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Algebra in 1930: Noether and Deuring

Max Deuring 1932

Deuring
» was born in 1907 in Gottingen, Germany,
» studied there with Emmy Noether (thesis 1930)
> died in 1984.
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Algebra in 1930: Noether and Deuring

Max Deuring 1932

Deuring

» was mainly interested in Hilbert's class field theory brought to
a culminating point at that time by Hasse's report on class
field theory

> but in parallel also in non commutative associative algebras
which were called "hypercomplex systems of numbers” at that
time

» and studied in 1930 mainly by

» L.E.Dickson in USA
» and Artin, Brauer, Hasse and Noether in Germany
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Algebra in 1930: Noether and Deuring

Normal basis theorem

Deuring wrote in 1931 a paper
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Normal basis theorem

Deuring wrote in 1931 a paper
" Galoissche Theorie und Darstellungstheorie”
(Galois theory and representation theory)
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Algebra in 1930: Noether and Deuring

Normal basis theorem

Deuring wrote in 1931 a paper

" Galoissche Theorie und Darstellungstheorie”

(Galois theory and representation theory)

appeared in Mathematische Annalen 107 (1932) 140-144.
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Algebra in 1930: Noether and Deuring

Normal basis theorem

Deuring wrote in 1931 a paper

" Galoissche Theorie und Darstellungstheorie”

(Galois theory and representation theory)

appeared in Mathematische Annalen 107 (1932) 140-144.

There he reproved a theorem which was stated (for infinite fields
k) by Emmy Noether in 1929:
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Algebra in 1930: Noether and Deuring

Normal basis theorem

Deuring wrote in 1931 a paper

" Galoissche Theorie und Darstellungstheorie”

(Galois theory and representation theory)

appeared in Mathematische Annalen 107 (1932) 140-144.

There he reproved a theorem which was stated (for infinite fields
k) by Emmy Noether in 1929:
Theorem (Normal basis theorem)

Let K be a Galois extension of the field k and let G be the Galois
group of K over k. Then K is as kG-module isomorphic to the
rank one free kG-module:

K ~ kG
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Algebra in 1930: Noether and Deuring

Note Added in Proof

Using this result, he also shows the theorem of the primitive
element.
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Note Added in Proof

Using this result, he also shows the theorem of the primitive
element.

In a note added in the proofs (June 1932) he shows
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Algebra in 1930: Noether and Deuring

Note Added in Proof

Using this result, he also shows the theorem of the primitive
element.

In a note added in the proofs (June 1932) he shows

Theorem (Noether-Deuring theorem)

Let K be a Galois extension of k and let M and N be two modules
over some k-algebra (operator domain, as he says).
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Algebra in 1930: Noether and Deuring

Note Added in Proof

Using this result, he also shows the theorem of the primitive
element.
In a note added in the proofs (June 1932) he shows

Theorem (Noether-Deuring theorem)

Let K be a Galois extension of k and let M and N be two modules
over some k-algebra (operator domain, as he says). If

K®rM~K®,N as K®, A-modules,

then
M ~ N as A-modules.

Alexander Zimmermann Université de Picardie, France Completions and Isomorphism Type



Algebra in 1930: Noether and Deuring

Note Added in Proof

Using this result, he also shows the theorem of the primitive
element.

In a note added in the proofs (June 1932) he shows

Theorem (Noether-Deuring theorem)

Let K be a Galois extension of k and let M and N be two modules
over some k-algebra (operator domain, as he says). If

K®rM~K®,N as K®, A-modules,

then
M ~ N as A-modules.

And this is what we are going to consider in the sequel.

