

Completions And Isomorphism Type: Eighty Years of Algebra

Alexander Zimmermann
Université de Picardie, France

February 25, 2013 at the ITB Indonesia

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Table of contents

Algebra in 1930: Noether and Deuring

Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Max Deuring 1932

Deuring

- ▶ was born in 1907 in Göttingen, Germany,

Max Deuring 1932

Deuring

- ▶ was born in 1907 in Göttingen, Germany,
- ▶ studied there with Emmy Noether (thesis 1930)

Max Deuring 1932

Deuring

- ▶ was born in 1907 in Göttingen, Germany,
- ▶ studied there with Emmy Noether (thesis 1930)
- ▶ died in 1984.

Max Deuring 1932

Deuring

- ▶ was mainly interested in Hilbert's class field theory

Max Deuring 1932

Deuring

- ▶ was mainly interested in Hilbert's class field theory brought to a culminating point at that time by Hasse's report on class field theory

Max Deuring 1932

Deuring

- ▶ was mainly interested in Hilbert's class field theory brought to a culminating point at that time by Hasse's report on class field theory
- ▶ but in parallel also in non commutative associative algebras which were called "hypercomplex systems of numbers" at that time

Max Deuring 1932

Deuring

- ▶ was mainly interested in Hilbert's class field theory brought to a culminating point at that time by Hasse's report on class field theory
- ▶ but in parallel also in non commutative associative algebras which were called "hypercomplex systems of numbers" at that time
- ▶ and studied in 1930 mainly by

Max Deuring 1932

Deuring

- ▶ was mainly interested in Hilbert's class field theory brought to a culminating point at that time by Hasse's report on class field theory
- ▶ but in parallel also in non commutative associative algebras which were called "hypercomplex systems of numbers" at that time
- ▶ and studied in 1930 mainly by
 - ▶ L.E.Dickson in USA

Max Deuring 1932

Deuring

- ▶ was mainly interested in Hilbert's class field theory brought to a culminating point at that time by Hasse's report on class field theory
- ▶ but in parallel also in non commutative associative algebras which were called "hypercomplex systems of numbers" at that time
- ▶ and studied in 1930 mainly by
 - ▶ L.E.Dickson in USA
 - ▶ and Artin, Brauer, Hasse and Noether in Germany

Normal basis theorem

Deuring wrote in 1931 a paper

Normal basis theorem

Deuring wrote in 1931 a paper

"Galoissche Theorie und Darstellungstheorie"

(Galois theory and representation theory)

Normal basis theorem

Deuring wrote in 1931 a paper

"Galoissche Theorie und Darstellungstheorie"

(Galois theory and representation theory)

appeared in Mathematische Annalen **107** (1932) 140-144.

Normal basis theorem

Deuring wrote in 1931 a paper

"Galoissche Theorie und Darstellungstheorie"

(Galois theory and representation theory)

appeared in *Mathematische Annalen* **107** (1932) 140-144.

There he reproved a theorem which was stated (for infinite fields k) by Emmy Noether in 1929:

Normal basis theorem

Deuring wrote in 1931 a paper

"Galoissche Theorie und Darstellungstheorie"

(Galois theory and representation theory)

appeared in *Mathematische Annalen* **107** (1932) 140-144.

There he reproved a theorem which was stated (for infinite fields k) by Emmy Noether in 1929:

Theorem (Normal basis theorem)

Let K be a Galois extension of the field k and let G be the Galois group of K over k . Then K is as kG -module isomorphic to the rank one free kG -module:

$$K \simeq kG$$

Note Added in Proof

Using this result, he also shows the theorem of the primitive element.

Note Added in Proof

Using this result, he also shows the theorem of the primitive element.

In a note added in the proofs (June 1932) he shows

Note Added in Proof

Using this result, he also shows the theorem of the primitive element.

In a note added in the proofs (June 1932) he shows

Theorem (Noether-Deuring theorem)

Let K be a Galois extension of k and let M and N be two modules over some k -algebra (operator domain, as he says).

