the hypotheses, and is therefore
formulated in a more general setting. Section 5 then defines an analogue of the inertia group in
our general situation, studies its properties and shows the main result Theorem 5.11. We use in
particular properties on orbit categories, Karoubi envelopes and some general statements on adjoint
functors. All these tools are recalled in this section. Finally in Section 6 we present examples from
Galois modules and from fusion categories.

2. Monads revisited

Recall that if (S,T ) is an adjoint pair, then the endofunctor TS of H together with the unit and
the counit of the adjunction give a monad. There is extensive literature on monads.

Definition 2.1. [28] A monad (A,µ, η) on a category C is an endofunctor A of C with a natural
transformation

µ ∶ A2 Ð→ A

such that
µ ○ (Aµ) = µ ○ (µA) ∶ A3 Ð→ A

and
η ∶ idC Ð→ A

such that
µ ○ (Aη) = µ ○ (ηA).

If A ∶= (A,µ, η) is a monad, an A-module in C is a pair (X,ρ) where X is an object in C and
ρ ∶ A(X)Ð→X is a morphism in C such that

ρ ○ (Aρ) = ρ ○ µX ∶ A2(X)Ð→X

and
ρ ○ ηX = idX ∶X Ð→X.

If A ∶= (A,µ, η) is a monad and (X,ρ) and (X ′, ρ′) are A-modules, then a morphism of A-modules

f ∶ (X,ρ)Ð→ (X ′, ρ′)
is an f ∈ C(X,X ′) such that

ρ′ ○A(f) = f ○ ρ ∶ A(X)Ð→X ′.

A −ModC is the category (!) of A-modules on C.
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Every adjunction induces a monad. In general many different adjunctions induce the same monad
and all these form a category. There are two particular and extremal such adjunctions realising a
given monad. The Eilenberg-Moore adjunction is a terminal object in this category of adjunctions
realising a give monad and the Kleisli category is an initial object in this category of adjunctions
realising a give monad.

2.1. The Eilenberg-Moore adjunction. The Eilenberg-Moore [19] adjunction is an adjoint pair
(FA, UA) where FA ∶ C Ð→A −ModC is defined as

FA(Y ) ∶= (A(Y ), µY ) and FA(f) = A(f)
and

UA(X,ρ) =X and UA(f) = f.
The objects in the image of FA are called free A-modules, and the full subcategory of A −ModC
generated by free modules is denoted A − FreeC . Restricting to the image of FA one obtains the
so-called Kleisli adjunction (F̂A, ÛA) where F̂A ∶ C Ð→A − FreeC .

If (S,T ) is an adjoint pair with counit ϵ ∶ ST Ð→ idD, and where S ∶ C Ð→ D, then TS is a monad
with µ = TϵS and η ∶ idC Ð→ TS is the unit.

Further, by [28, Chapter VI] if (S,T ) is an adjoint pair with S ∶ C Ð→ D we get functors

K ∶A − FreeC Ð→ D and E ∶ D Ð→A −ModC

such that
ÛA = T ○K, S =K ○ F̂A, FA = E ○ S, T = UA ○E.

and in particular the diagram (�)
C

S

��

F̂A

zz

FA

$$
A − FreeC

K
// D

E
// A −ModC

is commutative, and such that E ○K is a fully faithful embedding. Here, K is defined by

A − FreeC Ð→ D
FA(Y ) ↦ S(Y )

and by

A − FreeC(FA(Y ), FA(Y ′)) ≃ C(Y,AY ′)
≃ D(SY,SY ′)
≃ D(KFAY,KFAY

′)
on morphisms. Hence K is always fully faithful. Further, E(Z) = (T (Z), T (ϵZ)) on objects and
E(f) = T (f) on morphisms. An adjunction (S,T ) is called monadic if E is an equivalence. A monad
(A,µ, η) on a category C is called separable if there is a natural transformation σ ∶ A Ð→ A2 such
that µ ○ σ = idA and

(Aµ) ○ (σA) = σ ○ µ = (µA) ○ (Aσ) ∶ A2 Ð→ A2.

Remark 2.2. In the following Proposition 2.3 Balmer uses the concept of an equivalence up to
direct summands. A functor F ∶ C Ð→ D is called to be an equivalence up to direct summands if
the induced functor F̂ ∶ Kar(C) Ð→ Kar(D) is an equivalence. For more details on the Karoubi

idempotent completion Kar and the functor F̂ see Remark 5.7 below.

Proposition 2.3. [4, Lemma 2.10] Let (S,T ) be a pair of adjoint functors, S ∶ C Ð→ D such that
the counit ϵ ∶ ST Ð→ idD has a section ξ ∶ idD Ð→ ST , i.e. ξ ○ ϵ = id. Then

(1) The monad A = TS is separable
(2) The functors K and E are equivalences up to direct summands
(3) If C and D are idempotent complete, then K and E are equivalences.
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2.2. The Kleisli category. Kleisli gave another direct construction realising the monad by an
adjunction, the Kleisli category, which is actually isomorphic to A − FreeC .

Given a monad (A,µ, η) on H, then define the Kleisli category KA by the following construction:
The objects of KA and of H coincide. Let X,Y be two objects. Then

KA(X,Y ) ∶= {f ∈H(AX,AY ) ∣ A2X
Af //

µAX

��

A2Y

µAY

��
AX

f
// AY

is commutative}

Composition is given by composition of maps in H. This is well-defined since A is a functor. Then
there are functors

TKA
∶ KA Ð→H

and
SKA

∶H Ð→ KA

given by the following:
TKA
(X) = AX for any object X and TKA

(f) = f for morphisms.
SKA
(X) =X for any object X and SKA

(f) = Af for morphisms.
Again, (SKA

, TKA
) is an adjoint pair inducing the monad A (cf e.g. [29, Chapter 2]. )

The following lemma seems to be well-known to the specialist (cf e.g. the introduction into Teleiko
[35]) but for the convenience of the reader we include the result and the short proof.

Lemma 2.4. Let H be a category and let (A,µ, η) be a monad on H. Then KA(X,Y ) =H(X,AY ).
Proof. We have the unit η ∶ idH Ð→ A and get a map

KA(X,Y )
ϕÐ→ H(X,AY )

f ↦ ηX ○ f
This way the diagram

AX
f // AY

X

ηX

OO

ϕ(f)

<<

is commutative. We have a map in the opposite direction.

H(X,AY ) ψÐ→ H(AX,AY )
g ↦ µY ○A(g)

A2Y

µY

��
AX

Ag

;;

ψ(g)
// AY

We compose ϕ ○ ψ as in the diagram

A2Y

µY

��
AX

Ag

;;

ψ(g)
// AY

X

ηX

OO

ϕ(ψ(g))

;;

But since µ ○Aη = µ ○ ηA = id,
µY ○A(g) ○ ηX = µY ○ ηA(Y ) ○ g = g.
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Hence ϕ ○ ψ = id.
In order to show that ψ ○ ϕ is the identity we consider f ∈ KA(X,Y ).

