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Classification of Iwahori-Hecke modules and p-modular
representations of SLy(F)

By Ramla ABDELLATIF

Abstract. Let F' be a non-archimedean local field complete for a dis-
crete valuation and with finite residue class field of characteristic p > 0, and let
F, be an algebraic closure of the finite field with p elements. The study of the
pro-p-Iwahori-Hecke algebra of GL2(F) over Fp and of its finite-dimensional
simple right modules, due to Vignéras and Ollivier, provides interesting results
when compared to the theory of smooth representations of GLy(F') over Fp.
This paper makes the first steps towards an analogue study for the special
linear group SLa(F). After proving a general relation between the standard
Iwahori-Hecke algebras of GL,, (F) and SLy(F) for arbitrary n > 2, we give
an explicit description of the pro-p-Iwahori-Hecke algebra of SLa(F') and com-
pute all its simple right modules. In particular, we connect these results to
those we proved in a previous work on smooth representations of SLa(F') over
Fp, and to the corresponding statements obtained by Vignéras for GL2(F).

1. Introduction

Let p be a prime number and let F' be a non-archimedean local field which is complete
for a discrete valuation and has finite residue class field kr of characteristic p and cardi-
nality ¢q. Let C be an algebraically closed field of same characteristic p and let G be the
group of F-rational points of a connected reductive group defined over F'. Understanding
the irreducible smooth representations of G' over C' is still a very hard problem, even for
basic groups as the general linear group GL,,(F'). The first results in this domain were
proved in the mid-nineties in a remarkable work of Barthel and Livné for GLs(F) [4, 5].
In these papers, they pointed out a mysterious family of representations that they called
supersingular and proved that these objects correspond to the supercuspidal representa-
tions of GLo(F'); unfortunately, they were not able to describe them explicitely. Several
years later, Breuil managed in [6] to compute all these supersingular objects when F = Q,
is the field of p-adic numbers, what gave an exhaustive classification of irreducible smooth
representations of GL2(Q,), but he could not deal with a general F. So far, the only
groups other than GL2(Q,) for which an exhaustive classification of irreducible smooth
representations over F,, is known are SL2(Q,) [2] and U(1,1)(Q,2/Q,) with p odd [9],
where Q2 is a quadratic unramified extension of Q,. Note that these representations
play a key role in the context of (conjectural) modular Langlands correspondences : as
they coincide with supercuspidal representations, they should be the counterpart of the
irreducible Galois representations appearing in such correspondences.

Various strategies aiming to collect as much information as possible on supersingular
representations of GLo(F') for arbitrary F' have been developed by various authors, as in
[7, 8, 14, 19, 21] for instance. In this paper, we are interested in the approach initiated
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by Vignéras [21, 22, 23, 25| and fruitfully developed for GL,,(F) by Ollivier [13, 14, 15]
and her collaborators [16, 17]. Its starting point is based on the following observation :
if 7 is any smooth representation of G over C' and if H is any open compact subgroup of
G, compact Frobenius reciprocity implies that the space 7 of H-invariant vectors in 7
is isomorphic to Homg g (ind%(1),7), and is hence naturally endowed with a structure
of right module over the C-algebra Hco (G, H) := Endgg (ind% (1)). If H is chosen such
that 7 is non-zero, a hope is that understanding the Hc (G, H)-module 7 could bring
some interesting information about 7, and maybe even characterize it. For instance, when
H is a pro-p-group of G, we know that 7 is non-zero [4, Lemma 3 (1)] and we have a
good irreducibility criterion for 7 [21, Criterium 4.5|. Another powerful application, due
to Ollivier [14, Théoréme 1.3.a)|, is as follows : for H being the standard pro-p-Iwahori
subgroup of G = GL2(Q,), any smooth representation = of GL2(Q)) generated by its
H-invariant vectors is uniquely determined by the structure of H¢(GL2(Qp), H)-module
carried by 7f.

To obtain this kind of results, one must understand the structure of the C-algebra
Ho (G, H) and of its simple right modules, then identify among them those corresponding
to H-invariant spaces of irreducible smooth representations of G over C'. As we are only
interested in admissible representations of G over C, it is enough to classify simple right
He (G, H)-modules of finite dimension! over C. In the present paper, we realize this
programme when G = SLo(F) is the special linear group of rank 1 and H = Ig(1)
is its standard pro-p-Iwahori subgroup. We moreover deduce from these results some
interesting relationships with the theory of irreducible smooth representations of G over
C, as developed in [2], and with the results obtained by Vignéras for GL2(F) [21, 25].
Before we state our main results, let us mention that they have already been of crucial use
in recent works of several authors [10, 11] and that they will certainly be useful in further
developments of p-adic and mod p Langlands programmes for SLy(F'). Also note that in
a recent work [3], Abe gives a full classification of simple right modules over the standard
pro-p-Iwahori-Hecke algebra for an arbitrary p-adic group G in terms of parabolic triples,
and our final classification result can be recovered (using more sophisticated tools) from
this work. Nevertheless, the results contained in this paper were not only proved before
those in [3], but they are also giving finer structure statements together with relations
to modular representation theory of G that are not addressed at all in [3].

Presentation of the main results

The first main result of this paper builds a bridge between Iwahori-Hecke algebras of
SL,(F) and GL,(F), for any n > 2, that will be useful to state and prove results about
compatibility with restriction from GL, (F) to SL,(F') (see Corollary 4.27). Recall that
I and Ig respectively denote the standard Iwahori subgroups of GL,(F) and SL,(F),
while W and Wy respectively denote the (infinite) Weyl groups of GL,,(F) and SL, (F)
(see §82.1 and 2.2 for precise definitions).

THEOREM 1.1. Let A be a commutative ring with unit. Assume that it contains a
primitive (¢ — 1)** root of unity and that q¢ — 1 belongs to A*.

1. The map [Iswlg — ITwl] defines an injective group homomorphism v : Wg — W
whose image is equal to the affine Weyl group Weors of GL,(F').

1This assumption will actually be automatically valid in our setting, see Remark 2.7 below.



Twahori-Hecke modules and p-modular representations of SLa(F) 3

2. The isomorphism ¢ : Wg >~ W,ss in (1) induces an isomorphism of A-algebras from
the standard Iwahori-Hecke algebra Ha(Gs,Is) of SL,(F) to the affine Twahori-
Hecke algebra H% T (G, T) of GL,(F).

Now assume that n = 2, that A = Fp is an algebraic closure of kg, and let us set
Gg := SLo(F). The next step is to understand the structure of the pro-p-Iwahori-Hecke
algebra HY := Endg (g (indi‘g(l) (1)). We prove that H}, is a direct sum of Iwahori-Hecke
algebras (Theorem 3.1), what reduces the study of simple right modules over Hls to the
study of simple right modules over several smaller algebras. Inspired by what is done
for GLo(F') in [21], we dispatch these Iwahori-Hecke algebras into three cases named the
Twahori case, the regular case and the exceptional case. In each case, we give an explicit
description by generators and relations of the corresponding algebras (Theorems 3.3, 4.2
and 4.3 for the Iwahori case, Section 5.1 for the regular case, Theorems 6.1 and 6.2 for
the exceptional case) and we classify their simple right modules (see Sections 4.2, 5.2
and 6.2), that will all be of finite dimension over F,. As a by-product, we prove the
following result, that gives a strong bound on the dimension of simple right Hls—modules
and comes by combination of Theorems 4.7, 5.6 and 6.7.

THEOREM 1.2.  Any simple right Hy-module is of finite dimension at most 2 as
vector space over F,.

Note that understanding the Iwahori case already allows us to build connections with
a part of the classification of irreducible smooth representations of SLs(F) over F,, given
in [2] and with some results proved in [21] for GLo(F'). We have for instance the following
statement, obtained by gathering Corollaries 4.23 and 4.27.

THEOREM 1.3.  Let I and Ig be the standard Iwahori subgroups of G = GL2(F) and
Gs = SLy(F) respectively. Let H := Endg | (ind¥ (1)) and Hg := Endﬁp[cs](indis(l))
be the standard Iwahori-Hecke algebra of G and Gg respectively.

1. The functor of Ig-invariants defines a bijection

isomorphism classes of
non-supercuspidal irreducible smooth
representations of SLy(F) over F,
generated by their Ig-invariant vectors

isomorphism classes of
non-supersingular
simple right Hg-modules

Furthermore, for any non-supercuspidal irreducible smooth representation m of G
over IFy, with central character and non-zero I-invariant vectors, the restriction to

Hs of the H-module ©! is isomorphic to the Hg-module (7r|SL2(F))IS.

2. Assume that F = Q,. The previous bijection extends to a bijection

representations of SL2(Q,) over F,

isomorphism classes of irreducible smooth {
generated by their Ig-invariant vectors

isomorphism classes of
simple right Hg-modules

Moreover, if m is an irreducible smooth representation of G over F, with central
character and non-zero I-invariant vectors, the restriction to Hg of the H-module
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m! is then isomorphic to the Hg-module (7r|5L2(F))IS

Note that the bijections appearing in the statement of Theorem 1.3 are far from
taking into account all irreducible smooth representation of Gg over F,, as they for-
get for instance most of the supercuspidal representations of SL2(Q,). We solve this
omission through the following result (Corollary 7.10), which heavily relies on the com-
plete classification of simple right H}-modules we establish in this paper as on the good
understanding of irreducible smooth representations of SLs(F) over F, provided by [2].

THEOREM 1.4. 1. The functor of Is(1)-invariants defines a bijection

isomorphism classes of

. . . isomorphism classes of
non-supercuspidal irreducible

non-supersingular

th tats ) .
SIooTH Tepresentazions simple right HY-modules

of SLy(F) over F,

2. When F = Q,, the previous bijection extends to a bijection

1rreducible smooth representations

isomorphism classes of
- {
of SL3(Qy) over T,

isomorphism classes of
simple right Hls—modules

Structure of the paper

Section 2 contains a short remainder on Weyl groups for GL,,(F') and SL,,(F') gathe-
ring what we need to prove Theorem 1.1. We obtain the aforementioned decomposition
of H in Section 3, where we also relate the Iwahori case to the standard Iwahori-Hecke
algebra of SLy(F') via Theorem 3.3. The study of the Iwahori case and its applications
to the structure of Ig-invariant spaces of irreducible smooth representations of Gg over
F, is done in Section 4, and leads in particular to a proof of Theorem 1.3. Sections 5
and 6 respectively deal with the regular and exceptional cases, while Section 7 contains
the missing comparisons between the classification of simple right H}Q—modules coming
from the previous sections and the classification of irreducible smooth representations of
SLy(F) over F, coming from [2| needed to prove Theorem 1.4.

General notations

Fix a prime number p > 2. Let F' be a non-archimedean local field complete for a
discrete valuation and with finite residue class field kg of characteristic p, with ring of
integers O and with fixed uniformizer wpr. We let ¢ = p/ be the cardinality of kr, we
fix an algebraic closure F,, of kr together with an embedding ¢ of kp into F, and we
let [.] : kp — OF be the Teichmiiller lift. We also let v be the discrete valution of F
normalized by v(wp) = 1.

For any integer n > 2, let G := GL,,(F) be the general linear group with coefficients
in F and let K := GL,(OF) be its standard maximal open compact subgroup. Denote
by B the Borel subgroup of upper-triangular matrices in G and by 7' the maximal split
torus of diagonal matrices of G. Let I be the standard Iwahori subgroup of K, defined
as the set of elements in K whose reduction modulo wp is an upper-triangular matrix
of GL,(kr). The pro-p-radical of I, called the standard pro-p-Iwahori subgroup of G
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and denoted by I(1), is then made of the elements of I whose reduction modulo wp is
moreover unipotent.
Let Gg := SL,(F) be the special linear group with coefficients in F' and let
s = SL,(OF) be its standard maximal open compact subgroup. Let Bg be the
Borel subgroup of upper-triangular matrices in Gg and let Ts be the torus of diagonal
matrices in Gg. Finally, let Is (respectively Is(1)) be the standard Iwahori subgroup
(resp. the standard pro-p-Iwahori subgroup) of Gg, defined the same way as I (resp.
I(1)) previously was in G. We clearly have B¢ = BNGg, Ts =T NGs, Is = I NGs,
Is(1) = I(1) N Gg, and the reduction modulo wr defines a group isomorphism from the
quotient class group Is/Is(1) to the abelian group I's of diagonal matrices in SL, (kr).
When n = 2, we introduce the following specific elements of Gg :

Qg = wFlO Sg 1= 0 @ and sq := 0-1
TN 0 wr) 0T \—wpt 0 "o )

We moreover set, for any x € F,

u(z) = (é‘f) and a(z) = (;‘1)) .

