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Classification of Iwahori-Hecke modules and p-modular
representations of SL2(F )

By Ramla Abdellatif

Abstract. Let F be a non-archimedean local field complete for a dis-
crete valuation and with finite residue class field of characteristic p > 0, and let
Fp be an algebraic closure of the finite field with p elements. The study of the
pro-p-Iwahori-Hecke algebra of GL2(F ) over Fp and of its finite-dimensional
simple right modules, due to Vignéras and Ollivier, provides interesting results
when compared to the theory of smooth representations of GL2(F ) over Fp.
This paper makes the first steps towards an analogue study for the special
linear group SL2(F ). After proving a general relation between the standard
Iwahori-Hecke algebras of GLn(F ) and SLn(F ) for arbitrary n ≥ 2, we give
an explicit description of the pro-p-Iwahori-Hecke algebra of SL2(F ) and com-
pute all its simple right modules. In particular, we connect these results to
those we proved in a previous work on smooth representations of SL2(F ) over
Fp, and to the corresponding statements obtained by Vignéras for GL2(F ).

1. Introduction

Let p be a prime number and let F be a non-archimedean local field which is complete
for a discrete valuation and has finite residue class field kF of characteristic p and cardi-
nality q. Let C be an algebraically closed field of same characteristic p and let G be the
group of F -rational points of a connected reductive group defined over F . Understanding
the irreducible smooth representations of G over C is still a very hard problem, even for
basic groups as the general linear group GLn(F ). The first results in this domain were
proved in the mid-nineties in a remarkable work of Barthel and Livné for GL2(F ) [4, 5].
In these papers, they pointed out a mysterious family of representations that they called
supersingular and proved that these objects correspond to the supercuspidal representa-
tions of GL2(F ); unfortunately, they were not able to describe them explicitely. Several
years later, Breuil managed in [6] to compute all these supersingular objects when F = Qp
is the field of p-adic numbers, what gave an exhaustive classification of irreducible smooth
representations of GL2(Qp), but he could not deal with a general F . So far, the only
groups other than GL2(Qp) for which an exhaustive classification of irreducible smooth
representations over Fp is known are SL2(Qp) [2] and U(1, 1)(Qp2/Qp) with p odd [9],
where Qp2 is a quadratic unramified extension of Qp. Note that these representations
play a key role in the context of (conjectural) modular Langlands correspondences : as
they coincide with supercuspidal representations, they should be the counterpart of the
irreducible Galois representations appearing in such correspondences.

Various strategies aiming to collect as much information as possible on supersingular
representations of GL2(F ) for arbitrary F have been developed by various authors, as in
[7, 8, 14, 19, 21] for instance. In this paper, we are interested in the approach initiated
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by Vignéras [21, 22, 23, 25] and fruitfully developed for GLn(F ) by Ollivier [13, 14, 15]
and her collaborators [16, 17]. Its starting point is based on the following observation :
if π is any smooth representation of G over C and if H is any open compact subgroup of
G, compact Frobenius reciprocity implies that the space πH of H-invariant vectors in π
is isomorphic to HomC[G](indGH(1), π), and is hence naturally endowed with a structure
of right module over the C-algebra HC(G,H) := EndC[G](indGH(1)). If H is chosen such
that πH is non-zero, a hope is that understanding the HC(G,H)-module πH could bring
some interesting information about π, and maybe even characterize it. For instance, when
H is a pro-p-group of G, we know that πH is non-zero [4, Lemma 3 (1)] and we have a
good irreducibility criterion for π [21, Criterium 4.5]. Another powerful application, due
to Ollivier [14, Théorème 1.3.a)], is as follows : for H being the standard pro-p-Iwahori
subgroup of G = GL2(Qp), any smooth representation π of GL2(Qp) generated by its
H-invariant vectors is uniquely determined by the structure of HC(GL2(Qp), H)-module
carried by πH .