AX
f // AY

X

ηX

OO

ϕ(f)

<<

gives the commutative diagram

A2X
Af // A2Y

µY

��
AX

AηX

OO

Aϕ(f)

66

ψ(ϕ(f))
// AY

But since f ∈ KA(X,Y ), the diagram

A2X
Af //

µX

��

A2Y

µY

��
AX

f
// AY

is commutative. Hence
ψϕ(f) = µY ○Af ○AηX = f ○ µX ○AηX = f

since µ ○Aη = id.
Note that in order to compute the composition of two maps, the original definition of morphisms

in the Kleisli construction is more appropriate.

2.3. Universal property of the two Eilenberg-Moore and the Kleisli category. Let (A,µ, η)
be a monad on H. Let moreover

H
S
(( G

T

ii

be functors such that (S,T ) is an adjoint pair inducing the monad (A,µ, η) with A = TS. Then
there are unique functors K ∶ KA Ð→ G and L ∶ G Ð→ A −ModH making the diagram

A −ModH

TEM

��
H

SEM

AA

S ++

SKA

��

G
T

kk

L

OO

KA

TKA

]]

K

OO

commutative, in the sense that
S =KSKA

;TKA
= TK

SEM = LS;T = TEML.
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Indeed, on objects we have: K(X) ∶= S(X) for all objects X of KA, which are the same objects
as those in H. As for morphisms we obtain

KH(X,Y ) �
� // H(AX,AY ) ≃ // G(STSX,SY ) // G(SX,SY )

f
� // L(f)

where the first isomorphism is the adjointness property, and the latter map is given by the unit
η ∶ idG Ð→ TS, which induces a natural transformation Sη ∶ S Ð→ STS, which is actually split, by
the fundamental property of adjoint functors. For any morphism f ∈ KH(X,Y ) put K(f) the image
under this map.

As for L we put L(X) ∶= (T (X), ϵY ) on objects, where ϵ ∶ ST Ð→ idH is the unit of the adjointness,
and L(f) ∶= T (f) on morphisms.

Note that the above property, together with the diagram (�) in Section 2.1, show that the Kleisli
category and A − FreeC are equivalent. For more details see e.g. [29, Section 2.3 Satz 1].

2.4. A further property of adjoint functors. We shall need a further property of adjoint func-
tors. These statements are well-known and can be extracted implicitly from the proof of [22, Chapter
1, Proposition 1.3]. For the convenience of the reader we provide a short proof.

Lemma 2.5. Let H and G be categories and let

H
S
(( G

T

ii

be functors such that (S,T ) is an adjoint pair. Then

(1) S is faithful if and only if the unit idÐ→ TS is pointwise a monomorphism.
(2) T is faithful if and only if the counit ST Ð→ id is pointwise an epimorphism.
(3) S is full if and only if the unit idÐ→ TS is pointwise a split epimorphism.
(4) T is full if and only if the counit ST Ð→ id is pointwise a split monomorphism.
(5) S is fully faithful if and only if the unit idÐ→ TS is an isomorphism.
(6) T is fully faithful if and only if the counit ST Ð→ id is an isomorphism.

Proof. Items (2n) and (2n − 1) are dual to each other for all n ∈ {1,2,3}. We need to show one
of the corresponding statements.

Item 2): T is faithful if and only if G(X,Y ) TÐ→ H(TX,TY ) is injective. Now H(TX,TY ) ≃
G(STX,Y ) and any map in the latter factors through the counit ϵX ∶ STX Ð→ X (cf [28, IV.1
Theorem 1]). Now, ϵX is an epimorphism if and only if G(ϵX , Y ) is injective and this shows the
statement.

Item 4): T is full if and only if G(X,Y ) TÐ→ H(TX,TY ) is surjective. Again H(TX,TY ) ≃
G(STX,Y ) and any map in the latter factors through the counit ϵX ∶ STX Ð→ X (cf [28, IV.1

Theorem 1]). Hence T is full if and only if G(X,Y ) G(ϵX ,Y )Ð→ G(STX,Y ) is surjective for all X,Y . In
particular, for Y = STX we obtain that this is equivalent to ϵX being split monomorphism.

Item 6): An epimorphism which is in addition a split monomorphism is an isomorphism.

3. Recall Clifford’s theorem from group algebras

We briefly recall the situation for group rings. Let G be a group and let k be a commutative ring.
For a subgroup H of G and a kH-module M we denote by M ↑GH the kG-module kG⊗kHM , where
kG acts by multiplication on the left factor. Further, for a kG-module X we denote by X ↓GH the
kH-module obtained by restricting the action of G to an action of the subgroup H. Both ↑GH and
↓GH are functors between the respective module categories, and actually the are biadjoint one to the
other in case G is a finite group.

If N ⊴ G, then Mackey’s formula shows

M ↑GN↓GH= ⊕
gN∈G/N

gM
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for each M , and actually we have an isomorphism of functors

− ↑GN↓GN= ⊕
gN∈G/N

g − .

Remark 3.1. We should note thatM ↑GH= kG⊗kHM and N ↓HG=HomkH(kG,N) both only depend
on the group algebras, rather than the groups. Therefore, the decomposition is not canonical, and
since there may be different groups with the same group algebra, the decomposition depends on the
specific group one takes. We mention [23] for a striking example in characteristic 3 and [25] for an
example over the integers.

If N is a normal subgroup of G and M an indecomposable kN -module. Then the inertia group
IG(M) of M is the set of g ∈ G such that gM ≃M as kN -module

IG(M) ∶= {g ∈ G ∣ gM ≃M as kN -modules}.
Theorem 3.2. (Clifford [17]) Let k be a field and let G be a group with normal subgroup N ⊴ G of
finite index. Let M be an indecomposable kN -module and let M0 be an indecomposable direct factor

of M ↑IG(M)N . Then M0 ↑GIG(M) is an indecomposable kG-module.

In the rest of the paper we show that this theorem is actually a result on orbit categories.

4. Categories modelling normal subgroups

Motivated by Mackey’s theorem for group rings in the situation of normal subgroups we give

Definition 4.1. Let H and G be categories and let

H
S
(( G

T

ii

be functors such that (S,T ) is an adjoint pair. Then S gives a situation of normal subgroup categories
if

A = TS =⊕
i∈I

Ei

for self-equivalences Ei; i ∈ I; of H.
Note that in the main result of Auslander and Kleiner [3] as well as in its triangulated category

version [37] we started from the situation that (S,T ) is an adjoint pair and TS = idH ⊕ U for
some endofunctor U of H, and such that the unit idH Ð→ TS is the left inverse to the projection
TS Ð→ idH. Hence, if H is Krull-Schmidt, we may assume that for some index i0 ∈ I we have
Ei0 = idH. Note further that by Remark 3.1 it is not reasonable to assume the decomposition to be
canonical in any sense. We only ask for the existence.

A particularly simple situation occurs in the classical case of Clifford’s theorem if N = IG(M). In
our categorical situation this is a favorable situation as well.