All these elements satisfy the following relations, valid for any integer &k € Z and any
element x € F' :

(11) o = 8150, s = s1a5", syu(r) = ﬂ( )
’ afu(z)ag® = u(wp?*r) and afu(z)ay (w%kx) .

For any A\ € R),( ,let py 1 Bg — F; be the smooth character obtained by inflation of
the smooth unramified (i.e. trivial on O} ) character of F* that maps wp to A. This

means that we set :
X a b v(a)
V (a,b) € F* X F, uy 0a-1 = AV

We will also let iy ® 1 be the smooth character of B obtained by inflation of the smooth
unramified character of (F*)? that maps (a, b) to uy(a). For any integer r € {0, ...,q—2},
welet w” : ki — ﬁ: be the character defined by w”(x) := ¢(2"). We furthermore consider
the following objects, as in [2, 4, 6] : let H be an open subgroup of I' € {Gg,G} and
(0,V,) be an irreducible smooth representation of H over E,. For any element g € I" and
any vector v € V,, we let [g,v] : I' = V,, be the function defined as follows :

o(xg)(v imeHg_l;
Vrzel, [g,v](r):= {0( ) otherwise.

This means that [g,v] is the unique element of indg(a) having support equal to Hg™*
and value v at g—!. For the reader interested in more properties of these functions, we
recommand to have a look at [1, Section 2.2.2]

Finally, we will use the same notation as in [21] : if M is a right module over an
Fp—algebra H, we let m|T be the vector given by the action of an element 7" € H on a
vector m € M.



6 R. ABDELLATIF

Acknowledgements

This work is part of the author’s PhD thesis, which was done under the supervision
of Guy Henniart. We warmly thank him for his advice and his constant interest. We also
want to thank the referee for their extremely careful reading and very valuable comments.

2. A relationship between Iwahori-Hecke algebras of GL,,(F') and SL,,(F)

2.1. A remainder about Weyl groups of GL,,(F)

This subsection gathers some results about Weyl groups for GL,,(F) we will use in
the sequel. The reader can refer to [12] or [24, Chapitre 3] for more details and proofs.

Let (X, XV, R, RV, A) be the root data attached to the triple (G, B, T). In particular,
X ~ Z"™ can be identified with the group X*(T') of F-characters of the split maximal
torus T of G while XV can be identified with the group X,.(T) of F-cocharacters of T
The positive simple roots of this root data are {aq,...,a,_1}, where «; is defined for
any ¢ € {1,...,n — 1} by the following formula :

wi
; = Tip — T .
ot
The coroot corresponding to «; can hence be represented by the diagonal matrix
A; = diag(l,...,l,w}l,wF,l...,1) ,
1

is in " position while wp is in (i + 1)**-position. If we let o; € A be the
reflexion associated to «;, the group generated by {c1,...,0,_1} is called the finite Weyl

where wp

group Wy of G. It is a Coxeter group canonically isomorphic to the quotient class group
Ng(T)/T, where Ng(T) is the normalizer of T' in G, and it parametrizes the double coset
space I\K/I. Also note that Wy is naturally isomorphic to the symmetric group &,, via
the group homomorphism mapping o; to the transposition (4,4 4 1).

The Weyl group W of G is defined as the quotient class group Ng(T)/(T N K). Tt
parametrizes the double coset space I\G/I and can be written as a semi-direct product
of Wy and X, provided X is identified with the multiplicative group of translations it
defines. This endows W with a natural length function ¢ [12, Section 1.4]. The Weyl
group W contains an interesting subgroup, called the affine Weyl group Wag attached
to (the data root of) G, which is defined as the semi-direct product in W of Wy and
the subgroup of X generated by R. One can prove that W,g is a Coxeter group with
Yot := {00 :=t"Lo1t,01,...,00_1} as set of simple reflexions [12, Section 1.5] and that
its length function coincides with the restriction of £ to W,g. Note that we set

0100...0
0010...0

b= €G
0000...1
wp 00 0...0
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Let moreover € = tZ be the subgroup of G generated by ¢ : it is equal to the subgroup
of W made of all the elements of length 0, and one can check that W is a semi-direct
product of W,g and Q [24, Proposition 3.1].

We finally define the extended Weyl group W) of G as the quotient class group
Ne(T)/(T N K(1)), where T N K(1) is the kernel of the reduction map TN K — T,
with T’ being the torus of diagonal matrices in GL,(kr). The extended Weyl group
parametrizes the double coset space I(1)\G/I(1) and it fits into the following canonical
non-split? short exact sequence :

1—T —WhH W _—1.

In particular, W is endowed with a length function extending the length function ¢
already defined on W and such that any element of T" is of length 0.

2.2. From GL,(F) to SL,(F)

Let (Xg, XY, Rs, RS, A) be the root data attached to (Gg, Bg,Ts). The finite Weyl
group attached to this data parametrizes the double coset space Is\Ks/Is and is actually
equal to Wy as it only depends on the simple roots of the root data, which are the same
for G and for Gg. This allows us to lift any element of W in Gg, and from now we will
always consider such lifts. We then define the Weyl group Wy of Gg, that parametrizes
the double coset space Is\Gg/Is, as the quotient class group Ng,(Ts)/(Ts N Kg). It is
isomorphic to a semi-direct product of Wy and Xg ~ Z"~!. Note that we will use the
same symbol to denote an element of W (resp. : of Wg, of Wy) and any fixed lift of this
element in G (resp. : in Gg, in Kg).

As W and Wy respectively parametrize the double coset spaces I\G/I and Is\Gs/Is,
the equality Ig = I N Gg assures that the canonical inclusion map Gg < G induces an
injective group homomorphism Wg < W. The following lemma, which points out an
important difference between W and Wyg, will be useful to prove Theorem 1.1.

LEMMA 2.1.  For any integer n > 2, the affine Weyl group attached to SL,, (F) is
equal to the Weyl group Wy.

Proof. First recall that we can identify Xg with the hyperplane of X ~ Z™ made of all

uplets (x1, ..., x,) satisfying Z x; = 0. Moreover note that any o = diag(w%', ..., wy")
i=1
in Xg can be written as follows :

n-2 w$1+$2+-..+wi

a= H w*(11+932+m+mi)
i=

-1
wZ?:1 Zi

1 w

Tn

2Note that this splitting property is specific to the GL,, case, as underlined in [23].
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% n
If we set \;(«) := — Z ;= Z x5, we hence get the following equality for roots :
j=1 j=it+1

n—1
o= Z Ai(a)a; .
i=1

This proves that Xg is generated by Rg, and that Wy is consequently equal to the affine
Weyl group attached to Gg. O

As the root systems R and Rg are equal, the affine Weyl groups attached to G and Gg
are canonically isomorphic. Together with Lemma 2.1, this gives the following statement.

COROLLARY 2.2. For any integer n > 2, the map sending the double coset Isglg to
the double coset Igl for any g € Gg induces a group isomorphism from the Weyl group
Ws of SL,(F) to the affine Weyl group Wog attached to GL, (F).

REMARK 2.3.  Corollary 2.2 can also be seen as a consequence of [18, Section 2.a.2].
More precisely, let G be a (residually) split connected reductive group over a local field
with perfect residue class field and let 7' be a maximal split torus in G. Pappas and
Rapoport attach to the pair (G,T') an Iwahori-Weyl group that can be canonically iden-
tified with the Weyl group W appearing in our setting [18, Proposition 2.1|, and they
prove in [18, Section 2.a.2| that the Iwahori-Weyl group of the simply connected covering
of the derived group of GG, which canonically corresponds to Wg in our setting, can be
naturally identified with the affine Weyl group defined by the affine root system attached
to T, i.e. to the affine Weyl group Wag of G.

REMARK 2.4. In view of [24, Proposition 3.1|, Corollary 2.2 proves in particular
that W is isomorphic to a semi-direct product of Wg and Q ~ Z.

2.3. Application to Iwahori-Hecke algebras

Let A be a commutative ring with unit 14. Assume that it contains a primitive
(g — 1)*" root of unity and that ¢ — 1 belongs to AX : then A can be endowed with a
structure of Z[g]-module via the unitary ring homomorphism mapping ¢ on gl 4. Now
recall that the standard Iwahori-Hecke algebra of G over A is the A-algebra H(G)
generated by the family (T, )wew satisfying the following braid and quadratic relations.

e Braid relations : if w,w’ € W satisty £(ww') = €(w) + £(w'), then Ty = Ty Ty
e Quadratic relations : for any s € X.g, (Ts + 1)(Ts — q) = 0.

Following [22, Example 1], one can check that the family (T )wew is actually a basis
of the A-module H 4(G). The same construction holds to define the standard Iwahori-
Hecke algebra Ha(Gs) of Gs over A as the A-algebra generated by the family (7w )wews
satisfying the same braid and quadratic relations as above with W replaced by Wg. One
similarly proves that (7)wews is a basis of the A-module H(Gs).

Let H3(G) be the A-subalgebra of H 4(G) generated by the family (T )wew,q, called
the affine Twahori-Hecke algebra of G over A. By Lemma 2.1, the restriction to Wg of
the Bruhat length function of W coincides with the Bruhat length function of Wg under
the group isomorphism given by Corollary 2.2. This implies that H(Gs) and H3(G)
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have the same braid relations. As the quadratic relations only depend on the affine part,
they are also the same for H4(Gs) and HT(G), what finally proves the following result.

COROLLARY 2.5.  With the notations introduced above, the map sending Ty, on Ty,
for any w € Ws is a well-defined injective homomorphism of A-algebras from H a(Gs)
into Ha(Q), with image equal to HY(G).

A convenient reformulation of this statement is the following one : the standard
Iwahori-Hecke algebra of Gg over A is canonically isomorphic to the affine Iwahori-Hecke
algebra of G over A, and can consequently naturally be seen as an A-subalgebra of the
standard Iwahori-Hecke algebra of G.

REMARK 2.6. In a recent work [10, Section 3], Koziol proved further relations of
that kind for the standard pro-p-Iwahori-Hecke algebras of GL,(F') and SL,(F).

REMARK 2.7. Before going further, let us mention here that [22, Theorem 4] implies
in particular that any simple right 7-{% (Gs)-module will be of finite dimension as vector

space over Fp. Consequently, the classification of simple right ?—% (Gg)-modules amounts
p

to classifying finite-dimensional simple right "H% (Gs)-modules, what explains why this
P
apparent restriction shows up in the sequel of this paper.

3. A decomposition of the pro-p-Iwahori-Hecke algebra of SL,(F)

From now on, we assume that n = 2 and A = Fp, what allows us to use the results
we proved in the previous section. In particular, the affine Weyl group of G = GLy(F)
admits X6 = {so, s1} as Coxeter system. To ease notations, we let H be the standard
Iwahori-Hecke algebra of G over F,, and Hg be the standard Iwahori-Hecke algebra of
Ggs = SLo(F) over Fp. Wealsoset T:=T, € H, S :=Ts, € Hand T; :=T;, € Hg for
any i € {0,1}.