To obtain this kind of results, one must understand the structure of the C-algebra
HC(G,H) and of its simple right modules, then identify among them those corresponding
to H-invariant spaces of irreducible smooth representations of G over C. As we are only
interested in admissible representations of G over C, it is enough to classify simple right
HC(G,H)-modules of finite dimension1 over C. In the present paper, we realize this
programme when G = SL2(F ) is the special linear group of rank 1 and H = IS(1)

is its standard pro-p-Iwahori subgroup. We moreover deduce from these results some
interesting relationships with the theory of irreducible smooth representations of G over
C, as developed in [2], and with the results obtained by Vignéras for GL2(F ) [21, 25].
Before we state our main results, let us mention that they have already been of crucial use
in recent works of several authors [10, 11] and that they will certainly be useful in further
developments of p-adic and mod p Langlands programmes for SL2(F ). Also note that in
a recent work [3], Abe gives a full classification of simple right modules over the standard
pro-p-Iwahori-Hecke algebra for an arbitrary p-adic group G in terms of parabolic triples,
and our final classification result can be recovered (using more sophisticated tools) from
this work. Nevertheless, the results contained in this paper were not only proved before
those in [3], but they are also giving finer structure statements together with relations
to modular representation theory of G that are not addressed at all in [3].

Presentation of the main results
The first main result of this paper builds a bridge between Iwahori-Hecke algebras of

SLn(F ) and GLn(F ), for any n ≥ 2, that will be useful to state and prove results about
compatibility with restriction from GLn(F ) to SLn(F ) (see Corollary 4.27). Recall that
I and IS respectively denote the standard Iwahori subgroups of GLn(F ) and SLn(F ),
while W and WS respectively denote the (infinite) Weyl groups of GLn(F ) and SLn(F )

(see §§2.1 and 2.2 for precise definitions).

Theorem 1.1. Let A be a commutative ring with unit. Assume that it contains a
primitive (q − 1)th root of unity and that q − 1 belongs to A×.

1. The map [ISwIS → IwI] defines an injective group homomorphism ι : WS ↪→ W

whose image is equal to the affine Weyl group Waff of GLn(F ).

1This assumption will actually be automatically valid in our setting, see Remark 2.7 below.
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2. The isomorphism ι : WS 'Waff in (1) induces an isomorphism of A-algebras from
the standard Iwahori-Hecke algebra HA(GS , IS) of SLn(F ) to the affine Iwahori-
Hecke algebra HaffA (G, I) of GLn(F ).

Now assume that n = 2, that A = Fp is an algebraic closure of kF , and let us set
GS := SL2(F ). The next step is to understand the structure of the pro-p-Iwahori-Hecke
algebra H1

S := EndFp[GS ](indGS

IS(1)(1)). We prove that H1
S is a direct sum of Iwahori-Hecke

algebras (Theorem 3.1), what reduces the study of simple right modules over H1
S to the

study of simple right modules over several smaller algebras. Inspired by what is done
for GL2(F ) in [21], we dispatch these Iwahori-Hecke algebras into three cases named the
Iwahori case, the regular case and the exceptional case. In each case, we give an explicit
description by generators and relations of the corresponding algebras (Theorems 3.3, 4.2
and 4.3 for the Iwahori case, Section 5.1 for the regular case, Theorems 6.1 and 6.2 for
the exceptional case) and we classify their simple right modules (see Sections 4.2, 5.2
and 6.2), that will all be of finite dimension over Fp. As a by-product, we prove the
following result, that gives a strong bound on the dimension of simple right H1

S-modules
and comes by combination of Theorems 4.7, 5.6 and 6.7.

Theorem 1.2. Any simple right H1
S-module is of finite dimension at most 2 as

vector space over Fp.

Note that understanding the Iwahori case already allows us to build connections with
a part of the classification of irreducible smooth representations of SL2(F ) over Fp given
in [2] and with some results proved in [21] for GL2(F ). We have for instance the following
statement, obtained by gathering Corollaries 4.23 and 4.27.

Theorem 1.3. Let I and IS be the standard Iwahori subgroups of G = GL2(F ) and
GS = SL2(F ) respectively. Let H := EndFp[G](indGI (1)) and HS := EndFp[GS ](indGS

IS
(1))

be the standard Iwahori-Hecke algebra of G and GS respectively.

1. The functor of IS-invariants defines a bijection
isomorphism classes of

non-supercuspidal irreducible smooth
representations of SL2(F ) over Fp

generated by their IS-invariant vectors

←→


isomorphism classes of
non-supersingular

simple right HS-modules

 .

Furthermore, for any non-supercuspidal irreducible smooth representation π of G
over Fp with central character and non-zero I-invariant vectors, the restriction to
HS of the H-module πI is isomorphic to the HS-module

(
π|SL2(F )

)IS .
2. Assume that F = Qp. The previous bijection extends to a bijection

isomorphism classes of irreducible smooth
representations of SL2(Qp) over Fp

generated by their IS-invariant vectors

←→
{
isomorphism classes of
simple right HS-modules

}
.