Proposition 4.2. Let S ∶ H Ð→ G be an additive functor between abelian Krull-Schmidt categories
admitting a right adjoint T . Assume further that S is a normal subgroup category situation. We
have, by definition TS = ⊕i∈I Ei for self-equivalences Ei of H, and for some i0, Ei0 = id. If EiM /≃
M for any i ∈ I ∖ {i0}, then M simple implies that EndG(SM) is a skew field and in particular
SM is indecomposable .

Proof. We compute

EndG(SM) ≃ H(M,TSM)
≃ H(M,Ei0M)⊕ ⊕

i∈I∖{i0}

H(M,EiM)

Since Ei are all self-equivalences, M is simple if and only if EiM is simple. Hence, H(M,EiM) = 0
if i ∈ I ∖ {i0}. Further, by functoriality of the adjointness, the resulting isomorphism EndG(SM) ≃
EndH(M) is an isomorphism of rings. Therefore EndG(SM) is a skew field and therefore SM is
indecomposable.
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Suppose that EiA
λiÐ→ AEi are natural equivalences. Then for all f ∈H(X,Y ) we have a commu-

tative diagram

(�) EiAX
EiAf //

(λi)X

��

EiAY

(λi)Y

��
AEiX

AEif // AEiY

where the vertical maps are isomorphisms. As a consequence, if Ei is an automorphism, then

AE−1i
E−1i (λi)E

−1
iÐ→ E−1i A

is a natural equivalence in the sense that

(��) AE−1i X
AE−1i f //

E−1i (λi)E−1
i

X

��

AE−1i Y

E−1i (λi)E−1
i

Y

��
E−1i X

E−1i Af // E−1i AY

is commutative.

Proposition 4.3. Let S ∶H Ð→ G be an additive functor between Krull-Schmidt categories admitting
a right adjoint T . Assume further that S is a normal subgroup category situation. Then TS =
⊕i∈I Ei for self-equivalences Ei of H. Further, assume that Ei0 =∶ E0 = idH. Denote by A = TS the
endofunctor of the monad A induced by this adjoint pair. Let J ⊆ I and suppose that for each j ∈ J
there are natural equivalences EjA

λjÐ→ AEj. Then for each j ∈ J there is a self-equivalence of the

Kleisli category Êj of KA such that Ej ○ T = T ○ Êj and Êj ○ S = S ○Ej. If Ej is an automorphism,

then Êj is an automorphism. Analogous statements hold for the Eilenberg-Moore category A−ModH.

Proof. Let j ∈ J . We shall prove that each Ej lifts to a self-equivalence Êj of KA.

We put Êj(X) = Ej(X) for each object X of KA. As for morphisms we may use Lemma 2.4.
There we obtained H(X,AY ) = KA(X,Y ) and for f ∈ H(X,AY ) we have Ejf ∈ H(EjX,EjAY ),
and therefore (λj)Y ○Ejf ∈ H(EjX,AEjY ). Hence we may put Êj(f) ∶= (λj)Y ○Ejf . If Ej is an

automorphism, then the diagrams (��) and (�) show that Êj is an automorphism as well. Indeed,

Ê−1j (f) ∶= E
−1
j (λj)E−1j Y

−1 ○E−1j (f)
gives

Ê−1j (Êj(f)) = Ê−1j ((λj)Y ○Ejf)

= E−1j (λj)E−1j Y

−1 ○E−1j (((λj)Y ○Ejf)

= E−1j (λj)E−1j Y

−1 ○E−1j (λj)E−1j Y ○ f
= f

On the level of A−ModH the construction is as follows. We put ρEjX ∶= Ej(ρX)○(λj)−1X for every

X and we put Êj(X,ρX) ∶= (EjX,ρEjX). If ρX is a splitting of the unit ηX , then ρEjX is a splitting
of ηEjX . Hence, this is indeed an object of A−ModH. Moreover, for any f ∈H(X,Y ), we have that
Ej(f) ∈H(EjX,EjY ), and if f gives rise to a morphism in A −ModH, then

AX
Af //

ρX

��

AY

ρY

��
X

f // Y
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is commutative, and therefore

EjAX
EjAf //

EjρX

��

EjAY

EjρY

��
EjX

Ejf // EjY

is commutative as well. Now, recall the diagram (�) and get a commutative diagram

AEjX
AEjf //

(λj)
−1
X

��

AEjY

(λj)
−1
Y

��
EjAX

EjAf //

EjρX

��

EjAY

EjρY

��
EjX

Ejf // EjY.

Since we were putting ρEjX = Ej(ρX) ○ (λj)−1X for every X we get that then also Ejf gives rise to a
morphism in A −ModH.

The fact that Êj is an equivalence is clear, since the construction holds as well for E−1j , producing

a functor Ê−1j , which equals Ê−1j as is verified by composing with Êj .

Let us verify that SKEj = ÊjSK . Indeed, SK(X) = X for any object X and SK(f) = Af for any

morphism f . Then SKEj(X) = ÊjSK(X) for any object. Further,

ÊjSKf = ÊjAf = λ−1j ○EjAf = λ−1j λjAEjf = AEjf.

Similarly, the facts that TKÊj = EjTK , and that TEM Êj = EjTEM and SEMEj = ÊjSEM follow by
direct inspection.

Remark 4.4. If in the notation and under the hypotheses of Proposition 4.3 we have in addition
Ei ○Ej = Ek for some i, j, k ∈ I, and if in addition

λk = λi ○Ei(λj)
then we also get Êi ○ Êj = Êk. This follows by the explicit construction of Êi in each of the two
cases. The equation on the isomorphisms λ∗ comes from the necessity that the diagram

EiEjA
Ei(λj)// EiAEj

λj // AEiEj

EkA
λk // AEk

commutes. Note that λ∗ is a relation of vanishing of a 1-cocycle type. (Note that we did not assume
yet that the {Ei ∣ i ∈ I} forms a group.) In general, for freely chosen λi for i ∈ I, the 1-cocycle
above is not vanishing. However, by the usual argument it is sufficient that the 1-cocycle above is
a 1-coboundary, that is there is α such that λi = α−1 ○Ei(α) for all i ∈ I. Then, by an elementary
computation the vanishing of the 1-cocycle follows.

Further, if {Ei ∣ i ∈ I} is a group, then EiAÐ→ AEi is actually the conjugation action on the sum-
mands of A. Since the conjugation action is associative, i.e. (EiEj)A(EiEj)−1 = Ei(EjAE−1j )E−1i ,

if {Ei ∣ i ∈ I} is a group, then Ei ○Ej = Ek implies Êi ○ Êj = Êk.

