
DIFFERENTIAL GRADED BRAUER GROUPS

ALEXANDER ZIMMERMANN

Abstract. We consider central simple K-algebras which happen to be differ-
ential graded K-algebras. Two such algebras A and B are considered equiv-

alent if there are bounded complexes of finite dimensional K-vector spaces

CA and CB such that the differential graded algebras A ⊗K End•K(CA) and
B ⊗K End•K(CB) are isomorphic. Equivalence classes form an abelian group,

which we call the dg Brauer group. We prove that this group is isomorphic to

the ordinary Brauer group of the field K.

Introduction

Brauer groups proved to be an important invariant of fields K. They are defined
as equivalence classes of central simple K algebras, where two such algebras are
called equivalent if a matrix algebra of the one is isomorphic to the matrix algebra
(of possibly different size) of the other. These then form an abelian group under
tensor product over K. Most interestingly, for algebraic number fields, is the link
to the Brauer groups of the completions at the primes of the field. The Brauer
group then embeds into the product of the Brauer groups over all completions,
with cokernel being isomorphic to Q/Z.

The original definition was generalised further to graded central simple K al-
gebras (originally by C.T.C. Wall for a grading over the cyclic group of order 2,
motivated by studies on quadratic forms), to Hopf algebras, and culminating in the
maybe the most far reaching generalisation to braided monoidal categories, which
was given by van Oystaen and Zhang [10]. Most recently, [4] developed a theory of
Brauer groups for (non graded!) differential central simple algebras in the context
of differential Galois theory. However, this theory is very different since skew field
never contain nilpotent elements, and hence only trivial gradings on finite dimen-
sional skew fields are possible. Therefore, skew fields only bear a trivial differential
graded structure.

In [12] we studied differential graded orders in differential graded algebras which
are semisimple as algebras. In particular we studied the local-global behaviour and
defined a theory of idèles of theses structures. It seems to be natural then to
consider Brauer groups for differential graded algebras which are central simple as
algebras. This is what we propose to do in the present note.
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There are two possible versions. First we may consider differential graded K-
algebras which are central simple as algebras, which leads to what we call dgBr(K),
the differential graded Brauer group.

Another option is the construction given by algebras which are finite dimensional
differential graded K-algebras and whose category of differential graded modules
is semisimple. Aldrich and Garcia-Rozas [1] proved a structure theorem for these.
They are formed by differential graded algebras (A, d), which are acyclic as com-
plexes, and such that ker(d) is central Z-graded simple. Moreover, in this case
for any z ∈ d−1(1) we have A = ker(d) ⊕ z ker(d). This concept does not give a
Brauer group since the tensor product of two such algebras will in general not be
simple in the sense of [1], and actually not even semisimple. We shall provide a
counterexample.

Our main result is the proof that the forgetful functor induces a group isomor-
phism dgBr(K) ≃ Br(K).

The paper is organized as follows. In Section 1 we recall the definitions and
notations which we use for differential graded algebras. Section 2 then recalls the
definition of the ordinary Brauer group of central simple algebras, the definition
of Brauer groups in the graded sense, and gives our main definition, namely the
Brauer group of differential graded algebras and shows first properties. We also
provide an example why the theory of semisimplicity in the category of differential
graded algebras given by [1] is not well suited for our purposes. Section 3 then
states and proves our main result.

1. Foundations of dg-algebras and dg-modules

1.1. Generalities. We recall some definitions concerning differential graded alge-
bras and their differential graded modules, also to fix the notations.

Let R be a commutative ring. Recall from Cartan [2], Keller [6], and [8] that

(1) a differential graded R-algebra (or dg-algebra for short) is a Z-graded R-
algebra A =

⊕
n∈Z An together with a graded R-linear endomorphism d

satisfying d(An) ⊆ An+1 and d ◦ d = 0, and such that

d(ab) = d(a)b+ (−1)|a|ad(b)

for all homogeneous elements a, b ∈ A. Here |a| denotes the degree of a. A
homomorphism of differential graded algebras f : (A, dA) → (B, dB) is a
degree 0 homogeneous R-algebra map f such that f ◦ dA = dB ◦ f .