Note Added in Proof

Using this result, he also shows the theorem of the primitive element.

In a note added in the proofs (June 1932) he shows

Theorem (Noether-Deuring theorem)

Let K be a Galois extension of k and let M and N be two modules over some k -algebra (operator domain, as he says). If

$K \otimes_k M \simeq K \otimes_k N$ as $K \otimes_k A$ -modules,

then

$M \simeq N$ as A -modules.

Note Added in Proof

Using this result, he also shows the theorem of the primitive element.

In a note added in the proofs (June 1932) he shows

Theorem (Noether-Deuring theorem)

Let K be a Galois extension of k and let M and N be two modules over some k -algebra (operator domain, as he says). If

$K \otimes_k M \simeq K \otimes_k N$ as $K \otimes_k A$ -modules,

then

$M \simeq N$ as A -modules.

And this is what we are going to consider in the sequel.

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis theorem.

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis theorem.

Let K be Galois over k .

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis theorem.

Let K be Galois over k . Then

$$K \otimes_k K \simeq \prod_{\sigma \in \text{Gal}(K:k)} {}^\sigma K$$

Noether-Deuring implies Normal Basis

Now, the Noether Deuring theorem implies the normal basis theorem.

Let K be Galois over k . Then

$$K \otimes_k K \simeq \prod_{\sigma \in Gal(K:k)} {}^\sigma K$$

and $Gal(K : k) =: G$ acts on each component of the direct product by permuting factors.

Noether-Deuring implies Normal Basis

Hence,

$$K \otimes_k K \simeq KG \simeq K \otimes_k kG$$

as KG -modules.

Noether-Deuring implies Normal Basis

Hence,

$$K \otimes_k K \simeq KG \simeq K \otimes_k kG$$

as KG -modules. Therefore by the Noether-Deuring theorem

$$(K \otimes_k M \simeq K \otimes_k N) \Rightarrow (M \simeq N)$$

Noether-Deuring implies Normal Basis

Hence,

$$K \otimes_k K \simeq KG \simeq K \otimes_k kG$$

as KG -modules. Therefore by the Noether-Deuring theorem

$$(K \otimes_k M \simeq K \otimes_k N) \Rightarrow (M \simeq N)$$

we get

$$K \simeq kG$$

as kG -modules.

Galois Module Problem

Given a Galois extension L over K with group G , take S the algebraic integers in L and R the algebraic integers in K .

Galois Module Problem

Given a Galois extension L over K with group G , take S the algebraic integers in L and R the algebraic integers in K .

$$S = \text{algint}(L); R = \text{algint}(K); G = \text{Gal}(L/K).$$

Galois Module Problem

Given a Galois extension L over K with group G , take S the algebraic integers in L and R the algebraic integers in K .

$$S = \text{algint}(L); R = \text{algint}(K); G = \text{Gal}(L/K).$$

Is $S \simeq RG$ as RG -modules?

Classical orders

During 1970 motivated by this question (and other problems)
Fröhlich, Zassenhaus, Reiner and others studied

Classical orders

During 1970 motivated by this question (and other problems)
Fröhlich, Zassenhaus, Reiner and others studied

Let R be a Dedekind domain and K its field of fractions. An **R -order in a semisimple K -algebra** A is a finitely generated R -projective R -algebra Λ , so that $K \otimes_R \Lambda \simeq A$.

Classical orders

During 1970 motivated by this question (and other problems)
Fröhlich, Zassenhaus, Reiner and others studied

Let R be a Dedekind domain and K its field of fractions. An **R -order in a semisimple K -algebra** A is a finitely generated R -projective R -algebra Λ , so that $K \otimes_R \Lambda \simeq A$.

In other words, Λ contains a K -basis of A .

Local versus Complete

If R is a complete discrete valuation domain, it has a residue field k and there are many methods for passing informations from $k \otimes_R \Lambda$ to Λ .

