DIFFERENTIAL GRADED ORDERS, THEIR CLASS GROUPS AND
IDELES

ALEXANDER ZIMMERMANN

ABSTRACT. For a Dedekind domain R with field of fractions K a classical R-order in
a semisimple K-algebra A is an R-projective R-subalgebra A of A such that KA = A.
We study differential graded K-algebras which are semisimple as K-algebras and define
differential graded R-orders as a differential graded R-subalgebras, which are in addition
classical R-orders in A. We give a series of examples for such differential graded algebras
and orders. We show that any differential graded R-order is contained in a maximal
differential graded order. We develop parts of the classical ring theory in the differential
graded setting, in particular the properties of analogues of the Jacobson radical. We further
define class groups of differential graded orders as subgroups of the Grothendieck group
of locally free differential graded modules. We define ideles in this setting showing that
these idele groups map surjectively to the differential graded class group. Finally we give a
homomorphism to the class group of the homology of the differential graded order and prove
a Mayer-Vietoris like sequence for each central idempotent of A, including the analogous
one for the kernel groups of these morphisms.

INTRODUCTION

Differential graded algebras were introduced by Cartan in [4]. These are, by definition,
a pair (A,d) of an associative Z-graded algebra A with an endomorphism d : A — A of
degree 1 and d? = 0, satisfying d(a-b) = a-d(b)+(—1)l%a-d(b) for all homogeneous elements
a,b € A. Differential graded algebras became prominent in the past few decades in order to
provide a powerful tool for homological algebra.

Most research was directed in this perspective. In particular, as differential graded alge-
bras occur naturally in the homological algebra of algebraic and differential varieties, these
examples provided the guideline of reasonable assumptions. In particular, a quite system-
atic assumption is that differential graded algebras are connective, that is all homogeneous
components in positve degrees are assumed to vanish. Often, they are algebras of infinite
dimension over a base field.

We ask what happens if the algebras are more linked to classical finite dimensional al-
gebras. Differential graded algebras are algebras at first, and so one might be tempted to
understand ring theoretic properties of differential graded algebras. To our greatest sur-
prise we could not find much research which was carried out up to now in this direction.
We fist study properties such as Jacobson radicals or analogues of these, and see that the
concepts in this direction in the differential graded case are different. Unlike the classical
situation the intersection of all differential graded maximal left ideals is not the same as the
intersection of annihilators of differential graded simple left modules. This holds however
up to homotopy. Further, we prove a Nakayama’s lemma for the two-sided notion given by
intersection of annihilators of simple dg-modules.

We then study differential graded orders in differential graded semisimple algebras. Since
in characteristic different from 2 the differential vanishes automatically on central idempo-
tents, we study finite dimensional simple algebras, i.e. matrix algebras over skew fields by
Wedderburn’s theorem. We provide examples that there are various interesting differential
graded structures on these matrix algebras. They bear interesting properties. In particular,
their homology is not semisimple in general.
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Then, we consider differential graded orders in these algebras, naively as classical orders
which are stable under the differential graded structure. Graded orders were studied by
LeBruyn, van Oystaen, and van den Bergh in [15]. The differential gives an important extra
structure. One may ask if it would not be reasonable to ask in addition that the homology
is an order in the homology of the algebra. However, this additional condition is restrictive
and it does not seem to allow a rich theory.

We prove that maximal differential graded orders always exist, that any differential order
is contained in a maximal one, and give examples that not all maximal orders allow a
differential structure. Clearly, our algebras are not connective. Non connective differential
graded algebras may have strange properties. We mention Raedschelder and Stevenson [18]
for striking examples and properties in this direction.

Finally we define class groups of locally free differential graded orders. We give a K-
theoretic definition and prove its equivalence with a second definition provided by ideles.
The only modification which is necessary, is that we need to consider the subalgebra of
cycles, and not the entire algebra. We then show that the functor 'taking homology’ then
maps to the ordinary class group of the homology algebra, at least if the homology algebra of
the ambiant semisimple algebra is semisimple. The kernel of the resulting map then bounds
the fibre of stable quasi-isomorphism classes instead of stable isomorphism classes of locally
free modules.

We finally mention that a differential graded Jordan-Zassenhaus theorem is not available
for the moment. Hence I do not known if differential graded class groups are finite.

Here is an outline of the paper. In Section 1 we review some basic facts on differential
graded algebras and differential graded modules. In Section 2 we recall a result due to
Aldrich and Garcia Rozas on semisimplicity of the category of differential graded modules.
In Section 3 we provide basically two classes of algebras which are simple as algebras and
differential graded. Choosing special cases provide a wealth of interesting examples for what
follows. Section 4 develops classical ring theory of differential graded algebras, in particular
different concepts of radicals of differential graded algebras, providing the technical tools
for discussions in further sections. Section 5 then introduces our main object of study,
differential graded orders and differential graded lattices. We provide a weak version and
a strong version in parallel, but focus mainly on the weak version, which seems to have
more and easier accessible properties. As fist property we study maximal differential graded
orders in Section 6. In Section 7 we introduce class groups of differential graded orders and
differential graded ideles, show the equivalence of the K-theoretic and the ideéle theoretic
setting. In Section 8 we prove a Mayer-Vietoris like sequence for class groups of differential
graded orders.

1. FOUNDATIONS OF DG-ALGEBRAS AND DG-MODULES

1.1. Generalities. Let R be a commutative ring. Recall from Cartan [4] and Keller [12]
that
e a differential graded R-algebra (or dg-algebra for short) is a Z-graded R-algebra

A = @,z An together with a graded R-linear endomorphism d of square 0 of
degree 1 (i.e. d(A;,) C A,41 and dod = 0) and such that

d(ab) = d(a)b+ (—1)1ad(b)

for all homogeneous elements a,b € A. A homomorphism of differential graded
algebras f : (A,da) — (B,dp) is a degree 0 homogeneous R-algebra map f such
that foda =dpo f.

e If (A, d) is a differential graded algebra, then (A%, d°P) is a differential graded algebra
(cf e.g. [22, Definition 11.1]) with  -op y := (—1)*M¥lyz for any homogeneous
elements x,y € A, and d°P(x) = d(x). We hence write d°P = d.
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e A differential graded left A-module (or dg-module for short) is then an A-module
M, Z-graded as an R-module with graded R-linear endomorphism dj; of square 0
and of degree 1, such that

dar(ma) = dar(m)a + (—1)™md(a)
for all homogeneous elements a € A and m € M. A differential graded (A, d)-right
module is a differential graded (A, d)-left module.

o Let (A,da) be a differential graded R-algebra and let (M, d5s) and (N, dn) be differ-
ential graded (A, d4)-modules. Then a homomorphism of differential graded modules
is an R-linear map f : M — N, homogeneous of degree 0 with fody = dy o f, with
flam) =af(m) for all a € A and m € M.

o If (M,dys) is a dg-A-module, then let M k] be the dg-module given by (M][k]), =
My for all n € Z and dpp) = dpr- It is easy to see that M[k| is a dg-module
again.

e Let (M,dy) and (N, dy) be differential graded (A, d)-modules. The homomorphism
complex Hom% (M, N) is the Z-graded A-module given by

(Hom%(M,N))p :={f: M — N | f € Homgz(M,N) and
f(My) € Niip and

flam) = (=1)"a- f(m)}.
The elements f of Hom$% (M, N) are not asked to be compatible with the differentials
in any way. Let dgom : Hom% (M, N) — Hom$% (M, N) given by

diom(f) == dn o f — (~1)V1f o dyy.
Then
d%[om(f) = dHom(dN © f - (_1)‘f|f OdM)
= dyo(dvof—(-D)VIfodu)
~(=D Y dy o f = (=M1 f o dar) o ds
(=) (dy o foda —dn o f oday)
=0
Therefore (Hom% (M, N),drom) is a complex of R-modules.

e The category A — dgMod of dg-modules over the dg-algebra (A, d) is abelian with
morphisms the degree zero cycles of (Hom% (M, N), drom) (cf [22, Lemma 22.4.2]).
If A is Noetherian, then the subcategory A — dgmod of finitely generated dg A
modules is abelian as well.

e The homotopy category K (A — dgMod) is the category with objects A dg-modules
and morphisms Hom g (a—agnrod)(M, N) = Ho(Hom$ (M, N),drom)-

e If Aisartinian and (A, d) a differential graded algebra. Then the category A—dgmod

has split idempotents and is hence Krull-Schmidt. This follows from the fact that
the image of a homomorphism of dg-modules is a dg-module again.

Lemma 1.1. Let (A,d) be a differential graded R-algebra, and let (M,dps) and (N, dy) be
differential graded (A, d)-modules.

o Then Zo(Hom% (M, N),dtom) = (ker(dpom)o consists the homomorphisms of com-
plexes, and Ho(Hom%(M,N),dmom) is the morphisms M — N in the homotopy
category.

o If M = N, then End%(M) is a dg-algebra and composition of graded morphisms
yields a differential graded End® (M )-module structure on Hom% (M, N).

Proof: [12] m
Lemma 1.2. d4(1) =0.
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Proof. d4(1) =1-da(1)+da(1) -1, which implies d4(1) =0. m

Corollary 1.3. Let R be a commutative ring and let (A, d) be a differential graded R-algebra.
Then ker(d) is a graded subalgebra of A.

Proof. Since d is R-linear, ker(d) is an R-module. Since d is homogeneous, ker(d) is
graded. By Lemma 1.2 ker(d) contains 1. Further, d(zy) = d(z)y &+ zd(y) for any homoge-
neous elements x,y shows that =,y € ker(d) = zy € ker(d). m

Remark 1.4. We note that Example 3.6 shows that in general d(u) # 0 for a unit v in A.
Further, units are not necessarily in degree 0, as is shown by Example 3.6.

Lemma 1.5. Let (A,d) be a differential graded algebra. Then, the algebra structure of A
induces a graded algebra structure on H(A,d) (and hence differential graded with differential

0).
Proof. Let a,b € ker(d) be homogeneous. Then d(a - b) = d(a) - b+ (—1)l%a - d(b) = 0
Hence a - b € ker(d). Let a = d(x) and ¢ € ker(d) be homogeneous elements. Then
ac = d(z)e = d(zc) — (=) zd(c) = d(zc) € im(d).

Likewise ca € im(d). Hence, the multiplication is well-defined. The fact that the additive
law is well-defined and combines to a ring structure is trivial. m

Lemma 1.6. Let (A,d) be a differential graded algebra and let (M,dyr) be a differential
graded right (resp. left) A-module. Then the A-module structure on M induces a right
(resp. left) H(A,d)-module structure on H(M,dyy).

Proof. We only need to show that the induced action is well-defined. We shall give the
proof for a right module. The left module case is analogous.

Let a € ker(d) be a homogeneous element, and let m € ker(dy;) be a homogeneous
element. Then

dyr(m - a) = dyr(m) - a + (=1)™m - d(a) = 0
Hence m - a € ker(dys) again. Moreover,
dy(n) - (a+d(b)) = dy(n)a+ dy(n)d(b)
= du(na) = (=1)"nd(a) + dy(nd(b)) — (—1)"Ind* (b)
= dy(na) + dy(nd(b)) — (—1)1nd(a)
= dy(na) + dy(nd(b))

is in im(dyy), since a € ker(d) and hence nd(a) = 0. Therefore, the multiplication of H(A)
on H(M) is well-defined. m

2. SEMISIMPLICITY IN THE CATEGORY OF DIFFERENTIAL GRADED MODULES

We recall a theorem of Tempest and Garcia-Rozas [1]. A differential graded A-module X
is simple if the only differential graded A-submodules are 0 and X. An abelian category is
semisimple if all subobjects admit a complement.

Theorem 2.1. e [1, Theorem 4.7] Let (A,d) be a differential graded algebra. Then
the following are equivalent:
(1) The regular differential graded A-module A is projective in the category of dg-

modules
(2) A is acyclic.
(3) 14 € im(d)
(4) any left dg-module is acyclzc
(5) The functor A @zay — from graded Z(A)-modules to differential graded A-

modules s an equwalence with quasi-inverse Z(—).
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e [1, Theorem 5.3] The category of differential graded modules over (A,d) is semisim-
ple precisely when the category of graded modules over the graded algebra of cycles
Z(A) = ker(d) is semisimple and A is an acyclic complex. This in turn is equiv-
alent with the left reqular differential graded (A,d)-module (A,d) is semisimple as
a differential graded module, in the sense that all differential graded ideals have a
complement.

Note that Tempest and Garcia-Rozas show [1, Lemma 4.2] that if 14 = d(z), then A =
Z(A) @ Z(A)y.

Remark 2.2. Let K be a commutative ring such that 2 is a regular element in K, and
let (A,d) be a differential graded K-algebra with centre Z(A), and let e? = e € Z(A) be
homogeneous. Then, copying the argument of [6, Theorem 1.4 and Corollary 1.5], since
e? =ec Z(A), we get that e is necessarily in Ag. Moreover,

d(e) = d(e*) = d(e)e + ed(e) = 2ed(e) = 4ed(e)

Hence ed(e) = 0. Moreover (1 —e)d(e) = (1 —e)d(e)e+ (1 —e)ed(e) = 0, and hence d(e) = 0.
Therefore, if A = A; x Ay as algebra, then (A,d) = (A1,d) x (A2,d) as differential graded
algebras.