(2) for differential graded K-algebras (A, dA) and (B, dB), also A ⊗K B is a
differential graded algebra. The differential is defined by

dA⊗KB(a⊗ b) = dA(a)⊗ b+ (−1)|a|a⊗ dB(b)

for homogeneous elements a and b.
(3) If (A, d) is a differential graded algebra, then (Aop, dop) is a differential

graded algebra (cf e.g. [8, Definition 11.1]) with x ·op y := (−1)|x|·|y|yx for
any homogeneous elements x, y ∈ A, and dop(x) = d(x). We hence write
dop = d.
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(4) A differential graded right A-module (or dg-module for short) is then a
Z-graded R-module M with graded R-linear endomorphism dM of square
0 and of degree 1, such that

dM (ma) = dM (m)a+ (−1)|m|md(a)

for all homogeneous elements a ∈ A and m ∈ M . A differential graded
(A, d)-left module is a differential graded (Aop, d)-right module.

(5) Let (A, dA) be a differential graded R-algebra and let (M, δM ) and (N, δN )
be differential graded (A, dA)-modules. Then a homomorphism of differen-
tial graded modules is an R-linear homogeneous map f : M → N of degree
0 with f ◦ δM = δN ◦ f , with f(am) = af(m) for all a ∈ A and m ∈ M .

(6) Let (M,dM ) and (N, dN ) be differential graded (A, d)-modules. The ho-
momorphism complex Hom•

A(M,N) is the Z-graded R-module given by

(Hom•
A(M,N))n := {f : M → N | f ∈ HomR(M,N) and f(Mk) ⊆ Nk+n}.

The elements f of Hom•
A(M,N) are not asked to be compatible with the

differentials in any way. Let dHom : Hom•
A(M,N) → Hom•

A(M,N) given
by

dHom(f) := dN ◦ f − (−1)|f |f ◦ dM .

Then d2Hom(f) = 0, as is easily verified (cf e.g. [12]). Hence the pair
(Hom•

A(M,N), dHom) is a complex ofR-modules. Moreover, in caseM = N
we get that (Hom•

A(M,M), dHom) is a differential graded algebra.

2. Definition of differential graded Brauer groups

We recall the Brauer group of a field.

Definition 2.1. LetK be a field. Two finite dimensional central simpleK-algebras
A and B are equivalent if there are positive integers m,n ∈ N such that A ⊗K

Matn(K) ≃ B ⊗K Matm(K). The Brauer group Br(K) is the group with elements
being the equivalence classes of finite dimensional central simple K-algebras and
group law induced by −⊗K −.

Recall that this is indeed a group. It is a set since we consider equivalence
classes. The law is clearly well-defined and associative. The neutral element is
the equivalence class of K. Further, for any finite dimensional central simple K-
algebra A we have a classical result (cf e.g. [5, Theorem 4.1.3]), which shows that
A⊗K Aop ≃ MatdimK A(K). Hence the inverse of the equivalence class of A is the
equivalence class of Aop.

For the so-called G-graded Brauer group GBr(K), for the (possibly infinite)
cyclic group G, an analogous construction is used. Note however that the graded
Brauer group is slightly different from the one in Definition 2.7.

A G-graded K-algebra A is called graded central simple if A does not have non
trivial G-graded twosided ideals and K = Z(A). If A and B are two graded central
simple K-algebras, then A⊗K B is again a graded central simple K-algebra. Note
that here the tensor product is the graded tensor product defined as follows. As
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a K-module, this is the usual tensor product. However the multiplication law is
given by (a⊗ b) · (c⊗ d) = (−1)|b||c|(ac⊗ bd) for homogeneous elements a, b, c, d.