Proposition 4.5. Let S ∶H Ð→ G be an additive functor between Krull-Schmidt categories admitting
a right adjoint T . Assume further that S is a normal subgroup category situation, i.e. TS =⊕i∈I Ei
for self-equivalences Ei of H. Further, assume that Ei0 =∶ E0 = idH. Denote by A = TS the endofunc-
tor of the monad A induced by this adjoint pair. Then the counit ϵ ∶ SKTK Ð→ idKA

of the Kleisli

category associated to A splits pointwise, and we get Êi(M) ≃M for all indecomposable objects M

of KA and the lift Êi of Ei to KA following Proposition 4.3.
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Proof. In order to prove this statement we first analyse the monad (A,µ, ϵ) in the normal subgroup
situation, in particular µ ∶ A2 Ð→ A. Recall the construction of µ. Let ϵ ∶ ST Ð→ idG be the counit
of the adjunction. Then

µ = TϵS ∶ TSTS Ð→ T ○ idG ○ S.
We study this map in particular for the Kleisli category. Then, for the category KA and the adjoint
pair (SK , TK) giving the monad A = TS, we have

SK ∶H Ð→ KA TK ∶ KA Ð→ H
X ↦ X X ↦ AX
f ↦ Af f ↦ f

where f denotes a morphism and X an object of H. Hence, SKTK(X) = AX and SKTK(f) = Af
for all objects X and all morphisms f . The choice ϵ ∶ SKTK Ð→ idKA

given by η the projection of
A = 1⊕U onto 1 satisfies the necessary properties. Moreover, by definition the counit defined in this
way splits pointwise.

The fact that M ≃ ÊiM in KA follows basically from [13, Lemma 2.5]. Here is the adaption of
the proof. By Lemma 2.4 we have

KA(X,Y ) =H(X,AY ) =H(X,⊕
i∈I

EiY ).

Hence, for X = ÊiM and Y = M we get that KA(X,Y ) contains the identity on ÊiM , which is

clearly invertible. Therefore M ≃ ÊiM in KA.

Corollary 4.6. If (S,T ) is another adjoint pair inducing this monad A (where S ∶ H Ð→ G), then
let K ∶ KA Ð→ G be the functor from Section 2.3. If now there are self-equivalences E0

i of G such

that KÊi = E0
iK for all K, then also E0

i V ≃ V for all V in the image of S.

Proof. Recall that by Section 2.3 the Kleisli category is initial amongst all adjoint pairs inducing a
fixed monad A in the sense that the functor K exists and satisfies KSK = S. Then by Proposition 4.5
we have that ÊiV ≃ V for all V in KA. Recall that all objects in KA are in the image of SK . Hence
V = SKW and

E0
i SW = E0

iKSKW =KÊiSKW =KÊiV ≃KV =KSKW = SW.
This shows the Corollary. .

Remark 4.7. Note that if the counit ϵ ∶ SKTK Ð→ idKA
(or actually even more generally the counit

ϵ ∶ ST Ð→ idG) splits functorially, then by Proposition 2.3 we have an equivalence G ≃A −ModH up
to direct factors, an equivalence in case the categories are idempotent complete, and therefore we
may assume that this equivalence is actually an equality. By the universal property of the Kleisli
category, we also get that

G ≃A −ModH ≃ KA

if the categories are idempotent complete.

Theorem 4.8. Let H and G be additive Krull-Schmidt categories. Let

H
S
(( G

T

ii

be functors giving a normal subgroup situation TS =⊕i∈I Ei, such that (S,T ) is an adjoint pair, and

such that Ei0 = idH. Suppose that for any i ∈ I there is a self-equivalence Êi of G with SEi = ÊiS
and TÊi = EiT . Then for any indecomposable object W of H with EjW ≃ W if and only if j = i0,
we get S(W ) is indecomposable as well.

Proof. If S(W ) = V1 ⊕ V2, then TSW = TV1 ⊕ TV2 and since idH is a direct factor of TS, W is a
direct factor of either TV1 or TV2, w.l.o.g. of TV1, and we may assume that V1 is indecomposable.
Since for any indecomposable object W of H with EjW ≃W if and only if j = i0, we have EiW /≃W
for all i ∈ I ∖{i0}. Since Ej is a self-equivalence, EjW is indecomposable again for all j ∈ I. But then
EjW is a direct factor of EjTV1 = TÊjV1. However, ÊjV1 ≃ V1 by Proposition 4.5 and Corollary 4.6
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and hence EjW is a direct factor of TV1 for all j ∈ I. Therefore AW = TSW is a direct factor of
TV1. But TSW = TV1 ⊕ TV2. Hence TV2 = 0 by the Krull-Schmidt property of H. But this implies

0 =H(W,TV2) ≃ G(SW,V2) = G(V1 ⊕ V2, V2)
which has a direct factor G(V2, V2), containing the identity on V2. Therefore V2 = 0 and S(W ) is
indecomposable.

Remark 4.9. Note that for G being the Kleisli category or the Eilenberg-Moore category of the
adjunction, then Proposition 4.3 shows the existence of Êi for all i.

5. The inertia category

We can now imitate the construction of an inertia group.

5.1. On orbit categories and Kleisli categories. Let (A,µ, η) be a monad on H, and suppose
A = ⊕i∈I Ei for some automorphisms Ei of H. We suppose that {Ei ∣ i ∈ I} with the multiplication
µ forms a group Γ of automorphisms of H. If µ ∶ A ○ A Ð→ A is the structure map, then writing
A =⊕i∈I Ei we get by restriction natural transformations µi,j ∶ Ei ○Ej Ð→ Ek, and µ

i,j = 0 for almost
all k, and for a unique k = k(i, j) this is an equivalence.

Let now (S,T ) be a pair of adjoint functors

H
S
(( G

T

ii

inducing the monad A giving a normal subgroup situation A =⊕i∈I Ei such that the structure map
on A induces a group law on the Ei, as indicated above. Then the hypothesis EiA ≃ AEi for all i
from Proposition 4.3 holds true.

We recall the construction of the orbit category as is displayed in [13]. We use the notation
introduced there, though we mention that in Keller’s [26] the notion C/Γ is used for the category
which is denoted by C[Γ] in [13].

Let C be a category admitting arbitrary direct sums and let Γ be a group of self-equivalences of
C. Then we may form the orbit category C[Γ]. The objects of C and of C[Γ] coincide. Further,

C[Γ](X,Y ) =⊕
g∈Γ

C(X,gY ).

Note that we have

C[Γ](X,Y ) =
⎛
⎝ ∏
(g1,g2)∈G×G

C(g1X,g2Y )
⎞
⎠

G

where G acts diagonally. This observation can be found in e.g. Asashiba [1]. Composition of
morphisms is then clear with the above formula.

The orbit category of a group is actually a special case of a Kleisli category.

Corollary 5.1. Let A = (A,µ, η) be a monad, suppose A = ⊕i∈I Ei for self-equivalences Ej of H,
and suppose that {Ei ∣ i ∈ I} with the structure map µ forms a group Γ of self-equivalences of H.
Then, the orbit category H[Γ] is naturally isomorphic to KA, the Kleisli category and A is the monad
corresponding to an adjoint pair (N[Γ],R[Γ])

C
N[Γ]
++
C[Γ]

R[Γ]

ii

Proof. This is a direct consequence of Lemma 2.4 where we showed that

H[Γ] ≃ KA.