In this section, we will decompose the F,-algebra HY := Endg [GS](ind?:(l)(l)) as a
direct sum of finitely many smaller algebras easier to compute, in order to describe the
simple right Hi-modules. As Ig(1) is a normal pro-p-subgroup of Ig, [4, Lemma 3 (1)]
implies that any irreducible smooth representation of Is over Fp comes by inflation from
an irreducible representation of the quotient group Ig/Is(1) ~ I's. As n = 2, the torus
I's is canonically isomorphic to the finite cyclic (hence abelian) group k. Consequently,
any irreducible smooth representation of Is over F,, comes by inflation from a character of
k3 over Fp, and is then of the form® w” for a unique integer r € {0,...,¢—2}. Now recall
that the normalizer of I's in SLy(kp) acts by conjugation on this set of characters and a
direct computation proves that the orbit of w” for this action is equal to {w",w? 1="}. In
particular, it is reduced to one element when r is equal to 0 (what is the Iwahori case?)
or to qg—l (what is the exceptional case, that does not appear when p = 2), and consists
in two elements otherwise (what is the regular case). Considering how HY is defined, we

3The same symbol denotes a character of k;ﬁ and the smooth character of Ig it defines by inflation.
4The terminology of Twahori case and regular case is inspired by the one used in [21] for GLa(F).
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are led to introduce the following E,—algebras : for any r € {0,...,q — 2}, we set

Ende[Gs](indIGSS (w")) if r is equal to 0 or to g 5

Endg 4 (ind?ss (w" B wi™17T)) otherwise.

(3.1) Hs(r) =

THEOREM 3.1.  With the notations above, the F,-algebra HY admits the following
decomposition, where [x] denotes here the floor part of x € Q :

(3.2) Hs ~ €D Hs(r)

Proof. The proof of this statement is organized as the proof of [21, Proposition 3.1].
First, we use the transitivity of compact induction and the knowledge of all irreducible
smooth representations of Is over F, to get that

q—1

el o 1Gs i Al e

1ndlss(1)(1) = ind}” (mdlg(l)(l)) = @mdlss (Wh) .
r=0

Hence we have to determine all pairs (r, k) € {0, ..., q—2}? such that the F,[Ggs]-modules

indIGSS (w") and ind?ss (w*) are intertwinned. To do this, we recall that the adjunction

property of ind?ss gives an isomorphism of vector spaces over F,, of the following form :

Homg (¢ (ind?ss (wh), ind?ss (wk)) ~ Homg ;) (wr, ind?ss (wk)|15> .

Moreover, Mackey decomposition [1, Proposition 2.2.7] proves that the restriction to Ig
defines an isomorphism of F,[Is]-modules of the following form :

ind?ss(wk)hs o~ @ indg’w(wk’“’),
weWg

where we set I, s := w™ ' [sw N Ig for any w € Wg ~ {I5,s1} x Z and

kaw .
w = b

wk ifwe{lLh}~xZ;
s1 - wh = wI 1% otherwise.

Now remark that for any element w € Wy, the reduction modulo wp defines a short
exact sequence

00— Is(l)ﬂfms —r Iys — T — 0.

This implies in particular that Ig = Is(1)I, s, hence that wP = wkF™ if, and only if, these
two smooth characters coincide on I, 5. As I, s is of finite index in Ig, compact induc-
tion (from I, g to Ig) coincides with smooth induction [20, 1.5.2.a)]. If we respectively
denote these two functors by ind and Ind, their adjunction properties (respectively called
compact Frobenius reciprocity [1, Proposition 2.2.3] and (smooth) Frobenius reciprocity
[1, Proposition 2.2.1]) then lead to the following chain of isomorphisms :
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Homﬁp[ls}(wr,indgj (wh)) ~ @ HomFPUS](wT,indisuys(wk’w))
weWsg

~ @ Homﬁp[ls](w’“,Indfias(wk’w))
weWsg

~ _ T k,w
o~ @ HomFPHw’S](w ,w™?)
weWsg

~ _ r kaw
~ @ Homg ;4 (w", w™") .
weWsg

k,w

Considering how the characters w are defined, this finally proves that the space
HOHIE,[GS] (indis (W), ind?ss (wk)) is non-zero if, and only if, r is equal to k or to g—1—k.

We therefore fall into one of the two following cases :

e cither p (and then ¢) is odd, in which case there are two orbits reduced to one

character, corresponding to » =0 and r = 4— , and any other orbit is of size 2;

e or ¢ is even, in which case the unique orbit of size one corresponds to r = 0, while
any other orbit is of size 2.

Putting all these results together finishes the proof as a direct computation shows that
in the first case (p odd), we have

1

Endﬁp[GS](indis(l)(l)) = EndF,,[GS](indgs(l)) ® Endﬁp[cs](iﬂd?j (W)
@ Ende[GS](ind?ss (wT & wqilir)) )

—1
0<7’<qT

while in the second case (p = 2), we have

Endg g,(indf5,) (1)) = Endg (o (ind7*(1)) @D  Endg o (indfs (@ @w=77)).

1§TS[(1;1]

O

REMARK 3.2. Note that the computation using Mackey decomposition we did in the
previous proof also shows that any non-zero element of the (I, w")-isotypical component
of ind?ss (w?1=*) has support in the double coset Igsicls.

A fundamental consequence of Theorem 3.1 is that any simple right H-module comes
g=1
2
the study of simple right Hg(r)-modules for any parameter r. Remark 2.7 furthermore

from a simple right g (r)-module for some well-chosen r € {0, ... [%5=]}, what motivates
implies that all these simple modules will be of finite dimension over F,. We start by
the case » = 0 : not only it is interesting by itself, as it is closely related to spaces of
I-invariant vectors (see Section 4.4), but it is also connected with the standard Iwahori-
Hecke algebra Hg introduced in the Section 2.3, as can be seen in the following theorem.

THEOREM 3.3.  Let fy and f1 be the elements of Endﬁp[cs](indf;(l)) that respec-

tively correspond by compact Frobenius reciprocity to the functions ¢g, p1 in ind?ss(l)js
defined as follows : for any i € {0,1}, @; has support equal to Igs;Is and value 1 at s;.
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Then there exists a unique homomorphism of Fp-algebras Endﬁp (Gs] (ind?ss(l)) — Hsg
that maps f; to T; for any i € {0,1}, and it is actually an isomorphism of F,-algebras.

Proof. By compact Frobenius reciprocity, the F,-algebra Endg () (indis (1)) is isomor-
phic to the (Ig, 1)-isotypical component of ind?ss (1). This component is isomorphic to
the convolution algebra F,[Is\Gs/Is] via the morphism of F,-algebras sending, for any
g € Gg, the double coset Iggls to the element of ind?ss(l)ls with support Iggls and
value 1 at g. As Wg parametrizes the double cosets Ig\Gg/Is, we can follow step by
step the computations of |21, Appendix 1.3 - Iwahori case| to prove the theorem. (]

4. The standard Iwahori-Hecke algebra and its simple modules

Theorems 3.1 and 3.3 explain why the study of the structure of the F,-algebra Hg
and of its simple right modules is a first step towards the classification of simple right
H{-modules. We realize this study in this section, which also contains a first relationship
with mod p representations of SLo(F) (see Section 4.4).

4.1. On the structure of the standard Iwahori-Hecke algebra Hg

We start by proving that the standard Iwahori-Hecke algebra Hg is the F,-algebra
generated by the operators Ty and 77, then we describe its center. To do this, we need
the following result, which is a direct consequence of the braid relations as we have

£(s0s1) = €(s0) + £(s1) = £(s180)-
LEMMA 4.1.  The following identities hold in Hg : Tsys, = ToT1 and Ts,s, = T170-
THEOREM 4.2.  The F,-algebra Hg is generated by To and T;.

Proof. We want to prove that for any w € Wg, the operator 7T, can be written as a
polynomial in 75 and 77 with coefficients in Ej. We do this by induction on the Bruhat
length of w. As ¢(w) =1 if, and only if, w belongs to {sp, s1}, the statement we want to
prove is clearly true for elements of length 1. If {(w) = 2, then Ty, is of one of the forms
considered in Lemma 4.1 and is hence a polynomial in 7y and 77 with coefficients in Fp.
Now assume that ¢(w) =n > 3 and that w; ... w, is a reduced decomposition of w. As
sp and s; are both of order 2 in Wg, saying that the decomposition wy ... w, is reduced
implies that for any index i € {1,...,n — 1}, we have {w;, w;11} = {s0, s1}. Depending
on the parity of n, we necessarily fall into one of the two following cases.

e Either n = 2m is even and we hence have w = (wjw3)™. As we started from
a reduced decomposition of w, the equality {wi,ws} = {so,s1} implies that
l(w) = L(wiws) + ((wywz)™~1). The braid relations together with the induction
hypothesis and Lemma 4.1 then prove that T, = T(w,ws) T(w,ws)m—1 18 @ polynomial
in 7o and 77 with coefficients in Fp.

e Or n = 2m + 1 is odd, and we hence have w = (wjws)™w;. As we started
from a reduced decomposition of w, we now have f(w) = £((wiwq)™) + £(w)
with £((wiwz)™) = 2m = n — £(w;1). The braid relations together with the even
case hence imply that 7y = T(w,w,)=7T1 is again a polynomial in 7y and 7 with
coefficients in F,,. O
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To describe the center of Hg, we use the quadratic relations to construct an operator
that commutes to any element of Hg, then we prove that any central element in Hg is a
polynomial with coefficients in F, in this particular operator.

THEOREM 4.3.  The center of Hg is equal to the Fp-algebra Fp[(To — T1)?].

Proof. The quadratic relations involved in the definition of Hg imply that we have
(4.1) ~(To-T)?=To+Ti+ToTi + TiTs .

This implies that — (7o — 71)? commutes with 7y and 77, and is thus central in Hg by
Theorem 4.2, as we have

{—%(%—7'1)2=752+To7'1+7627’1+767'1%=—%+%71%,
~(To—=T)?To=T2+TiTo+ToThTo+ TWT¢ = —To+ ToTiTo ,

and

{_7—1(76_7—1)2:7-176+7-12+7—1767-1+7-1276:_7—1+7—1767-17
~(To =TT =ToTi + T2 + ToTE + TiToTi = =Ti + i ToTh -

We now prove that any central element in Hg is a polynomial in (7o — 71)%. Thanks
to Theorem 4.2, we know that any element of Hg can be written as a polynomial in 7
and 77 with coefficients in F,. Moreover, the quadratic relations satisfied by 75 and 73
imply that this polynomial is a finite linear combination of monomials of the following
form : (7T170)™, (ToT1)™, To(T1To)™ or T1(ToT1)™, with n € N. As the braid relations in
H s assure that these monomials are respectively equal to T(s, so)ms T(sgs1)ns Tso(s1s0)n and
Ts,(sos1)n» they are in particular linearly independant over E,. To conclude, we proceed
by induction on the maximal homogeneous degree of the polynomial in 7y and 77 defining
the central element Z € Hg we consider.

e First assume that Z is given by a polynomial of maximal homogeneous degree d < 1.
This means that we have Z = a7y + 71 + 7 for some «, 3,y € F,. The relation
ZTo = ToZ then reduces to fT1Tg = 5To71 and implies that 5 is null. Since Z —~y
is a central element in Hg while 7 is not, we necessarily have o = 0, what proves
that Z = ~ is given by a constant polynomial, hence belongs to R,[(’YB - T1)?%.

e Assume now that Z is given by a polynomial of maximal homogeneous degree equal
to 2 : it can be written as aToT1 + 8T1 70 +7To + 6T1 + ¢ with «, 8,7, 6, € F,,.
The relation Z7y = ToZ then reduces to

(6 = a)ToTa + BToThiTo = (6 — B)TiTo + aToThTo

what shows that o = § = 8. By (4.1), we have T + T1 To+ToT1 = —(To —T1)* — To,
what implies that Z — (v — a)7o belongs to F,[(To — 71)?] and is consequently a
central element in Hg. Hence (7 — a)7o must also be central in Hg, what allows us
to deduce from the previous case that we have v = «. This finally proves that Z is
equal to a(ToTi + TiTo +To + T1) + ¢ = —a(To — T1)? + 1, and therefore belongs
to F,[(7o — T1)?].