Local versus Complete

For example:

Local versus Complete

For example: Idempotents in $k \otimes_R \Lambda$ are always images of idempotents of Λ under

$$\Lambda \longrightarrow k \otimes_R \Lambda$$

if R is complete.

Local versus Complete

For example: Idempotents in $k \otimes_R \Lambda$ are always images of idempotents of Λ under

$$\Lambda \longrightarrow k \otimes_R \Lambda$$

if R is complete.

And so,

$$k \otimes_R M = \overline{M_1} \oplus \overline{M_2}$$

as $k \otimes_R \Lambda$ module implies

$$M = M_1 \oplus M_2$$

as Λ -module for $\overline{M_i} = k \otimes_R M_i$.

Local versus Complete

However, if R is not complete, there is much less known.

Local versus Complete

However, if R is not complete, there is much less known. Lifting of idempotents is not true for example. Lifting of idempotents was the property of decomposing modules as direct sums.

Local versus Complete

However, if R is not complete, there is much less known. Lifting of idempotents is not true for example. Lifting of idempotents was the property of decomposing modules as direct sums.

Denote \hat{R} the **completion** of the local R at its maximal ideal.

Local versus Complete

However, if R is not complete, there is much less known. Lifting of idempotents is not true for example. Lifting of idempotents was the property of decomposing modules as direct sums.

Denote \hat{R} the **completion** of the local R at its maximal ideal. This is defined as equivalence classes of Cauchy sequences, and satisfies

$$\hat{R}/\text{rad}(\hat{R}) \simeq k \simeq R/\text{rad}(R).$$

So, we have interest to get informations on Λ -modules when we have informations on $\hat{R} \otimes_R \Lambda$ -modules.

Local versus Complete

However, if R is not complete, there is much less known. Lifting of idempotents is not true for example. Lifting of idempotents was the property of decomposing modules as direct sums.

Denote \hat{R} the **completion** of the local R at its maximal ideal. This is defined as equivalence classes of Cauchy sequences, and satisfies

$$\hat{R}/\text{rad}(\hat{R}) \simeq k \simeq R/\text{rad}(R).$$

So, we have interest to get informations on Λ -modules when we have informations on $\hat{R} \otimes_R \Lambda$ -modules.

Can we have a Noether-Deuring theorem for the local-complete case?

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let \hat{R} be the completion of R at the maximal ideal (the Jacobson radical).

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let \hat{R} be the completion of R at the maximal ideal (the Jacobson radical).

Let Λ be a Noetherian R -algebra.

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let \hat{R} be the completion of R at the maximal ideal (the Jacobson radical).

Let Λ be a Noetherian R -algebra.

Let M and N be finitely generated Λ -modules.

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let \hat{R} be the completion of R at the maximal ideal (the Jacobson radical).

Let Λ be a Noetherian R -algebra.

Let M and N be finitely generated Λ -modules.

Theorem (Roggenkamp 1972)

If $\text{End}_\Lambda(M)$ is finitely presented as R -module.

Roggenkamp's Noether-Deuring Theorem

Let R be a commutative (semi-)local Noetherian ring.

Let \hat{R} be the completion of R at the maximal ideal (the Jacobson radical).

Let Λ be a Noetherian R -algebra.

Let M and N be finitely generated Λ -modules.

Theorem (Roggenkamp 1972)

If $\text{End}_\Lambda(M)$ is finitely presented as R -module. Then

$\hat{R} \otimes_R M \simeq \hat{R} \otimes_R N$ as $\hat{R} \otimes_R \Lambda$ -modules

implies $M \simeq N$ as Λ -modules.

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem

- ▶ uses some methods of homological algebra

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem

- ▶ uses some methods of homological algebra
- ▶ applies to classical orders

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem

- ▶ uses some methods of homological algebra
- ▶ applies to classical orders
- ▶ is valid even for the property of being direct factor instead of isomorphism

Roggenkamp's Noether-Deuring Theorem

The proof of Roggenkamp's theorem

- ▶ uses some methods of homological algebra
- ▶ applies to classical orders
- ▶ is valid even for the property of being direct factor instead of isomorphism
- ▶ applies also when replacing \hat{R} by S , a commutative R -algebra, which is faithfully projective of finite type as R -module.