Moreover, N[Γ] identifies with SKA
and R[Γ] identifies with TKA

.

We recall a concept from Asashiba [1].
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Definition 5.2. [1] Let C be a category with an action of a group Γ in the sense that there is a set
of self-equivalences Eg of C which form a group Γ. We denote by E1 the identity self-equivalence.

Then for a functor F ∶ C Ð→ D a collection of natural transformations ϕg ∶ F Ð→ FEg for Eg ∈ Γ
is called Γ-adjuster if

F
ϕg //

ϕhg !!

FEg

ϕhEg

��
FEhg FEhEg

is commutative. A functor F for which there is a Γ-adjuster is called a Γ-invariant functor.

Asashiba remarks that then ϕ1 = idF automatically.

Lemma 5.3. [1, Proposition 2.6] Let C be a category with an action of a group Γ in the sense that
there is a set of self-equivalences Eg of C which form a group Γ. Then

(1) The natural functor N[Γ] ∶ C Ð→ C[Γ] is Γ-invariant with adjuster (νg)g∈Γ, where for each
g ∈ Γ and object X of C we define

νg,X ∶= (δh1,h2gidh1X)(h1,h2)∈Γ×Γ ∈HomC[Γ](N[Γ]X,N[Γ]gX).

(2) For each Γ-invariant functor C (F,ϕ)Ð→ D there is a unique functor C[Γ] HÐ→ D such that
(F,ϕ) = (HN[Γ],Hν), i.e. in particular the diagram

C F //

N[Γ]

��

D

C[Γ]
H

==

is commutative.

(3) For each Γ-invariant functor C (F,ϕ)Ð→ D there is an up to isomorphism unique functor C[Γ] HÐ→
D such that (F,ϕ) ≃ (HN[Γ],Hν),

We have to deal with submonads and orbit categories with respect to a subgroup.

Proposition 5.4. Let H be an additive category, let Γ be a group of automorphisms and let Γ0 be
a subgroup of Γ. Consider the associated adjoint pairs

H
SΓ ,,
H[Γ]

TΓ

ii

and

H
SΓ0 --
H[Γ0]

TΓ0

ii

given by the Kleisli categories associated to the monads A =⊕γ∈Γ γ respectively A0 =⊕γ∈Γ0
γ. Then

there is an adjoint pair (SΓ0 , TΓ0)

H[Γ0]
SΓ0
,, H[Γ]

TΓ0

ll

such that
SΓ = SΓ0 ○ SΓ0 and TΓ = TΓ0 ○ TΓ0 .

Proof. By Lemma 5.3.1 the functor SΓ ∶ H Ð→ H[Γ] is Γ-invariant in the sense of Definition 5.2.
Hence, by restriction to the subgroup Γ0, SΓ is Γ0-invariant as well. By Lemma 5.3.2 factorizes
through H[Γ0]. This shows the existence of SΓ0 .

We give the functor explicitly.

H[Γ0]
SΓ0Ð→H[Γ]
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satisfying SΓ = SΓ0 ○ SΓ0 . We put SΓ0(X) = X on objects. Then, since SΓ0(X) = X on objects and
SΓ(X) = X on objects we have SΓ = SΓ0 ○ SΓ0 on objects. On morphisms we have SΓ(f) =⊕γ∈Γ γf
and SΓ0(f) =⊕γ∈Γ0

γf for any f ∈HomH(X,Y ). Then
H[Γ0](X,Y ) =H(X, ⊕

γ∈Γ0

γY )

and for f ∈H(X,⊕γ∈Γ0
γY ) we put

SΓ0(f) ∶= ⊕
Γ0σ∈Γ/Γ0

σf.

Then by definition SΓ = SΓ0 ○ SΓ0 on morphisms.
Similarly, TΓ0(X) = ⊕Γ0σ∈Γ/Γ0

σX and TΓ0(f) = f for each morphism f . We need to explain
briefly the meaning here. Note that

H[Γ0](X,Y ) =H(X, ⊕
γ∈Γ0

γY ) =H[Γ0](X,Y ) =H(⊕
γ∈Γ0

γX, ⊕
γ∈Γ0

γY )Γ0

and let
f ∈H[Γ](X,Y ) =H(X,⊕

γ∈Γ

γY ) =H(⊕
γ∈Γ

γX,⊕
γ∈Γ

γY )Γ.

Then

TΓ0(f) ∈H[Γ0](TΓ0X,TΓ0Y ) = H[Γ0]( ⊕
Γ0σ∈Γ/Γ0

σX, ⊕
Γ0σ∈Γ/Γ0

σY )

= H(⊕
γ∈Γ0

γ ⊕
Γ0σ∈Γ/Γ0

σX, ⊕
γ∈Γ0

γ ⊕
Γ0σ∈Γ/Γ0

σY )Γ0

= H(⊕
γ∈Γ

γX,⊕
γ∈Γ

γY )Γ0

and TΓ0(f) just maps f in the space of Γ-fixed points to the space of Γ0-fixed points. This is clearly
a functor. Furthermore, since (S,T ) is an adjoint pair, also (SΓ0 , TΓ0) is an adjoint pair.

This shows the statement.

Remark 5.5. Note that the unit of the adjunction (SΓ0 , TΓ0) leads to some Mackey formula involving
double classes.

Remark 5.6. In [12], in case Γ is cyclic, Chávez gave a criterion when the orbit category is idempo-
tent complete (i.e. all idempotents split). In general the orbit category is not idempotent complete.

Indeed, let A = Mat2(K) for some field K. Conjugation by M ∶= ( 0 1
1 0

) is an automorphism

of order 2 of A, yielding an action of the cyclic group of order 2 on A −mod. Then, for a simple
A-module S we get

HomA−mod[C2]
(S,S) =HomA(S,S ⊕ MS) =K ×K

has non trivial idempotents, whereas S is indecomposable. Moreover, in Krull-Schmidt categories
endomorphism algebras of indecomposable objects are local. The above endomorphism algebra is
not local.

Similarly, let A be the Kronecker algebra and σ be the automorphism swapping the two arrows of
the Kronecker quiver. This induces an action of the cyclic group of order 2 on the module category.
The simples are fixed under the automorphism.

Remark 5.7. Recall the Karoubi envelope of a category. Let C be a category. Then Kar(C) has a
objects the pairs (C, e) for objects C of C and e2 = e ∈ EndC(C). Further,

Kar(C)((C, e), (D,f)) = {α ∈ C(C,D) ∣ α ○ e = f ○ α}
Note that there is a fully faithful embedding

C ↪Kar(C)
given by mapping an object C to (C,1C) and a morphism to this same morphism. It is well-known,
and not difficult to show, that if C is idempotent complete, then the natural embedding C ↪Kar(C)
is an equivalence.
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If S ∶H Ð→ G is a functor. Then we define a functor

Ŝ ∶Kar(H)Ð→Kar(G)
by Ŝ(X,e) ∶= (S(X), S(e)) and Ŝ(β) ∶= S(β) for any morphism β. Since

S(β)S(e) = S(βe) = S(fβ) = S(f)S(β)
with the obvious notations, this is indeed well-defined.