14 R. ABDELLATIF

e Finally assume that Z is given by a polynomial of maximal homogeneous degree
d > 2 and make the following induction hypothesis : any central element in Hg
given by a polynomial of mazimal homogeneous degree strictly less than d belongs

to Fp((7o0 — T1)?)-

x If d = 2n is even, we have Z = a(ToT1)" + B(TiTo)" + 21 with a, 8 € F,, and
Z; € Hg given by a polynomial of maximal homogeneous degree strictly less
than d. Since Z commutes to 7y, we have

(42) —a(ToTh)" + BTo(T1T0)" + ToZ1 = a(ToT1)"To — B(T1To)" + 2170 -

As —a(ToT1)™, ToZ1, —B(TiTo)™ and 217 are all of maximal homogenous de-
gree strictly less than 2n + 1, the computation of the homogeneous term of
degree 2n 4+ 1 in (4.2) shows that a = 5. We hence deduce from (4.1) that

(43)  Z=al(TT)" + (TT)") + 21 = —a(To = T)*" + 21 ,

where Z; € Hg is given by a polynomial of maximal homogeneous degree
strictly less than 2n = d. As Z1=Z+ a(To — T1)?" is also a central element
in Hg, it belongs to F,[(To — 71)?] by induction hypothesis, and (4.3) hence
proves that Z is contained in F,[(To — T7)?].

x If d = 2n+1is odd, we have Z = (ToT1)" To+B(T170)"T1 + 21 with o, 8 € F,,
and Z, € Hg given by a polynomial of maximal homogeneous degree strictly
less than d. The computation of the homogeneous term of degree 2n+ 2 in the
equality 702 = Z7, (respectively 712 = Z71) shows that 5 = 0 (resp. a = 0).
This implies that Z = Z; should be of maximal homogeneous degree strictly
less than d, what contradicts our assumption saying that Z is of maximal
homogeneous degree equal to d.

This shows that any central element in Hg belongs to F,[(7o — 71)?], what ends the proof
of Theorem 4.3. g

4.2. Classification of simple H s-modules

For any pair (g9,€1) € {0, —1}2 of parameters, let M (gg,1) be the Hg-character
over F,, that maps 7; to ¢; for any i € {0,1}. Note that the quadratic relations involved
in the definition of Hg imply that any Hs-character over F,, is necessarily of that form.
To ease notations, we denote by M7 (¢) the Hg-character My (e,¢) for any ¢ € {0, —1}.
By analogy with the terminology used in [21], the Hg-characters M;(0) and M (—1)
are respectively called the trivial character and the sign character.

We now introduce the analogue of the standard H-modules defined in [21] : for any
scalar A € ), let M35 ()\) be the two-dimensional Hg-module F,z @ F,y endowed with
the actions of Ty and 77 that are respectively defined by the following matrices in the
F,-basis {z,y} :

(4.4) (?_?) and (‘éé).

We call M3 ()\) the standard Hg-module with parameter . Moreover, any basis {z,y} of
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the FF-vector space My (A) in which the matrices describing the actions of 7o and T are
as in (4.4) is called an adapted basis for Mg (\).

REMARK 4.4. The central element — (7o — 71)? acts on M3 ()\) via the scalar A — 1.
Consequently, two standard Hg-modules with distinct parameters cannot be isomorphic.

We now establish the irreducibility properties of the standard Hg-modules.

THEOREM 4.5. Let A € F,,.
1. The Hs-module M5 (\) is irreducible if, and only if, X does not belong to {0,1}.

2. The standard Hg-module with parameter 1 is indecomposable of length 2 and fits
into the following non-split short exact sequence of Hg-modules :

(4.5) 0 — MP(0) — M5 (1) — MZ(=1) — 0 .

3. The standard Hg-module with parameter 0 is indecomposable of length 2 and fits
into the following non-split short exact sequence of Hg-modules :

(4.6) 0 — MY (—1,0) — M5 (0) — MZ(0,-1) — 0 .

Proof. First note that Mg (1) contains the trivial character M7 (0), generated by the
vector x + y if {x,y} is an adapted basis of My (1), while M3 (0) contains the character
M7 (—1,0), generated by y if {x, y} is an adapted basis of M3 (0). This proves a sufficient
condition for M5 ()\) to be reducible is A € {0, 1}.

Now fix an adapted basis {x,y} of Mz (\) and assume that M5 ()\) is a reducible
‘Hs-module, what means that it contains a one-dimensional Hg-submodule M generated
by a non-zero vector v := ax + by with a,b € E,. Note that x generates the Hg-module
M3 (M), what implies that b is non-zero as M is strictly contained in M5 ()\). Up to
scaling, we can assume that b = 1, i.e. that v = ax + y for some «a € E,. If « =0, then
v = y generates M5 (\) whenever ) is non-zero, what contradicts the fact that v generates
a one-dimensional Hg-module, so A must be null in this case. If « is non-zero, note that
v|To = (o — 1)y and that v|7T; = (A — a)z. As = generates the Hg-module M (), the
second equality implies that we must have A = a. The first equality v|To = (o — 1)y
now implies that whenever « is different from 1, the vector y belongs to M, and so does
x = a (v —y), what contradicts the fact that M is one-dimensional over F,. We thus
have A\ = a = 1, and we deduce from this dichotomy that a necessary condition for Mz (\)
to be reducible is A € {0,1}. This ends the proof of statement (1) by contraposition.

Now assume that A = 0, in which case M7 (—1,0) is an Hg-submodule of M (0) as
we already mentionned it. One checks immediately that the quotient of M5 (0) by this
‘Hs-submodule is generated by the image of x and is isomorphic to the Hg-character
M;(0,—1). This leads to the short exact sequence (4.6), which is necessarily non-split as
= generates the whole Hg-module Mz (0). This ends the proof of (3).

Finally assume that A\ = 1, in which case we already noticed that = + y generates
the trivial character M{(0). One immediately checks that the quotient of M5 (1) by this
‘Hs-submodule is generated by the image of y and is isomorphic to the sign character
M7 (—1). This leads to the short exact sequence (4.5), which is necessarily non-split as
y generates the Hg-module M5 (0), and completes the proof of Theorem 4.5. ]
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THEOREM 4.6. Any two-dimensional simple right Hs-module is isomorphic to a
standard Hg-module M3 ()\) for a unique parameter X € F,\{0,1}.

Proof. Assume that M is a simple right #g-module of dimension 2 over F,. As M is a
finite-dimensional vector space over the algebraically closed field Fp, the central element
—(To — T1)? of Hg acts on M by a scalar u € F,. Let ¢ be the endomorphism of M
defined by the action of 7; on M : then the quadratic relation 77(7; + 1) = 0 implies
that the minimal polynomial of ¢ divides X (X +1). However, ¢ cannot be a homothety :
otherwise, Theorem 4.2 would imply that any non-zero eigenvector for the action of 7o on
M generates a one-dimensional Hg-submodule of M, what contradicts the simplicity of
the two-dimensional Hg-module M. This shows that X (X +1) is the minimal polynomial
of ¢ and that M is the direct sum - as vector space over F,, - of ker ¢ and ker(¢ + 1),
these spaces being both non-zero, hence of dimension 1 over E;. Pick a non-zero vector
x € ker(p +1) : as M is a simple Hg-module of dimension 2 over F,, the line ker(p + 1)
cannot be stable under the action of 7y on M, and the family {z,z|7o} is hence linearly
independant over F,,, what means that it defines a basis of the vector space M. A direct
computation gives the following relations in M :

2|Ti = =, (2[To)|To = —2|To , (z[T0)[Th = (p+ D)z,

where the last equality comes from the relation (4.1). This way, we obtain that in the
basis {z, z|Ty}, the actions of T and 77 are respectively given by the matrices

0 0 1l4p
< 1 1) and ( 0 0 ) .
This shows that M is isomorphic to the standard Hg-module M5 (1 + ), what finishes

the proof as the uniqueness of the parameter comes from Remark 4.4 while the restriction
on its possible values comes from Theorem 4.5. ]

Our next result states that any simple right Hg-module necessarily appears among
the Hg-modules we built so far. Recall that Remark 2.7 and Theorem 3.1 ensure that
any simple Hg-module is of finite dimension over F,,.

THEOREM 4.7.  Any simple right Hs-module is either a character or an irreducible
standard Hg-module. In particular, its dimension over Fp s at most 2.

Proof. This proof essentially reduces to the proof of Theorem 4.6. Assume that M is
a (finite-dimensional) simple right Hs-module which is not one-dimensional. As in the
proof of Theorem 4.6, the central element —(7y — 77)? acts on M by a scalar A € F,, and
ker(71 + 1) contains a non-zero vector . The argument ending the proof of Theorem
4.6 implies here that = and y := x|7y generate a two-dimensional Hg-submodule of M
which is isomorphic to Mg (A + 1). As M is simple, we must have M = MF(A+1). O

COROLLARY 4.8. Any simple right Hs-module is isomorphic to one, and only one,
of the following Hg-modules :

e a character M7 (go,€1) for a unique pair of parameters (gq,e1) € {0, —1}%;

e a standard Hg-module M5 (X\) for a unique parameter A € F,\{0,1}.
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4.3. Relationships with the corresponding objects for GL2(F) - Part 1

We explained in Section 2.3 how Hg can naturally be identified to an F,-subalgebra
of the standard Iwahori-Hecke algebra H of GLo(F'). In particular, any element of Hg
can be seen as an element of 7, hence can be written as a polynomial in 7, 7! and S
with coefficients in F,, [21, Section 1.1]. Moreover, the restriction to Hg endows any right
‘H-module with a structure of Hg-module. The two following questions then naturally
arise and will be solved in this subsection.

e To which elements of E} [T,T~1,S] do correspond the operators Ty, 71 € Hs when
considered as elements of H?

e What is the structure of Hg-module carried by the finite-dimensional simple right
‘H-modules that Vignéras classified in [21, Theorem 1.2]7

The next statement answers to the first question.

LEMMA 4.9.  The following relations hold in the standard Iwahori-Hecke algebra H
of GLy(F) : To=T7'ST and T, = S.

Proof. The second equality directly comes from the definitions of 77 and S. Now recall
that so = t~1st, where st is an element of length 1 in the extended affine Weyl group of
GLo(F) |21, Annexe A.2]. As t and ¢t~! are both of length 0, the braid relations in H
imply that Ty, = T,-1 T = (T3) " 'TsT; = T~1ST, what proves the first equality. O

As T? and T2 are central elements in H, we also have Ty = T'ST~' in H. Using
Lemma 4.9, we obtain the following reformulation of Corollary 2.5.

COROLLARY 4.10.  The standard Iwahori-Hecke algebra Hs of SLo(F) is isomorphic
to the ?p—subalgebm of H generated by the operators S and TST—1 = T-1ST.

We now address the second question and start by a recall of the classification of finite-
dimensional simple right H-modules as stated in [21]. For any pair (7,¢) € F: x {0, -1},
let M (7, €) be the one-dimensional 7{-module over F,, that maps T to 7 and S to . For
any pair (a, z) € F,, x F; the standard H-module M3(a, z) is the two-dimensional vector
space F,x @ F, endowed with the following action of # : in the adapted basis {z,y},

00
classification of finite-dimensional simple right H-modules given by [21] is then as follows.

0 -1
the actions of T" and S are respectively given by the matrices < 1 g) and ( a>. The

THEOREM 4.11. 1. Any finite-dimensional simple right H-module is isomorphic
to one of the following modules :

e an H-character My(t,€) with (1,€) € F: x {0,—1};
e a standard H-module Ms(a, z) with (a,z) € F, x Rj satisfying a® # z.

2. For any non-zero parameter a € Ef, My (a,a?) is an indecomposable H-module of
length 2 that fits into the following non-split short exact sequence of H-modules :

0 — M;(a,0) — My(a,a®) — My(—a,—1) — 0 .
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Corollary 4.10 directly leads to the following statement for one-dimensional modules.

LEMMA 4.12.  For any pair of parameters (1,e) € ﬁ; x {0,—1}, the Hg-module
carried by M, (7,¢€) is equal to the Hg-character My (¢).

Proof. By definition of M (7, ) and Corollary 4.10, one easily checks that M (7, &) maps
both operators 7y and 7T to e. O

Now fix a pair (a,z) € F, x ﬁ; and consider the two-dimensional H-module Ms(a, 2)
together with an adapted basis {z,y}. A direct computation based on Corollary 4.10
shows that in this adapted basis, the actions of 7y and 7; on Ms(a, z) are respectively

0
az"l -1
is non-zero hence leads to the following result.