Moreover, if π is an irreducible smooth representation of G over Fp with central
character and non-zero I-invariant vectors, the restriction to HS of the H-module
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πI is then isomorphic to the HS-module
(
π|SL2(F )

)IS .
Note that the bijections appearing in the statement of Theorem 1.3 are far from

taking into account all irreducible smooth representation of GS over Fp, as they for-
get for instance most of the supercuspidal representations of SL2(Qp). We solve this
omission through the following result (Corollary 7.10), which heavily relies on the com-
plete classification of simple right H1

S-modules we establish in this paper as on the good
understanding of irreducible smooth representations of SL2(F ) over Fp provided by [2].

Theorem 1.4. 1. The functor of IS(1)-invariants defines a bijection
isomorphism classes of

non-supercuspidal irreducible
smooth representations
of SL2(F ) over Fp

←→


isomorphism classes of
non-supersingular

simple right H1
S-modules

 .

2. When F = Qp, the previous bijection extends to a bijection
isomorphism classes of

irreducible smooth representations
of SL2(Qp) over Fp

←→
{
isomorphism classes of
simple right H1

S-modules

}
.

Structure of the paper
Section 2 contains a short remainder on Weyl groups for GLn(F ) and SLn(F ) gathe-

ring what we need to prove Theorem 1.1. We obtain the aforementioned decomposition
of H1

S in Section 3, where we also relate the Iwahori case to the standard Iwahori-Hecke
algebra of SL2(F ) via Theorem 3.3. The study of the Iwahori case and its applications
to the structure of IS-invariant spaces of irreducible smooth representations of GS over
Fp is done in Section 4, and leads in particular to a proof of Theorem 1.3. Sections 5
and 6 respectively deal with the regular and exceptional cases, while Section 7 contains
the missing comparisons between the classification of simple right H1

S-modules coming
from the previous sections and the classification of irreducible smooth representations of
SL2(F ) over Fp coming from [2] needed to prove Theorem 1.4.

General notations
Fix a prime number p ≥ 2. Let F be a non-archimedean local field complete for a

discrete valuation and with finite residue class field kF of characteristic p, with ring of
integers OF and with fixed uniformizer $F . We let q = pf be the cardinality of kF , we
fix an algebraic closure Fp of kF together with an embedding ι of kF into Fp and we
let [.] : kF → O×F be the Teichmüller lift. We also let v be the discrete valution of F
normalized by v($F ) = 1.

For any integer n ≥ 2, let G := GLn(F ) be the general linear group with coefficients
in F and let K := GLn(OF ) be its standard maximal open compact subgroup. Denote
by B the Borel subgroup of upper-triangular matrices in G and by T the maximal split
torus of diagonal matrices of G. Let I be the standard Iwahori subgroup of K, defined
as the set of elements in K whose reduction modulo $F is an upper-triangular matrix
of GLn(kF ). The pro-p-radical of I, called the standard pro-p-Iwahori subgroup of G
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and denoted by I(1), is then made of the elements of I whose reduction modulo $F is
moreover unipotent.

Let GS := SLn(F ) be the special linear group with coefficients in F and let
KS := SLn(OF ) be its standard maximal open compact subgroup. Let BS be the
Borel subgroup of upper-triangular matrices in GS and let TS be the torus of diagonal
matrices in GS . Finally, let IS (respectively IS(1)) be the standard Iwahori subgroup
(resp. the standard pro-p-Iwahori subgroup) of GS , defined the same way as I (resp.
I(1)) previously was in G. We clearly have BS = B ∩ GS , TS = T ∩ GS , IS = I ∩ GS ,
IS(1) = I(1)∩GS , and the reduction modulo $F defines a group isomorphism from the
quotient class group IS/IS(1) to the abelian group ΓS of diagonal matrices in SLn(kF ).

When n = 2, we introduce the following specific elements of GS :

α0 :=

(
$−1
F 0

0 $F

)
, s0 :=

(
0 $F

−$−1
F 0

)
and s1 :=

(
0−1

1 0

)
.

We moreover set, for any x ∈ F ,

u(x) :=

(
1 x

0 1

)
and ū(x) :=

(
1 0

x 1

)
.

All these elements satisfy the following relations, valid for any integer k ∈ Z and any
element x ∈ F :

(1.1)
{
α0 = s1s0, α

k
0s1 = s1α

−k
0 , s1u(x) = ū(−x)s1,

αk0u(x)α−k0 = u($−2k
F x) and αk0 ū(x)α−k0 = ū($2k

F x) .