Corollary 2.3. As we have seen in Remark 2.2 for a differential graded algebra A which is
semisimple artinian as algebra over a field of characteristic different from 2, by Wedderburn’s
theorem we have that A is a direct sum of differential graded algebras, each of which is a
matriz algebra of a skew field.

3. SOME EXAMPLES
We first give an example for a Z-grading of matrix algebras.

Example 3.1. (1) Let A = Matyxn(D) for some skew-field D, finite dimensional over
K, and n > 1 an integer. Then A is graded by putting Ay the subalgebra given by
the main diagonal entries

* 0 ... ... 0
0 = 0
*

: .0

0 ... ... 0 =

Then upper one diagonal coefficients (a;;+1); give the degree 1

0 =« 0O ... 0
0 O *

0

: w0 x

0O ... ... 0 0

the upper 2 diagonal coefficients (a; ;12); give the degree 2, etc. The lower one diago-
nal coefficients (a;y1,)i give the degree —1, the lower 2 diagonal coefficients (ai42,i)
give the degree —2, etc. Elementary matrix multiplication proves the definition for
a graded algebra. Moreover, A is semisimple as an algebra.

(2) Let A= EP,,c; An be a graded semisimple algebra, then for any u € A* we see that
A" =P,z uA,u"! is again a graded semisimple algebra.

We produce a series of examples showing that our concept is non trivial and allows
interesting phenomena.
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Remark 3.2. Note that Example 3.1 provides gradings such that A-e Z A - d(e) for any
primitive idempotent e of degree 0 and any differential d of degree 1. Also for Endj (L) for
a bounded complex L of K-vector spaces there is such an idempotent. Indeed, in this case
the degree 0 component is formed by matrix algebras along the diagonal, and the degree 1
component is formed by matrices right up to these.

Proposition 3.3. Let K be a field and let (A,d) be a finite dimensional differential graded
algebra. Suppose that A is a split simple K-algebra. Suppose that there is a primitive
idempotent e of A such that A-e £ A-d(e). Then there is a bounded complex L of K-modules
such that A ~ Hom$,(L,L) as differential graded algebras. Conversely, A = Hom$(L, L)
s differential graded, finite dimensional simple as algebra, such that there is a primitive
idempotent e with A-e  A-d(e).

Proof. If L is a bounded complex of K-vector spaces, then Homj (L, L) is a full matrix
ring over K, as ungraded algebra, and hence simple as algebra. Further, Hom}.(L, L) is a
differential graded algebra by Lemma 1.1.

Conversely, let K be a field and let (A,d) be a finite dimensional differential graded
algebra. Suppose that A is a split simple K-algebra. By Wedderburn’s theorem, A is a full
matrix algebra over K. Let e be a primitive idempotent of A satisfying Ae Z Ad(e). Then

M:=A-e+ A-d(e) and N := A-d(e)
are differential graded (A, d)-modules. Further N < M and
L:=M/N#0

is a differential graded (A, d)-module. As A-module, we see that L ~ Ae is a progenerator.
Hence L is a natural differential graded (A, d) — (End®(L), dmom) bimodule. Now, for any
homogeneous a € A, left multiplication by a gives a homogeneous element ¢(a) € End®(L).
Further, ¢ is additive, sends 1 € A to the identity on L, and induces a ring homomorphism

¢:A— End*(L).

Since L is a progenerator, ¢ is injective. Since dimg(A) = dimg(End®(L)), we get that ¢
is an isomorphism of algebras. Now, for any homogeneous a,b € A, we have
d(a)b = d(ab) — (—1)!"ad(b)
we get
p(d(a) = dop(a) — (=1)p(a) o d = drom(¢(a))
and therefore ¢ is an isomorphism of differential graded algebras. Further, by Remark 3.2

there is a primitive idempotent e of degree 0, by degree considerations we get Ae € Ad(e).
[

Remark 3.4. The hypothesis that there is a primitive idempotent e of A such that A-e &
A - d(e) is superfluous. Indeed, [6, Corollary 1.5] shows that A is isomorphic, as a graded
algebra, to a matrix algebra with the main diagonal in degree 0. Transporting the differential
structure via this isomorphism, we obtain the existence of such an idempotent.

Remark 3.5. After having finished and submitted the manuscript I discovered that D.
Orlov defined our notion of simple differential graded algebra earlier in [17], and called it
abstractly simple. Moreover, he proved the statement of Proposition 3.3 by completely
different means. His proof uses scheme theoretic arguments. However, he has to assume
that the primitive central idempotents are in degree 0. Our approach however gives that
this can be assumed to be automatically satisfied using [6, Corollary 1.5].

Example 3.6. We consider a field K and the algebra of 2 x 2 matrices over K. We shall
use Proposition 3.3. Except the stalk complex and complexes with differential 0, up to shift,
the only possible complex realising this dg-algebra is

i 00— K 5K —0— -,
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concentrated in degree 0 and 1. We denote by 4 the differential on the complex. Endomor-
phisms of degree 0 are given by two scalars v and v

U Y

A morphism of degree 1 will map the degree 0 homogeneous component to the degree 1
homogeneous component, i.e. is given by multiplication by a scalar w. A morphism of
degree —1 will map the degree 1 homogeneous component to the degree 0 homogeneous
component, i.e. is given by multiplication by a scalar z.

degree 1 morphism degree —1 morphism
K = K K = K
K = K K = K

Then, these morphism correspond to a matrix

u w
< - > EMCLtQXQ(K)

with the names of the variables chosen as in the above maps indicating the identification
of the endomorphisms with the matrices, and the grading given as in Example 3.1.1. Here,
in order to respect the usual multiplication of matrices and endomorphisms of the complex,
we need to write the maps on the right, and compose them accordingly.

Compute the differential. Consider first a degree —1 morphism «,. Then, using that
the maps apply on the right and hence d(y) = yd — (—1)"ldy as mappings acting on the
complex. Hence

d(a.) = a6 — (=1)l*=l6a, = ( xoz 8 ) + ( 8 xOZ ) — z-id.

Then, for the differential of a degree 0 morphism /3, ., acting as u on the degree 0 component
and as v on the degree 1-component we get

d(ﬁu,v) = /Bu7u(S - (_1)|5u’v|518u,v
= ﬁu,v(s - 5Bu,’u

o 0 —zu n 0 v
- 0 O 0 0
0 z(v—u)
0 0
Note that this result is a consequence of the identities
00~01—00and01-00—10
10 00/ \01 0 0 1 0) \0O

together with Leibniz formula and the result of d(a,). This gives a dg-algebra and any
differential is of this form for some x € K. If x # 0, the homology is 0.
Note that if  # 0, then the kernel of the differential is

@) = (( § 1) e K} =K1/

with € in degree 1. This is not semisimple, and hence we do not get a semisimple differential
graded algebra in the sense of Aldrich and Garcia-Rozas [1]. However, for z invertible
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we have z = % ( 00 ) is a preimage of 1, as required in Aldrich and Garcia-Rozas [1]

1 0

structure theorem.

10
degree —1 and another summand of degree 1. However,

(o o ey s =500

is non zero for x # 0. Hence, the differential of invertible elements are not necessarily 0.
Nevertheless, d(1) = 0.

As any differential graded (A, d)-module (M, §) is at first an A-module, it is useful to con-
sider the possible left dg-module structures on K? for the above dg-algebra (Mats(K),d,).

We further observe that ( 01 ) is invertible, non homogeneous with a summand of

So,let&((?>):<Z)forsomeu,vGKandé((é)):<i>f0rsomes,t€K.
o= (V) (V=0 ) (V) (5 e) (0) = (%)
o= o) (V=00 7 ) () (Go) (2)= (")

(v) = oo v ) (V=0 5)- ()0 0)(0)=(2)

(1) = (oo ) (V)=-(oo) (0)-(v)

(v) = (v o) Cop=(o ) (o) (Vo) (1)=(%)

(7) =5 v) (o =5 %™ ) (o) (55) ()= (3)
o= (oo ) (o )=-(50)(2)=(5)
o= (=) (9) = ()

Hence s =v =t =0, x = u. Since § is of degree 1, we need to have < (1] ) is of degree n and

(1) is of degree n—1 for some integer n. Up to shift there is a unique dg-module structure

given by 0 (< ]qj >) = ( xoq > Of course, this is a simple differential graded module.

Let (C’*,g) be a bounded complex of finitely generated M atax2(K)-modules. Each ho-
mogeneous component C™ is isomorphic to a a direct sum of differential graded modules
(K?2,6) as above. Then, the total complex is a differential graded module. Using the above
explicit computation can be used to show that this gives again the only possible differential
graded structures on the corresponding graded module.

Remark 3.7. T wish to thank Bernhard Keller who noted!' that the above differential
graded algebra is the differential graded endomorphism algebra Homf, (M, M) for M being
the complex

i 00— K- 5K —0— .

Lemail from December 24, 2022 to the author
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Example 3.8. We consider the 3 x 3 matrix ring over a commutative ring R. We will use
an alternative grading coming from the fact that this ring is Morita equivalent to the 2
matrix ring over R.

ail a2 a13
Matg(R) = { a21 agy as3 ’ deg(agl) = deg(agg) = — 1;
a3z1 az2 ass
deg(ai1) = deg(ai2) = deg(az1) = deg(az2) = deg(asz) = 0;
deg(a13) = deg(ags) = 1}
This grading comes from the complex L
(@31) o
o —>0—R —R —0— -

We make explicit the differentials.

We get
000 anz a1y 0
d( 0 0 O ) = az1r a1y 0
z y 0 0 0 a1z + a1y
and
Ao O 0 0 an(l/ — /\) — ag10
d(f = o 0 )= 0 0 an(v—p)—anr
0 0 v 0 0 0

We may study the homology of this differential graded algebra. Suppose that R is an
integral domain. If a1; # 0 # a9, then the degree 0 cycles is given by the set of matrices

" A %(V—)\) 0
(v —p) p 0
0 0 v

for A\, u,v € R, such that all coefficients are in R. This forms a 3-dimensional affine va-
riety. The boundaries in degree 0 forms a 2-dimensional subvariety. Hence, the degree 0
homology has an R-torsion free part of rank 1. Degree —1 cycles are trivial, since R has
no 0 divisors. The degree 1 cycles is R?, by definition. Clearly, the degree 1 homology is
(R/(a11R + a1 R))*.

4. DG-ALGEBRAS WITH RESPECT TO SEMISIMPLICITY AND NOETHERIAN RING
THEORETICAL PROPERTIES

As we shall need to consider semisimplicity of differential graded algebras, it makes sense
to consider differential graded versions of the Jacobson radicals. Further, we shall consider
semisimplicity of the homology algebra.

4.1. Semisimplicity of the homology.

Example 4.1. Consider Example 3.8. The special case a;; = 0 # as; produces an inter-
esting dg-algebra A, which is semisimple as an algebra. Then

0 00 0 0 0
d( 0 0 O = asy r Yy 0
z y 0 0 0 vy
and
Ao 0 0 0 —0o
d({ 7 n 0 | =an 00 v—u
0 0 v 0 0 0
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Hence,

ker(d) = { | u,v,s,t,x € K},

=
o O©
T <+ ®»

which is isomorphic to the semidirect product of the 2 x 2 lower matrix algebra acting on
K 0

K K ) . Clearly, this algebra is not

its natural 2-dimensional representation: ( g ) X (
semisimple. However, H(A) = K.

In this context is may be worth to mention the following criterion in this context. We
shall need the statement later.

Lemma 4.2. Let K be a field and let (A,d) be a finite dimensional differential graded K -
algebra. Then (ker(d),d) is a subalgebra of (A,d). If ker(d) is semisimple, then H(A,d)
is semisimple as well. Moreover, the restriction of the epimorphism ker(d) —» H(A,d) to
ker(d)* yields a surjective group homomorphism ker(d)* — H(A,d)*.

Proof. By Corollary 1.3 ker(d) is a graded subalgebra of A. By hypothesis, ker(d) is a
semisimple K-algebra. Now, by Lemma 1.5 there is an epimorphism ker(d) —» H(A,d)
of algebras, and the preimage of a twosided ideal in H(A,d) is a twosided ideal of ker(d).

Therefore H(A,d) x ker(m) = ker(d) as algebras, and as a consequence any unit H(A,d)
lifts to a unit of ker(d). m

Remark 4.3. Let (A, d) be a semisimple artinian dg-algebra and let (L, dy) and (M, dy) be
differential graded (A, d)-modules. Then ker((dgom)o) = End 4 q)(L,d) is not semisimple in
general since not every homomorphism « : (L,dr) — (M, dys) of complexes decomposes as
«a = o/ for a split epimorphism § of complexes and a split monomorphism « of complexes.

We recall the easy argument. We consider the special case when A is concentrated in
degree 0 and L is finitely generated in each degree.

Since A is semisimple, L is a semisimple A-module. We claim that L = L. ® H (L) is the
direct sum of contractible 2-term complexes L. and its homology H(L). Indeed, since there
is no non zero A-module homomorphism between two non isomorphic simple A-modules,
we may assume, multiplying by a specific central idempotent if necessary, that A actually
is simple. By Morita equivalence we can therefore assume that A is a skew field.