Alexander Zimmermann Université de Picardie, France Completions and Isomorphism Type



Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis
theorem.
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Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis
theorem.
Let K be Galois over k.
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Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis
theorem.
Let K be Galois over k. Then

K@y K ~ H 7K
o€Gal(K:k)
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Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis
theorem.
Let K be Galois over k. Then

K@y K ~ H 7K
o€Gal(K:k)

and Gal(K : k) =: G acts on each component of the direct
product by permuting factors.
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Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Hence,
K®rK>~KG~K®kG

as KG-modules.
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Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Hence,
K®rK>~KG~K®kG

as KG-modules. Therefore by the Noether-Deuring theorem

(K®kM2K®kN):>(M’:N)
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Algebra in 1930: Noether and Deuring

Noether-Deuring implies Normal Basis

Hence,
K®rK>~KG~K®kG

as KG-modules. Therefore by the Noether-Deuring theorem
(K@ M~ K@, N)= (M=~ N)

we get
K ~ kG

as kG-modules.
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Representations in 1970

Galois Module Problem

Given a Galois extension L over K with group G, take S the
algebraic integers in L and R the algebraic integers in K.
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Representations in 1970

Galois Module Problem

Given a Galois extension L over K with group G, take S the
algebraic integers in L and R the algebraic integers in K.

S = algint(L); R = algint(K); G = Gal(L/K).
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Representations in 1970

Galois Module Problem

Given a Galois extension L over K with group G, take S the
algebraic integers in L and R the algebraic integers in K.

S = algint(L); R = algint(K); G = Gal(L/K).
Is S ~ RG as RG-modules?
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Representations in 1970

Classical orders

During 1970 motivated by this question (and other problems)
Frohlich, Zassenhaus, Reiner and others studied
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Representations in 1970

Classical orders

During 1970 motivated by this question (and other problems)
Frohlich, Zassenhaus, Reiner and others studied

Let R be a Dedekind domain and K its field of fractions. An
R-order in a semisimple K-algebra A is a finitely generated
R-projective R-algebra A, so that K ®r A ~ A.
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Representations in 1970

Classical orders

During 1970 motivated by this question (and other problems)
Frohlich, Zassenhaus, Reiner and others studied

Let R be a Dedekind domain and K its field of fractions. An
R-order in a semisimple K-algebra A is a finitely generated
R-projective R-algebra A, so that K ®r A ~ A.

In other words, A contains a K-basis of A.
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Representations in 1970

Local versus Complete

If R is a complete discrete valuation domain, it has a residue field
k and there are many methods for passing informations from
k ®r A to A.
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Representations in 1970

Local versus Complete

For example:
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Representations in 1970

Local versus Complete

For example: Idempotents in kK ®r A\ are always images of
idempotents of A under

N— kg A

if R is complete.
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Representations in 1970

Local versus Complete

For example: Idempotents in kK ®r A\ are always images of
idempotents of A under

N— kg A
if R is complete.

And so, -
k®@r M = My ® M,

as k ®g A module implies
M = M; & M>

as A-module for M; = k @r M;.
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Representations in 1970

Local versus Complete

However, if R is not complete, there is much less known.
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Representations in 1970

Local versus Complete

However, if R is not complete, there is much less known. Lifting of
idempotents is not true for example. Lifting of idempotents was
the property of decomposing modules as direct sums.
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Representations in 1970

Local versus Complete

However, if R is not complete, there is much less known. Lifting of
idempotents is not true for example. Lifting of idempotents was
the property of decomposing modules as direct sums.

Denote R the completion of the local R at its maximal ideal.
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Representations in 1970

Local versus Complete

However, if R is not complete, there is much less known. Lifting of
idempotents is not true for example. Lifting of idempotents was
the property of decomposing modules as direct sums.

Denote R the completion of the local R at its maximal ideal. This
is defined as equivalence classes of Cauchy sequences, and satisfies

R/rad(R) ~ k ~ R/rad(R).

So, we have interest to get informations on A-modules when we
have informations on R ® p A-modules.
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Representations in 1970

Local versus Complete

However, if R is not complete, there is much less known. Lifting of
idempotents is not true for example. Lifting of idempotents was
the property of decomposing modules as direct sums.

Denote R the completion of the local R at its maximal ideal. This
is defined as equivalence classes of Cauchy sequences, and satisfies

R/rad(R) ~ k ~ R/rad(R).

So, we have interest to get informations on A-modules when we
have informations on R ® p A-modules.