For any λ ∈ F×p , let µλ : BS → F×p be the smooth character obtained by inflation of
the smooth unramified (i.e. trivial on O×F ) character of F× that maps $F to λ. This
means that we set :

∀ (a, b) ∈ F× × F, µλ
((

a b

0 a−1

))
:= λv(a) .

We will also let µλ⊗1 be the smooth character of B obtained by inflation of the smooth
unramified character of (F×)2 that maps (a, b) to µλ(a). For any integer r ∈ {0, . . . , q−2},
we let ωr : k×F → F×p be the character defined by ωr(x) := ι(xr). We furthermore consider
the following objects, as in [2, 4, 6] : let H be an open subgroup of Γ ∈ {GS , G} and
(σ, Vσ) be an irreducible smooth representation of H over Fp. For any element g ∈ Γ and
any vector v ∈ Vσ, we let [g, v] : Γ→ Vσ be the function defined as follows :

∀ x ∈ Γ, [g, v](x) :=

{
σ(xg)(v) if x ∈ Hg−1 ;

0 otherwise.

This means that [g, v] is the unique element of indΓ
H(σ) having support equal to Hg−1

and value v at g−1. For the reader interested in more properties of these functions, we
recommand to have a look at [1, Section 2.2.2]

Finally, we will use the same notation as in [21] : if M is a right module over an
Fp-algebra H, we let m|T be the vector given by the action of an element T ∈ H on a
vector m ∈M.
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2. A relationship between Iwahori-Hecke algebras ofGLn(F ) and SLn(F )

2.1. A remainder about Weyl groups of GLn(F )

This subsection gathers some results about Weyl groups for GLn(F ) we will use in
the sequel. The reader can refer to [12] or [24, Chapitre 3] for more details and proofs.

Let (X,X∨, R,R∨,∆) be the root data attached to the triple (G,B, T ). In particular,
X ' Zn can be identified with the group X∗(T ) of F -characters of the split maximal
torus T of G while X∨ can be identified with the group X∗(T ) of F -cocharacters of T .
The positive simple roots of this root data are {α1, . . . , αn−1}, where αi is defined for
any i ∈ {1, . . . , n− 1} by the following formula :

αi :

$
x1

F

. . .
$xn

F

 7→ xi+1 − xi .

The coroot corresponding to αi can hence be represented by the diagonal matrix

Ai := diag(1, . . . , 1, $−1
F , $F , 1 . . . , 1) ,

where $−1
F is in ith position while $F is in (i + 1)th-position. If we let σi ∈ ∆ be the

reflexion associated to αi, the group generated by {σ1, . . . , σn−1} is called the finite Weyl
group W0 of G. It is a Coxeter group canonically isomorphic to the quotient class group
NG(T )/T , where NG(T ) is the normalizer of T in G, and it parametrizes the double coset
space I\K/I. Also note that W0 is naturally isomorphic to the symmetric group Sn via
the group homomorphism mapping σi to the transposition (i, i+ 1).

The Weyl group W of G is defined as the quotient class group NG(T )/(T ∩ K). It
parametrizes the double coset space I\G/I and can be written as a semi-direct product
of W0 and X, provided X is identified with the multiplicative group of translations it
defines. This endows W with a natural length function ` [12, Section 1.4]. The Weyl
group W contains an interesting subgroup, called the affine Weyl group Waff attached
to (the data root of) G, which is defined as the semi-direct product in W of W0 and
the subgroup of X generated by R. One can prove that Waff is a Coxeter group with
Σaff := {σ0 := t−1σ1t, σ1, . . . , σn−1} as set of simple reflexions [12, Section 1.5] and that
its length function coincides with the restriction of ` to Waff. Note that we set

t :=


0 1 0 0 . . . 0

0 0 1 0 . . . 0
... . . . . . . . . . . . .

...
0 0 0 0 . . . 1

$F 0 0 0 . . . 0

 ∈ G.
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Let moreover Ω = tZ be the subgroup of G generated by t : it is equal to the subgroup
of W made of all the elements of length 0, and one can check that W is a semi-direct
product of Waff and Ω [24, Proposition 3.1].