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties,

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced representations,

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced representations, and abstraction became fancy and fashionable.

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced representations, and abstraction became fancy and fashionable.

Already in Roggenkamp's version of the Noether-Deuring theorem homological algebra was used in an essential way.

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced representations, and abstraction became fancy and fashionable.

Already in Roggenkamp's version of the Noether-Deuring theorem homological algebra was used in an essential way.

Derived categories come in

Derived Categories; Introduction

At around the same time, maybe slightly earlier as Roggenkamp's proof of his version the Noether-Deuring theorem, Grothendieck and Verdier revolutionised algebraic geometry.

Schemes replaced algebraic varieties, derived categories replaced representations, and abstraction became fancy and fashionable.

Already in Roggenkamp's version of the Noether-Deuring theorem homological algebra was used in an essential way.

Derived categories come in
"when you take homological algebra seriously".

Derived Categories; Introduction

A complex (M, d) of A -modules is a \mathbb{Z} -graded A -module

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$

Derived Categories; Introduction

A complex (M, d) of A -modules is a \mathbb{Z} -graded A -module

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$

together with an endomorphism $d : M \longrightarrow M$, homogeneous of degree -1 with $d \circ d = 0$, the differential.

Derived Categories; Introduction

A complex (M, d) of A -modules is a \mathbb{Z} -graded A -module

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$

together with an endomorphism $d : M \rightarrow M$, homogeneous of degree -1 with $d \circ d = 0$, the differential.

Morphisms between complexes $\varphi : (M, d_M) \rightarrow (N, d_N)$ are homomorphisms of A -modules $\varphi : M \rightarrow N$

Derived Categories; Introduction

A complex (M, d) of A -modules is a \mathbb{Z} -graded A -module

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$

together with an endomorphism $d : M \rightarrow M$, homogeneous of degree -1 with $d \circ d = 0$, the differential.

Morphisms between complexes $\varphi : (M, d_M) \rightarrow (N, d_N)$ are homomorphisms of A -modules $\varphi : M \rightarrow N$ homogeneous of degree 0

Derived Categories; Introduction

A complex (M, d) of A -modules is a \mathbb{Z} -graded A -module

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$

together with an endomorphism $d : M \rightarrow M$, homogeneous of degree -1 with $d \circ d = 0$, the differential.

Morphisms between complexes $\varphi : (M, d_M) \rightarrow (N, d_N)$ are homomorphisms of A -modules $\varphi : M \rightarrow N$ homogeneous of degree 0 and $d_N \circ \varphi = \varphi \circ d_M$.

Derived Categories; Introduction

The important piece of a complex is its homology

$$H(M, d_M) := \ker(d_M) / \operatorname{im}(d_M).$$

Derived Categories; Introduction

The important piece of a complex is its homology

$$H(M, d_M) := \ker(d_M) / \operatorname{im}(d_M).$$

A morphism of complexes $\varphi : (M, d_M) \longrightarrow (N, d_N)$ induces a morphism of the homology $H(\varphi) : H(M, d_M) \longrightarrow H(N, d_N)$.

Derived Categories; Introduction

The important piece of a complex is its homology

$$H(M, d_M) := \ker(d_M) / \operatorname{im}(d_M).$$

A morphism of complexes $\varphi : (M, d_M) \longrightarrow (N, d_N)$ induces a morphism of the homology $H(\varphi) : H(M, d_M) \longrightarrow H(N, d_N)$.

It happens that $H(\varphi)$ is an isomorphism even if φ is not.