-1
given by the matrices ( ) and ( 0 g) Doing a suitable base change when a

LEMMA 4.13.  Let (a,2) € F, x ?: be a pair of parameters.

1. If a is non-zero, the restriction to Hg of the standard H-module Ms(a,z) is iso-
morphic to the standard Hg-module M5 (a®271).

2. The restriction to Hg of the standard H-module M5(0,z) is a split Hg-module
isomorphic to My (0, —1) @ My (—1,0).

As z is always assumed to be non-zero, the following statement is a direct consequence
of Lemma 4.13 and Corollary 4.8.

COROLLARY 4.14. Let (a,z) € F, x ?: be a pair of parameters.
1. If a is non-zero and satisfies a* # z, the Hg-module carried by M(a, z) is simple.

2. For a # 0, the Hg-module carried by My (a,a?) is indecomposible of length 2 and
fits into the following non-split short exact sequence of Hg-modules :

0 — M7 (0) — My(a,a?)|ws — M7 (1) — 0 .

3. The Hs-module carried by Ms(0, z) is isomorphic to M (0,—1) & M (—1,0).

4.4. A first correspondence with mod p representations of SLy(F)

Before we start the study of the Iwahori-Hecke algebras attached to non-zero values
of r, let us use the results we proved so far to establish some connections between simple
right Hs-modules and certain irreducible smooth representations of SLs(F') over F,. We
explained in the introduction that for any smooth representation 7 of Gg over F,, the
space nls
Hg-module by Theorem 3.3. This subsection aims to use the classification results given

is naturally endowed with a structure of right Hs(0)-module, hence of right

in [2] to describe the Hg-module /s whenever r is an irreducible smooth representation
of G5 over F,, admitting non-zero Is-invariant vectors.

REMARK 4.15.  As we will use some results of [2]|, we assume from now on that any
choice made in this paper is done in a compatible way with those made in [2].
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4.4.1. The non-supercuspidal case

We first recall two important results. The first one is due to Vignéras [25, Section 6.5]
and gives the structure of H-module carried by the space of I-invariant vectors of any
non-supercuspidal irreducible smooth representation of GLs(F') with central character
and with non-zero I-invariant vectors.

PROPOSITION 4.16.  Let St denote the Steinberg representation of GLo(F).
1. The H-module carried by 11 is equal to the H-character M;(1,0).
2. The H-module carried by St! is equal to the H-character M (1,—1).

3. For any X\ € Rf, the H-module carried by (Ind(ux ® 1))! is isomorphic to the
standard H-module Ma(A~1, A71).

The second result was proved by the author [2, Corollaire 2.11, Théoréme 2.16 and
Remarque 2.17] and gathers all the results we need about the relationships between
non-supercuspidal irreducible smooth representations of SLy(F) and GLy(F) over Fp.

PROPOSITION 4.17. 1. Any non-supercuspidal irreducible smooth representation
of SLy(F) over R, that has non-zero Ig-invariant vectors is isomorphic to one, and
only one, of the following representations :

e the trivial character 1;
e the Steinberg representation Stg;

o the parabolically induced representation Indgg () for a unique X € F,\{0,1}.

2. We have 11s = 11 and the standard injection® of St! into Stés is an isomorphism
of Fp-vector spaces.

3. For any X € F;, the standard injection of (Ind$(uy ® 1)) into (Indgg (ux))fs is
an isomorphism of E,—vector spaces.

Combined with Corollary 2.5 and Lemmas 4.12 and 4.13, these two propositions lead
to the following statement.

THEOREM 4.18. 1. The Hs-module carried by 1's is the trivial character M{(0).
2. The Hs-module carried by Sti is the sign character M (—1).

3. For any parameter A € F,\{0,1}, the Hs-module carried by (Indg;’ (ux))'s is iso-
morphic to the standard Hs-module M5 (A™1).

REMARK 4.19. The same comparison process proves that the Hg-module carried
by (Indgg(l))ls is isomorphic to the (reducible) standard Hg-module M5 (1).

5Via the restriction of St to Gg, as explained in [2, Section 2.6].
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4.4.2. The supercuspidal case

We assume in this paragraph that F' = Q,, as it is the only case so far where super-
cuspidal representations of SLy(F) and GLy(F) are fully understood (see respectively [2]
and [4, 6]). In particular, we know from [2, Théoréme 4.12] that there are p isomorphism
classes of supercuspidal representations for SLy(Q,), for which an explicit system of rep-
resentatives {m,, 0 < r < p — 1} is built in [2, Section 4.1]. Using the same notations
as in [2] and [6], we can moreover connect as follows supercuspidal representations of
GL3(Qp) of the form 7(r,0,1) with those of SL2(Q,) [2, Théoréme 4.12] :

(4.7 Vre{0,...,p—1}, m(r,0,1)|gs > 7 & Tp_1—r
As in [2, Section 4], we let v, := [I2,2"] be the element of 75 that naturally generates

the representation 7, of G over F,,. We have the following result [25, Section 6.5], which
is an analogue of Proposition 4.16 in the supercuspidal case.

PROPOSITION 4.20.  The H-module carried by m(0,0,1)! is isomorphic to M(0,1).
Moreover, it has an adapted basis of the form {vg,y} with y being an element of 7(0,0, 1)’
that generates the F,[Gg]-submodule m,_1 of 7(0,0,1)|g, appearing in (4.7).

We also know from [2, Propositions 4.7 et 4.11] that up to isomorphism, 7y and m,_1
are the only supercuspidal representations of Gg having non-zero Ig-invariant vectors,
that dimﬁp Wés = dimﬁp 71';3_ ; = 1, and that vy belongs to 7T(I)S. Using [2, Théoréme 4.3]
together with Proposition 4.20 and Lemma 4.13 (3), we get the following result.

THEOREM 4.21. We assume F' = Q, and we use the notations introduced above.
1. The Hg-module 4° is equal to the Hg-character M (—1,0).

2. The Hg-module W;il is equal to the Hg-character My (0, —1).

Proof. Proposition 4.20 implies that 7T(I)S and W;‘i 1 are the lines generated by the vectors
of an adapted basis of the H-module 7(0,0,1)! ~ M5(0,1), what ends up the proof via
the computations leading to Lemma 4.13 (2). O

4.4.3. Application to the functor of Ig-invariants
As in the dictionnary established by Vignéras [21] for GLy(F), we have a notion of
supersingular Hg-module.

DEFINITION 4.22. A simple right Hg-module is supersingular if it is not isomorphic
to a subquotient of some (Indgg (n))!s for a smooth character 7 : Bg — F;.

Recall here that the map sending a smooth representation of Gg over Fp to its space
of Is-invariant vectors comes from a functor (called the functor of Ig-invariants) going
from the category of smooth representations of Gg over Fp generated by their Ig-invariant
vectors to the category of right Hg-modules. The comparison of Theorems 4.18 and 4.21
to the classification established in Corollary 4.8 leads to the following result.
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COROLLARY 4.23. 1. The functor of Ig-invariants defines a bijection :

isomorphism classes of
non-supercuspidal irreducible smooth
representations of SLy(F) over F,
generated by their Is-invariant vectors

isomorphism classes of
— non-supersingular
simple right Hg-modules

2. When F = Q,, the previous bijection extends to a bijection :

isomorphism classes of irreducible smooth
representations of SL2(Q,) over F, {

isomorphism classes of }
generated by their Ig-invariant vectors

simple right Hs-modules

REMARK 4.24. As all Hg-modules appearing in Corollary 4.23 are simple modules,
Theorem 3.1 implies that they also define simple right Hls—modules. In particular, they
define Hg-submodules of the corresponding spaces of Is(1)-invariants vectors. We will
see later (Propositions 7.3 and 7.4) that they actually completely define the Hg—modules
carried by these spaces of Is(1)-invariant vectors.

REMARK 4.25. As it only deals with irreducible smooth representations having non-
zero Ig-invariant vectors, the statement of Corollary 4.23 is highly partial : for instance,
it puts aside most of the supercuspidal representations of SLy(Q,) when p is odd.

4.5. Relationships with the corresponding objects for GL,(F') - Part 2

We close this section with a result underlining the interplay between the two kinds of
restriction maps considered above. On the one hand, the restriction to Gg of any smooth
representation of G over Fp defines a smooth representation of Gg over Fp. On the other
hand, what we did in Section 2.3 allows us to restrict to Hg any right H-module to
obtain a right Hs-module. The next result is a direct consequence of [2, Remarque 2.17
et Théoréme 4.3] together with [5, Lemma 27 and Theorem 28] and [6, Théoréme 3.2.4].

PROPOSITION 4.26. Let m be an irreducible smooth representation of G over F,
having a central character and non-zero I-invariant vectors. If one of the following

conditions holds, then I acts trivially on 7's :

e either m is non-supercuspidal;
o or F'=Q,.

Together with Lemmas 4.12 and 4.13, Propositions 4.16 and 4.20, Theorems 4.18
and 4.21, and [2, Théoréme 4.12], Proposition 4.26 leads to the following statement,
which roughly says that taking invariant vectors under the standard Iwahori subgroups
commutes with restriction functors.

COROLLARY 4.27. 1. For any non-supercuspidal irreducible smooth representa-
tion m of GLo(F) over F, having a central character and non-zero I-invariant
vectors, the restriction to Hg of the H-module 7' is isomorphic to the Hg-module

(75 (m)) s
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2. For any irreducible smooth representation m of GL2(Qp) over Fp having a central
character and non-zero I-invariant vectors, the restriction to Hs of the H-module

7wl is isomorphic to the Hg-module (7|sr,q,))" -

5. The regular Iwahori-Hecke algebras and their simple modules

In this section, we describe the structure of the Iwahori-Hecke algebra Hg(r) and of
its simple right modules for any parameter r € {1,..., [‘%1]} distinct from % when p
is odd. This is the counterpart of Vignéras did for GLy(F) in [21, Section 2].

5.1. Structure of the Iwahori-Hecke algebra Hg(r)
As we assume r # g — 1 —r, the F,-algebra Hg(r) := Endg 6 (ind?ss (W dwi1T))
can be decomposed as follows :

A, B,
HS(T) B (Bq—l—r Aq—l—f’) 7

with Ay = End@p[cs](ind?ss (wk)) and By, := Homg (¢ (ind?ss (wk),ind?ss (w?=1=F)) for
k € {r,¢g — 1 —r}. The understanding of Hg(r) hence reduces to the study of each of
its four components and of the relations existing between them. Before going further,
note that Ay is naturally an algebra over F, while By is certainly not. Nevertheless, the
composition of functions endows By, with a natural structure of (A,_1_g, Ax)-bimodule
as we have A;_1_j 0 By o Ay, C By,

5.1.1. Structure of the F,-algebra Ay

Let k& be equal to r or to ¢ — 1 — r. Compact Frobenius reciprocity implies that the
E,-algebra Ay, is isomorphic to the convolution algebra Hj of functions f : Gg — Fp
with compact support modulo Is that satisfy f(igj) = w¥(ij)f(g) for any i,j € Is and
any g € Gg. Any element of Ay can consequently be seen as a function over Gg, what
allows us to consider its support in Gg or its value at some element of Gg. We can now
state the following structure result for Ay, where A denotes the commutative F,-algebra

F,[X,Y]/(XY,YX).

THEOREM 5.1. Let T and Sy be the elements of Ay defined as follows : Ty has
support equal to Isao_llg and value 1 at ao_l, while Sy has support equal to Isagls
and value 1 at ag. The Fp-lz'near map sending Ty to X and Sy to Y then defines an
isomorphism of F,-algebras from Ay to A.