We finally define the extended Weyl group W (1) of G as the quotient class group
NG(T )/(T ∩ K(1)), where T ∩ K(1) is the kernel of the reduction map T ∩ K � Γ,
with Γ being the torus of diagonal matrices in GLn(kF ). The extended Weyl group
parametrizes the double coset space I(1)\G/I(1) and it fits into the following canonical
non-split2 short exact sequence :

1 −→ Γ −→W (1) −→W −→ 1 .

In particular, W (1) is endowed with a length function extending the length function `

already defined on W and such that any element of Γ is of length 0.

2.2. From GLn(F ) to SLn(F )

Let (XS , X
∨
S , RS , R

∨
S ,∆) be the root data attached to (GS , BS , TS). The finite Weyl

group attached to this data parametrizes the double coset space IS\KS/IS and is actually
equal to W0 as it only depends on the simple roots of the root data, which are the same
for G and for GS . This allows us to lift any element of W0 in GS , and from now we will
always consider such lifts. We then define the Weyl group WS of GS , that parametrizes
the double coset space IS\GS/IS , as the quotient class group NGS

(TS)/(TS ∩KS). It is
isomorphic to a semi-direct product of W0 and XS ' Zn−1. Note that we will use the
same symbol to denote an element of W (resp. : of WS , of W0) and any fixed lift of this
element in G (resp. : in GS , in KS).

AsW andWS respectively parametrize the double coset spaces I\G/I and IS\GS/IS ,
the equality IS = I ∩GS assures that the canonical inclusion map GS ↪→ G induces an
injective group homomorphism WS ↪→ W . The following lemma, which points out an
important difference between W and WS , will be useful to prove Theorem 1.1.

Lemma 2.1. For any integer n ≥ 2, the affine Weyl group attached to SLn(F ) is
equal to the Weyl group WS.

Proof. First recall that we can identify XS with the hyperplane of X ' Zn made of all

uplets (x1, . . . , xn) satisfying
n∑
i=1

xi = 0. Moreover note that any α = diag($x1

F , . . . , $
xn

F )

in XS can be written as follows :

α =


n−2∏
i=1



1
. . .

$x1+x2+...+xi

$−(x1+x2+...+xi)

. . .
1







1

1
. . .

. . .
$

∑n−1
i=1 xi

$xn


.

2Note that this splitting property is specific to the GLn case, as underlined in [23].
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If we set λi(α) := −
i∑

j=1

xj =

n∑
j=i+1

xj , we hence get the following equality for roots :

α =

n−1∑
i=1

λi(α)αi .

This proves that XS is generated by RS , and that WS is consequently equal to the affine
Weyl group attached to GS . �

As the root systems R and RS are equal, the affine Weyl groups attached to G and GS
are canonically isomorphic. Together with Lemma 2.1, this gives the following statement.

Corollary 2.2. For any integer n ≥ 2, the map sending the double coset ISgIS to
the double coset IgI for any g ∈ GS induces a group isomorphism from the Weyl group
WS of SLn(F ) to the affine Weyl group Waff attached to GLn(F ).

Remark 2.3. Corollary 2.2 can also be seen as a consequence of [18, Section 2.a.2].
More precisely, let G be a (residually) split connected reductive group over a local field
with perfect residue class field and let T be a maximal split torus in G. Pappas and
Rapoport attach to the pair (G,T ) an Iwahori-Weyl group that can be canonically iden-
tified with the Weyl group W appearing in our setting [18, Proposition 2.1], and they
prove in [18, Section 2.a.2] that the Iwahori-Weyl group of the simply connected covering
of the derived group of G, which canonically corresponds to WS in our setting, can be
naturally identified with the affine Weyl group defined by the affine root system attached
to T , i.e. to the affine Weyl group Waff of G.

Remark 2.4. In view of [24, Proposition 3.1], Corollary 2.2 proves in particular
that W is isomorphic to a semi-direct product of WS and Ω ' Z.

2.3. Application to Iwahori-Hecke algebras
Let A be a commutative ring with unit 1A. Assume that it contains a primitive

(q − 1)th root of unity and that q − 1 belongs to A× : then A can be endowed with a
structure of Z[q]-module via the unitary ring homomorphism mapping q on q1A. Now
recall that the standard Iwahori-Hecke algebra of G over A is the A-algebra HA(G)

generated by the family (Tw)w∈W satisfying the following braid and quadratic relations.

• Braid relations : if w,w′ ∈W satisfy `(ww′) = `(w) + `(w′), then Tww′ = TwTw′ .

• Quadratic relations : for any s ∈ Σaff, (Ts + 1)(Ts − q) = 0.