Again, it can be shown that A ⊗K Aop ≃ EndK(A) as a graded algebra. As in
the ungraded case one defines an abelian group, the G-graded Brauer group (cf e.g.
Turbow [9]).

Definition 2.2. LetK be a field and letG be a cyclic group. Two centralG-graded
simple K-algebras A and B are equivalent if there are G-graded K-modules V and
W such that A⊗K EndK(V ) ≃ B⊗K EndK(W ). Then the G-graded Brauer group
GBr(K) is the group of equivalence classes of central G-graded simple K-algebras.

For the G-graded Brauer group, one considers algebras which are simple as G-
graded algebras. Algebras which are simple as G-graded algebras need not be
simple as algebras. However, simple algebras, which happen to be G-graded, are of
course graded simple. Obviously simple algebras are graded simple with the trivial
grading. The graded Brauer group is well-studied, and in case G is or order 2, this
group is called the Brauer-Wall group, after C.T.C. Wall’s work [11].

2.1. General properties on differential graded algebras. Our intention is to
define a Brauer group for differential graded algebras.

We have (at least) two concepts for what we should call a simple differential
graded algebra. The somehow naive version, but underpinned by the success of the
concept of differential graded orders in [12] consists in considering central simple
K-algebras A, which are in addition differential graded. Our objects then would
be such algebras (A, d).

A second more categorical concept would be to consider indecomposable differ-
ential graded algebras whose category of differential graded modules is semisimple.

Aldrich and Garcia-Rochas showed in [1] that a differential graded algebra (A, d)
has a semisimple category of differential graded modules if and only if (A, d) is
bounded and acyclic, and moreover ker(d) is semisimple as an ordinary graded
algebra. Further, in this case, for z ∈ A with d(z) = 1, we have A = ker(d) ⊕ z ·
ker(d). Observe that for any homogeneous element n ∈ ker(d) we have

d(zn) = d(z)n+ (−1)|z|z · d(n) = 1 · n+ 0 = n.

Note further that we may use the same element z also for the opposite algebra.

Example 2.3. For a field K consider A = K[X]/X2 where K is in degree 0 and
X is an element of degree −1. Then there is a differential d on K[X]/X2 given
by d(1) = 0 and d(X) = 1. Note that (A, d) is acyclic and ker(d) = K is simple.
Hence (A, d) is semisimple in the sense of [1], but A is not semisimple as an algebra.

On the other hand, the field K in degree 0, and differential 0 is a simple algebra,
which is differential graded by the trivial dg-structure. However, it is not simple
in the sense of [1].

We hence first need an analogue for what provides the inverse of a central simple
algebra in the classical case.



DIFFERENTIAL GRADED BRAUER GROUPS 5

Proposition 2.4. Let K be a field. Let (A, d) be a differential graded K-algebra
which is central simple as an algebra. Then (A, d)⊗K(Aop, dopA ) ≃ (End•K(A), dHom),
and hence (A, d) ⊗K (Aop, dopA ) ≃ (MatdimK(A)(K), dM ) for some grading and dif-
ferential dM on the matrix algebra.

Proof. As (A, d) is a (the regular) (A, d)-module, by the preliminary remarks, (A, d)
is a right (Aop, d)-module as well. Hence, considering (A, d) as a bounded complex
(C, d) of K-modules, we consider left multiplication

λ : (A, d) −→ (End•K(C), dHom)

given by λa(x) = ax for any a ∈ (A, d) and x ∈ (C, d) as well as right multiplication
given by

ρ : (Aop, d) −→ (End•K(C), dHom)

given by ρa(x) = a·opx for any a ∈ (Aop, d) and x ∈ (C, d). These are clearly algebra
homomorphisms. We need to see that these are dg-homomorphisms between dg-
algebras.