Choose a basis of im(d_;), extend it to a basis of ker(dp), and then the so-obtained
basis to a basis of L. For each basis element of im(d_1) choose a preimage in L_;. The
vector space generated by these elements intersects im(d_s) in 0, since d> = 0. Consider
ker(d_1), containing im(d_2). We may choose a basis of im(d_2), extend it to a basis of
ker(d_1), and complete the whole to a basis of L_; by the preimages chosen before. By
downward induction we chose adapted bases in negative degrees. For positive degrees, we
proceed in the same way by upwards induction. The bases elements chosen in the image of
the differential, together with their preimages give contractible 2-term complexes. The rest
combines to the homology.

Consider the case of

Li=...0 0 M M 0
concentrated in degree 0 and 1, and
Ly=...0 NN 0 0...

concentrated in degree —1 and 0. Moreover, suppose that A = D is a skew field. Then
Homy(Ly,Ls) = Homp(M,N) from the spaces in degree 0, using that the differentials
do not impose any restriction. However, Hom (L2, L1) = 0 since the compatibility of the
differentials impose that the map in degree 0 needs to be 0.

Proposition 4.4. Let (A,d) be a dg-algebra over a field F, such that A is split simple
artinian as an algebra. Then H(A,d) is simple as an algebra.
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Proof. By Proposition 3.3 and Remark 3.4 we see that (A4,d) ~ (End}(C*),dHom)
for some finite dimensional complex C*® of F-vector spaces. By Remark 4.3 any bounded
complex of vector spaces is isomorphic to C* ~ D*® E*® for D*® being contractible and E* a Z-
graded vector space with zero differential. Hence, we may replace C* by this decomposition.
In the homotopy category of F-vector spaces we get C* ~ E®. Now, denoting by K°(F —
mod) the homotopy category of bounded finite dimensional F-vector spaces,

Hn((A,d)) =~ Hyp((Endk(C®),dHom))
~ Hy((Endy(D* ® E®),dHom))
>~  Hompgb(p_mod) (D*® E*,D* @ E®[n])
~ Hompg(p_mod) (E°, E®[n])
~ Homgraded F-modules(E*, E*[n])

Therefore, H(A,d) is a matrix algebra over F', and the grading on the homology gives a
grading on the matrix algebra. m

Remark 4.5. The hypothesis that A is split is not necessary since actually F' may well be
a skew field in the proof of Proposition 3.3.

Remark 4.6. Consider the situation of Remark 4.3. Then we have a ring homomorphism
End% (L) — Ho(End% (L)) = Endg—a(H(L))

from the endomorphism complex of L to the ring of graded A-linear homomorphisms of
H(L). Since A is semisimple, and since H(L) is a semisimple A-module, Endg,_a(H (L))
is a semisimple algebra. Moreover, using Lemma 1.1, we get that (End%(L),dpom) is a
differential graded algebra, mapping to a semisimple algebra Enda(H(L)).

4.2. Differential graded radicals of differential graded algebras. We shall study the
ring theory of differential graded algebras.

Lemma 4.7. Let (A,d) be a differential graded algebra, let (M,0) be a differential graded
(A, d)-module with a differential graded submodule (N, ). Then there is a differential 6 on
M/N given by 6(m + N) := §(m) for allm € M.

Proof. M/N is a A-module by general ring theory. Since §(N) C N, the map ¢ is well-

defined. § is clearly additive since ¢ is additive. Since 5% =0, also 5% = 0. Since § satisfies
Leibniz formula, so is . m

Lemma 4.8. Let (A, d) be a differential graded algebra and let (I,d) be a differential graded
ideal of (A,d). Then there is a differential graded ideal (M,d) in (A, d), which is mazimal

in the partial ordered set of differential graded ideals different from (A,d), and containing
(I,d).

Proof. An analogue of the usual proof in the classical situation works. We use Zorn’s
lemma. Let X’ be the set of differential graded ideals of (A, d) containing (I, d) but different
from (A,d). Then (I,d) € X, and hence X" is not empty. Let £ be a totally ordered subset
of X and let J := (J;cp L. Then J is an ideal by the classical argument. Moreover, it
is differential graded since if z € J, there is L, € £ with x € L,. Then d(x) € L, C J.
Further the Leibniz formula holds in A, whence also in J. If 1 € J, then there is L1 € L
such that 1 € L1, and hence Lq is not in X, which provides a contradiction since £L C X. m

Lemma 4.9. Let (A,d) be a differential graded algebra and let (I,d) be a differential graded
ideal of (A,d). Then (I,d) is a differential graded ideal, maximal in the partial ordered
set of proper differential graded ideals, if and only if (A/I,d) does not contain non trivial
differential graded ideals, for d the differential induced on A/I by d.
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Proof. Let x € A and y € I. Then by Lemma 4.7 for d(x + I) := d(z) + I defines a
differential on A/I. Consider the zero ideal in (A/I,d). By Lemma 4.8 this is contained in
a maximal (in the above sense) differential graded ideal (M,d). Let M be the preimage of
M in A. We claim that (M,d) is a dg-ideal. Since M is an ideal, by classical ring theory
M is an ideal as well. For m € M let d(m) + I = d(m + I) € M since (M, d) is a dg-ideal.
Hence d(m) € M and by consequence (M, d) is a differential graded ideal. If there is no non
trivial differential graded ideal in A/I, then M = I and [ is a maximal (in the above sense)
differential graded ideal. If A/I admits non trivial differential graded ideals, then I # M,
and [ is not maximal. This shows the statement. m

Remark 4.10. Note that the statement of Lemma 4.9 is completely formal and holds for
left- or right- or twosided ideals.

Lemma 4.11. Let (A, d) be a differential graded ring and let (M, §) be a non zero differential
graded (A, d)-module. If (M,9) is finitely generated as differential graded module, then there
is a differential graded submodule (N,d) of (M,d), mazimal with respect to the lattice of
proper differential graded submodules, and such that (M/N,6) is a dg-simple dg-module.

Proof. Let (M,0) be finitely generated and denote by {g1,...,9,} a set of generators.
We need to show that M contains a proper dg-submodule (N,d) which is maximal as dg-
submodule. Let X be the set of dg-submodules (L, d) of (M, ) such that L # M. This
set is not empty since 0 is trivially a dg-submodule. Let £ be a non empty totally ordered
subset of X'. Then, analogous to the proof of Lemma 4.8

V.= U L
Lel

is a dg-submodule of (M, d). We need to show that V # M. Else, {g1,...,9n} C M =V
and hence for any i € {1,...,n} there is L; € £ with g; € L;. Since L is totally ordered,
thereism € {1,...,n} such that L; C L, for alli € {1,...,n}. But then M = L,, since L,
contains all generators {g1,...,¢g,}. This is a contradiction to L,, € X. By Zorn’s lemma
there is a maximal element in X, say (N,d). We claim that N is maximal with respect
to the lattice of dg-submodules. Else, let (D, d) be a strictly bigger proper dg-submodule.
Then (D, ) is superior to (N,d) in X, a contradiction. Since (N, ¢) is maximal as a dg-
submodule, (M /N, ) is dg-simple, since else consider a proper quotient of (M/N,), and
the kernel of the composite quotient map from M to the quotient would be strictly larger
than (IV,d). We proved the statement. m

Lemma 4.12. Let (A,d) be a differential graded algebra and let (M,6) be a differential
graded left (resp. right) module. Then for any homogeneous a € ker(d) we have that A - a
(resp. a-A) is a differential graded (A, d) left (resp. right) submodule.

Proof. Indeed, §(A-a) = d(\)-a+Ndé(a) = d(N\)-a and likewise §(a-\) = d(a)A\ta-d(N) =
a-d(\). m

Remark 4.13. If the homogeneous a is not (necessarily) a cycle, i.e. a ¢ ker(d), then
A-a+ A-d(a) is a differential graded ideal. Similarly, if (M, dys) is a dg-bimodule, and if
m € ker(dps), then A-m + A - dp(m) is a left dg-submodule of (M, dyy).

Corollary 4.14. Let (A,d) be a differential graded algebra and let (I,d) be a left (resp.
right) differential graded ideal, mazximal in the lattice of proper left (resp. right) dg-ideals.
If a € (ker(d) 4 I) is homogeneous, and if a & I, then a + I is a left (resp. right) generator
of the module A/I.

Proof. If a € ker(d) + I, but a ¢ I, then a + I € ker(d) and then there is x € I such
that a + x € ker(d) and hence A - (a + x) is a differential graded ideal of A. Hence, also
I+ A(a+ z) = I+ Aa is a differential graded ideal of A. If a ¢ I, then by the maximality
of (I,d) we have that A = I + Aa. Therefore a+ I has a left inverse in A/I. The statement
for the right ideals is analogous. m
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Definition 4.15. Let (A, d) be a differential graded algebra. A non zero differential graded
(A, d)-module (M,6) is called differential graded simple if there is no differential graded
submodule of (M, ¢) different from (M, ) and 0. A differential graded (A, d)-module (M, )
is called differential graded semisimple if (M,d) is the direct sum of simple differential
graded (A, d)-modules. A differential graded algebra (A,d) is called semisimple if (A,d) as
left (A, d)-module is semisimple.

Remark 4.16. We should remind the reader of different concepts of semisimplicity. In
Definition 4.15 we consider a dg-module as being semisimple if it is a direct sum of simple
dg-modules, and a dg-module is dg-simple if it does not contain a proper dg-submodule.

In contrast to this is the concept of a dg-module being semisimple if all dg-submodules
admit a dg-complement. This concept is the one studied by Aldrich and Garcia-Rozas [1],
and they obtain the complete classification as displayed in Theorem 2.1.

For differential graded modules over differential graded algebras these two concepts differ.

Recall that Lam [14] give two notions for these properties. He says (cf [14, I (2.1) Defini-
tion]) that a module over an algebra is semisimple if all submodules admit a complement.
He calls an algebra Jacobson-semisimple (or J-semisimple) if its Jacobson radical is 0 (cf
[14, IT (4.7) Definition]).

Example 4.17. Let K be a field and let A = K[X]/X? for deg(X) = —1. Then d(1) =0
and d(X) = 1 give a structure of differential graded algebra to A. Indeed, (a+bX)(c+dX) =
ab + (be + ad)X and

d((a+bX)(c+dX)) =bc+ad

and
dla+bX)-(c+dX)+ (a—bX) -d(c+dX)=blc+dX)+ (a — bX)d = be+ ad.

Further, 0 = d(0) = d(X?) =d(X)- X — X -d(X) = X — X = 0. The algebra A is simple
as differential graded algebra in the sense that there is no non trivial twosided differential
graded ideal (cf Definition 4.21 below). Indeed, there is only one non trivial algebra ideal,
namely X K[X]. However, this is not a differential graded ideal, since d(X) = 1. Further,
the only simple differential graded modules are the regular one and its shifts in degree, which
are not concentrated in a single degree. Note that this is the smallest example of algebras
mentioned in the second item of Theorem 2.1 studied by Aldrich and Garcia Rozas [1]. Of
course, A is not a simple algebra.

Corollary 4.18. Let (A,d) be a differential graded algebra and let (I,d) be differential
graded left ideal of (A, d) which is maximal in the lattice of proper dg-ideals. Then (A/I,d)
is a dg-simple differential graded (A, d)-module.

Proof. This is a direct consequence of Lemma 4.9. m

Lemma 4.19. Let (A,d) be a differential graded algebra and let (S,0) be a dg-simple dif-
ferential graded (A,d)-module. Then for any non zero homogeneous u € ker(d) there is a
surjective homomorphism (A, d)[—|u|] — (S,0) given by 7(\) = Mu. Further, there is al-
ways a non zero homogeneous u € ker(9), and ker(m) is a differential graded ideal which is
mazximal in the set of proper dg-ideals.

Proof. Due to the shift, 7 is a homomorphism of graded modules. We need to show that
7 is compatible with the differential. Let A € A be homogeneous. Then

7(d(N) = dN)u = dN)u+ (=) (u) = §(Au) = 6(x(N)),
where the third equation is Leibniz formula, and where the second equation holds since
u € ker 0. Using Lemma 4.12 we see that im(7) is a non trivial dg submodule of S, and by

simplicity of S, we see that 7 is surjective. Note that 62 = 0 shows that ker(§) is not zero.
Using Lemma 4.9 we see that ker(w) is a maximal dg-ideal. m
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Lemma 4.20. Let (A,d) be a differential graded algebra, let (M, ) be a differential graded
(A, d)-module. Suppose that there are dg-simple differential graded (A, d)-left modules (S1, 1),
<oey (Sn,0p) such that

(M,6) ~ (51,61) ® -+ @ (Sn,dn)
as differential graded left modules. Then for any differential graded submodule (N,d) of
(M, 0) there is a differential graded submodule (L, ) of (M,d) such that M = N & L.