Remark 5.8. We should mention that an additive category, whose morphism spaces are R-modules
of finite length over some commutative ring R, is Krull-Schmidt if and only if it has split idempotents
(i.e. is idempotent complete). This was proved most recently by Amit Shah [33], and may have been
known earlier to experts.

Lemma 5.9. Let now (S,T ) be a pair of adjoint functors

H
S
(( G

T

ii

with unit η ∶ idH Ð→ TS and counit ϵ ∶ ST Ð→ idG. Then

Kar(H)
Ŝ --

Kar(G)
T̂

mm

is again an adjoint pair with counit ϵ̂(X,e) ∶= ϵX and unit η̂(X,e) ∶= ηX .

Proof. Indeed, we first observe by direct inspection that ϵ̂ and η̂ are natural transformations.
Since (S,T ) is an adjoint pair, the compositions

S
SηÐ→ STS

ϵSÐ→ S

and

T
ηTÐ→ TST

TϵÐ→ T

are the identity. But then,

Ŝ
Ŝη̂Ð→ ŜT̂ Ŝ

ϵ̂ŜÐ→ Ŝ

and

T̂
η̂T̂Ð→ T̂ ŜT̂

T̂ ϵ̂Ð→ T̂

are the identity as well since the natural transformations on the Karoubi envelope are defined just
as on the original categories. Hence, by [28, Chapter IV, Section 1, Theorem 2] (Ŝ, T̂ ) is an adjoint
pair with unit η̂ and counit ϵ̂.

5.2. Preparing adjoint functors for the Inertia category.

Lemma 5.10. Let (A,µ, η) be a monad giving a normal subgroup situation, i.e. A = ⊕i∈I Ei for
automorphisms Ei, suppose that {Ei ∣ i ∈ I} with the structure map µ forms a group Γ of automor-
phisms. Let Γ0 be a subgroup of Γ of index ∣Γ ∶ Γ0∣. Suppose that

H
S ,,
H[Γ]

T

ii

is an adjoint pair of additive functors realising A, and suppose that the counit of the adjunction
(S,T ) is locally split. Then by Proposition 5.4 the adjoint pair (S,T ) induces naturally an adjoint
pair (S[Γ0], T [Γ0])

H[Γ0]
S[Γ0

]

,, H[Γ]
T [Γ0

]

ll
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satisfying S = S[Γ0]○S[Γ0] and T = T [Γ0]○T [Γ0]. Moreover, each Ei induces an automorphism E0
i

of H[Γ0] with E0
iN[Γ0] = N[Γ0]Ei and EiR[Γ0] = R[Γ0]E0

i . Furthermore, on objects we get

T [Γ0] ○ S[Γ0] = ⊕
EiΓ0∈Γ/Γ0

E0
i .

Proof. By construction
H[Γ0](X,Y ) =H(X, ⊕

g∈Γ0

gY )

and since the counit is locally split, by Proposition 4.3 each Ei induces an automorphism E0
i ofH[Γ0]

with E0
iN[Γ0] = N[Γ0]Ei and EiR[Γ0] = R[Γ0]E0

i . Similarly, each Ei induces an automorphism Êi
of H[Γ] with ÊiS = SEi and EiT = TÊi.

H[Γ0](−, T [Γ0]S[Γ0]Y ) = H[Γ](S[Γ0]−, S[Γ0]Y )
= H(−, ⊕

Ei∈Γ

EiY )

= H(−, ⊕
EiΓ0∈Γ/Γ0

Ei ⊕
Ej∈Γ0

EjY )

= H( ⊕
EiΓ0∈Γ/Γ0

E−1i −, ⊕
Ej∈Γ0

EjY )

= H[Γ0]( ⊕
EiΓ0∈Γ/Γ0

(E0
i )
−1−, Y )

= H[Γ0](−, ⊕
EiΓ0∈Γ/Γ0

E0
i Y )

By Yoneda’s lemma we have

(T [Γ0]S[Γ0]) ≃ ⊕
EiΓ0∈Γ/Γ0

E0
i

on objects.

5.3. Clifford’s theorem for orbit categories, the main result. We are now ready to prove our
main result.

Theorem 5.11. Let R be a commutative Noetherian ring. Suppose that

H
S
(( G

T

ii

is an adjoint pair of R-linear functors between R-linear idempotent complete categorie. Assume
that that Hom-spaces are of finite R-length in H and in G, and assume that (S,T ) give a normal
subgroup situation. Let TS = ⊕i∈I Ei for automorphisms Ei, suppose that Γ ∶= {Ei ∣ i ∈ I} forms a
group of automorphisms and for an indecomposable object M let IS(M) ∶= {i ∈ I ∣ EiM ≃ M}, and
let ΓM ∶= {Ei ∣ i ∈ IS(M)}. Suppose that G is the Karoubi envelope of the Kleisli construction of
the monad (or, what is the same, the orbit category with respect to Γ), and suppose that Γ is finite.
Then we have a commutative diagram of adjoint pairs

H
S

--

S[ΓM ]

��

G
T

mm

T [Γ0
M ]

vv
Kar(H[ΓM ])

S[Γ0
M ]

44

T [ΓM ]

ZZ

and for any indecomposable direct factor M0 of S[ΓM ](M) we have that S[Γ0
M ](M0) is indecompos-

able.
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Proof. We first suppose that G is actually the Kleisli construction. Since Γ is a group, EiA ≃
AEi for all i and the isomorphisms satisfy the 1-cocycle condition. If G is the Kleisli construction
of the monad, then, by Proposition 4.3 and Remark 4.4, we get that ΓM acts on G as group of
automorphisms Γ̂M with automorphisms ÊMi of G.

Moreover, by same argument, there are automorphisms EMi of H[ΓM ] forming a group ΓM with

EMi S[ΓM ] = S[ΓM ]Ei and T [ΓM ]EMi = EiT [ΓM ].
By Lemma 5.1 we get that (S[ΓM ], T [ΓM ]) is an adjoint pair

H
S[ΓM ] --

H[ΓM ]
T [Γ̂M ]

jj

Since Γ is finite, ΓM is finite as well. Further, since all homomorphisms are R-modules of finite
length, the same holds true for the orbit category with respect to ΓM and to Γ. Since R is Noetherian,
this is still true for the Karoubi envelopes. Hence, by [33] the Karoubi envelopes of the orbit categories
with respect to ΓM and to Γ are Krull-Schmidt categories. By Lemma 5.10 we have a commutative
diagram of adjoints

H
S

--

S[ΓM ]

��

G
T

mm

T [Γ0
M ]

ww
H[ΓM ]

S[Γ0
M ]

55

T [ΓM ]