We first need to show λd(a) = dHom(λa) for all homogeneous a ∈ A. This then
translates into

dHom(λa)(b) =(d ◦ λa − (−1)|a|λa ◦ d)(b)

=d(ab)− (−1)|a|a · d(b)
=d(a) · b
=λd(a)(b)

for all b ∈ A.
Then, we need to show ρd(a) = dHom(ρa) for all homogeneous a ∈ Aop. This

then becomes

dHom(ρa)(b) =(d ◦ ρa − (−1)|a|ρa ◦ d)(b)

=d(ρa(b))− (−1)|a|ρa(d(b))

=d(a ·op b)− (−1)|a|a ·op d(b)

=(−1)|b||a|d(ba)− (−1)|a| · (−1)|a|·(|b|+1)d(b)a

=(−1)|b||a|(d(ba)− (−1)|a|+|a|d(b)a)

=(−1)|b||a|(d(ba)− d(b)a)

=(−1)|b||a| · (−1)|b|bd(a)

=(−1)|b|·(|a|+1)bd(a)

=d(a) ·op b
=ρd(a)(b)

Clearly ρ is injective, as well as λ. Hence

A ≃ λ(A) ⊆ (End•K(C), dHom)
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and

Aop ≃ ρ(Aop) ⊆ (End•K(C), dHom).

Now if, as an algebra, A is simple, also λ(A) is simple as an algebra. Likewise as
an algebra, Aop is simple, and hence also ρ(Aop). A classical result [5, Theorem
4.1.1] then shows that λ(A)⊗K ρ(Aop) is simple. But now the map

A⊗K Aop ≃ λ(A)⊗K ρ(Aop) −→ λ(A) · ρ(Aop) ⊆ (End•K(C), dHom)

is necessarily injective, by the simplicity of A⊗K Aop.
Now, for n = dimK(A) we have

n2 = dimK(A⊗K Aop) = dimK(λ(A) · ρ(Aop)) ≤ dimK(End•K(C, d)) = n2

again, and hence

A⊗K Aop ≃ λ(A) · ρ(Aop) = End•K(C, d)

as differential graded algebras. This shows the proposition. □

This motivates the following

Definition 2.5. Two differential graded K-algebras A and B, are called equivalent
if there are bounded complexes C1 and C2 of finite dimensional K-modules such
that

A⊗K End•K(C1) ≃ B ⊗K End•K(C2).

We prove now directly the following

Lemma 2.6. Let K be a field and let (A, dA) and (B, dB) be differential graded
algebras. Then (A⊗K B, dA⊗KB) ≃ (B ⊗K A, dB⊗KA) as differential graded alge-
bras.

Proof. We need to show commutativity of the graded tensor product. Let A and
B be differential graded K-algebras. Then A⊗K B has multiplication

(a⊗ b) · (a′ ⊗ b′) = (−1)|b||a
′|(aa′ ⊗ bb′).

The algebra B ⊗K A has multiplication

(b⊗ a) · (b′ ⊗ a′) = (−1)|a||b
′|(bb′ ⊗ aa′).

Then,

A⊗K B
α−→B ⊗K A

a⊗ b 7→(−1)|a||b|(b⊗ a)
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for any homogeneous elements a, a′ ∈ A, b, b′ ∈ B is an algebra isomorphism.
Indeed, for any homogeneous elements a, a′ ∈ A and b, b′ ∈ B,

α((a⊗ b) · (a′ ⊗ b′)) =α((−1)|b||a
′|(aa′ ⊗ bb′))

=(−1)|aa
′||bb′| · (−1)|b||a

′|(bb′ ⊗ aa′)

=(−1)(|a|+|a′|)(|b|+|b′|) · (−1)|b||a
′|(bb′ ⊗ aa′)

=(−1)|a||b|+|a||b′|+|a′||b′|(bb′ ⊗ aa′)

=(−1)|a||b|+|a′||b′|(b⊗ a) · (b′ ⊗ a′)

=(−1)|a||b|(b⊗ a) · (−1)|a
′||b′|(b′ ⊗ a′)

=α(a⊗ b) · α(a′ ⊗ b′)

We need to show compatibility with the differential.