Proof. Things work the same way as in the proof of [21, Appendix 1.3|. For any integer
n, let T,, € Ay, be the element with support equal to Isay " Is and value 1 at oy ™ : then
we know from |2, Proposition 3.30] that {T},,n € Z} is a basis of the F,-vector space
Aj. Now recall that we have the following decompositions into disjoint left cosets, where
Crm = {[xo] + wplz1] + ... + w?il[a:m,l],xi € kr} is a set of representatives for the
elements of Op /wPOp (for any m € N) :

VneN, Isag"lsg = |_| u(—x)ag "Is ;
z€Cap
VneN, Isajls = | | a(-mra)ogls .

z€ECan
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As [4, Lemma 3 (1)] implies that w”(@(wrz)) = w*(u(x)) = 1 for any v € OF, we
deduce from [4, Equation (9)| that for any integer n, the operator 7,, acts as follows on
the standard function [I3,1] € ind?ss (wh) :

VneN, T,(I1]) = Z [i(—wrx)ad, 1] ;

z€Cap

VneN, T (1)) = Z [u(—z)ay ™, 1] .

rECapn

These equalities completely determine T}, as it is a Gs-equivariant and F,-linear operator.
A direct computation based on [4, Equation (9)] and (1.1) now proves that we have :

(51) {VTLEN, TloT = n+1:TnOT1;

VneN, T 10T ,= T—(n+1) =T ,0T 4

To finish the proof of Theorem 5.1, it is left to show that Ty oT_ 1 =T_10T; =0, as we
set Ty, := T and Sy := T_1. Once again, it is enough to check it is true after evaluation
at the standard function [I3,1]. Applying [4, Equation (9)] to T} o T_;, we obtain that

(Ty o T_1)([I2,1] Z Z (—wry)ao, 1]

x€Co yela

= Z Z —Wp y) 1]
z€Co y602

=2 [u(==2), 1]+ Z > [u(=w)a(-=y'y), 1]
z€Co y€C2\{0} z€C2

As wF is trivial on Ig(1), where u(z) sits for any * € Op, the first sum in the last
expression above is equal to Card(Cy)[I2,1], i.e. to 0 as we have Card(Cz) = 0 mod p.
Now remark that for any y € Oy and any = € F, we have :

_ _ _ -y @
u(=o)u(-wy) = u(-)ul-weysran (F TEL)
This implies that u(—x)ﬂ(—w}ly) belongs to the double coset Igsiagls for any pair
(z,y) € O% with y = [yo] + wr[y1] and yo # 0. If y is such that yo = 0 (i.e. of the form
[y1]wp with y; € kj), then we have

_ _ — 1
w(=ya(-wz ) = u-au(-fu s (0 _[yl]l) & Iyl
Putting this two statements together, we obtain that Z Z —wp y) 1]
yGCQ\{O} x€Ca
has support in Igs1lg U Igsiapls. As k is not in {0 , } [2, Proposition 3.30]°

ensures that there is no non-zero element in Hj; with support contained in Igsiabls.

Consequently, we have Z Z [u(—z)u(—wwp'y),1] = 0, hence (TyoT_1)([I2, 1]) = 0,
y€C2\{0} z€C2

what ends the proof as a similar argument shows that (T3 o T1)([I2,1]) = 0. O

6With the notations used in [2], we have Issiapls = Iswoaols.
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REMARK 5.2. Recall that {w”,w? 17"} is an orbit for the action of ¢ by conjugation
on the set of smooth characters of I'g. Let ¢, denote the isomorphism of R,—algebras
Ay — Ag—1-k induced by this action and ¢ : Ar — A be the isomorphism given by
Theorem 5.1 : the composite map ¢,_1—x 0 ¥y, © @El defines an automorphism of the

F,-algebra A which is not the identity map but the automorphism swapping X and Y.

5.1.2. Structure of the (Aq_1_k, Ax)-bimodule By

For any integer n € Z, let f,, , be the element of the (Ig,w*)-isotypical component of
ind?ss (wq_l_k) with support equal to Issiog "Is = Isafsils and value 1 at of s, and
let S, x be the element of Bj corresponding to f, ; by compact Frobenius reciprocity.
The computation of Homg IS](wi, ind?ss (w?))) done in the proof of Theorem 3.1 shows
that the family {S, x,n € Z} is a basis of the ﬁp—vector space Bji. Now recall that
Is(aBs1) s admits the following decomposition into disjoint left cosets :

|_| u(z)(afsy) g ifn>0;
— z€Cqo(_
IS als 1-[5’ _ €Ca(—n)+1
(o551) |_| w(wpx)(afs) s ifn>1.
2€Can_1

Using [4, Equation (9)] together with the relation (afs;)™!

following expression of S,, x([I2, 1]), that completely determines S, by F,-linearity and
(G s-equivariance :

= —ags1, we obtain the

Z [u(z)(afs)™ 1] ifn<0;

Spi([T2,1]) = { “C2Cm+
w21 Z [i(wpz)(afs)) 1] ifn>1;

x€Can—1

Z [u(z)ag s1, (—1)q_1_k] ifn<0;

€C2(—n)+1
Z [@(wpz)alsy, (1)1 ifn > 1.

x€Can—1

Note that By, is also endowed with a structure of left A;_;_-module (by pre-composition)
and of right Ag-module (by post-composition). The decompositions above will be useful
to prove the next lemma, that describes the structure of (44_1_, Ax)-bimodule carried
by Bk

LEMMA 5.3.  Letk be equal tor ortoq—1—r withr £q—1—r.

1. For any integer n > 0, the following equalities hold in By :

(5.2) Ty-1-k0S nk =95 nkoSk =5S_(nt1)k

(53) Sqflfk o an,k = an,k o Tk =0.
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2. For any integer n > 1, the following equalities hold in By :

(5.4) Ty-1-k0Sni =5 k0S,=0;

(5.5) Sq-1-k08nt =Sk 0Tk = Snt1k -

Proof. By F,-linearity and G'g-equivariance of the operators involved in the statement
of Lemma 5.3, we only have to check that the equalities above are true after evaluation
at [I,1] € ind?ss (w*). First assume that n > 0, in which case we have :

(Tym1-k o S_pn)(I2,1]) =Ty—1-& Z [u(x)ag sy, (—1)7717F]

2€Can 11

Y Y lul@)ag "sii(—wry)ao, (~1)771 ]

2€Cany1 YEC2

Z Z x)og "u(wry)siag, (— 1)(1714“]

2€C2n+1 YEC2

Z Z 2n+1y)046n51050,(71)q717k}

2€C2n+1 YEC2

= Y fu(z)ag sy, (~1)71

2€Can+3

=S_(n+1).k([{2,1]) .

By construction, we have S;_1_,0T,_1_, = 0, hence this first computation already shows
that for any integer n > 1, we have S;_1_; 0 S_, x = Sg—1-k © (Ty—1-k)" 0 Sox = 0.
When n = 0, we have

(Sq—1-k © So0,k)([2,1]) = Sg—1-k <Z [u(z)s1, (—l)q_l_k]>

x€Cy

— Z Z x)s1u(— 0451, (—l)qflfk]

z€Cy yeCa
= > [u(@)siag u(=wgty), (1)
z€Cy yeCa

and the argument used in the proof of Theorem 5.1 to show that 77 o T_; = 0 allows us
to conclude here? that Sq—1—k 050,k = 0.

"For the sceptical (or lazy) reader, all computations are explicitely written in [1, page 184].
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Now assume that n > 1, in which case we have :

(Sg—1-% 0 Sn k) ([I2,1]) = Sq—1- Z [G(wrz)alsy, (—1)7 17K

€Can—1

Z Z w(wrz)agsiu(— y)aal’(_l)q—l—k]

2€C2n—1 YEC2

Z Z [i(wpz)abu(y)siagt, (—1)7717F]

2€Can 1 YEC2

Y D lu(wra)u(@ity)agsiag (=17

2€Can—1 YEC2

Yo Y la(wr(e + @2 y))agt sy, (—1)7 K

2€Can—1 YEC2

= Y Ja(@rz)agtisy, (~1)07 1

2€Can11

= Sn+1,k([127 1}) )

For any integer n > 2, this proves that Ty_1_;0 Sy, = Ty—1-k© (Sg—1-%)" 1051, = 0.
When n = 1, we have

(Tq—l—k © Sl,k)([l% 1]) = Tq—l—k (Z [ﬂ(wa)aoS1, (—l)qlk]>

z€Cy

- Z Z u(wpr)agsii(—wry)ag, (—1)77 1]

z€eC1 yeCo

= Z Z i(wrx)u wgly)sl,(—l)q_l_k].

z€eC1 yeCo

As in the computation of S;_1_j 0 Spx, we obtain® that Ty—1-1 0 S1,5 = 0. The same
kind of calculations? for T}, and S, gives the other relations, what finishes the proof. O

5.1.3. Description of the elements of B,;_1_j o By as elements of A,

To obtain a full understanding of the F,-algebra Hg(r), we now have to express the
element Sy, g—1—k © Smk € Ai as a polynomial in T} and Sy for any integers n,m € Z.
By Lemma 5.3, it is enough to compute Sig—1-% © S1,k, S1,g—1-% © S1,k © S0,q—1—k>
S0,g—1—k © S1,k and Sp g—1- © So i : this forms the content of the next statement.

8The reader can this time refer to [1, pages 185 and 186] to get all the details.
9Left as an exercise to the reader, but also extensively written in [1, pages 186 a 188].
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LEMMA 5.4.  The following equalities hold in Ay, :

S1g—1-k 0 S = (—=1)4717FG,
So.g-1-k 0 S1 k= (1) T
S1,g-1-k © 51,6 = S0,g-1-k © S0,k =0 .

Proof. As usual, it is enough to check that these equalities are true after evaluation at
[I2,1] € ind?ss (wk). First note that we have

(S1.q-1-k ©So0,.k)([I2,1]) = S1 g—1-& (Z [u(x)s1, (_1)q1k}>

z€Cy

=3 [u(@)sit(wpy)aost, (1)

x€Cy yely

= Z Z [u(z)u(—wry)ag ', (—1)97 1]
x€Cy yely

= > [u(z)ag ™, (~1)7 1K)
2€C2

= (=1 Sk ([12,1])
so the first equality of Lemma 5.4 holds. Similarly, the second equality is true as we have

(So,g—1-r © S1.1)([L2,1]) = So0,g-1-k (Z [U(wrT)aost, (1)q1k]>

zeCy

=3 [ul@rz)aosiu(y)si, (1)

zeCy yely

=3 3 [a(@r (@ — @ey))ao, (~1)7 ]

z€Cy yeCy

= Z —wrz)ag, (— 1)‘1_1_k]

z€Co
= (=) T ([I2,1])
We now prove that S; ;—1-; 0511 is equal to 0. First note that we have

(S1,g-1-k © S1,6) ({2, 1]) = S1,9-1-k <Z [@(wpr)agst, (—1)q_1_k]>

z€Cq

= Z Z i(wrx)agsii(wry)agst, (1471,

z€Cy yely
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hence

(S1,g—1-% © S1,%) ([L2, 1] Z Z U(wrr)u(—wp'y), (—1)7 4

zeCr yely

This shows that (S1,g—1—k © S1,%)([I2,1]) is actually equal to
(5.6)

-1
> la(@ra), ()T YD Y (a@ra)a wFW)(wSyw}l)%(1>“].

z€Cy z€Cy yeC1\{0}

As in the proof of Theorem 5.1, the first sum in (5.6) vanishes because it is equal to
Card(Cy)[I2, (—1)9~1=*] with Card(C;) = 0 mod p. The remaining part of (5.6) defines
an element of Ay having support in IgsiaZls, hence is zero by [2, Proposition 3.30].
This proves that S; ;_1-% © S1,, is equal to 0 and finishes the proof as the vanishing of
So,g—1—k © So, can be obtain by similar computations (left as an exercise to the reader
and written in full detail in [1, page 191]). O

COROLLARY 5.5. Letm € Z and n € N. We have the following identities in Ay.

1. For any integer n > 0, we have

—1)a-l-kpntm e~ q ;
S—n,q—l—k o S'm,k‘ = {é ) ’ Z;m 2 0

2. For any integer n > 1, we have

[ (D)TRSET ifm <0
S”’“’“OS’"”“_{O ifm>1.
Proof. This directly comes from the relations proved in Lemmas 5.3 and 5.4. For instance,
if n and m are two nonnegative integers with m > 1, we have

S pgm1—k 0 Smp =T 0 S g1-k0S1 g1k o Ty =T o ((—1)271FTy) o T
~ (b

what proves the first case of assertion (1) of the corollary. O

5.2. Classification of simple # g(r)-modules

We will classify all simple right Hs(r)-modules as follows : we will first (re)prove that
any such module is of finite dimension at most 2 over Fp, then we will determine all such
modules of fixed dimension over E;. To do this, we introduce the idempotent elements
e1 and ey of Hg(r) respectively given by the identity maps of A, and of A,_1_, via the
diagonal embedding of A, ®A,_1_, into Hg(r). They satisfy the usual relations, namely
e1 +e2 =1 and e;e; = d;5e; for any (4,7) € {1,2}2, where d0;; is the Kronecker symbol
(equal to 1 if ¢ = j and to 0 otherwise).