Can we have a Noether-Deuring theorem for the local-complete
case?
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.
Let R be the completion of R at the maximal ideal (the Jacobson
radical).
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let R be the completion of R at the maximal ideal (the Jacobson
radical).

Let A be a Noetherian R-algebra.
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let R be the completion of R at the maximal ideal (the Jacobson
radical).

Let A be a Noetherian R-algebra.

Let M and N be finitely generated A-modules.
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let R be the completion of R at the maximal ideal (the Jacobson
radical).

Let A be a Noetherian R-algebra.

Let M and N be finitely generated A-modules.

Theorem (Roggenkamp 1972)
If Endy(M) is finitely presented as R-module.
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let R be the completion of R at the maximal ideal (the Jacobson
radical).

Let A be a Noetherian R-algebra.

Let M and N be finitely generated A-modules.

Theorem (Roggenkamp 1972)

If Endp(M) is finitely presented as R-module. Then
Rr M~ R®gr N as R ®r N-modules
implies M ~ N as A-modules.
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem

> uses some methods of homological algebra
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem
> uses some methods of homological algebra

» applies to classical orders
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem
> uses some methods of homological algebra
» applies to classical orders
» is valid even for the property of being direct factor instead of
isomorphism

Completions and Isomorphism Type
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Representations in 1970

Roggenkamp's Noether-Deuring Theorem

The
>
>

>

Alexander Zimmermann Université de Picardie, France

proof of Roggenkamp's theorem

uses some methods of homological algebra

applies to classical orders

is valid even for the property of being direct factor instead of
isomorphism

applies also when replacing R by S, a commutative R-algebra,
which is faithfully projective of finite type as R-module.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.
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Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties,
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At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced
representations,
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Derived Categories: France in 1960-80

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced
representations, and abstraction became fancy and fashionable.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced
representations, and abstraction became fancy and fashionable.

Already in Roggenkamp's version of the Noether-Deuring theorem
homological algebra was used in an essential way.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced
representations, and abstraction became fancy and fashionable.

Already in Roggenkamp's version of the Noether-Deuring theorem
homological algebra was used in an essential way.

Derived categories come in
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Derived Categories: France in 1960-80

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's
proof of his version the Noether-Deuring theorem, Grothendieck
and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced
representations, and abstraction became fancy and fashionable.

Already in Roggenkamp's version of the Noether-Deuring theorem
homological algebra was used in an essential way.

Derived categories come in
"when you take homological algebra seriously”.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

A complex (M, d) of A-modules is a Z-graded A-module
M = ®n€Z M”
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Derived Categories: France in 1960-80

Derived Categories; Introduction

A complex (M, d) of A-modules is a Z-graded A-module

M = ®n€Z M”

together with an endomorphism d : M — M, homogeneous of
degree —1 with d o d = 0, the differential.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

A complex (M, d) of A-modules is a Z-graded A-module

M = ®n€Z M”

together with an endomorphism d : M — M, homogeneous of
degree —1 with d o d = 0, the differential.

Morphisms between complexes ¢ : (M, dy) — (N, dy) are
homomorphisms of A-modules ¢ : M — N
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Derived Categories: France in 1960-80

Derived Categories; Introduction

A complex (M, d) of A-modules is a Z-graded A-module

M = ®n€Z M”

together with an endomorphism d : M — M, homogeneous of
degree —1 with d o d = 0, the differential.

Morphisms between complexes ¢ : (M, dy) — (N, dy) are
homomorphisms of A-modules ¢ : M — N homogeneous of
degree 0
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Derived Categories: France in 1960-80

Derived Categories; Introduction

A complex (M, d) of A-modules is a Z-graded A-module

M = ®n€Z M”

together with an endomorphism d : M — M, homogeneous of
degree —1 with d o d = 0, the differential.