Proof. Consider the family of sets {i1,...,it} C {1,...,n} such that (@?21 Sz-j) NN =

{0}. Then taking a maximal one P = {i1,...,ix} of these subsets, and put L := @?:1 Si;-
Then L+ N = L@ N is a differential graded (A, d)-module. Hence we get that (S;+L)NN #
{0} for any ¢ ¢ P. Therefore (L ® N)N Sy # {0} for any ¢ ¢ P. Since Sy is a differential
graded simple (A, d)-module, and since L @& N is a differential graded module, Sy C L & N

for any ¢ ¢ P. But this shows that L& N D @), S; = M. We proved the statement. m

Definition 4.21. Let K be a field and let (A, d) be a differential graded K-algebra. The
dg-algebra A is called differential graded simple if the only differential graded twosided
(A, d)-ideals are 0 and (A, d).

Remark 4.22. Recall from the second item of Theorem 2.1 that every differential graded
(A, d)-module is semisimple if and only if (A, d) is acyclic and ker(d) is a semisimple algebra.
Moreover, then A = ker(d) @ z - ker(d) for z € d=*(1).

Consider for example the case of an algebra concentrated in degree 0, such as the field K.
Then there is no non trivial twosided ideal. However, this dg-algebra does not satisfy the
condition of Theorem 2.1. The classical result that simple artinian algebras are semisimple
cannot be transposed to the dg-situation.

Proposition 4.23. Let K be a field and let (A, d) be a dg-simple differential graded algebra.
Suppose that the regular differential graded left (A,d) module and the reqular differential
graded right (A,d) module are dg-artinian.
Denote by cone(idg) the cone of the identity map of the stalk compler K in DP(K —mod).
Then, as differential graded left (A,d)-module, the regular module (A,d) is the direct
sum of shifts of copies of one specific simple differential graded modules (S,0) and shifted
copies of modules of the form total complex of the tensor product of (S,d) by cone(idg), i.e.

tot ((S,&)@K (O—>Ki—d>K—>0)).

Proof. As A is dg-artinian there is a minimal non zero differential graded left ideal
(S,d) and a minimal non zero differential graded right ideal (7',d). Then consider the
(A,d) — (A, d)-bimodule X := (S5,d) ®k (T, d). The multiplication map

AR A — A
is a chain map (replacing A @ A by tot(A @k A)) by the Leibniz rule and maps X to a
bimodule, whence a twosided ideal of A. Hence the image is a differential graded twosided
ideal of (A, d). Since there is no non trivial twosided ideal, this image is A. Now, consider
X as differential graded left module. Since only the K-structure of (T, d) is of importance
then, and since complexes of K-modules are a direct sum of shifted copies of stalk complexes
K and shifted copies of complexes cone(idg ). This shows the statement. m

Remark 4.24. We should note that the short exact sequence

0——K——0
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of differential graded K-modules yields a short exact sequence
0 — (S,8) — tot ((5,5) K (0 — K 5 K — 0)) —5 (8,0)[1] — 0

of (A, d)-left modules. Hence, this tensor product is not a dg-simple dg-module.

For any differential graded left (A, d)-module (M, d) denote the annihilator of (M, ) by
ann(M,0) :={A €A | Am =0 Ym e M}.
Lemma 4.25. We get that ann(M, ) is a differential graded twosided ideal of (A,d).

Proof. Indeed, ann(M,¢) is a twosided graded ideal by general ring theory. Further, if
A € ann(M,d) is homogeneous, then Am = 0 for any m € M, and hence 0 = 6(Am) =
d(N)m £ Xé(m) = d(A\)m since §(m) € M and A € ann(M,d). This show that d(A)m = 0,
and hence d(\) € ann(M,0). m

Definition 4.26. Let (A, d) be a differential graded algebra.

e Then the differential graded left radical dgrad,(A,d) is the intersection of all dg-
maximal differential graded left ideals of (A, d).

e Likewise the differential graded right radical dgrad,(A,d) is the intersection of all
dg-maximal differential graded right ideals of (A, d).

e The differential graded twosided radical dgrad, (A, d) is the intersection of all of the
annihilators of dg-simple differential graded left modules.

Lemma 4.27. (differential graded Nakayama’s Lemma) Let (A,d) be a differential graded
algebra. Let M and N be differential graded A-modules such that N < M. Assume that
(M, ) is finitely generated as a dg-module. Then dgrady(A)M = M implies M = 0, and
N + dgrady(A)M = M implies M = N.

Proof. We suppose that (M, ) is finitely generated as a dg-module. Again, in case M = 0
the statement is trivial. By Lemma 4.11 the dg-module (M, ¢) contains a proper maximal
dg-submodule (D, d) and (M/D,§) is a non trivial dg-simple dg-module. By definition of
dgrads (A, d) we get dgrady (A, d)- M /D = 0, whence dgrad, (A, d)- M C D. This proves that
only M = 0 satisfies dgrad,(A,d) - M = M. As for the second part, N + dgrads(A)M = M
implies dgrady(A)(M/N) = M/N. The first statement then implies M /N = 0, and therefore
M = N. Hence the result follows. m

Remark 4.28. The statement of the dg-Nakayama Lemma for finitely generated dg-modules
M was suggested by the referee. I am very grateful for this suggestion.

Lemma 4.29. A dg-module is dg-Noetherian if and only if all its dg-submodules are finitely
generated as dg-modules.

Proof. The classical proof of this fact transposes to the dg-case, after slight modifications.
Let us verify the details.

If (M,0) is dg-Noetherian, and the dg-submodule (V,0) is not finitely generated, then
take a non zero g; € ker(d) N N. Such an element exists since if g1 € N \ ker(d), then
0(g1) € ker(d) N N. Using Lemma 4.12 we get that A - g1 is a dg-submodule of N. Suppose
we constructed g1, -, gn—1 such that > 7_, Ag; is a dg-submodule for all j and > 7_; Ag; <
Zf;rll Ag; for all j. Since (N,d) is not finitely generated, there is g, € N \ Z?;ll Ag;.
Consider the dg-module (Ny,8) := (N/ 27 Agi, 8). Tf 3(gn + >, Agi) # 0, then replace
gn by 0(gn), which still is not in Z?;ll Ag;, and the image in N/ Z?’;ll Ag; of this replaced
element is in ker(d). If §(gn + >0 Ag;) = 0 there is h,, € Y0 Ag; with 6(gn) = hy,.
But then )", Ag; is a dg-submodule of N. By induction we obtain a strictly increasing
sequence of dg-submodules

Agr € Agr + Aga € Ag1 + Aga + Ags € -+
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of (N,6) C (M,0). This contradicts the hypothesis that (M, ) is dg-Noetherian.
If all dg-submodules of (M, d) are finitely generated, then let

N1 CNyCN3C---CM

be a deceasing sequence of dg-submodules. Put L := |J;2, N;. This is a dg-submodule
of M, and hence is finitely generated, by {g1,...,9n} say, by hypothesis. For each i €
{1,...,n} there is j(i) such that g; € N;(;). But then, for m = max(j(1),...,j(n)) we have
{91,-.-,9n} € Np, and therefore N,,, = N, for all &k > 0. Therefore M is dg-Noetherian.
[

Corollary 4.30. Let M and N be differential graded A-modules such that N < M. If M is
dg-Noetherian, then dgrady(A)M = M implies M = 0, and N + dgrad,(A)M = M implies
M =N.

Proof. By Lemma 4.29 the hypothesis of Lemma 4.27 are satisfied. m

Remark 4.31. Note that we need Zorn’s lemma in the proof of Lemma 4.27. If M is
dg-Noetherian and dg-artinian, then a proof without Zorn’s lemma is possible by a short
induction on the composition length.

If M = 0, the (first) statement is trivial. Else, the hypothesis on M implies that there
is a dg-simple dg-module, namely a dg-simple dg-submodule of M. If dgrad,(A)M = M,
then comparing the composition lengths, one needs to have M = 0.

Remark 4.32. There is a parallel work on Nakayama’s Lemma for differential graded
algebras by Goodbody [9], based on the work of Orlov [17]. These results are very different
from ours, and in particular Goodbody uses that the algebra is finite dimensional over some
field. I discovered both articles after having submitted this manuscript.

Proposition 4.33. Let (A,d) be a differential graded algebra, and suppose that (A,d) is
artinian as differential graded left and as a differential graded right module. Then

dgrad, (A, d) Ndgrad, (A, d) D dgrady(A, d).

Proof. We shall prove that dgrads(A,d) C dgrad,(A,d). The analogous statement for
dgrad, (A, d) is symmetric. By Corollary 4.18 every simple differential graded (A, d)-module
is isomorphic to one of the form (A/M,d) for a maximal differential graded ideal (M, d)
of (A,d). By definition of dgrady(A,d) the dg-simple dg-module (A/M,d) is annihilated
by dgrads(A,d). Hence dgrady(A,d) € M. This shows dgrady(A,d) C dgrad,(A,d). This
shows the proposition. m

Remark 4.34. The hypothesis that (A, d) is dg-artinian is only used to show that there are
dg-simple dg-left modules. Just like in the classical situation, an easy use of Zorn’s lemma
shows that it is sufficient to ask that (A, d) is finitely generated as dg-left module.

Example 4.35. Let K be a field. Recall from Example 3.6 that the graded endomorphism

algebra ( g g > of the complex cone(idg) is a dg-algebra. It is not difficult to verify
that ( 8 g > =: I is the only non trivial differential graded left ideal of A. Hence

dgrad,(A) = I and likewise the first row is the only non trivial differential graded right
ideal. Hence dgrad,(A) Ndgrad,(A) = < 8 IO( > is not an ideal at all. Further it strictly
contains dgrady(A) = 0.

Proposition 4.36. Let (A,d) be a differential graded algebra. Suppose that (A,d) is dg-
Noetherian and dg-artinian, i.e. Noetherian and artinian as differential graded left module
over itself. Then A/dgrad,(A) is a direct sum of dg-simple dg-modules over (A,d). In
particular, dgrad,(A) = 0 if and only if any finitely generated differential graded (A, d)-
module is isomorphic to a direct sum of dg-simple differential graded (A, d)-modules.
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Proof. In general there are infinitely many dg-maximal dg-left ideals. We shall show that
there are only finitely many dg-maximal differential graded left ideals Iy, ..., I;, of A such
that I; 2 ﬂf;l I; for all j. Take a maximal differential graded left ideal (I, d). If there is no
other maximal differential graded left ideal (I3, d), we are done. Else we consider (11 NIz, d).
If there is no maximal differential graded left ideal I3 with (I3,d) 2 11N 12, we are done. Else
we consider (I3 NIy N I3,d). Inductively we obtain a chain of strictly decreasing differential
graded left ideals. Since A is assumed to be dg-artinian, this chain is finite. Hence for any
set of maximal differential graded ideals there is a finite subset of dg-maximal differential

graded ideals I, ..., I, such that ();_, I; is contained in any dg-maximal differential graded
left ideal of (A, d). Hence
LN---N1I, =dgrad,(A) = N I.

I dg-maximal dg-ideal

Then there is a homomorphism
AL AL x - x A/,

with kernel dgrad,(A). Hence p induces a monomorphism

AJdgrad,(A) 5 AJTy x -+ x AT
Lemma 4.20 then shows that there is a differential graded module M such that
A/dgrad,(A) @ M ~A/I} x --- x A/I,,.

Since A is dg-Noetherian and dg-artinian, the Krull-Schmidt theorem applies and hence,
renumbering if necessary, there is k such that

A/dgrad,(A) ~ A/I x -+ x AJT; and M ~ A/Ij4q X --- X A/T,,.

However, by construction of the sequence of ideals I1, ..., I, we have k = n. Hence p is an
isomorphism.

If A is a direct sum of dg-simple differential graded left modules, A = 51 x -+ x Sy, and
hence a maximal dg-ideal is S1 X -+ X S;_1 X S;41 X ... S,. Therefore the intersection of all
dg-maximal dg-ideals is 0.

Let (X,0) be a finitely generated differential graded (A, d)-module. Then there is an
epimorphism P7_; A[n;] — X. By Lemma 4.20, the kernel is a direct factor of @}_; An;]
and this shows the statement.

This shows the proposition. m

We shall now characterise dgrad, (A, d) by universal properties. For this purpose we need
to recall some classical concepts.

Recall that an algebra A is called left primitive if A allows a faithful simple left A-module.
Simple rings allowing a simple module are trivially primitive, and the converse is true for
artinian algebras. In general primitive algebras are not simple. The standard example is
the endomorphism algebra (as a vector space) of a vector space of countable dimension.
The set of endomorphisms with finite dimensional image is a twosided ideal. However, the
endomorphism algebra is primitive. We further mention that in general a simple (hence
primitive) algebra can have many non isomorphic simple modules. An example is the Weyl
algebra over an algebraically closed field of characteristic 0 (see Block [2, 3]). There are
algebras which are left primitive, but not right primitive. Since these properties hold for
ordinary algebras, and since an algebra is a dg-algebra with trivial grading and differential
0, we cannot expect better properties than these in the dg-version.

Recall further that for algebras A; indexed by elements of a set i € I, a subdirect product
is defined to be a subalgebra S of [[,.; A; such that the composition of the injection of S
into the product, followed by the projection onto A; is onto for any 7 € I. In particular, the
intersection of the kernels of these composition of injection and projections is 0 in S.