Following [22, Example 1], one can check that the family (Tw)w∈W is actually a basis
of the A-module HA(G). The same construction holds to define the standard Iwahori-
Hecke algebra HA(GS) of GS over A as the A-algebra generated by the family (Tw)w∈WS

satisfying the same braid and quadratic relations as above with W replaced by WS . One
similarly proves that (Tw)w∈WS

is a basis of the A-module HA(GS).
Let Haff

A (G) be the A-subalgebra of HA(G) generated by the family (Tw)w∈Waff , called
the affine Iwahori-Hecke algebra of G over A. By Lemma 2.1, the restriction to Waff of
the Bruhat length function of W coincides with the Bruhat length function of WS under
the group isomorphism given by Corollary 2.2. This implies that HA(GS) and Haff

A (G)
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have the same braid relations. As the quadratic relations only depend on the affine part,
they are also the same for HA(GS) and Haff

A (G), what finally proves the following result.

Corollary 2.5. With the notations introduced above, the map sending Tw on Tw
for any w ∈ WS is a well-defined injective homomorphism of A-algebras from HA(GS)

into HA(G), with image equal to Haff
A (G).

A convenient reformulation of this statement is the following one : the standard
Iwahori-Hecke algebra of GS over A is canonically isomorphic to the affine Iwahori-Hecke
algebra of G over A, and can consequently naturally be seen as an A-subalgebra of the
standard Iwahori-Hecke algebra of G.

Remark 2.6. In a recent work [10, Section 3], Kozioł proved further relations of
that kind for the standard pro-p-Iwahori-Hecke algebras of GLn(F ) and SLn(F ).

Remark 2.7. Before going further, let us mention here that [22, Theorem 4] implies
in particular that any simple right H1

Fp
(GS)-module will be of finite dimension as vector

space over Fp. Consequently, the classification of simple right H1
Fp

(GS)-modules amounts
to classifying finite-dimensional simple right H1

Fp
(GS)-modules, what explains why this

apparent restriction shows up in the sequel of this paper.

3. A decomposition of the pro-p-Iwahori-Hecke algebra of SL2(F )

From now on, we assume that n = 2 and A = Fp, what allows us to use the results
we proved in the previous section. In particular, the affine Weyl group of G = GL2(F )

admits Σaff = {s0, s1} as Coxeter system. To ease notations, we let H be the standard
Iwahori-Hecke algebra of G over Fp and HS be the standard Iwahori-Hecke algebra of
GS = SL2(F ) over Fp. We also set T := Tt ∈ H, S := Ts1 ∈ H and Ti := Tsi ∈ HS for
any i ∈ {0, 1}.

In this section, we will decompose the Fp-algebra H1
S := EndFp[GS ](indGS

IS(1)(1)) as a
direct sum of finitely many smaller algebras easier to compute, in order to describe the
simple right H1

S-modules. As IS(1) is a normal pro-p-subgroup of IS , [4, Lemma 3 (1)]
implies that any irreducible smooth representation of IS over Fp comes by inflation from
an irreducible representation of the quotient group IS/IS(1) ' ΓS . As n = 2, the torus
ΓS is canonically isomorphic to the finite cyclic (hence abelian) group k×F . Consequently,
any irreducible smooth representation of IS over Fp comes by inflation from a character of
k×F over Fp, and is then of the form3 ωr for a unique integer r ∈ {0, . . . , q−2}. Now recall
that the normalizer of ΓS in SL2(kF ) acts by conjugation on this set of characters and a
direct computation proves that the orbit of ωr for this action is equal to {ωr, ωq−1−r}. In
particular, it is reduced to one element when r is equal to 0 (what is the Iwahori case4)
or to q−1

2 (what is the exceptional case, that does not appear when p = 2), and consists
in two elements otherwise (what is the regular case). Considering how H1

S is defined, we

3The same symbol denotes a character of k×F and the smooth character of IS it defines by inflation.
4The terminology of Iwahori case and regular case is inspired by the one used in [21] for GL2(F ).
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are led to introduce the following Fp-algebras : for any r ∈ {0, . . . , q − 2}, we set

(3.1) HS(r) :=

EndFp[GS ](indGS

IS
(ωr)) if r is equal to 0 or to

q − 1

2
;

EndFp[GS ](indGS

IS
(ωr ⊕ ωq−1−r)) otherwise.