Morphisms between complexes ¢ : (M, dy) — (N, dy) are
homomorphisms of A-modules ¢ : M — N homogeneous of
degree 0 and dy o o = p o dpy.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The important piece of a complex is its homology
H(M, d/w) = ker(dM)/lm(dM)
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The important piece of a complex is its homology
H(M, d/w) = ker(dM)/lm(dM)

A morphism of complexes ¢ : (M, dp) — (N, dy) induces a
morphism of the homology H(y) : H(M, dy) — H(N, dy).
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The important piece of a complex is its homology
H(M, d/w) = ker(dM)/lm(dM)

A morphism of complexes ¢ : (M, dp) — (N, dy) induces a
morphism of the homology H(y) : H(M, dy) — H(N, dy).

It happens that H(y) is an isomorphism even if ¢ is not.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The important piece of a complex is its homology
H(M, d/w) = ker(dM)/lm(dM)

A morphism of complexes ¢ : (M, dp) — (N, dy) induces a
morphism of the homology H(y) : H(M, dy) — H(N, dy).

It happens that H(y) is an isomorphism even if ¢ is not.Such
morphisms are called quasi-isomorphisms.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The derived category D?(A) is a category with

> objects: complexes of A-modules with homology non zero in
only finitely many degrees.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The derived category D?(A) is a category with

> objects: complexes of A-modules with homology non zero in
only finitely many degrees.

» morphisms: morphisms of complexes, where in addition one
makes quasi-isomorphisms invertible.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The derived category D?(A) is a category with

> objects: complexes of A-modules with homology non zero in
only finitely many degrees.

» morphisms: morphisms of complexes, where in addition one
makes quasi-isomorphisms invertible. This procedure is
somewhat technical and was invented by Gabriel and Zisman
in 1967 in a rather abstract fashion.
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Derived Categories: France in 1960-80

Derived Categories; Introduction

The derived category D?(A) is a category with

> objects: complexes of A-modules with homology non zero in
only finitely many degrees.

» morphisms: morphisms of complexes, where in addition one
makes quasi-isomorphisms invertible. This procedure is
somewhat technical and was invented by Gabriel and Zisman
in 1967 in a rather abstract fashion.

The derived category admits an endo-functor [1] given by shift in
the degree of the grading, and forms a so-called triangulated
category.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

Equivalences between derived categroies can be characterised.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

Equivalences between derived categroies can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let D°(A) and D®(B) be two derived categories. Then these are
equivalent as triangulated categories if and only if there is an
object T in D?(A) so that

» T is isomorphic to a complex which is formed by a finitely
generated projective module,

Alexander Zimmermann Université de Picardie, France Completions and Isomorphism Type



Equivalences between derived categories; 1990-

Equivalences between derived categories

Equivalences between derived categroies can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let D°(A) and D®(B) be two derived categories. Then these are
equivalent as triangulated categories if and only if there is an
object T in D?(A) so that
» T is isomorphic to a complex which is formed by a finitely
generated projective module,

> EndDb(A)(T) ~ B°P
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Equivalences between derived categories; 1990-

Equivalences between derived categories

Equivalences between derived categroies can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let D°(A) and D®(B) be two derived categories. Then these are
equivalent as triangulated categories if and only if there is an
object T in D?(A) so that

» T is isomorphic to a complex which is formed by a finitely
generated projective module,

> EndDb(A)(T) ~ Bop
> Hompsa) (T, T[n]) =0 for all n # 0.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

Equivalences between derived categroies can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let D°(A) and D®(B) be two derived categories. Then these are
equivalent as triangulated categories if and only if there is an
object T in D?(A) so that

» T is isomorphic to a complex which is formed by a finitely
generated projective module,

> EndDb(A)(T) ~ Bop
> Hompsa) (T, T[n]) =0 for all n # 0.

T is called a tilting complex.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

Equivalences between derived categroies can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let D°(A) and D®(B) be two derived categories. Then these are
equivalent as triangulated categories if and only if there is an
object T in D?(A) so that

» T is isomorphic to a complex which is formed by a finitely
generated projective module,

> EndDb(A)(T) ~ B°P
> Hompsa) (T, T[n]) =0 for all n # 0.
T is called a tilting complex.