We come to the straight forward corresponding dg-concept.
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Definition 4.37. A dg-algebra (A, d) is called dg-primitive if there is a faithful dg-simple
differential graded left module (S, d) over (A, d). A twosided dg-ideal (I, d) of (A, d) is called

left dg-primitive if (A/I,d) is a left dg-primitive algebra

Lemma 4.38. Let (A,d) be a differential graded algebra and let (S,0) be a dg-simple differ-
ential graded module. Then, ann(S, ) is a dg-primitive differential graded twosided ideal.

Proof. The fact that ann(S, ¢) is a twosided dg-ideal was already established. Since (.5, J)
is a simple (A, d)-module, it is still a simple (A/ann(S,d))-module. By definition, it is a
faithful (A/ann(S,0))-module. m

Remark 4.39. Note that we always have ann(M,0) = ann((M,d)[1]), and if (M,dy) ~
(N,dn), then ann(M,dyr) = ann(N, dy).

Proposition 4.40. Let (A,d) be a differential graded algebra and suppose that (A, d) al-
lows a dg-simple dg-module. Then dgrady(A,d) is a twosided differential graded ideal. Then
dgrady(A, d) is the smallest twosided differential graded ideal I such that (A/I,d) is a sub-
direct product of dg-primitive differential graded algebras.

Proof. The fact that dgrads(A,d) is a twosided dg-ideal follows from Lemma 4.38. By
definition there is a dg-simple dg-module, and

dgrads(A,d) = ﬂ ann(S, 9)
(S,9) dg-simple dg module

is an intersection over a non empty index set. We have a canonical dg-ring homomorphism

A — H A/ann(S,9).
(S, &) representative of

an isoclass of dg-simple

dg-module up to shift

Composing this map with the projection onto A/ann(S,d) is the natural projection A —
A/ann(S, §), which clearly is surjective. Further, the kernel is precisely dgrad, (A, d). Hence,
we obtain that (A/dgrady(A, d),d) is a subdirect product of dg-primitive dg-algebras.

Let (I,d) be a twosided dg-ideal such that (A/I,d) is a subdirect product of dg-primitive
dg-algebras. Then the projection onto each of the direct factors is a dg-primitive dg-algebra
quotient, yields hence a dg-simple faithful dg-module. Hence, its annihilator contains 1. As
I is a subdirect product of all these dg-primitive algebras, it is contained in the intersection

of all the annihilators of the corresponding dg-simples. Hence, dgrady(A,d) C 1. m

Remark 4.41. Recall that an artinian primitive algebra is simple. One might ask if similar
properties hold in the differential graded case. One major difficulty is that we do not have a
Wedderburn Artin theorem in the dg-case. Our favorite example (Mataoxo(K,dy) provides
a striking observation. The dg-algebra has only one dg-simple ideal, namely the right hand
column. This is a faithful dg-simple dg-module, and hence the algebra is dg-primitive. Since
it is simple, it is also dg-simple (and therefore also dg-primitive, giving a second argument).
However, the left regular dg-module is not a direct sum of dg-simples. Actually, the dg-left
module structure is one of the type studied in Remark 4.24. Nevertheless, the algebra is
acyclic.

5. DIFFERENTIAL GRADED ORDERS
Let R be a Dedekind domain with field of fractions K. Recall that K is a flat R-module.

Definition 5.1. A differential graded R-order (dg-R-order) is a differential graded R-algebra
(A,d) such that A is finitely generated R-projective and such that K ®pr A is semisimple
artinian as an algebra. A differential graded R-order is a proper differential graded R-order
if in addition H(A) is finitely generated R-projective,
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Definition 5.2. Let (A, d) be a dg-R-order. A differential graded A-lattice (dg-R-lattice, or
dg-lattice) is a differential graded A-module (L, dy) such that L is R-projective. A dg-lattice
(L,dy,) is a proper dg-lattice if in addition H (L) is R-projective.

Remark 5.3. Note that if (A,d) is a dg-order, then a dg-lattice (L,dr) can be proper or
not. If (A,d) is a proper dg-order, then a dg-lattice (L, d) can be proper or not.

Remark 5.4. Let R be a Dedekind domain with field of fractions K. Following Theorem 2.1
we may as well consider differential graded K-algebras (A, d) which are acyclic and ker(d)
semisimple. Then we may define an R-order as a differential graded R-subalgebra (A, d)
projective as an R-module with K ® g A = A. This will give a different definition, implying
that the homology is necessarily R-torsion. Further, the fact that the algebra A is very
general does not seem to allow a rich theory. Moreover, as a classical order is not a dg-order
with differential 0 in this case, this alternative theory will not generalize the classical theory
of lattices over orders, and in particular it is unclear how one might recover in a profitable
way complexes of lattices over a classical order in any way as differential graded module
over a dg-order in this alternative definition.

Example 5.5. We recall some examples of classical orders and explain differential graded
structures on them.
(1) For R a complete discrete valuation ring containing 23 the 3-adic integers, follow-
ing [26, Example 1.2.43.4] the group ring RS3 of the symmetric group of order 6 is
isomorphic to

{(dl, < Z; Zz ) ,ag) € R x MathQ(R) X R ‘ ag —dy € 3R,62 S 3R,a3 —do € 3R}.

This algebra is differential graded with the grading given by deg(a;) = deg(d;) = 0,
deg(ca) = —1 and deg(bz) = 1 for all ¢, using the designation of the variables as in
the above definition. The differential is given as in Example 3.6 by d, for any fixed
x € R. More precisely

R G Y (e RO}

(&) x
We can even consider suborders, such as those given by asking in addition that
as — dy € 3R.
(2) Fix a prime p > 2. By a result due to Roggenkamp [21] we know that the principal

block of RS, for R being a complete discrete valuation ring containing 7Z,, the
p-adic integers and &, the symmetric group of degree p, is Morita equivalent to

p—1 p—1
{(dl, H ( CCLZ ZZZ ) ,ap) € R X HMatQXQ(R) X R ‘ Qjt+1 — dj (S pR,Cj c pR,Vj}.
i=2 1=2
Again, following Example 3.6, for every of the 2 x 2 matrix algebras in the product we
may impose a differential graded algebra structure with differential d,, by choosing
x2,...,Tp_1 € R.

(3) Fix a prime p > 2 and let R be a complete discrete valuation ring containing ZD,
the p-adic integers. By a result due to Konig [13] the principal block of the Schur
algebra Sg(p,p) = Endge,((RP)®P) with parameters (p,p) is known to be Morita
equivalent to an algebra of similar shape.

p—1 p—1
a; b .
{1 < ' dz ) ,ap) € [ [ Matax2(R) x R| aji1 — dj € pR, ¢ € pR,Vj}.
i=1 i=1
The same statement on differential graded structures holds.
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(4) Fix a prime p. By [24] ([7, 8] for the case p = 2 and p = 3) the category FJ, of
polynomial functors of degree at most p from finitely generated free abelian groups to
finitely generated Zp—modules is equivalent to a module category, having a "principal
block’ and a number of trivial direct factors. The principal block is Morita equivalent

to
p—1 b p—1
a; b ~ ~ ~ o~ 5.
{(do, H < cl' dl ) ,ap) € Zy X HMatQXQ(Zp) X Loy | aj41 —dj € ply,cj € pr,V]}.
i=1 v i=1

Again, following Example 3.6, for every of the 2 x 2 matrix algebras in the product we
may impose a differential graded algebra structure with differential d,, by choosing

T1y.eo, Tp_1 € plip.

Remark 5.6. Le Bruyn et al studied in [15, Section II.4] graded orders over Krull domains
in a very general setting. They define for a Krull domain R with field of fractions K and
a central simple K-algebra A a subring A with R C A C A an R-order if each element «
of A is integral over R, and if KA = A. If a is integral over R, then for the reduced trace
Tr : A — K one has Tr(a) € R and Tr induces an isomorphism A — Hompg (A, K) by
Asa— (A>3b— Tr(ab) € K) € Homg (A, K).

Recall in this context the classical result

Theorem 5.7. (cf. e.g. [19], [26, Theorem 8.3.7]) Let R be a Dedekind domain of charac-
teristic 0 with field of fractions K and let A be an R-subalgebra of the semisimple K -algebra
A, containing a K-basis of A. Then A is an R-order if and only if every element of A is
integral over R.

Hence the definition of [15, Section II.4] coincides with the classical definition of an R-
order in case of a Dedekind domain R.

Recall that a dg-module (V, §) with §(V;) C V;4 for all i is right bounded if there is ng € N
such that V,, = 0 for all n > ng. Analogously we define left bounded dg-modules. A dg-
module is bounded if it is at once left and right bounded. Note that for a differential graded
R-order (A,d) in a finite dimensional semisimple differential graded K-algebra (A,d) the
lattice (A, d) is always bounded. Indeed, since (A, d) is finite dimensional, (A, d) is bounded,
and hence so is (A, d).

Lemma 5.8. Let R be a Dedekind domain with field of fractions K. Let (A,d) be a dif-
ferential graded R-order in a finite dimensional differential graded K -algebra (A,d) and let
(V,6) be finite dimensional differential graded (hence bounded) (A, d)-module. Then there is
a differential graded (A, d)-lattice (L,0) in (V,d) such that K @p L =V

Proof. Recall that classically for an R-order A and a K A-module V there is always a full
A-lattice L in V. Consider AT := @, -, Ax and A := Ag ® AT. Now, AJ is a (differential
graded) subalgebra of A and AT is a dg-ideal of A(J)r.

Let us perform the differential graded construction. We construct (L,d) by downward
induction on the degree. Let Vy = 0 # V,,_1 for k > n and take any AJ-lattice in V,_;.
Its existence is a well-known classical property for lattices. Note that AT acts as 0. Hence
this is automatically a (Ag,d)-lattice since 6(V,,—1) = 0 and hence the Leibniz formula
automatically holds.

Let En,g = 6 Y(Ly_1) C V,,_o and choose a full Ag-lattice En,g in f/n,Q. Then choose
an r € R\ {0} such that r- AT - Lp—2 C L. This is possible since A* - L,_o is a Ad-
lattice. Put L,_9 := 1 - Zn,g. Then by construction §(L,—2) € Lyp—1 and Ly @ Ly
is a AJ-lattice, and moreover the Leibniz formula holds since it holds for the (A, d)-action
on (V,d). We suppose having constructed Ly, Lyy1, ..., Ln. Then let 6~ (L) =: L1 and
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choose a Ag-lattice Ek,l in Ek,l. Then there is again an r € R\ {0} such that

T‘AJF 'Ek,1 - @L@.
l=k

Put Ly, :=7- Ek_l. Again, @)_,_, Ly this is a full differential graded Ag—lattice. Since
(V,6) is bounded, after a finite number of steps we constructed a Noetherian differential
graded A{-lattice (L, d) as @ycy Li-

Now, since A is Noetherian as well, A - L is Noetherian again, and since it is a submodule
of V, it is R-torsion free. Hence A - L is a lattice in (V,J). Moreover, the Leibniz formula
holds. Since

d(A-x)=dN) -zt X-§(x)eA-L
for homogeneous elements A € A and x € L. This shows that
O(A-LYCA-L
is a full differential graded (A, d)-lattice in (V,d). m

Remark 5.9. Note that we do not really need Ag . It is possible to first find a full and finitely
generated R-submodule L of V, stable under §, and then consider A - L. Noetherianity and
the last argument of the above proof then provides the result. However, the above proof
of Lemma 5.8 gives a more direct construction for coconnective dg-algebras. A similar
construction can be given for connective dg-algebras.

In the classical theory of orders the following result is a main tool. We shall need to
transpose it to the differential graded situation.

Proposition 5.10. Let R be a Dedekind domain with field of fractions K. For each p €
Spec(R) and any R-module M denote M, := R, ®r M and idp, ® d := d,, for any map d,
in particular the differential.

(1) If (A,dp) is a (resp. proper) dg-R-order in the semisimple dg-K-algebra (A,d4),
then (A, 1r, ®dp) is a (resp. proper) dg-Rg-order in the semisimple dg-K -algebra
(A,dy).

(2) If (L,dr) is a (resp. proper) dg-R-lattice, then (L, (dL)e) is a (resp. proper) dg-
(A, (da)p)-lattice.

(3) For any (resp. proper) dg-(A,dp)-lattice (L,dr,) we have

L= ﬂ (L@, (dL)p)
peSpec(R)
where the intersection is taken inside K g L.

(4) Fiz a dg-(A,da)-module (V,dy). For each p € Spec(R) fix (resp. proper) (Mg, (da)e)-
lattices (M (), (dar(p))) such that (KM (p), (Kdy(p))) = (V,dy) for all p € Spec(R).
Suppose moreover that there is a (resp. proper) dg-(A,dp)-lattice (N,dy) such that
(No, (dn)p) = (M(p),dr(p)) for all but a finite number of o € Spec(R). Then
there is a (resp. proper) dg-(A,dp)-lattice (L,dr) with (L, (dr)e) = (M(p), dr(p))
for all p € Spec(R).

(5) The analogous statements hold replacing the localisation by the completion.

Proof. Item (1) follows from the classical non dg-statement (cf e.g. [26, Proposition
8.1.14)).