α(d(a⊗ b)) =α(da⊗ b+ (−1)|a|a⊗ db)

=(−1)|b|(|a|+1)(b⊗ da) + (−1)|a| · (−1)|a|(|b|+1)(db⊗ a)

=(−1)|a||b|(db⊗ a+ (−1)|b|b⊗ da)

=d(α(a⊗ b))

This shows the lemma. □

2.2. The differential graded Brauer group. Recall the notion of equivalent
simple differential graded algebras from Definition 2.5.

Definition 2.7. The dg-Brauer group dgBr(K) of a field K is given by the set of
equivalence classes (in the sense of Definition 2.5) of algebras A, which are central
simple as K-algebras and which are in addition differential graded algebras.

Actually, the notion of equivalence from Definition 2.5 used for Definition 2.7
seems to be a little too strong. We only need to consider complexes C which are
the K-module structure of central simple dg K-algebras.

One might be tempted to define another dg Brauer group by simple dg-algebras
in the sense of Aldrich and Garcia-Rochas [1]. This would then possibly be linked
to the graded Brauer group, which is very well-studied.

Example 2.8. Recall Example 2.3. Let K be a field of characteristic 2 and let
A = K[X]/X2 where X is in degree −1, where d(X) = 1, and d(1) = 0. Then

A⊗K A = K[X]/X2 ⊗K[Y ]/Y 2 = K[X,Y ]/(X2, Y 2)

is a differential graded algebra concentrated in degrees 0, −1 and −2. We get that
the differentialD on the tensor product isD(XY ) = X−Y andD(X) = 1 = D(Y ).
Further, D(1) = 0. This shows that we have ker(D) = K + K(X − Y ) and
hence ker(D) = K[Z]/Z2 where Z = X − Y is of degree −1. This algebra is not
semisimple, whereas ker(d) = K is semisimple. This shows that (A, d)⊗K (A, d) is
not simple as a differential graded algebra in the sense of [1], even though (A, d)
is simple in the sense of [1]. It is therefore impossible to define a Brauer group
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for this class of algebras in the same way as it is done classically. Our observation
here confirms our observation from [12] that the concept of semisimple differential
graded algebras in the sense of [1] is much less well-behaved as our concept.

Proposition 2.9. dgBr(K) is an abelian group with group law the graded tensor
product and the inverse element of a class being the equivalence class of the opposite
algebra.

Proof. The tensor product is easily seen to be well-defined. Denote by [A] the
equivalence class of a central simple differential graded algebra A. The equivalence
class [K] of the 1-dimensional algebra K concentrated in degree 0 and differential
0 is the neutral element of dgBr(K). By Proposition 2.4 for each element [A] of
dgBr(K) we have that

[A] · [Aop] = [A⊗K Aop] = [K].

Hence all elements of dgBr(K) have an inverse. The associativity of the group
law is a general property of the tensor product of differential graded algebras. By
Lemma 2.6 the group law is commutative.

We hence have proved the proposition. □

3. The main result

In [12] we proved a structure theorem for split simple dg-algebras. In the proof
of the theorem we needed a technical hypothesis, namely that there is a primitive
idempotent e of A such that A · e ̸⊆ A · d(e). In a more general setting this may be
false, as is illustrated by the following

Example 3.1. Recall Example 2.3. Let K be a field, and consider the graded
algebra A = K[X]/X2 where K is in degree 0 and X is an element of degree −1.
Then there is a differential d on K[X]/X2 given by d(1) = 0 and d(X) = 1 such
that (A, d) is a differential graded algebra. Note that here we have AX ⊆ Ad(X).
Of course, A is not semisimple and X is not idempotent.

However, for full matrix algebras over fields, the hypothesis A · e ̸⊆ A · d(e) in
the above mentioned structure theorem from [12] is superfluous, as we shall prove
now.