Derived Categories; Introduction

The important piece of a complex is its homology

$$H(M, d_M) := \ker(d_M) / \operatorname{im}(d_M).$$

A morphism of complexes $\varphi : (M, d_M) \longrightarrow (N, d_N)$ induces a morphism of the homology $H(\varphi) : H(M, d_M) \longrightarrow H(N, d_N)$.

It happens that $H(\varphi)$ is an isomorphism even if φ is not. Such morphisms are called **quasi-isomorphisms**.

Derived Categories; Introduction

The derived category $D^b(A)$ is a category with

- ▶ **objects:** complexes of A -modules with homology non zero in only finitely many degrees.

Derived Categories; Introduction

The derived category $D^b(A)$ is a category with

- ▶ **objects:** complexes of A -modules with homology non zero in only finitely many degrees.
- ▶ **morphisms:** morphisms of complexes, where in addition one makes quasi-isomorphisms invertible.

Derived Categories; Introduction

The derived category $D^b(A)$ is a category with

- ▶ **objects:** complexes of A -modules with homology non zero in only finitely many degrees.
- ▶ **morphisms:** morphisms of complexes, where in addition one makes quasi-isomorphisms invertible. This procedure is somewhat technical and was invented by Gabriel and Zisman in 1967 in a rather abstract fashion.

Derived Categories; Introduction

The derived category $D^b(A)$ is a category with

- ▶ **objects:** complexes of A -modules with homology non zero in only finitely many degrees.
- ▶ **morphisms:** morphisms of complexes, where in addition one makes quasi-isomorphisms invertible. This procedure is somewhat technical and was invented by Gabriel and Zisman in 1967 in a rather abstract fashion.

The derived category admits an endo-functor [1] given by shift in the degree of the grading, and forms a so-called triangulated category.

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-
Noether-Deuring theorem for derived categories

Equivalences between derived categories

Equivalences between derived categories can be characterised.

Equivalences between derived categories

Equivalences between derived categories can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let $D^b(A)$ and $D^b(B)$ be two derived categories. Then these are equivalent as triangulated categories if and only if there is an object T in $D^b(A)$ so that

- ▶ T is isomorphic to a complex which is formed by a finitely generated projective module,

Equivalences between derived categories

Equivalences between derived categories can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let $D^b(A)$ and $D^b(B)$ be two derived categories. Then these are equivalent as triangulated categories if and only if there is an object T in $D^b(A)$ so that

- ▶ *T is isomorphic to a complex which is formed by a finitely generated projective module,*
- ▶ $\text{End}_{D^b(A)}(T) \simeq B^{\text{op}}$

Equivalences between derived categories

Equivalences between derived categories can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let $D^b(A)$ and $D^b(B)$ be two derived categories. Then these are equivalent as triangulated categories if and only if there is an object T in $D^b(A)$ so that

- ▶ T is isomorphic to a complex which is formed by a finitely generated projective module,
- ▶ $\text{End}_{D^b(A)}(T) \simeq B^{\text{op}}$
- ▶ $\text{Hom}_{D^b(A)}(T, T[n]) = 0$ for all $n \neq 0$.

Equivalences between derived categories

Equivalences between derived categories can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let $D^b(A)$ and $D^b(B)$ be two derived categories. Then these are equivalent as triangulated categories if and only if there is an object T in $D^b(A)$ so that

- ▶ T is isomorphic to a complex which is formed by a finitely generated projective module,
- ▶ $\text{End}_{D^b(A)}(T) \simeq B^{\text{op}}$
- ▶ $\text{Hom}_{D^b(A)}(T, T[n]) = 0$ for all $n \neq 0$.

T is called a tilting complex.

Equivalences between derived categories

Equivalences between derived categories can be characterised.

Theorem (Keller 1990; Rickard 1989)

Let $D^b(A)$ and $D^b(B)$ be two derived categories. Then these are equivalent as triangulated categories if and only if there is an object T in $D^b(A)$ so that

- ▶ T is isomorphic to a complex which is formed by a finitely generated projective module,
- ▶ $\text{End}_{D^b(A)}(T) \simeq B^{\text{op}}$
- ▶ $\text{Hom}_{D^b(A)}(T, T[n]) = 0$ for all $n \neq 0$.