For item (2) we need to see that H(L,, (dr),) is R,-torsion free if H(L,dr) is R-torsion
free. But this follows from the fact that localisation is flat (cf e.g. [26, Lemma 6.5.7]).

Item (3) is again a direct consequence of the classical non dg-statement (cf e.g. [26,
Proposition 8.1.14)).
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As for item (4) we first get a lattice L again from the classical situation (cf e.g. [26,
Proposition 8.1.14]). The differential is fixed as the restriction of the differential dy on L.
We need to verify that dy (L) C L. But this is true at every prime, i.e.

dv(Le) = du(p)(M(p)) € M(p) = L.
Hence by the non dg-version of item (3) we have dy (L) C L.

As for item (5) we first see that the non dg-version is again classical (cf e.g. [26, Propo-
sition 8.1.14]). The analogous of the second statement first uses the localisation, then the
uniqueness and existence of the differential follows by continuity. The third item is clear
by the localisation case. As for the fourth item we first restrict from the completion to A.
Then, in a second step we use continuity again. m

An important tool in case of lattices for orders is the conductor. Recall that given a
Dedekind domain R with field of fractions K and a finite dimensional semisimple K-algebra
A, then for an R-lattice L in A with KL = A we define

OL) = {\€ A|ALC L} and O,(L) :={\€ A| LA C L}.

Then by [26, Lemma 8.3.14] we get that Oy(L) and O, (L) are R-orders in A.
We can show a dg-version of this lemma.

Lemma 5.11. Let R be a Dedekind domain with field of fractions K and let (A,d) be a
differential graded K-algebra (A,d), semisimple as an algebra. Let (L,dr) be a differential
graded R-lattice in (A, d) such that K-(L,dr) = (A,d). Then (Oy(L),d|o,(r)) is a differential
graded R-order in (A, d). Similar statements hold for O,(L).

Proof. By symmetry it is enough to consider the case (O¢(L),d|o,(z)). By [26, Lemma
8.3.14] we see that Oy(L) is an R-order in A. If L is graded, then also Oy(L) is graded. We
need to see that it is differential graded. Let A € Oy(L) be homogeneous. Then AL C L. We
need to see that d(A\)L C L. Since L C A, and since (A4, d) is a differential graded algebra,
we have for any = € L and homogeneous A € Oy(L)

d(z) = d(N)z + (=1)MNad(x)
Hence

ANz = d(xz) — (=DM d(z)
Since A € Oy(L) and since d(L) C L, using that (L,d) is a dg-lattice, we have \d(x) € L.
Since A € Oy(L), and since x € L, we get Az € L, and hence d(Ax) € L again. The

differential on Oy(L) is the restriction of the differential d of A to Oy(L), and hence the
defining equation on products holds. Hence (Oy(L),d|o,(z)) is a dg-order in (A4,d). m

Remark 5.12. If the category of dg-modules over (A,d) is semisimple, then by [1] we
have that H(A,d) = 0 and therefore any order in (A, d) is either acyclic or has R-torsion
homology. In particular, in this case, if the conductor is not acyclic, then (Oy(L),d|o,(r))
cannot be a proper differential graded R-order in (A, d), whatever the choice of a dg-lattice
L may be.

6. ON MAXIMAL DIFFERENTIAL GRADED ORDERS

Let R be a Dedekind domain with field of fractions K. It is a classical fact that for any
semisimple K-algebra A and an R-order A in A there is a maximal R-order I' containing
A. Maximal orders have many striking properties, and behave very much as the base ring
R (cf [19]). We shall consider maximal dg-orders.

Theorem 6.1. Let R be a Dedekind domain with field of fractions K of characteristic 0 and
let (A,d) be a differential graded R-order in the semisimple finite dimensional differential
graded K-algebra (A,d). Then there is a differential graded R-order (I',d), which is mazimal
with respect to being a dg-order and containing (A,d). If (A,d) is a proper dg-order, then
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there is a proper differential graded R-order (I'y,d) which is maximal with respect to being
a proper dg-order and containing (A, d).

Proof. The set of dg-orders in (A, d) is partially ordered. We need to make precise the
partial ordering we consider. Let (Aj,d;) and (Az,d2) be dg-R-orders in a semisimple dg-
K-algebra (A,d). Then (Ay,d;) < (Ag,d2) if Ay € Ag. Since d; = d|p, and da = d|a,, we

get that then automatically dy = da|a, -
Consider

X ={(2,d) | (A,d) < (3,d) and (X,d) is a dg-R-order in (A,d)}.

Since (A, d) € X, this set X is not empty. Let ) be a totally ordered subset in X and put
.= U( Ad)ey A. Tt is graded since the embedding of one order in the other in ) preserves
the grading, and hence so is the union. It allows a differential by d|r and if v € T', then
v € A for some A € Y, and therefore d(y) € A CT'. Moreover, since v € A, and since A is
an order, Theorem 5.7 shows that + is integral, and, using Theorem 5.7 again, I" is an order
in A. Hence (I',d) € & and (I',d) dominates any element in ). By Zorn’s lemma there are
maximal elements in X'. Any such element is a maximal differential graded order containing
(A, d).

Now consider
X = {(2,d) | (A,d) < (X,d) and (X,d) is a proper dg-R-order in (A, d) and X}

and if (A, d) is a proper dg-R-order in (A, d), then (A,d) € X. Hence this set is not empty
neither. The first steps are as above. Let Y be a totally ordered subset in X and put
.= U( Ad)eD A. Tt is graded since the embedding of one order in the other in ) preserves
the grading, and hence so is the union. It allows a differential by d|p and if v € T', then
v € A for some A € Y. Hence ~ is integral, and therefore I' is an order in A. Since R
is Noetherian (cf [26, Lemma 7.5.3]), I" is Noetherian as well, and therefore I' actually in
5/\. Therefore (T',d) is a proper dg-order. By Zorn’s lemma, X contains maximal elements.
This proves the statement. m

We call an R-order, which is maximal with respect to being a dg-order in a fixed dg-
algebra, a dg-maximal dg-order.

Corollary 6.2. Let R be a Dedekind domain with field of fractions K, let (A,d) be a finite
dimensional semisimple differential graded K-algebra, and let A be a mazimal R-order in A
and suppose that d(A) C A. Then (A,d|p) is a dg-mazimal differential graded R-order in
(A, d).

Proof. The hypotheses imply that (A, d|s) is a differential R-graded order. If (I',d|r) is
a differential graded order containing (A, d|a), then I' is an R-order containing A. Hence,
since A is a dg-maximal order, A = I" and therefore (A,d|s) is a dg-maximal differential
R-graded order. This shows the statement. m

Remark 6.3. Note that in the situation of Corollary 6.2 there is no reason why H(A,dy)
should be R-projective, and indeed H(A,d) = 0, as in Example 3.6, is possible and implies
this case. Recall from Remark 2.1 that orders in algebras with semisimple category of
dg-module are actually necessarily of this form. Let (A,d) be an order in (A4,d) with
H(A,d) = 0. Then Aldrich and Garcia-Rocas show in [1, Theorem 4.7] that in this case
the category of differential graded (A, d)-modules is equivalent with the category of graded
ker(d)-modules.

Example 6.4. Let R be an integral domain with field of fractions K. We consider the
differential graded semisimple K-algebra (Matex2(K),d,) from Example 3.6. Recall that for
each z € K there is a differential d, on Matoxo(K) with the grading chosen in Example 3.6.
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Choose = 1 for the moment. Then Matax2(R) is a maximal differential graded R-order,
and actually a proper differential graded R-order since the homology of (Mataxa(R),d1) is
0.

However, choosing an element z € R\ R*, then again Matax2(R) is a maximal differ-
ential graded R-order. The homology in degree 1 is R/xR, as is easily seen. The kernel
of the differential in degree 0 is Cy := {< g 2 ) | @ € R} and the image if the differ-
ential from degree —1 is xCy. Clearly, the differential in degree —1 is injective. Hence
H,(Matax2(R),dy) ~ R/xR & R/xR, where the first copy is in degree 0 and the second
copy is in degree 1. Therefore H,(Matax2(R),d,) ~ (R/xR)[e]/{€*) where € is an element
in degree 1.

Note that Matox2(R) is hereditary, as an order, whereas, as soon as ¢ ¢ R*, the homology
algebra H,(Matax2(R),ds) is not, even of infinite global dimension.

Example 6.5. Let R be an integral domain with field of fractions K. We consider again
the differential graded semisimple K-algebra (Matax2(K),ds) from Example 3.6. If R =7
and @ = %, then for A = Matayo(R) we obtain d;(A) is not a subset of A. Actually,

1 10 1 01
dé(MCLtQXQ(Z)):2Z< 1>—|—2Z<0 0).

(03
~\0 0
0 L
and iterating, we have that for each integer n the element 0 26 is in the ring gen-

erated by di(Matax2(Z)). Hence, there is no differential graded order (I',d|r) such that
2
Mataxo(K) CT. However, for any z € K \ {0} the set

R zR
A:_(lR R>

is a subring of Matayo(K) and is stable under d,. Further, if R is a Dedekind domain, then
xR is projective, and hence A is an R-order if R is a Dedekind domain. We observe that

(; ?>'A~(§ ?):Matgxz(R)

and hence A is conjugate to the maximal order Matox2(R). Therefore, using Corollary 6.2,
(A,dy) is a maximal differential graded order. We get H(A,d;) = 0, and hence this is
actually a proper differential graded R-order.

@)

Since

N
O N
= O
N~
N
o o
Ol

Question 6.6. If (A,d) is a dg-maximal differential graded order, can one show that A is
a maximal order.

Question 6.7. If (A, d) is a dg-maximal proper differential graded order, can we show that
H(A,d) is hereditary?

7. CLASS GROUPS OF DIFFERENTIAL GRADED ORDERS

Recall that a differential graded R-order (A,d) in a semisimple differential graded K-
algebra (A, d) is at first an R-order A in a semisimple K-algebra A. The locally free class
group of an order proved to be a useful invariant in integral representation theory. We want
to provide a definition and first properties of a locally free class group of differential graded
orders.

We first need to elaborate on what we mean by a free differential graded module. Let
(A,d) be a differential graded algebra. A differential graded (A, d)-module (L, ) is free of
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rank n € N if (L,0) ~ @;_ (A, d)[k;] for some integers k;, as differential graded (A, d)-
modules. Later we shall mainly consider the case k; = 0 for all ¢, and say that such a
dg-module is degree O-free of rank n.

Since d(1) = 0 in A, we get that for an homomorphism ¢ : @ (A, d)ki] — (L,9)
we have ¢(0,...,0,1,0,...,0) € ker(d), where 1 is in position ¢, for each position i. How-
ever, for any homogeneous z € ker(d) we get that ¢()\) := Az defines a homomorphism
(A, d)[=[z]] — (L,0).

Lemma 7.1. Let R be a Dedekind domain with field of fractions K. Let (A,d) be a differen-
tial graded algebra, and denote (A,d) := (K ®pr A,idg ®d). Then the set of free differential
graded (A,d)-ideals is in bijection with the group of left reqular homoegenous elements in
ker(d) C A modulo the subgroup (ker(d) N A*).

Proof. We now consider dg-ideals (I,d) of (A,d). Such an ideal is free if there is an
isomorphism ¢ : (A, d)[k] — (I, d) and this is equivalent with the choice of a z € (INker(d))
homogeneous of degree k such that I = Az and such that Az = 0 = A = 0. We hence obtain
that any left regular homogeneous generator of I in the cycles gives an isomorphism, and
hence there is a surjective map from left regular homogeneous elements in the cycles to the
set of rank one free dg (A, d) ideals. Two such left regular elements homogeneous z1, z9 of I
in the cycles give the same ideal if and only if Az; = Azs. This is equivalent with z; = Ao2s
and zo = A1z for homogeneous units A1, Ao € A. However, z1, z3 € ker(d) shows that

0= d(/\QZQ) = d()\Q)ZQ + /\Qd(ZQ) = d(/\Q)ZQ

and the fact that zo is regular gives that Ay € ker(d). Likewise A\ € ker(d).
Conversely, if A € ker(d) is a homogeneous unit, then Az = Az as differential graded
ideal. Indeed, if A € ker(d) and z € ker(d), then

d(prz) = d(p)Az + (=) pd(A)z + (1) FF A prd(2) = d(p)r=

and hence mapping pz to pAz for any p € A is an isomorphism of differential graded ideals.
[

We shall need to study invertible elements in the subring of cycles.
Lemma 7.2. Let (A,d) be a differential graded algebra. Then ker(d) N A* = ker(d)*.

Proof. We have seen in Corollary 1.3 that ker(d) is a graded subalgebra. Trivially
ker(d) N A* D ker(d)*. Further, if u is homogeneous and invertible in A, and if u € ker(d),
then also u=! € ker(d). Indeed, 0 = d(1) = d(uu~?') = d(u)u™! £ ud(u™!) and hence
d(u~!) = 0 since u is invertible. Hence ker(d) N A* C ker(d)*. m

Let R be a Dedekind domain with field of fractions K. Suppose now that (A,d) is a
differential graded K-algebra, which is assumed to be left and right artinian as an algebra.
By Wedderburn’s theorem, in an artinian semisimple K-algebra an element v is left regular
if and only if it is represented by a tuple of non singular matrices, whence an invertible
element. In any left and right artinian ring a left or right regular element is invertible.
Indeed, by the above, this is clear modulo the Jacobson radical. Then, for an artinian ring
the Jacobson radical is nilpotent, and hence any lift of a unit in the semisimple quotient to
an element in the artinian ring is again a unit.