XX

Now, in case G is the Karoubi envelope of the Kleisli construction, since H and G are idempotent

complete, we can replace H[ΓM ] by its Karoubi envelope Ĥ[ΓM ]. Then, using Lemma 5.9, in the
diagram

H
S

--

S[ΓM ]

��

H[Γ]
T

mm

T [Γ0
M ]

vv

� �
D // G

H[ΓM ]

S[Γ0
M ]

66

T [ΓM ]

XX

� _

C

��
Ĥ[ΓM ]



CLIFFORD’S THEOREM FOR ORBIT CATEGORIES 17

the functor T [ΓM ] and S[Γ0
M ] lift to Ĥ[ΓM ] such that the diagram

H
S

--

S[ΓM ]

��

H[Γ]
T

mm

T [Γ0
M ]

vv

� �
D // G

̂T [Γ0
M
]

��

H[ΓM ]

S[Γ0
M ]

66

T [ΓM ]

XX

� _

C

��
Ĥ[ΓM ]

̂T [ΓM ]

SS

̂S[Γ0
M
]

CC

is commutative in the natural sense. Moreover, (Ŝ[ΓM ], T̂ [ΓM ]) and (Ŝ[Γ0
M ], T̂ [Γ0

M ]) are adjoint

pairs again. Furthermore, EMi extend to automorphisms of Ĥ[ΓM ], and each ÊMi extend to an
automorphism of G, and in order to avoid an additional notational burden, we denote the extension
of EMi to the Karoubi envelope by EMi again, and likewise for ÊMi .

Let
CS[ΓM ](M) =⊕

j∈J

Mj

for indecomposable objects Mj of Ĥ[ΓM ]. Then, using Lemma 5.10,

T̂ [Γ0
M ]Ŝ[Γ0

M ](Mj) =
⎛
⎝ ⊕
Ei∈Γ/ΓM

EMi (Mj)
⎞
⎠
.

Let Mj be an indecomposable direct factor of CS[ΓM ](M).
By definition for each representative Ei of a class different from ΓM in Γ/ΓM we have EiM /≃M .

By the definition of ΓM ,

T̂ [ΓM ]CS[ΓM ]M ≃ T [ΓM ]S[ΓM ]M ≃ ⊕
Ei∈ΓM

EiM ≃ ⊕
Ei∈ΓM

M.

The object M being indecomposable, Mj being a direct factor of CS[ΓM ]M , hence T̂ [ΓM ]Mj is

a direct factor of ⊕Ei∈ΓM
M. Therefore, by the Krull-Schmidt theorem on H, T̂ [ΓM ]Mj is a direct

sum of, nj say, copies of M . In particular EMi Mj /≃Mj whenever E
M
i /∈ ΓM , and moreover, since

M ∣ΓM ∣ = T [ΓM ]S[ΓM ]M = T̂ [ΓM ]CS[ΓM ]M = T̂ [ΓM ](⊕
j∈J

Mj) =⊕
j∈J

T̂ [ΓM ]Mj =⊕
j∈J

Mnj

we get ∑j∈J nj = ∣ΓM ∣.
Fix now j ∈ J and consider the indecomposable direct factorMj of CS[ΓM ](M). SinceMj is a di-

rect factor of (T̂ [Γ0
M ]Ŝ[Γ0

M ])(Mj), there is an indecomposable direct factorXj of Ŝ[Γ0
M ](Mj) =Xj⊕

Yj in G such thatMj is a direct factor of T̂ [Γ0
M ](Xj) andMnj is a direct factor of T̂ [ΓM ]T̂ [Γ0

M ](Xj).
Recall that there are automorphisms ÊMi of G such that

EMi T̂ [Γ0
M ] = T̂ [Γ0

M ]Ê
M
i

and by Proposition 4.5 we have ÊMi (V ) ≃ V for all Ei ∈ Γ and objects V . Since Mj is a direct factor

of T̂ [Γ0
M ]Xj , we get that EMi (Mj) is a direct factor of

EMi T̂ [Γ0
M ]Xj = T̂ [Γ0

M ]Ê
M
i Xj ≃ T̂ [Γ0

M ]Xj

for all Ei ∈ Γ. Since for each non trivial class EMi ΓM of Γ/ΓM we have EMi (Mj) /≃ Mj , as seen

above, ⊕EiΓM ∈Γ/ΓM
EMi (Mj) is a direct factor of T̂ [Γ0

M ](Xj), using the Krull-Schmidt property on
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Ĥ[ΓM ]. Furthermore

T̂ [ΓM ]
⎛
⎝ ⊕
EiΓM ∈Γ/ΓM

EMi (Mj)
⎞
⎠
= ⊕
EiΓM ∈Γ/ΓM

EiT̂ [ΓM ](Mj) = ⊕
EiΓM ∈Γ/ΓM

EiM
nj

is a direct factor of T̂ [ΓM ]T̂ [Γ0
M ](Xj).

However,

T̂ [ΓM ]T̂ [Γ0
M ]Ŝ[Γ0

M ]Mj = T̂ [ΓM ]
⎛
⎝ ⊕
EM

i ΓM ∈Γ/ΓM

EMi
⎞
⎠
Mj

=
⎛
⎝ ⊕
EM

i ΓM ∈Γ/ΓM

Ei
⎞
⎠
T̂ [ΓM ]Mj

=
⎛
⎝ ⊕
EM

i ΓM ∈Γ/ΓM

Ei
⎞
⎠
Mnj

= ⊕
EM

i ΓM ∈Γ/ΓM

EiM
nj

However, we have

T̂ [ΓM ]T̂ [Γ0
M ]Ŝ[Γ0

M ]Mj ≃ T̂ [ΓM ] ⊕
EiΓM ∈Γ/ΓM

EMi (Mj).

The right hand side is a direct factor of T̂ [ΓM ]T̂ [Γ0
M ](Xj). We get that T̂ [ΓM ]T̂ [Γ0

M ]Ŝ[Γ0
M ]Mj is

a direct factor of T̂ [ΓM ]T̂ [Γ0
M ](Xj). But Ŝ[Γ0

M ]Mj =Xj ⊕ Yj and therefore

T̂ [ΓM ]T̂ [Γ0
M ]Ŝ[Γ0

M ]Mj = T̂ [ΓM ]T̂ [Γ0
M ]Xj ⊕ T̂ [ΓM ]T̂ [Γ0

M ]Yj .

By the Krull-Schmidt property of H, we conclude T̂ [ΓM ]T̂ [Γ0
M ](Yj) = 0. But T = T [ΓM ]T [Γ0

M ] =
T̂ [ΓM ]T̂ [Γ0

M ]D by Lemma 5.10. Now, Yj is a direct factor of some D(Ỹj). More precisely, Yj =
(Ỹj , e) for some non trivial idempotent endomorphism e of Ỹj . Since by Proposition 4.5 the counit

ST Ð→ idG is pointwise split, Ỹj is a direct factor of ST Ỹj . Since T̂ [ΓM ]T̂ [Γ0
M ](Yj) = 0 we get

Te = T̂ [ΓM ]T̂ [Γ0
M ]D(e) = 0 which is a contradiction. This proves the theorem.