T is called a tilting complex.

Tilting complexes have many interesting properties.

Equivalences between derived categories

As for the case of modules over algebras, completion plays a certain rôle.

Equivalences between derived categories

As for the case of modules over algebras, completion plays a certain rôle.

Theorem (Rickard's lifting theorem (1991))

Let R be a complete local ring with residue field k and let Λ be an R -free R -algebra of finite rank over R . Let $\bar{\Lambda} := k \otimes_R \Lambda$.

Equivalences between derived categories

As for the case of modules over algebras, completion plays a certain rôle.

Theorem (Rickard's lifting theorem (1991))

Let R be a complete local ring with residue field k and let Λ be an R -free R -algebra of finite rank over R . Let $\bar{\Lambda} := k \otimes_R \Lambda$. If \bar{T} is a tilting complex over $\bar{\Lambda}$, then there is a tilting complex T over Λ with $k \otimes_R T = \bar{T}$ and

$$\text{End}_{D^b(\bar{\Lambda})}(\bar{T}) \simeq k \otimes_R \text{End}_{D^b(\Lambda)}(T).$$

Equivalences between derived categories

As for modules, the lifting theorem is not true for local coefficient rings R only.

Equivalences between derived categories

As for modules, the lifting theorem is not true for local coefficient rings R only.

Hence, a Noether-Deuring like theorem passing from the complete local situation to the local situation is desirable.

The Noether-Deuring theorem for derived categories

We obtain

Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative R -algebra, which is faithfully flat as R -module.

The Noether-Deuring theorem for derived categories

We obtain

Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative R -algebra, which is faithfully flat as R -module. Suppose that the natural map $R \rightarrow S$ induces an isomorphism

$$R/\text{rad}(R) \simeq S/\text{rad}(S).$$

The Noether-Deuring theorem for derived categories

We obtain

Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative R -algebra, which is faithfully flat as R -module. Suppose that the natural map $R \rightarrow S$ induces an isomorphism

$R/\text{rad}(R) \simeq S/\text{rad}(S)$. Let Λ be a Noetherian R -algebra and let X and Y be two objects of $D^b(\Lambda)$.

The Noether-Deuring theorem for derived categories

We obtain

Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative R -algebra, which is faithfully flat as R -module. Suppose that the natural map $R \rightarrow S$ induces an isomorphism

$R/\text{rad}(R) \simeq S/\text{rad}(S)$. Let Λ be a Noetherian R -algebra and let X and Y be two objects of $D^b(\Lambda)$. Suppose that $\text{End}_{D^b(\Lambda)}(X)$ is a finitely generated R -module.

The Noether-Deuring theorem for derived categories

We obtain

Theorem (A.Z. (2012))

Let R be a commutative Noetherian ring, let S be a commutative R -algebra, which is faithfully flat as R -module. Suppose that the natural map $R \rightarrow S$ induces an isomorphism

$R/\text{rad}(R) \simeq S/\text{rad}(S)$. Let Λ be a Noetherian R -algebra and let X and Y be two objects of $D^b(\Lambda)$. Suppose that $\text{End}_{D^b(\Lambda)}(X)$ is a finitely generated R -module. Then

$$S \otimes_R X \simeq S \otimes_R Y \text{ in } D^b(S \otimes_R \Lambda)$$

implies

$$X \simeq Y \text{ in } D^b(\Lambda).$$

The Noether-Deuring theorem for derived categories

Remark

- ▶ The completion \hat{R} of a local domain R can serve as S . The hypotheses on S are satisfied in this case.

The Noether-Deuring theorem for derived categories

Remark

- ▶ The completion \hat{R} of a local domain R can serve as S . The hypotheses on S are satisfied in this case.
- ▶ It is necessary to work over the bonded derived category. For technical reasons concerning tensor products in the unbounded case the proof will not work.