Let (A,d) be a differential graded subalgebra of (A, d) such that A is R-projective and
K ®r A = A. As in the classical case we need to work with two versions, the localised
version and the completed version. Let X, be the localisation at a prime p, and denote by

X o the completion at the prime p. Hence we denote
J(A,d) = {<u(p)>p65pec(R) € H (A; N ker(d)) ’
pESpec(R)
u(p) € A for almost all p € Spec(R) and u,, homogeneous for all p}.
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Note that this definition does not depend on the choice of A. Define its subgroup

UNd):=JAdn ] (AS Nker(d)),
p€Spec(R)

which does depend on A. Likewise

T(A,d) = (@) pespeeimy €[] (A7 Nker(d)) |
pESpec(R)

u(p) € /A\; for almost all p € Spec(R) and u, homogeneous for all p}.

and its subgroup
UM, d)=JA,dn [ (Ar nker(d)).
peSpec(R)
Note that if A is finite dimensional, then any homogeneous u, being a factor in an element

~

in J(A,d) (resp. in J(A,d)) has to be in degree 0. Then the set of left classes
UA,d)\J(A,d)
is in bijection with the set of locally free differential graded fractional ideals of (A, d) and
U(A, d\J(A, d)
is in bijection with the set of completion locally free differential graded fractional ideals of
(A, d).
We associate to a representative a = (a(g)) pespec(r) of aclass U(A, d)a € U(A, d)\J (A, d)
the fractional ideal
Ao := AN ﬂ Ay - a(p).
p€Spec(R)
Likewise we get the completed version. Then, Aa >~ AS as fractional differential graded

ideal if and only if there is a homogeneous = € A* Nker(d) of degree 0 with a = fz. If A
is semisimple, then we may apply Proposition 5.10 we have that

(Aa), = Ay - alp)
for all p € Spec(R).
We now define a category (A, d)—LFy—dgmod. This is defined to be the full subcategory of

(A, d)—dgmod containing all locally degree 0 rank one free differential graded (A, d)-modules,
and all direct sums of these objects.

In the definition below we shall need to consider Ky((A, d) — LFy—dgmod). This is defined
as the quotient of the free abelian group on isomorphism classes of objects in (A, d) — LFy —
dgmod modulo the relation [(X,0x)] — [(Y,dy)] — [(Z,02)] whenever (X,0x) ~ (V,dy) &
(Z,6z). We further define Go((A,d) — LFy — dgmod), which is the quotient of the free
abelian group on isomorphism classes of objects in (A, d) — LFy — dgmod modulo the relation
[(X,0x)] — [(Y,dy)] — [(Z,67)] whenever there is a short exact sequence

0— (Y, 0y) — (X,0x) — (Z,07) — 0
in (A, d)— LFy—dgmod, considered as a subcategory of dg-modules. Here, denote by [(M, J)]
the image of a locally degree 0-free dg-module in Ko((A,d) — LF — dgmod), respectively

Go((A,d) — LF — dgmod). Note that this setting makes sense for any differential graded
R-algebra (A, d) whenever R is a Dedekind domain with field of fractions K.

Definition 7.3. Let R be a Dedekind domain with field of fractions K.
e Let (A,d) be a differential graded order in the semisimple differential graded K-
algebra (A, d).
— The group I(A, d) =U/(A, d)\f(A, d)/(A* Nker(d)) is the group of completion
differential graded idéles of the dg-order (A,d).
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— The group I(A,d) :=U(A,d)\J(A,d)/(A* Nker(d)) is the group of differential
graded ideles of the dg-order (A, d).

o If (A,d) is a differential graded R-algebra, then the class group CI((A,d)) of (A,d)
is the subgroup of Go((A,d) — LFy — dgmod) generated by elements [L] — [A] for
degree 0-locally free differential graded (A, d)-lattices (L, d) of rank 1.

e If (A,d) is a differential graded R-algebra, then the idéle class group Cl(I)((A, d)) of
(A, d) is the subgroup of Ky((A,d) — LFy — dgmod) generated by elements [L] — [A]
for degree O-locally free differential graded (A, d)-lattices (L, ) of rank 1.

As in the classical case we get

Theorem 7.4. Let R be a Dedekind domain with field of fractions K. Let (A,d) be a
differential graded order in the semisimple differential graded K-algebra (A,d). Then in
Go((A,d) — LFy — dgmod) we have

[Aa] + [AS] — 2[A] = [Aaf] — [A]
for any two completion differential graded idéles o and 3. In particular, there is a surjec-

tive group homomorphism ® from the group of completion differential graded idéles to the
differential graded class group given by ®(a) = [Aa] — [A].

Proof. We need to verify that the constructions of ideles in [26, Theorem 8.5.11] do not
lead out of ker(d). Besides this the proof of [26, Theorem 8.5.11] holds in the dg-concept
verbatim as in the non dg-concept, until the very last argument. Let us go through the
arguments of [26, Theorem 8.5.11]. As in the original proof we may replace a by a version
after having multiplied by an » € R such that « is an integral idele. Again there is an integer
k such that o' € p‘kxp and an integer ¢t and x € A* Nker(d) such that S,z —1 € pth,
and again that Sz is an integral idele. We observe that Sz € ker(d). Replacing 5 by fx
is possible since we do not quit ker(d) by this operation. Again, by the same computation
apﬁpaglﬁg !is invertible and in ker(d) as « and 8 are. By Lemma 7.2 units which are cycles
are precisely the units in the ring of cycles. The morphism f in [26, page 310] is easily seen
to be a morphism of dg-modules. The fact that ker(f) = Aaf still holds by the same proof.
The fact that im(f) = A still holds also in the dg-version by the very same proof. Hence
there is a short exact sequence of locally free dg-modules

00— Aaf — Aa@ A8 LA —0

and Aaf ~ ABa. All these terms are in the category (A, d) — LFy — dgmod and we hence get
a short exact sequence n the category giving a relation in the relevant Grothendieck group.
Further, this short exact sequence shows

[Aaf] + [A] = [Aa] + [A]

in the class group. Recall that the group law in CI(A, d) is the group law of the Grothendieck
group, where we consider the Grothendieck group modulo direct sums. Hence

T(A, d\T(A, d)/(A* Nker(d)) -2 CI(A,d)
a +—  [Aa] —[A]
is a group homomorphism. Indeed,

(af) = [Aaf]—[A]

. By construction of CI(A,d) we see that ® is surjective. This proves the theorem. m
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Remark 7.5. Note that A is projective, and therefore
00— Ao — AadAF—A—0

splits as A-modules. However, a differential graded module (M, ) is projective in the
category of dg-modules if and only if (M,d) is acyclic (cf [1]). Consider the short exact
sequence

0— Ay -5 Aa+ A8 A0
of dg-modules over (A, d). Here, f is just the map sending the two components to a sum,
and v = af. Consider now the completion at primes p. We only need to prove that the
sequence splits at all completions to show that the class in the Ezt-group is 0.

If we could have Theorem 7.4 for the Grothendieck group Ko((A,d) — LFy — dgmod)
instead, then we had that the group of completion differential graded ideles is isomorphic
to the group C1() (A,d) and this group actually parameterizes stable isomorphisms of these
lattices, such as in the classical situation.

Remark 7.6. If d = 0 and the grading is trivial, the concepts of class groups coincide and
CIl(A,0) = CIl(A).

Corollary 7.7. Let R be a Dedekind domain with field of fractions K and let (A,d) be a
differential graded algebra, semisimple as an algebra. Let (A, d) be a differential graded order
in (A,d). Then

U(A, d\J(A,d)/(A* Nker(d)*) ~ U(ker(d))\J(K - ker(d))/(K - ker(d)*).
Proof. By Lemma 7.2 we have U (A, d) = U (ker(d)) and A* Nker(d) = ker(d)*. m

More generally, we get the following

Proposition 7.8. Let R be a Dedekind domain with field of fractions K. Let (A,d) be a
differential graded semisimple finite dimensional K-algebra and let (A,d) be a differential
graded R-order in (A,d). Then there is a group homomorphism

U(N, d)\J(A,d)/(A* Nker(d)*) — CI(A).

Proof. Indeed, since A* Nker(d) C A* and since A* Nker(d) C A*, we get a group ho-
momorphism J(A,d) — J(A). Further, by the same argument the same embedding shows
that U(A,d) maps to U(A) and hence we get a group homomorphism U (A, d)\J(A,d) —
U(A)\J(A). Again, since (A* Nker(d)) C A* the same map yields a group homomorphism

U(A, d)\J(A,d)/ (A" Nker(d)) — U(A)\J(A)/A™
and since Cl(A) ~ U(A)\J(A)/A*, we get the statement. m

Example 7.9. Consider the Z-order
10
A:Z<0 1>—|—p-Mat2><2(Z)

in Matax2(Q). Then, following Example 3.6 this is a differential graded order with the
differential dy. Indeed, for a, x,y, z,u € Z we compute
a+pr  pu pz p(y — =)
= A
dl(( pz a+py> < 0 pz <

Further, by [5, §34D] we have that CI(A) is of order 2 whenever p — 1 is divisible by 4
(and trivial otherwise). However, ker(d;) = Z[e]/e?, and hence CI(A,d;), as well as the
dg-idele group are trivial as is easily seen using the idéle description. Therefore, the map in
Proposition 7.8 is not surjective in general.
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Since localisation is flat, we get (H(A,d)), ~ H(Ag,d,). For any dg-module (M, ) we
get (H(M,9)), ~ H(M,,6,). Moreover, if (M,6) is a differential graded (A, d)-module,
then by Lemma 1.6 we get that H(M,¢) is a graded H (A, d)-module. Further, if (M, J) is
a locally free dg (A,d)-module, then (M, d,) is a free (A, dy)-module. Hence H(M,§) is
a graded locally free H (A, d)-module.

If we identify

CI(H(A,d)) =ker (Go(H(A,d) — LF — mod) — Go(H(A,d) — proj))

taking homology is therefore a group homomorphism

CH
ClA,d) =57 CI(H(A,d)).
Note however that H(A,d) is not an order in general.

Definition 7.10. Let R be the ring of integers in a number field K. Let (A,d) be a
differential graded order in the semisimple differential graded K-algebra (A, d). Then define
the homology-isomorphism class group kernel ker(CH 4y) =: Cl(A, d)p;.

Remark 7.11. Note that for each locally free differential graded (A, d)-module (L,d) we
have that
CUA, i + [(L8) = CHLy (CHn g (L, 9))

parameterizes those locally free dg-(A, d)-modules which have the same homology as (L, d).
Those which are quasi-isomorphic to (L,d) do share the homology with (L,d). However,
being quasi-isomorphic is stronger in general than just having isomorphic homology.

We now consider locally free H(A, d)-modules.

Lemma 7.12. Let R be a Dedekind domain with field of fractions K and let B be a finitely
generated R-algebra. For any B-module M let

t(M):={xe M |3Ire R\{0}:rz=0}
be the torsion submodule of M. If L is a locally free B-module of rank n, then t(L) ~ t(B)".

Proof. By hypothesis L, ~ B for all primes o € Spec(R). Since R is Dedekind,
R, is a principal ideal domain (cf [26, Lemma 7.5.9]). Hence t(L,) = t(L),. Since R
is Dedekind, any non zero prime ideal is maximal (cf [26, Lemma 7.5.15]) and hence the
primary decomposition (cf [26, Theorem 7.2.5]) of ¢(L) gives a direct product decomposition
t(L) = Ty espec(r) t(L) - We hence get t(L) ~t(B)". m

Corollary 7.13. Let R be a Dedekind domain with field of fractions K, let (A,d) be a finite
dimensional and semisimple and differential graded K-algebra. Let (A,d) be a differential
graded R-order in (A,d). Then
CI(H(A,d)) = CIH(A, d)/H(H(A, d))).

In particular, if H(A,d) =0, then Cl(A,d)p; = 0.

Proof. By Lemma 7.12 for any rank 1 locally free H(A,d)-module L we have t(L) =
t(H(A,d)) and therefore

H(A, d)/t(H (A, d)) ®pa,a) — : CUH(A, d)) — CU(H(A, d)/t(H (A, d)))

is an isomorphism. Note that H(A,d)/t(H(A,d)) ®paq) — =~ (R/tR) @R —.
If now (A, d) is acyclic, then H (A, d) is torsion, and therefore locally free H (A, d)-modules
are actually free. This proves the lemma. m

We shall need a result due to Wehlen. Recall (cf e.g. [10, Chapter 3]) that the Baer lower
radical L(A) of an algebra A is the intersection of all prime ideals of A. Every element of
L(A) is nilpotent and if A is Noetherian, then L(A) is a nilpotent ideal [10, Theorem 3.11].
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Theorem 7.14. [23, Theorem 2.4] Let R be a Priifer domain and let A be a finitely generated
algebra over R. Let L(A) be the (Baer) lower radical of A. If B := A/L(A) is separable
over R, i.e. B is projective as an B ®g B°P-module, then there are idempotents e, and ey

of A such that
e epAe, e Ae,
epAe;  eAey
0 etAep

and epAep/ep,L(A)e, is R-projective, such that < e, Aes eider

ideal of A.