Recall the following result by Dascalescu, Ion, Nastasescu, and Rios-Montes from
[3]. Consider the full matrix algebra EndK(Kn) over a field K and denote by ei,j
the matrix which has coefficient 0 everywhere except at position (i, j), where it has
coefficient 1. There the authors of [3] call a group grading on a full matrix algebra
Matn(K) good if the matrices ei,j are homogeneous elements of the grading.

Theorem 3.2. • ([3, Theorem 1.4]). Let R be the algebra Matn(K) endowed
with a G-grading such that there is a G-graded R-module which is simple as
an R-module. Then there exists an isomorphism of graded algebras R ≃ S
where S is Matn(K) endowed with a good grading.

• ([3, Corollary 1.5]). If G is torsion free, then any grading on Matn(K) is
isomorphic to a good grading.



DIFFERENTIAL GRADED BRAUER GROUPS 9

• ([3, Proposition 2.1]). There is a bijective correspondence between the set
of all good G-gradings on Matn(K) and the set of maps f : {1, 2, . . . , n −
1} −→ G such that to a good G-grading we associate the map defined by
f(i) = deg(ei,i+1).

We should mention that [3] also provide examples of non good gradings on
Matn(K).

The following proposition was proved in [12] under an additional technical as-
sumption. This assumption is superfluous, as we shall prove now. For the conve-
nience of the reader we also recall all the details of the proof from [12] in order to
have a complete presentation.

Proposition 3.3. Let K be a field and let (A, d) be a finite dimensional differ-
ential graded K-algebra. Suppose that A is a split simple K-algebra. Then there
is a bounded complex L of K-modules such that A ≃ Hom•

K(L,L)op as differen-
tial graded algebras. Conversely, A = Hom•

K(L,L) is differential graded, finite
dimensional simple as algebra.

Proof. If L is a bounded complex of K-vector spaces, then Hom•
K(L,L) is a full

matrix ring over K, as ungraded algebra, and hence simple as algebra. Further, as
recalled from Section 1 item (6), the algebra Hom•

K(L,L) is a differential graded
algebra.

Conversely, let K be a field and let (A, d) be a finite dimensional differential
graded algebra. Suppose that A is a split simple K-algebra. By Wedderburn’s
theorem, A is a full matrix algebra over K. Let e be a primitive idempotent of A.

By Theorem 3.2 we may assume that A is Z-graded by a good grading, and ei,i
are all of degree 0. As d is of degree 1, we may choose e = ei,i (depending if the
degree 1 element is upper diagonal or if it is lower diagonal) such that Ae ̸⊆ Ad(e).

Since Ae ̸⊆ Ad(e),

M := A · e+A · d(e) and N := A · d(e)
are differential graded (A, d)-modules. Further N < M and

L := M/N ̸= 0

is a differential graded (A, d)-module.
As an A-module, we see that L ≃ Ae is a progenerator. Hence L is a natural

differential graded (A, d)− (End•K(L), dHom) bimodule. Now, for any homogeneous
a ∈ A, left multiplication by a gives a homogeneous element φ(a) ∈ End•K(L).
Further, φ is additive, sends 1 ∈ A to the identity on L, and induces a ring
homomorphism

φ : A −→ End•K(L)op.

Since L is a progenerator, φ is injective. Since dimK(A) = dimK(End•K(L)), we
get that φ is an isomorphism of algebras. Now, for any homogeneous a, b ∈ A, we
have

d(a)b = d(ab)− (−1)|a|ad(b)

we get
φ(d(a)) = d ◦ φ(a)− (−1)|a|φ(a) ◦ d = dHom(φ(a))
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and therefore φ is an isomorphism of differential graded algebras. □

Remark 3.4. After having finished and submitted the manuscript I discovered
that D. Orlov defined our notion of simple differential graded algebra earlier in
[7], and called it abstractly simple. Moreover, he proved the statement of Proposi-
tion 3.3 by completely different means. His proof uses scheme theoretic arguments.
However, he has to assume that the primitive central idempotents are in degree 0.
Our approach gives that this can be assumed to be automatically satisfied using
[3, Corollary 1.5].