The Noether-Deuring theorem for derived categories

Remark

- ▶ The completion \hat{R} of a local domain R can serve as S . The hypotheses on S are satisfied in this case.
- ▶ It is necessary to work over the bonded derived category. For technical reasons concerning tensor products in the unbounded case the proof will not work.
- ▶ Λ can be a classical order.

The Noether-Deuring theorem for derived categories

Remark

- ▶ The completion \hat{R} of a local domain R can serve as S . The hypotheses on S are satisfied in this case.
- ▶ It is necessary to work over the bonded derived category. For technical reasons concerning tensor products in the unbounded case the proof will not work.
- ▶ Λ can be a classical order.
- ▶ The proof really uses derived category techniques and the triangulated structure.

The Noether-Deuring theorem for derived categories

Corollary

The same statement as in the theorem holds if R is commutative, semilocal, Noetherian, S a commutative R -algebra so that $\hat{R} \otimes_R S$ is a faithful projective \hat{R} -module of finite type.

Some remarks on the proof

We first show that

Lemma

$$\text{Hom}_{D^b(S \otimes_R \Lambda)}(S \otimes_R X, S \otimes_R Y) \simeq S \otimes_R \text{Hom}_{D^b(\Lambda)}(X, Y)$$

if S is faithfully flat as R -module.

Some remarks on the proof

We first show that

Lemma

$$\text{Hom}_{D^b(S \otimes_R \Lambda)}(S \otimes_R X, S \otimes_R Y) \simeq S \otimes_R \text{Hom}_{D^b(\Lambda)}(X, Y)$$

if S is faithfully flat as R -module.

This is where we need to have $D^b(\Lambda)$. This part will not work for unbounded derived categories. (referee's remark)

Some remarks on the proof

We first show that

Lemma

$$\text{Hom}_{D^b(S \otimes_R \Lambda)}(S \otimes_R X, S \otimes_R Y) \simeq S \otimes_R \text{Hom}_{D^b(\Lambda)}(X, Y)$$

if S is faithfully flat as R -module.

This is where we need to have $D^b(\Lambda)$. This part will not work for unbounded derived categories. (referee's remark)

However, maybe taking the completion of a tensor product....

Some remarks on the proof

We first show that

Lemma (Change of Rings Theorem)

$$\text{Hom}_{D^b(S \otimes_R \Lambda)}(S \otimes_R X, S \otimes_R Y) \simeq S \otimes_R \text{Hom}_{D^b(\Lambda)}(X, Y)$$

if S is faithfully flat as R -module.

This is where we need to have $D^b(\Lambda)$. This part will not work for unbounded derived categories. (referee's remark)

However, maybe taking the completion of a tensor product....

Again, this is a very classical change of rings theorem.

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Some remarks on the proof

The proof of this Lemma goes by cutting complexes in small pieces

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Some remarks on the proof

The proof of this Lemma goes by cutting complexes in small pieces
gluing them again together

Some remarks on the proof

The proof of this Lemma goes by cutting complexes in small pieces
gluing them again together and controlling the glue and the way
how to glue by long exact sequences.

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Some remarks on the proof

The next step is the proof of the theorem.

Some remarks on the proof

The next step is the proof of the theorem. Here we take an isomorphism

$$\varphi : S \otimes_R X \xrightarrow{\cong} S \otimes_R Y$$

Some remarks on the proof

The next step is the proof of the theorem. Here we take an isomorphism

$$\varphi : S \otimes_R X \xrightarrow{\sim} S \otimes_R Y$$

so that $\varphi = \sum_{i=1}^n \varphi_i \otimes s_i$ for $s_i \in S$

Some remarks on the proof

The next step is the proof of the theorem. Here we take an isomorphism

$$\varphi : S \otimes_R X \xrightarrow{\sim} S \otimes_R Y$$

so that $\varphi = \sum_{i=1}^n \varphi_i \otimes s_i$ for $s_i \in S$

and use $R/\text{rad}(R) = S/\text{rad}(S)$ to modify s_i by r_i so that the difference is in the radical.