Tilting complexes have many interesting properties.
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Equivalences between derived categories

As for the case of modules over algebras, completion plays a
certain role.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

As for the case of modules over algebras, completion plays a
certain role.

Theorem (Rickard'’s lifting theorem (1991))

Let R be a complete local ring with residue field k and let \ be an
R-free R-algebra of finite rank over R. Let N := k ®g A.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

As for the case of modules over algebras, completion plays a
certain role.

Theorem (Rickard'’s lifting theorem (1991))

Let R be a complete local ring with residue field k and let \ be an
R-free R-algebra of finite rank over R. Let A .= k@gr A. If T is a
tilting complex over N, then there is a tilting complex T over \
with kg T = T and

EndDb(K)(T) ~ k RR EndDb(/\)(T).
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Equivalences between derived categories; 1990-

Equivalences between derived categories

As for modules, the lifting theorem is not true for local coefficient
rings R only.
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Equivalences between derived categories; 1990-

Equivalences between derived categories

As for modules, the lifting theorem is not true for local coefficient
rings R only.

Hence, a Noether-Deuring like theorem passing from the complete
local situation to the local situation is desirable.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

We obtain
Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative
R-algebra, which is faithfully flat as R-module.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

We obtain
Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative
R-algebra, which is faithfully flat as R-module. Suppose that the
natural map R — S induces an isomorphism

R/rad(R) ~ S/rad(S).
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

We obtain
Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative
R-algebra, which is faithfully flat as R-module. Suppose that the

natural map R — S induces an isomorphism

R/rad(R) ~ S/rad(S). Let \ be a Noetherian R-algebra and let

X and Y be two objects of DP(N).
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

We obtain
Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative
R-algebra, which is faithfully flat as R-module. Suppose that the
natural map R — S induces an isomorphism

R/rad(R) ~ S/rad(S). Let \ be a Noetherian R-algebra and let
X and Y be two objects of DP(N). Suppose that Endpsny(X) is a
finitely generated R-module.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

We obtain
Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative
R-algebra, which is faithfully flat as R-module. Suppose that the
natural map R — S induces an isomorphism

R/rad(R) ~ S/rad(S). Let \ be a Noetherian R-algebra and let
X and Y be two objects of DP(N). Suppose that Endpsny(X) is a
finitely generated R-module. Then

S®RrRX~S®rY in D’(S®rN)

implies
X ~Y in DP(N).
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

Remark

» The completion R of a local domain R can serve as S. The
hypotheses on S are satisfied in this case.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

Remark

» The completion R of a local domain R can serve as S. The
hypotheses on S are satisfied in this case.
» It is necessary to work over the bonded derived category.

For technical reasons concerning tensor products in the
unbounded case the proof will not work.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

Remark
» The completion R of a local domain R can serve as S. The
hypotheses on S are satisfied in this case.

» It is necessary to work over the bonded derived category.
For technical reasons concerning tensor products in the
unbounded case the proof will not work.

» A can be a classical order.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

Remark
» The completion R of a local domain R can serve as S. The
hypotheses on S are satisfied in this case.

» It is necessary to work over the bonded derived category.
For technical reasons concerning tensor products in the
unbounded case the proof will not work.

> A can be a classical order.

» The proof really uses derived category techniques and the
triangulated structure.
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Noether-Deuring theorem for derived categories

The Noether-Deuring theorem for derived categories

Corollary

The same statement as in the theorem holds if R is commutative,
semilocal, Noetherian, S a commutative R-algebra so that R ®r S
is a faithful projective R-module of finite type.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

We first show that

Lemma

Homps(sg.n)(S ®r X, S ®r Y) = S ®r Hompsp) (X, Y)

if S is faithfully flat as R-module.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

We first show that

Lemma

Homps(sg.n)(S ®r X, S ®r Y) = S ®r Hompsp) (X, Y)
if S is faithfully flat as R-module.