> C t(A), the R-torsion

Note that obviously e, and e; are orthogonal and e,+e; = 1. Further, note that A/t(A) =
epAey,[t(epAep).

Corollary 7.15. Suppose the hypotheses of Theorem 7.14. Then any unit u in A/t(A) can
be lifted to a unit us of A.

Proof. If u is a unit of A/t(A), then we get that u is actually a unit of e, Ae,/t(e,Aep).
Further, since e, Ae, /e, L(A)e, is R-projective, we have that t(e,Ae,) C e,L(A)e, and since
the right hand side of the inclusion is a nil ideal, so is the left hand side. Hence there is u;
and vy in epAe, such that u; maps to u in A/t(A) and such that ujv; — 1 is in e, L(A)e,,
whence nilpotent. But since 1 + n for a nilpotent element n is a unit, we have that u; is a
unit. Therefore we may find a unit u; € e,Ae, such that u; maps to u in A/t(A). But then
U1 0
0 1
uz maps to u in A/t(A). m

Theorem 7.16. Let R be a Dedekind domain with field of fractions K and let (A, d) be a
differential graded algebra such that A is finite dimensional separable over K. Suppose that
ker(d) is separable as a graded algebra. Let (A,d) be a differential graded R-order in (A,d).
Denote the canonical map 7 : ker(d) — H(A,d) and denote H(A,d) := H(A,d)/t(H(A,d)).

there is a unit ug := in A (actually in the Pierce decomposition above) such that

Then H(A,d) is a classical R-order in H(A,d), and we have an exact sequence

0 — Cl(A,d)p; — Cl(A,d) — CI(H(A,d)) — 0.

Proof. It is a classical fact that separable algebras are semisimple. Since ker(d) is a
semisimple algebra, Lemma 4.2 shows that we see that H(A,d) is a semisimple algebra.
Hence, H(A,d)/t(H(A,d)) is an R-order in the semisimple K-algebra H (A, d).

We need to see that the right hand map is surjective. For this we shall use the interpre-
tation of class groups as ideles.

We hence need to see that

U(A, d\J(A,d)/(A* Nker(d)) — U(H(A, d)\J(H(A,d))/H(A,d)*

is surjective, since the map on the level of ideles factors through the right hand map.

First, by Lemma 4.2 any unit of H (A, d) lifts to a unit in ker(d). Now, clearly ker(d)* C
(A* Nker(d)). For a finitely generated R-algebra B satisfying that B/L(B) is separable, if
u is a unit in B/tB, then by Corollary 7.15 any unit v in B/tB lifts to a unit v in B. Now,
by hypothesis ker(d) is finite dimensional separable. This is equivalent to the fact that in
the Wedderburn decomposition the centres of the skew fields are separable extensions of the
base field. Hence H (A, d) is separable as well. Therefore H (A, d)/t(H (A, d)) is separable
for all p € Spec(R), and so is its quotient modulo its Baer (lower) radical. Following
Corollary 7.15 we can hence lift any unit of H(Ag,d)/t(H(Ag,d)) to a unit of H(A,,d)

By semisimplicity A% N ker(d) — H(A,d)* is surjective. By the same argument
j(A, d) — j(H(A,d)) is surjective as well. Since W(ﬁ(A, d)) C CA/'(H(A, d)), we get in-
deed a map Cl(A,d) — CI(H(A,d)).
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Now, for any locally free H (A, d)-ideal I we can find an idele @ € J(H (A, d)) such that

I = Noespeer) H(A, d) - . Since J(A,d) — J(H(A,d)) is surjective, there is an idele
a € J(A,d) which maps to @. But then the locally free ideal

I := ﬂ Ao

p€ESpec(R)

maps to I. This shows the surjectivity of CI(A,d) — CI(H(A,d)). The statement on the
kernel of this map follows by definition. m

8. REDUCING TO DG-ORDERS IN DIFFERENTIAL GRADED SIMPLE ALGEBRAS
A major tool in studying class groups of orders is the following result.

Theorem 8.1. (Reiner-Ullom [20])(Mayer-Vietoris theorem for class groups of orders) Let
R be a Dedekind domain with field of fractions K and let A be an R-order in the finite
dimensional semisimple K -algebra A satisfying the Eichler condition. Let €2 = e € Z(A) be
a non trivial central idempotent of A. Put f := 1 —e. Then Ae is an R-order in Ae and
Af is an R-order in Af and we have a pullback diagram

A—SsA-e

|

for A == Ae/ANAe~ Af/ANAF and 7., resp. ¢ being the canonical morphisms. Further,
there is a group homomorphism § such that § and the camonical maps induce an exact
sequence

A — (Ae)* x (Af)* — A =% CU(A) — Cl(Ae) x CI(AS).

Keep the assumptions and notations of Theorem 8.1 for the moment , and suppose that
K is of characteristic different from 2. In addition if (A, d) is a finite dimensional semisimple
differential graded K-algebra, and if (A, d) is a differential graded R-order in (A,d), then
by Remark 2.2 we have d(e) = 0 = d(f) and hence (Ae,d) and (Af,d) are differential
graded orders in (Ae,d) respectively (Af,d). Since A = Ae/(A N Ae), and since d induces a
differential on both A and on Ae, it also induces a differential d on A. Therefore, the maps
in

(A,d) —== (A -e,d)
I
(A f.d) —— (&.d)
are still well-defined maps of differential graded algebras. Since
A—>A-e
I
A-f " A
is a pullback diagram of R-algebras, the diagram
(A,d) —== (A -e,d)

(A-ﬂd)ﬁ(Kﬁ)
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is a pullback diagram of differential graded algebras. Recall that CI(A,d) is generated by
[L] — [A] for L being rank 1 locally free differential graded modules. Hence the map

ci(n, d) LY cine, d) x ci(Af, d)

is still well-defined. We recall the definition of §. Let u € A~. Then consider the pullback
diagram

Ly —— > A\-e

K

ay A

and define §(u) := [L,] — [A].
In the dg-case, if u € ker(d) N A s homogeneous, then we get again a pullback diagram

Qe

(L, dy,) (A-e,d)
ay (A, d)

defining a locally free differential graded (A, d)-module (L, d,). We may define a map d; by
dq(u) := [(Ly,dr)] — [(A, d)] in this case. It remains to show that ker(Cl(Ae) x CI(Af)) =
im(dq).

Suppose that u € ker(d) N A™. Then

CU(f) o ba(u) = [(Lu - f,du)] = [(AS, d)] = [af(Lu, du)] = [(Af, d)] = [(Af,d)] = [(Af,d)] = O
and likewise Cl(e) o §4(u) = 0.

Let (L,dr) be a rank 1 locally free dg (A, d)-module in the kernel of Cl(e) x CI(f). Let
a be the idele of (L, dr). Then we know that « - e is the principal idele and also « - f is the
principal idele in the corresponding algebras. Now

A* Nkerd = (Ae* Nkerd) x (Af* Nkerd).

Further, ker(d) = ker(de) x ker(df). We hence only need to see consider ordinary ideles in
order to examine the kernel of Cl(e) x CI(f). But then, by the classical Mayer-Vietoris-like
theorem for class groups of orders we obtain that

ker(Cl(e) x Cl(f)) = im(dq).
We hence obtained the following

Theorem 8.2. Let R be a Dedekind domain with field of fractions K of characteristic
different from 2 and let (A,d) be a differential graded R-order in the finite dimensional
semisimple differential graded K-algebra (A,d), and suppose that A satisfies the FEichler
condition. Let €2 = e € Z(A) be a non trivial central idempotent of A. Put f = 1 — e.
Then (Ae, de) is a differential graded R-order in (Ae,de) and (Af,df) is a differential graded
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R-order in (Af,df) and we have a pullback diagram

A—SsA-e

Lk

A'f?Ke

for Ao == Ae/ANAe ~ Af/ANAf and 7., resp. 7y being the canonical morphisms.
Further, there is a group homomorphism 64 such that 64 and the canonical maps induce an
ezxact sequence

A*nker(d) — ((Ae)* x (Af)*)Nker(d) — A, Nker(d) LI Cl(A,d) — Cl(Ae,de)x CU(AF, df).
Proof. The result follows from the comments leading to the exactness of
A Nker(d) RN Cl(A,d) — Cl(Ae,de) x CIU(AFf,df).
Since A is an order in a semisimple algebra A and e? = e € Z(A), the sequence
A 5 ((Ae)* x (Af)*) "5 A

is exact by the classical situation. Since

X
e

A—SsA-e

Lk

A - f T) Ke
is a pullback diagram, we get an induced sequence of group homomorphisms
A* Nker(d) — ((Ae)* x (Af)*) Nker(d) =% A Nker(d)
which composes to 0, and where 74 is the restriction of 7 to ((Ae)* x (Af)*) Nker(d). If
x € ker(mg), then there is v € A* with y(v) = = (where v : A* — (Ae)* x (Af)*). We
need to see that v € ker(d). However, KA = KAe x KAf and KA = 0. Hence,
idg ®@ry =1ida
which shows that x € ker(d) implies v € ker(d). This proves the theorem. m

Remark 8.3. Taking homology we can compare the Mayer-Vietoris sequence of Theo-
rem 8.2 with the Mayer-Vietoris sequence of Theorem 8.1. Denoting as before

H(A,d) = H(A,d)/tH(A,d),

and likewise for the other orders occurring in the statement, observing that there is a map
ker(d) — H(A¢,d), we get a commutative diagram

(Ae)* x (Af)) Nker(d) —— K A ker(d) —2—~ CI(A, d) Cl(Ae,de) x CL(AS, df)

| | | |

5 - - -

H(he,de)" x HAL,df) — H(Ae,d) —2~ CI(H, d)) — CI(H(Ae, de)) x CI(HAS, df))

In the situation of Theorem 8.2 we shall need a particular subgroup of the unit group of

A.

Definition 8.4. Let R be a Dedekind domain with field of fractions K of characteristic
different from 2 and let (A,d) be a differential graded R-order in the finite dimensional
semisimple differential graded K-algebra (A, d). Let 2 = e € Z(A) and f =1 —e. Let D,
be the image of ((Ae)* x (Af)*) Nker(d) — A Nker(d). Put

X, = ker((K: N kera) — mx)
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we define homology-isomorphism units of A, := Ae/(A N Ae) as
Apile) = Xe/{[Xe, Xc], De).

Proposition 8.5. Let R be a Dedekind domain with field of fractions K of characteristic
different from 2 and let (A,d) be a differential graded R-order in the finite dimensional
semisimple differential graded K-algebra (A,d). Suppose that H(A,d) is semisimple as an
algebra. Suppose that A and H(A,d) both satisfy the Eichler condition. Let e = e € Z(A)
be a non trivial central idempotent of A. Put f :=1—e and A := Ae/(A N Ae). Then the
sequence
Api(e) — Clyi(A, d) — Clypi(Ae, de) x Cly;(Af, df)

18 exact.

Proof. The proof only uses standard diagram chasing. Here are the details. Recall from
Remark 8.3 that there is a commutative diagram with exact rows

(Ae)* x (Af)) Nker(d) —— A A ker(d) —2—~ CI(A, d) Cl(Ae, de) x CL(AS, df)

| I |

X [ - -

H(Ae,de)  x HAS,df) ——= H(R,d) —= CUH(A,d)) — CI(H(Ae, de)) x CLH(AS, df)).

Since the class groups are abelian groups, we can consider the abelianisations of the various
unit groups, denoted by the index ab, for short. Put F, the image of

X

H(Ae,de)” x HAf,df) — H(A,d) .

This then gives a commutative diagram with exact rows (where we replace D, and F, by
the image in the abelianisation

(& Ner(d) b /D~ Cl(A, d) Cl(Ae,de) x CIU(AS, df)

| |

(H(KE,E)X) b JE. . CI(HR, d)) —— CI(H(Ae, de)) x CL(H(AS, df))

Taking kernels of the vertical maps can be extended to a commutative diagram with exact
columns

K; - Clhi(;/\\’d) ok Clpi(Ae, de) Xquhi(Aﬁdf)
L1 L2 L3

(& Ner(d) b /D CU(A, d) ———~ Cl(Ae, de) x CU(AS, df)

T T2 T3

(H(KE,E)X) b JE.C°  CI(HR, d)) — CI(H(Ae, de)) x CL(H(AS, df))

Clearly i o ax = 0, which shows im(ak) C ker(fSk).
If x € ker(BK), then
t2(z) = d4(y) € ker(e) Nker(ma)

for some y € A~ Nker(d) and
(o m)(y) = (m2 0 64)(y) = ma() = 0.
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Since 4 is injective, 1 (y) = 0, which shows that there is 41 € Ay, such that 1 (y;) = y.
Then

(L2 0ak)(y1) = dat1(y1)) = da(y) = t2(x).

Since 9 is injective, ax (y1) = x. This shows the statement. m
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