Remark 5.12. Suppose that G is a group with finite index normal subgroup N . Then let H =
kH −mod for a commutative ring k, and G = kG −mod, the functors S and T being induction and
restriction. The counit of the adjunction ST Ð→ idG is then the trace map, as was developed by
Linckelmann [27]. Proposition 2.3 requires this map to be split, which is equivalent to ∣Γ∣ = ∣G ∶ H ∣
being invertible in k. In this case all adjunctions giving this monad are then actually isomorphic.
Theorem 5.11 hence generalises Clifford’s theorem 3.2 for group representations for normal subgroups
with index invertible in the ground ring.

Remark 5.13. Recently Asashiba developed his paper [1] further. He replaced the action of the
group Γ by the Grothendieck construction [2]. We are not yet able to generalise Theorem 5.11 in
this direction but we intend to do so in future work.

6. Examples and applications

6.1. Galois modules. In Remark 5.12 we observed that the classical Clifford theorem over fields
of characteristic 0 is a special case of Theorem 5.11.

We consider a slight generalisation using Galois modules.
Let K be a field and suppose that K ≤ L ≤M is a sequence of finite field extensions.

● Suppose that M is Galois over K, denote Gal(M ∶K) =∶ Γ and
● suppose that L is normal, i.e. ∆ ∶= Gal(M ∶ L) ⊴ Gal(M ∶K) = Γ. Then, restriction gives an
epimorphism

Gal(M ∶K)Ð→ Gal(L ∶K)
with kernel ∆ = Gal(M ∶ L).
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● Suppose that G is a finite group and let φ ∶ G Ð→ Γ be a group homomorphism. Then, via
φ we get that M is a KG-module, and via

ΓÐ→ Γ/∆ ≃ Gal(L ∶K)
we obtain that also L is a KG-module.
● Let H ⊴ G be a normal subgroup, and suppose further that [φ(H),∆] = 1.

Consider the twisted group rings M ⋊ G, respectively L ⋊ G. Recall that M ⋊ G is M ⊗K KG as
abelian group, and the multiplicative law is given by

(m1 ⊗ g1) ⋅ (m2 ⊗ g2) = (m1 ⋅ φ(g1)(m2))⊗ g1g2
for any m1,m2 ∈M and g1, g2 ∈ G.

Then L ⋊H is a subring of M ⋊G. This situation then allows to apply our Theorem 5.11.

Lemma 6.1. With the notations above, M ⋊G is a free L ⋊H-module with basis parameterised by
∆ ×G/H.

Proof. Since M is Galois over L, by the normal basis theorem we get

M =⊕
δ∈∆

δL.

Hence, since KG =⊕Hg∈G/HKHg,

M ⋊G ≃ (⊕
δ∈∆

δL) ⋊G

≃ ⊕
δ∈∆

( δL ⋊G) since L is normal and hence G acts on L

≃ ⊕
δ∈∆

⊕
Hg∈G/H

( δL ⋊H) g

≃ ⊕
(δ,Hg)∈∆×G/H

( δL ⋊H) g

Since δ ∈∆, the automorphism δ fixes L pointwise, and hence

M ⋊G ≃ (L ⋊H)∣∆×G/H ∣

as L ⋊H-module.

G acts on Γ via φ, and then by conjugation. We may hence form the semidirect product Γ ⋊G.
As L is normal over K, we get ∆ ⊴ Γ, and therefore by restriction we get a semidirect product ∆⋊G.
Further, [φ(H),∆] = 1 implies that this induces a semidirect product structure ∆ ⋊G/H.

Lemma 6.2. The monad given by the adjoint pair (M ⋊G ⊗L⋊H −, resM⋊GL⋊H ) is a normal subgroup
situation with group ∆ ⋊G/H.

Proof. Denote (Ψ,Φ) ∶= (M ⋊G⊗L⋊H −, resM⋊GL⋊H ) for short. From Lemma 6.1 we see that

Φ ○Ψ = ⊕
(δ,g)∈∆⋊G/H

( δL ⋊H)g.

Hence we may put
E(δ,g) = ( δL ⋊H)g ⊗L⋊H −.

Composition gives
E(δ1,g1) ○E(δ2,g2) = E(δ3,g3)

for (δ3, g3) = (δ1 ⋅ φ(g1)δ2 , g1g2). This is precisely the structure of the group ∆ ⋊G/H.

Remark 6.3. Note that we did not fully use that K,L and M are actually fields. As long as we
have a normal basis theorem, such as for tame abelian extensions of algebraic integers in number
fields (using Taylor’s theorem [34]), the statement stays true.
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We now consider the functor Ψ ∶= (M ⋊G)⊗(L⋊H) −
L ⋊H −modÐ→M ⋊G −mod

together with its right adjoint, the forgetful functor Φ. By Lemma 6.2 the adjoint pair (Ψ,Φ)
determines the monad

Φ ○Ψ = ⊕
(γ,gH)∈∆⋊G/H

E(δ,g)

where
E(δ,g) = ( δL ⋊H)g ⊗L⋊H −.

Hence, the hypotheses of Theorem 5.11 are satisfied.
A particularly interesting case occurs when K is a field of characteristic 0. Indeed, again the

counit
Ψ ○ΦÐ→ id

is the trace function. The hypothesis that K is a field of characteristic 0 then shows that the trace
function, hence the counit of the adjunction, is split. Therefore, by Proposition 2.3 all adjunctions
are isomorphic. Hence, the theorem gives a criterion how M ⋊G ⊗L⋊H V decomposes in terms of
the inertia group I∆⋊G/H(V ) for a simple L ⋊H-module V . This inertia group also depends on the

Galois extension. However, ∆ = Gal(M ∶ L), and hence δL ≃ L as L-module for any δ ∈∆. Therefore
I∆⋊G/H(V ) =∆ ⋊U for some subgroup U of G containing H.

6.2. De-equivariantization. In the theory of tensor, braided and fusion categories the concept
studied in our paper is known under the name of de-equivariantization. Recall the setting from [21,
Section 8.22] there. For more ample details we refer to [21].

A fusion category is a finite semisimple tensor category such that the endomorphism algebra of
the unit element is the base field K. Let C be a fusion category with an action of a group G. Then
KG −mod is a subcategory of the full subcategory of G-equivariant objects in C, which is again a
fusion category denoted CG. This embedding factors through the canonical embedding Z(CG)↪ CG.

Let D be a fusion category and let G be a finite group acting on D. Suppose that there is a braided
tensor functor KG−modÐ→ Z(D) such that the composition with Z(D)↪ D is fully faithful. Then
the image of the regular KG-module in DG forms a monad A. Consider A −ModD (cf Section 2.1).
Then DG ∶= A−ModD is again a fusion category with an action of G such that (DG)G ≃ D. Observe
that the monad A is precisely what we call a normal subgroup situation. We hence may apply the
results of Theorem 5.11 to this setting.
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