Theorem 3.1. With the notations above, the Fp-algebra H1
S admits the following

decomposition, where [x] denotes here the floor part of x ∈ Q :

(3.2) H1
S '

[ q−1
2 ]⊕

r=0

HS(r) ,

Proof. The proof of this statement is organized as the proof of [21, Proposition 3.1].
First, we use the transitivity of compact induction and the knowledge of all irreducible
smooth representations of IS over Fp to get that

indGS

IS(1)(1) = indGS

IS
(indISIS(1)(1)) =

q−1⊕
r=0

indGS

IS
(ωr) .

Hence we have to determine all pairs (r, k) ∈ {0, . . . , q−2}2 such that the Fp[GS ]-modules
indGS

IS
(ωr) and indGS

IS
(ωk) are intertwinned. To do this, we recall that the adjunction

property of indGS

IS
gives an isomorphism of vector spaces over Fp of the following form :

HomFp[GS ]

(
indGS

IS
(ωr), indGS

IS
(ωk)

)
' HomFp[IS ]

(
ωr, indGS

IS
(ωk)|IS

)
.

Moreover, Mackey decomposition [1, Proposition 2.2.7] proves that the restriction to IS
defines an isomorphism of Fp[IS ]-modules of the following form :

indGS

IS
(ωk)|IS '

⊕
w∈WS

indISIS,w
(ωk,w),

where we set Iw,S := w−1ISw ∩ IS for any w ∈WS ' {I2, s1}o Z and

ωk,w :=

{
ωk if w ∈ {I2}o Z ;
s1 · ωk = ωq−1−k otherwise.

Now remark that for any element w ∈ WS , the reduction modulo $F defines a short
exact sequence

0 −→ IS(1) ∩ Iw,S −→ Iw,S −→ ΓS −→ 0 .

This implies in particular that IS = IS(1)Iw,S , hence that ωk = ωk,w if, and only if, these
two smooth characters coincide on Iw,S . As Iw,S is of finite index in IS , compact induc-
tion (from Iw,S to IS) coincides with smooth induction [20, I.5.2.a)]. If we respectively
denote these two functors by ind and Ind, their adjunction properties (respectively called
compact Frobenius reciprocity [1, Proposition 2.2.3] and (smooth) Frobenius reciprocity
[1, Proposition 2.2.1]) then lead to the following chain of isomorphisms :
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HomFp[IS ](ω
r, indGS

IS
(ωk))'

⊕
w∈WS

HomFp[IS ](ω
r, indISIw,S

(ωk,w))

'
⊕
w∈WS

HomFp[IS ](ω
r, IndISIw,S

(ωk,w))

'
⊕
w∈WS

HomFp[Iw,S ](ω
r, ωk,w)

'
⊕
w∈WS

HomFp[IS ](ω
r, ωk,w) .

Considering how the characters ωk,w are defined, this finally proves that the space
HomFp[GS ](indGS

IS
(ωr), indGS

IS
(ωk)) is non-zero if, and only if, r is equal to k or to q−1−k.

We therefore fall into one of the two following cases :

• either p (and then q) is odd, in which case there are two orbits reduced to one

character, corresponding to r = 0 and r =
q − 1

2
, and any other orbit is of size 2;

• or q is even, in which case the unique orbit of size one corresponds to r = 0, while
any other orbit is of size 2.

Putting all these results together finishes the proof as a direct computation shows that
in the first case (p odd), we have

EndFp[GS ](indGS

IS(1)(1)) ' EndFp[GS ](indGS

IS
(1)) ⊕ EndFp[GS ](indGS

IS
(ω

q−1
2 ))⊕

0<r< q−1
2

EndFp[GS ](indGS

IS
(ωr ⊕ ωq−1−r)) ,

while in the second case (p = 2), we have

EndFp[GS ](indGS

IS(1)(1)) ' EndFp[GS ](indGS

IS
(1))

⊕
1≤r≤[ q−1

2 ]

EndFp[GS ](indGS

IS
(ωr ⊕ ωq−1−r)) .

�

Remark 3.2. Note that the computation using Mackey decomposition we did in the
previous proof also shows that any non-zero element of the (IS , ω

k)-isotypical component
of indGS

IS
(ωq−1−k) has support in the double coset ISs1α0IS .