THEOREM 5.6. Letr €{1,..., [%]} be such that r # q— 1 —r. Any simple right
Hs(r)-module is of finite dimension at most 2 over F,,.
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Proof. Let M be a simple right Hg(r)-module. For any i € {1, 2}, denote by M; := M]e;
the image of M under the action of the idempotent element e; : the vector space defining
M is then decomposed as M; @ M, and the action of Hg(r) on M naturally endows M;
(respectively Ms) with a structure of A,-submodule (resp. of A,_1_,-submodule) of M.

Assume that M; is non-zero and pick a non-zero A,-submodule V; of M;. The
relations between the elements of Hg(r) we proved in the previous section imply that
V := V1 + (V1| B;) is stable under the action of Hg(r) on M and is hence equal to M since
M is a simple Hg(r)-module. Applying e, we obtain that V; = M;, what proves that M;
is a simple A,-module. As Theorem 5.1 asserts that A, is a commutative F,-algebra, we
conclude that M, is either zero or one-dimensional over Fp. A similar argument proves
that the A;_1_,-module M; is either zero or one-dimensional over Fp. As M is non-zero
by simplicity, this finally shows that M is of finite dimension equal to 1 or 2 over F,. O

The proof of Theorem 5.6 suggests that the classification of all simple right Hg(r)-
modules heavily relies on the description of the one-dimensional A-modules over F,.
They are naturally dispatched into two families both parametrized by A € F,, : the first
one consists in the characters p;(A) mapping X to A and Y to 0, while the second one
is made of characters us(\) mapping X to 0 and Y to A. Note that the unique common
element to these families is the character pq(0) = p2(0) : it will be denoted p(0).

We will also use the following notations, where k denotes either r or ¢g—1—1 : for any
index i € {1,2} and any parameter \ € F:, we let p; () be the character of Ay defined
by 1;(A) via the isomorphism Ay ~ A given by Theorem 5.1. For instance, p1,()) is the
character of A, that maps T, to A and S, to 0, while u(0) is the character of Ay that
maps both T} and Si to 0.

Let M be a simple right Hg(r)-module. For any i € {1,2}, we let M; := M]|e; be the
image of M under the action of the idempotent element e;. As we already noticed in the
proof of Theorem 5.6, the vector space M splits as M; @& My and the action of Hg(r)
on M naturally endows M; (respectively Ms) with a structure of A,-submodule (resp.
of A;_1_,-submodule) of M. The end of the proof of Theorem 5.6 moreover shows that
each of M; and M, is either reduced to {0} or one-dimensional over F,,.

5.2.1. Classification of one-dimensional simple right Hg(7)-modules

Assume that M is one-dimensional over Fp. The observations we just made above
imply the existence of a parameter A and of an index i € {1, 2} such that we have either
(M, M) = (pir(A),0) or (M1, M2) = (0, s g—1—r(N)). As My and My play symmetric
roles, we can assume for instance that we have My = {0} and M; = p; (A), and pick a
non-zero vector m in M;. Seen as elements of Hg(r), the operators T, and S, respectively
act on m by the scalars d1;A and do; A :

m|T, = d1;Am
m|S, = 521')\’/77, .

Now recall that Lemma 5.4 shows in particular that 7, = (—1)7"1~"(Sp 4—1-»051,+) and
that S, = (—1)‘7*1”(51#,14 080,r). As the right action of B, on M maps any element
of My into My = {0}, we necessarily have

{m|TT = (_1)q_1_rm|(50,q717r ° Sl,r) = (_1)q_1_T(m|SLT)|SO,q7177’ =0,
m|S, = (_1)q_1_7-m‘(51,q7177’ o SO,T) = (_1)q_1_r(m|50,r)|Sl,qflfr =0.
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The comparison of the two expressions we have for m|T, and for m|S, shows that A must
be equal to 0, as either §1; or d9; is non-zero. The relations given by Lemma 5.3 and
Corollary 5.5 conversely assure that M7 (0) := p,-(0) ® {0} and M3(0) := {0} ® p1g—1-~(0)
are right Hg(r)-modules of dimension 1 over F,. The following statement summarizes
what we just proved.

THEOREM 5.7. Letr € {l,..., [q;—l]} be such that r # q—1—r. There are ezxactly
two simple right Hs(r)-modules of dimension 1 over F,, namely

M (0) = 1, (0) @ {0} and M;(0) := {0} & py—1,(0) .

5.2.2. Classification of two-dimensional simple right Hg(r)-modules

Now assume that M is of dimension 2 over Fp, what means that M; and Ms are both
non-zero and that there exist two indices i,j € {1,2} and two parameters \;, \; € Fp
satisfying My = p; - (A;) and My = pj q—1—(A;). By simplicity of M, Theorem 5.7 forces
A; and A; to be both non-zero.

Fix a non-zero vector my € Mj, so that mq|Sp, and m4|S1, both belong to Ms.
They cannot be simultaneously equal to 0 : otherwise, the computations led in the proof
of Theorem 5.7 would imply here that either A; or A; is zero, what is not. Assume for
instance that m;|Sp , is non-zero : as it lies in Ms, Lemma 5.3 assures that we have

52j)\j(m1|50,r) = (m1|SO,r)|Sq717T = m1|(Sq717r © SO,’I") =0.

As ); is non-zero, this chain of equalities proves that do; = 0, i.e. that j = 1. The same
argument with 7, _;_, replacing S;_1_, proves that

310 (m1|So,r) = mi|(Ty—1—r © So,r) = m1|S—1, = (M1]S;)|S0,r = di2Xi(m1|So,r) ,

what implies that d1;A; = d;0A;. Knowing that d;;A; = A; is non-zero, this proves that
we necessarily have ¢ = 2 and A\; = A;. Consequently, the non-vanishing of m4|Sp ,
leads to the existence of a non-zero parameter A € Rf satisfying My = po,(A) and
My = p1,4—1—r(N). One similarly checks that the non-vanishing of m;|S;,, implies the
existence of a non-zero parameter \ € F; satisfying My = p1q,(A) and My = po g—1-r(A).

Conversely, let X € F; be a non-zero parameter and set the following relations on the
vector spaces My () :=Fpymq & Fpmg and M3, () :=F,n1 & Fpng ¢

m|So,r =0 ; n1|So,r = ng ;
m1|Sl,r =ma; n1|51,r =0;
my|T, = Amy ; |7 =0;
m1|S7":0 5 and TL1|S7~=)\TL1 3
m1|Tq—1—r =0 ; n1|Tq—1—r =0 ;
m1|Sq—1—r =0 5 n1|Sq—1—r =0 ;
m1|So,g—1—r =0 ; n180,g—1—r = 0;
m1|S1,q—1—r =0 ; n1|S1g-1-r =0.

Recall that the right action of Hg(r) we consider here satisfies the following cancellation
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relations!? :
{Aqu—l—r = BT‘AT’ = Bq—l—rAq—l—'r' = Aq—l—rBr =0;
ArAq—l—r = B,B, = Bq—l—qu—l—T = Aq—l—rAT =0.

Together with the relations given by Lemma 5.3 and Corollary 5.5, these relations assure
that M7,(\) and M3, (\) are both stable under the right action of Hg(r). One can for
instance check that the following relations hold in M7, (A) :

ma|Ty—1—r = m1|(Tg—1—r 0 S1,+) =0 ;

m2|Sq—1—r = ml'(Sq—l—T o S1,r) = ml\(sl,r o Tr) = Amy ;

m2|Sl,q—1—r = m1|(Sl,q—1—r o Sl,r) =0;

m2|50,q_1_7. = m1|(50,q_1_7. o 5177-) = (—l)q_l_rmﬂTr = (—1)4_1_T)\m1 ;
m2|Tr =0;

m2|Sr =0;

m2|51,r =0;

m2|SO,T = 0 .

These computations moreover prove that the vector spaces M{,(A) and MJ, (\) respec-
tively split as p1,»(A) @ p2,g—1-r(A) and po,(A) & p1,g—1—r(A). By Theorem 5.7, this
shows that M7, (\) and M3, (\) are simple right Hg(r)-modules. Moreover, a direct com-
putation (by contradiction) shows that these modules are pairwise non-isomorphic. The
next statement summarizes what we just proved.

THEOREM 5.8. Let r € {1,..., [%}} be such that r # q— 1 —r and let M be
a simple right Hg(r)-module of dimension 2 over Fp. There exists a unique parameter

A€ F: such that M is isomorphic to one, and only one, of the two following simple right
Hs(r)-modules :

Miy(A) = p1r(A) ® p2,g-1-r(A) or Mz () := p2r(A) @ p1g—1-r(A) -

Gathering Theorems 5.6, 5.7 and 5.8 finally leads to the following classification result
for simple right Hg(r)-modules.

COROLLARY 5.9. Letr € {1,..., [%}} be such thatr # q— 1 —1r. Any simple
right Hs(r)-module is isomorphic to one, and only one, element of the following list :

e the character M7 (0);

e the character M} (0);
e the two-dimensional module M{5(\) for a unique parameter A € FPX;

o the two-dimensional module M5, (\) for a unique parameter A € F;.

101f one wants to write these relations using the composition law, one has to reverse them (as we did
any time we needed to use the composition law) since we consider a right action, which is the one that
naturally appears when one works with modules coming from spaces of invariant vectors. This notation
is extremely convenient in the regular case, as it allows us to compute the action of Hg(r) by multiplying
matrices in the usual way.
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REMARK 5.10. For the sake of completeness, let us mention here that it is pointless
to define M7{,(0) or M3, (0) as these two objects would just be the direct sum of the
characters M7 (0) and M3 (0).

6. The exceptional Iwahori-Hecke algebra and its simple modules

6.1. Introduction of the exceptional Iwahori-Hecke algebra H%

When p is odd, the decomposition of Hf given by Theorem 3.1 makes appear an
algebra that does fit neither into the regular case nor into the Iwahori case, namely
Endg (g (ind?ss (w%l )). This phenomenon has no analogue in the G L2 case as it reflects
the existence of a smooth quadratic character of Ig that cannot be extended to a smooth
character of Gg; this cannot happen in the GL, case as such a character would factorize
through the determinant map, hence extend to GLo(F') [21, Section 2.1.1].

To understand the structure of this new algebra and of its simple right modules, we
mimic what we did in the Iwahori case by defining the exceptional Iwahori-Hecke algebra

% as the F,-algebra generated by the family (7.%)wecw, satisfying the following braid
and quadratic relations.

e Braid relations : if w,w’ € Wy satisfy £(ww’) = l(w) + £(w'), then T, = TATr.

e Quadratic relations : for any i € {0,1}, (7;:)2 =0.

As in the Iwahori case, one can check that H¥ is a free Fp-module having (7.})wews as
a basis. Moreover, the proofs of Theorems 4.2 and 4.3 can be directly transposed to this
setting, as it is for instance written in [1, Théoréme 6.3.42], to give the following result.

THEOREM 6.1.  Assume that p is odd.
1. The Fy-algebra MY is generated by the operators Ty := T and T;* :== T .
2. The center of H¥ is equal to the polynomial F,-subalgebra Fp[(Tg — T7%)?].

The introduction of H§ is motivated by the following statement, whose proof is the

exact analogue for r = %1 of the argument leading to Theorem 3.3. Note here that

compact Frobenius reciprocity induces an isomorphism from Ende (Gs] (ind?;s (wq%l)) to
the (I, g,w%)—isotypical component of indIGSS (w%)

THEOREM 6.2. Let fo, f1 be the elements of End?p[Gs](ind?SS (W%)) respectively
corresponding by compact Frobenius reciprocity to the elements g, 01 of the (Ig,wq%l)—
isotypical component of ind?ss (w%l) defined as follows : for i € {0,1}, ¥; has support
equal to Igs;ls and value 1 at s;. There exists a unique homomorphism of Fy,-algebras

Endg (g (indf (")) — H

that maps o to Ty and i1 to Ty*, and this homomorphism is actually an isomorphism
of Fp,-algebras.