This is where we need to have D?(A). This part will not work for
unbounded derived categories. (referee’s remark)
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Noether-Deuring theorem for derived categories

Some remarks on the proof

We first show that

Lemma

Homps(sg.n)(S ®r X, S ®r Y) = S ®r Hompsp) (X, Y)
if S is faithfully flat as R-module.

This is where we need to have D?(A). This part will not work for
unbounded derived categories. (referee’s remark)
However, maybe taking the completion of a tensor product....
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Noether-Deuring theorem for derived categories

Some remarks on the proof

We first show that

Lemma (Change of Rings Theorem)

Home(5®R/\)(5 Rr X,5 ®p Y) ~ S Qg Home(,\)(X, Y)
if S is faithfully flat as R-module.

This is where we need to have D?(A). This part will not work for
unbounded derived categories. (referee’s remark)
However, maybe taking the completion of a tensor product....

Again, this is a very classical change of rings theorem.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The proof of this Lemma goes by cutting complexes in small pieces
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The proof of this Lemma goes by cutting complexes in small pieces
gluing them again together
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The proof of this Lemma goes by cutting complexes in small pieces
gluing them again together and controlling the glue and the way
how to glue by long exact sequences.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The next step is the proof of the theorem.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The next step is the proof of the theorem. Here we take an

isomorphism
Y:SARX —S®RY
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The next step is the proof of the theorem. Here we take an

isomorphism
Y:SARX —S®RY

sothat p =Y " jpp®sifors; €S
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The next step is the proof of the theorem. Here we take an

isomorphism
Y:SARX —S®RY

sothat p =Y " jpp®sifors; €S
and use R/rad(R) = S/rad(S) to modify s; by r; so that the
difference is in the radical.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

The next step is the proof of the theorem. Here we take an

isomorphism
Y:SARX —S®RY

sothat p =Y " jpp®sifors; €S

and use R/rad(R) = S/rad(S) to modify s; by r; so that the
difference is in the radical.

@ 1= pjri is then an isomorphism since invertible module
radical is invertible. (Nakayama's lemma)
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Then we need another classical result.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Then we need another classical result.

Lemma
Krull-Schmidt theorem is true for DP(A) if it is true for A.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Then we need another classical result.

Lemma
Krull-Schmidt theorem is true for DP(A) if it is true for A.
| give an independent proof in the paper,
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Then we need another classical result.
Lemma
Krull-Schmidt theorem is true for DP(A) if it is true for A.

| give an independent proof in the paper, but there is an earlier,
better and very abstract proof by Xiao-Wu Chen.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Then the corollary

Corollary

The same statement as in the theorem holds if R is commutative,
semilocal, Noetherian, S a commutative R-algebra so that R ®r S
is a faithful projective R-module of finite type.

to the theorem is shown the following way:
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Then the corollary

Corollary

The same statement as in the theorem holds if R is commutative,
semilocal, Noetherian, S a commutative R-algebra so that R ®r S
is a faithful projective R-module of finite type.

to the theorem is shown the following way:
RerS~ J[ (R,)"

(think of ramifications)
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Noether-Deuring theorem for derived categories

Some remarks on the proof

and hence
5®RR®RX25®RR®RY
=
H (ﬁp;)ni ® X ~ H (Api)ni ®RrRY
pi€Spec(R) pi€Spec(R)

Alexander Zimmermann Université de Picardie, France Completions and Isomorphism Type



Noether-Deuring theorem for derived categories

Some remarks on the proof

Comparing coefficient domains gives
(Ro)) @ X ~ (Ry,)" ®r Y

for each p;.
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Comparing coefficient domains gives

(ﬁpi)ni @ X ~ (k\pi)ni ®rY
for each p;.
Krull Schmidt then gives

~ ~

(R@i)®X:( @i) ®RY
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Noether-Deuring theorem for derived categories

Some remarks on the proof

Comparing coefficient domains gives

(Ro)) @ X ~ (Ry,)" ®r Y

for each p;.
Krull Schmidt then gives

(Ror) @ X ~ (R,) ®r Y

and the theorem shows the corollary.
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Noether-Deuring theorem for derived categories

Thank you !

THANK YOU !
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