Theorem 3.5. Let K be a field. Then the forgetful functor induces an isomorphism

Br(K) ≃ dgBr(K).

Proof. We obviously have a group homomorphism

Br(K)
ι−→ dgBr(K)

since any central simple algebra is also a central simple dg-algebra with trivial
grading and 0 differential. Further, the map induced by just forgetting the grading
and the differential induces a group homomorphism

dgBr(K)
ϕ−→ Br(K).

Of course,
ϕ ◦ ι = idBr(K).

Hence, ϕ is surjective. Consider ker(ϕ). By definition ker(ϕ) is formed by equiv-
alence classes of differential graded central simple algebras A such that A ⊗K

Matn(K) ≃ Matm(K) as ungraded algebras, for some n,m ∈ N. But this shows
that m = n · dimK(A) and

Matn(A) ≃ EndK(Kn·dimK(A)).

By Proposition 3.3 there is a complex C in Cb(K − mod) such that we have an
isomorphism of differential graded algebras

Matn(A) ≃ (End•K(C), dHom).

Hence [A] = [K] in dgBr(K). This shows that Φ is an isomorphism. Therefore

dgBr(K) ≃ Br(K)

and we proved the theorem. □

Remark 3.6. We emphasize that Theorem 3.5 shows that if K is a field, then
any central simple differential graded K-algebra A is equivalent to one of the form
End•K(C)⊗K D for some complex C in Cb(K −mod), and some finite dimensional
(ungraded) skew field D with centre K.

Remark 3.7. Since Br(K) is abelian, Theorem 3.5 shows that also dgBr(K) is
abelian, without using Lemma 2.6. However, Lemma 2.6 is completely elementary,
whereas Theorem 3.5 is not really. Further, we show in Lemma 2.6 commutativity
of the tensor product in general, and not only up to equivalence in the dg-Brauer
group as it follows from Theorem 3.5.
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Remark 3.8. Let (A, d) and (B, d) be simple differential graded algebras in the
sense of [1]. Since the differential of a tensor product of dg-algebras (A, dA) and
(B, dB) is given as (A ⊗ B, dA ⊗ idB ± idA ⊗ dB), we have the ker(dA) ⊗ ker(dB)
is indeed a subspace of ker(dA ⊗ idB ± idA ⊗ dB), but the kernel contains more in
general coming from elements of the form xA ⊗ zBxB ± zAxA ⊗ xB for elements
xA ∈ ker(dA) and xB ∈ ker(dB). Hence, taking the kernel of the differential will
not satisfy that (A, dA) ⊗K (B, dB) maps to the class of ker(dA) ⊗K ker(dB) in
GBr(K). Example 2.8 is formed in this sense and provides an explicit example for
this phenomenon.

Remark 3.9. By Theorem 3.5 we have Br(K)
ι−→ dgBr(K) is an isomorphism

where ι([A]) = [(A, 0)]. We may be tempted to consider for a differential graded
algebra (A, d) its homology H(A, d). Since by Künneth’s formula we get

H((A, d)⊗K (End•K(C), dHom)) ≃ H((A, d)⊗K H(End•K(C), dHom))

the map ’taking homology’ from dgBr(K) to equivalence classes of graded modules
is not really well-defined. Indeed, H(End•K(C), dHom) is in general not isomorphic
to EndK(H(C)). One would need to consider a broader concept of equivalence
for a modified graded Brauer group at least. Further, even then, the isomorphism

Br(K)
ι−→ dgBr(K) and the fact that H(A, 0) ≃ A indicates that homology is not

an interesting map on the differential graded Brauer group.
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