Some remarks on the proof

The next step is the proof of the theorem. Here we take an isomorphism

$$\varphi : S \otimes_R X \xrightarrow{\sim} S \otimes_R Y$$

so that $\varphi = \sum_{i=1}^n \varphi_i \otimes s_i$ for $s_i \in S$

and use $R/\text{rad}(R) = S/\text{rad}(S)$ to modify s_i by r_i so that the difference is in the radical.

$\varphi := \sum_i \varphi_i r_i$ is then an isomorphism since invertible module radical is invertible. (Nakayama's lemma)

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Some remarks on the proof

Then we need another classical result.

Some remarks on the proof

Then we need another classical result.

Lemma

Krull-Schmidt theorem is true for $D^b(\mathcal{A})$ if it is true for \mathcal{A} .

Some remarks on the proof

Then we need another classical result.

Lemma

Krull-Schmidt theorem is true for $D^b(\mathcal{A})$ if it is true for \mathcal{A} .

I give an independent proof in the paper,

Some remarks on the proof

Then we need another classical result.

Lemma

Krull-Schmidt theorem is true for $D^b(\mathcal{A})$ if it is true for \mathcal{A} .

I give an independent proof in the paper, but there is an earlier, better and very abstract proof by Xiao-Wu Chen.

Some remarks on the proof

Then the corollary

Corollary

The same statement as in the theorem holds if R is commutative, semilocal, Noetherian, S a commutative R -algebra so that $\hat{R} \otimes_R S$ is a faithful projective \hat{R} -module of finite type.

to the theorem is shown the following way:

Some remarks on the proof

Then the corollary

Corollary

The same statement as in the theorem holds if R is commutative, semilocal, Noetherian, S a commutative R -algebra so that $\hat{R} \otimes_R S$ is a faithful projective \hat{R} -module of finite type.

to the theorem is shown the following way:

$$\hat{R} \otimes_R S \simeq \prod_{\wp_i \in \text{Spec}(R)} (\hat{R}_{\wp_i})^{n_i}$$

(think of ramifications)

Some remarks on the proof

and hence

$$S \otimes_R \hat{R} \otimes_R X \simeq S \otimes_R \hat{R} \otimes_R Y$$

 \Rightarrow

$$\prod_{\wp_i \in \text{Spec}(R)} (\hat{R}_{\wp_i})^{n_i} \otimes X \simeq \prod_{\wp_i \in \text{Spec}(R)} (\hat{R}_{\wp_i})^{n_i} \otimes_R Y$$

Some remarks on the proof

Comparing coefficient domains gives

$$(\widehat{R}_{\wp_i})^{n_i} \otimes X \simeq (\widehat{R}_{\wp_i})^{n_i} \otimes_R Y$$

for each \wp_i .

Some remarks on the proof

Comparing coefficient domains gives

$$(\widehat{R}_{\wp_i})^{n_i} \otimes X \simeq (\widehat{R}_{\wp_i})^{n_i} \otimes_R Y$$

for each \wp_i .

Krull Schmidt then gives

$$(\widehat{R}_{\wp_i}) \otimes X \simeq (\widehat{R}_{\wp_i}) \otimes_R Y$$

Some remarks on the proof

Comparing coefficient domains gives

$$(\widehat{R}_{\wp_i})^{n_i} \otimes X \simeq (\widehat{R}_{\wp_i})^{n_i} \otimes_R Y$$

for each \wp_i .

Krull Schmidt then gives

$$(\widehat{R}_{\wp_i}) \otimes X \simeq (\widehat{R}_{\wp_i}) \otimes_R Y$$

and the theorem shows the corollary.

Algebra in 1930: Noether and Deuring
Representations in 1970

Derived Categories: France in 1960-80

Equivalences between derived categories; 1990-

Noether-Deuring theorem for derived categories

Thank you !

THANK YOU !