This motivates the study of simple right 7{%-modules (that are again of finite dimen-
sion over E, via Remark 2.7) to complete the classification of simple right Hg-modules.
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6.2. Classification of simple H5-modules

The first assertion of Theorem 6.1 implies that any one-dimensional H§-module is
completely determined by its values on 7" and 77, which must be equal to zero because
of the quadratic relations satisfied by these operators. This proves the following result.

LEMMA 6.3.  There exists a unique one-dimensional right Hg-module, namely the
one mapping both T5* and Ty* to 0. We denote it by M;(0).

To describe the simple right #%-modules of higher dimension over F,,, we introduce
an analogue of the standard Hg-modules for the exceptional case.

DEFINITION 6.4. For any A\ € F,, we define the standard H%-module M3 (\) with
parameter X as the two-dimensional H¥-module F,z & F,y endowed with the actions of
Ty and T;* respectively given by the following matrices in the basis {z,y} :

(0) = (6a)

Any basis {z,y} as above is called an adapted basis for the module M3 (X).

REMARK 6.5. As in the Iwahori case (Remark 4.4), a direct computation shows
that the central element — (7 —77*)? acts on MJ()) by the scalar \, hence two standard
s-modules with distinct parameters cannot be isomorphic.

The next result establishes irreducibility properties of standard Hg-modules.

THEOREM 6.6. Let \ € F,,.
1. The standard HY-module M3 () is irreducible if, and only if, X is non-zero.

2. The standard H-module M3 (0) is indecomposable of length 2, and is hence a non-
trivial extension of the Hg-character M7 (0) by itself.

Proof. If the Hg-module M3 ()) is reducible, Lemma 6.3 implies that M3 (\) contains
the H¥%-character M7 (0). Let {z,y} be an adapted basis for M3 (A\) and pick a non-zero
vector v = ax + by that generates an H%-submodule isomorphic to M7 (0). As 75 and
T both act on v by 0, we deduce from Definition 6.4 that a = 0 (as v|7; = 0), hence
Ab =0 (as v|7T;* = 0). As v is non-zero, b cannot be null and A is hence equal to zero.
Conversely, if {x,y} is an adapted basis for MJ(0), the H}5-submodule generated by y
is isomorphic to M7(0), what ends the proof of the first statement of Theorem 6.6. The
Hg-module M3 (0) is nevertheless indecomposable as it is generated by the first vector
of any adapted basis, what ends the proof of Theorem 6.6 thanks to Lemma 6.3. |

We close this section with an analogue of Theorem 4.7 in the exceptional case.

THEOREM 6.7. Up to isomorphism, any (finite-dimensional) simple right H%-
module is either the H§-character M{(0), or a standard HE-module with non-zero pa-
rameter. Moreover, there is no non-trivial isomorphism between two such modules.

Proof. Remark 6.5 assures that two standard H§-modules with distinct parameters can-
not be isomorphic, and a standard H%-module cannot be isomorphic to M;(0) as they
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have different dimensions over E,. By Theorem 6.6 and Lemma 6.3, we are hence re-
duced to prove that any simple right Hg-module which is not a character contains some
standard Hg-module with a non-zero parameter.

Let M be a simple right Hg-module which is not a character and let A € F, be the
scalar that defines the action of the central element — (75" — 7;*)? € H¥ on the finite-
dimensional F,-vector space M. The action of 7;* on M is not given by a homothety :
otherwise, any eigenvector of 7" would generate an Hg-submodule of M of dimension 1,
what contradicts the simplicity of M as M is not one-dimensional. Fix a non-zero vector
v € ker T;*, what makes sense as (7;*)2 = 0 : the simplicity of M then implies that the
family {v, v| 75} is linearly independant over F,. As in the proof of Theorem 4.6, a direct
computation shows that {v,v|7;"} generates a two-dimensional H¥-module and that the
action of 73" and 77" in this basis are respectively given by the following matrices :

(o) e (30)

This means that {v, v|7; } generates an H%-submodule of M isomorphic to M3 ()), what
shows that M ~ M3 ()\) by simplicity of M. Theorem 6.6 then implies that A is non-zero,
what finishes the proof of Theorem 6.7. |

7. Pro-p-Iwahori-Hecke modules and mod p representations of SLa(F)
We start with a reformulation of Theorem 3.1 based on Theorems 3.3 and 6.2.
COROLLARY 7.1.  The Fp-algebra HY, decomposes as follows :

1. when p is odd, we have

(7.1) HE ~Hs ®@HE @ Hs(r) ;

—1
0<T‘<qT

2. when p = 2, we have

(7.2) Hs ~Hs® @ Hs(r).

1
O<r< 4=

Any right HY-module then defines by restriction a right Hg(r)-module for any pa-
rameter r € {0, ... [q—;l] }. Starting from a simple right H}g—module, there is exactly one
value of the parameter r for which the Hg(r)-module we get is non-zero. This leads to
the following definition.

DEFINITION 7.2.  Let r € {0,... [%}]} be a parameter.

1. A simple right Hi-module comes from a simple Hs(r)-module when the unique
non-zero module it defines via decompositions (7.1) or (7.2) is an Hg(r)-module.

2. A simple right H;-module is :

e put on the component k = 0 when it comes from a simple right Hg-module.
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e put on the component k = qg—l

via the decomposition (7.1), assuming that p is odd.

when it comes from a simple right Hs-module

e put on the component k = r with r & {0, %1} when it comes from a simple
right Hg(r)-module.

7.1. The Iwahori case

Recall that we still assume the choices made in this paper to be done in a compatible
way with those of [2]. Gathering Theorems 4.18 and 4.21, Remarks 4.19 and 4.24 and
the results of |2, Sections 2.4 and 4.1], we directly obtain the two following propositions.
Note that while Proposition 7.3 deals with non-supercuspidal representations, and is thus
valid for arbitrary F', Proposition 7.4 is about supercuspidal representations, and hence
only holds in the case F' = Q.

PROPOSITION 7.3.  Recall that Stg denotes the Steinberg representation of SLa(F).

1. The H}g—module carried by 175N is put on the component k = 0 and isomorphic to
the character M (0).

2. The H-module carried by Stgs(l) s put on the component k = 0 and isomorphic
to the character M (—1).

_ Is(1)
3. For any non-zero scalar \ € IE‘; , the Hls—module carried by (Indgg (,uA)) ’ 18 put

on the component k = 0 and isomorphic to the standard module Mz (A~1).

PROPOSITION 7.4.  Assume that ' = Q,.

1)

1. The HY-module carried by wés is isomorphic to the character M (—1,0) put on

the component k = 0.

2. The Hi-module carried by 71'155_(11) is isomorphic to the character M (0, —1) put on

the component k = 0.

7.2. The regular case

Fix a parameter r € {1,... [’%1]} satisfying r # % when p is odd and A\ € ﬁ;.
Thanks to [2, Proposition 2.9 and Lemme 2.10], we know that Indg;" () has exactly
two non-zero Ig-isotypical components, namely those attached to w” and to w917,
The H§-module carried by Indgg (ux) hence comes from an Hg(r)-module and a direct

computation left to the reader!! proves the following result.

PROPOSITION 7.5. Let A\ € ?: be a non-zero scalar and let r € {1... [%1}} be a
parameter satisfying r # q;—l when p is odd.

Is(1)
1. The H}-module carried by (Indgg (pAw”)) s isomorphic to My2(A™1) put on

the component k = r.

Is(1)
2. The HY-module carried by (Indgg (M)\wqflfr)> s isomorphic to My (A™1) put

on the component k =r.

HBut extensively done in [1, Appendice 7.6].
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When F = Qp, |2, Section 4.1] gives a complete description of supercuspidal repre-

sentations of Gg over F,. In particular, the first part of [2, Proposition 4.11] implies that
the structure of one-dimensional right Hj-module carried by xls M and W;i(lllr
from an Hg(r)-module respectively defined by a non-trivial action of A, and A,_1_,.

We hence have the following result.

comes

PROPOSITION 7.6. We keep the notations and assumptions of Proposition 7.5 and
we furthermore assume that F' = Q.

1. The HY-module carried by s s isomorphic to the character M7 (0) put on the
component k = r.

2. The HY-module carried by rls)

»oi1—y 18 isomorphic to the character M3 (0) put on the

component k = r.

7.3. The exceptional case

Assume that p is odd. The next result shows how the simple right Hi-modules that
are left can be realized as spaces of Ig(1)-invariant vectors of some irreducible smooth
representations of Gg over F).

PROPOSITION 7.7.  Assume that p is odd.

— a—1 \1s(D)
1. For any non-zero scalar A € IF:, the HY-module carried by (Indgi (quTl)> °

is isomorphic to the standard H%-module M3 (A™') put on the component k = %.

2. Assuming that F = Q,, the HY-module carried by 77{,3;(11) is then isomorphic to the
2

character M (0) put on the component k = ”2;1.
Proof. By compact Frobenius reciprocity and [2, Lemme 2.10 and Proposition 4.11], the
H}q—modules we consider are put on the component k = %. By [2, Proposition 4.7], we
know that 775,5, (11) is one-dimensional over Fp so the second part of the proposition directly

2
comes from Lemma 6.3. The first part of the proposition follows from the argument we
used in the Iwahori case (Section 4.4.1) and is left as an exercise to the reader. ]

7.4. Application to the functor of Is(1)-invariants
As in the Iwahori case (Definition 4.22), the formulation of our correspondence re-
quires the introduction of a suitable notion of supersingular module.

DEFINITION 7.8. A simple right H{-module is called supersingular if it is not iso-

morphic to a subquotient of some (Indgg (7))’ for a smooth character n : Bg — ﬁ; .

REMARK 7.9. This definition of supersingularity, which fits to the « historical » one
(see also [21, Definition 5.1]) and is motivated by the representation theory of SLo(F),
is equivalent to the other definitions that appeared later in the litterature. For instance,
Vignéras defined supersingular modules as simple modules whose central character is
null, i.e. vanishes on all central elements of positive length [22, Definitions 3 and 4]. It
is straightforward to check that for SLo(F'), these modules are exactly those we defined
as supersingular.
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In a recent work [26, Definition 6.10], Vignéras gave another definition of supersin-
gularity and proved that supersingular modules are all simple modules that contain a

sup
tice

ersingular character of the affine Iwahori-Hecke algebra [26, Corollary 6.13]. As no-
d at the beginning of this paper, we are in a setting where the (pro-p-)Iwahori-Hecke

algebra coincides with its affine subalgebra, hence supersingular modules are necessary
one-dimensional. As [26, Theorem 6.15] asserts that supersingular characters are those
whose restriction to each « irreducible component » (see [26, bottom of page 26] for the

defi

nition) is neither the trivial character nor the sign character, one can immediately

check that for SLs(F'), Definition 7.8 is equivalent to [26, Definition 6.10].

The comparison of the statements we proved so far with the classification of irreducible

smooth representations of Gg over Fp given in [2] directly leads to the following result.

COROLLARY 7.10. 1. The functor of Is(1)-invariants defines a bijection :

isomorphism classes of . .
1somorphism classes of

non-supersingular
simple right Hg—modules

non-supercuspidal irreducible
smooth representations
of SLy(F) over F,

2. When F = Q,, the previous bijection extends to a bijection :

simple right HY-modules

isomorphism classes of irreducible isomorphism classes of
smooth representations of SL2(Q,) over F, '

REMARK 7.11.  In a recent work [10, Theorem 4.6 and Corollary 4.7], Koziot proved

that for F' = Q, with p odd, the bijection given in Corollary 7.10 comes from an equiv-
alence of categories. Note that [10, Theorem 4.6] and [14, Theorem 1.3] also prove that
such an equivalence fails if we do not assume F' = Q,.
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