A fundamental consequence of Theorem 3.1 is that any simple right H1
S-module comes

from a simple rightHS(r)-module for some well-chosen r ∈ {0, . . .
[
q−1

2

]
}, what motivates

the study of simple right HS(r)-modules for any parameter r. Remark 2.7 furthermore
implies that all these simple modules will be of finite dimension over Fp. We start by
the case r = 0 : not only it is interesting by itself, as it is closely related to spaces of
I-invariant vectors (see Section 4.4), but it is also connected with the standard Iwahori-
Hecke algebra HS introduced in the Section 2.3, as can be seen in the following theorem.

Theorem 3.3. Let f0 and f1 be the elements of EndFp[GS ](indGS

IS
(1)) that respec-

tively correspond by compact Frobenius reciprocity to the functions ϕ0, ϕ1 in indGS

IS
(1)IS

defined as follows : for any i ∈ {0, 1}, ϕi has support equal to ISsiIS and value 1 at si.
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Then there exists a unique homomorphism of Fp-algebras EndFp[GS ](indGS

IS
(1))→ HS

that maps fi to Ti for any i ∈ {0, 1}, and it is actually an isomorphism of Fp-algebras.

Proof. By compact Frobenius reciprocity, the Fp-algebra EndFp[GS ](indGS

IS
(1)) is isomor-

phic to the (IS ,1)-isotypical component of indGS

IS
(1). This component is isomorphic to

the convolution algebra Fp[IS\GS/IS ] via the morphism of Fp-algebras sending, for any
g ∈ GS , the double coset ISgIS to the element of indGS

IS
(1)IS with support ISgIS and

value 1 at g. As WS parametrizes the double cosets IS\GS/IS , we can follow step by
step the computations of [21, Appendix 1.3 - Iwahori case] to prove the theorem. �

4. The standard Iwahori-Hecke algebra and its simple modules

Theorems 3.1 and 3.3 explain why the study of the structure of the Fp-algebra HS
and of its simple right modules is a first step towards the classification of simple right
H1
S-modules. We realize this study in this section, which also contains a first relationship

with mod p representations of SL2(F ) (see Section 4.4).

4.1. On the structure of the standard Iwahori-Hecke algebra HS

We start by proving that the standard Iwahori-Hecke algebra HS is the Fp-algebra
generated by the operators T0 and T1, then we describe its center. To do this, we need
the following result, which is a direct consequence of the braid relations as we have
`(s0s1) = `(s0) + `(s1) = `(s1s0).

Lemma 4.1. The following identities hold in HS : Ts0s1 = T0T1 and Ts1s0 = T1T0.

Theorem 4.2. The Fp-algebra HS is generated by T0 and T1.

Proof. We want to prove that for any w ∈ WS , the operator Tw can be written as a
polynomial in T0 and T1 with coefficients in Fp. We do this by induction on the Bruhat
length of w. As `(w) = 1 if, and only if, w belongs to {s0, s1}, the statement we want to
prove is clearly true for elements of length 1. If `(w) = 2, then Tw is of one of the forms
considered in Lemma 4.1 and is hence a polynomial in T0 and T1 with coefficients in Fp.
Now assume that `(w) = n ≥ 3 and that w1 . . . wn is a reduced decomposition of w. As
s0 and s1 are both of order 2 in WS , saying that the decomposition w1 . . . wn is reduced
implies that for any index i ∈ {1, . . . , n− 1}, we have {wi, wi+1} = {s0, s1}. Depending
on the parity of n, we necessarily fall into one of the two following cases.

• Either n = 2m is even and we hence have w = (w1w2)m. As we started from
a reduced decomposition of w, the equality {w1, w2} = {s0, s1} implies that
`(w) = `(w1w2) + `((w1w2)m−1). The braid relations together with the induction
hypothesis and Lemma 4.1 then prove that Tw = T(w1w2)T(w1w2)m−1 is a polynomial
in T0 and T1 with coefficients in Fp.

• Or n = 2m + 1 is odd, and we hence have w = (w1w2)mw1. As we started
from a reduced decomposition of w, we now have `(w) = `((w1w2)m) + `(w1)

with `((w1w2)m) = 2m = n − `(w1). The braid relations together with the even
case hence imply that Tw = T(w1w2)mT1 is again a polynomial in T0 and T1 with
coefficients in Fp. �
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To describe the center of HS , we use the quadratic relations to construct an operator
that commutes to any element of HS , then we prove that any central element in HS is a
polynomial with coefficients in Fp in this particular operator.

Theorem 4.3. The center of HS is equal to the Fp-algebra Fp[(T0 − T1)2].

Proof. The quadratic relations involved in the definition of HS imply that we have

(4.1) −(T0 − T1)2 = T0 + T1 + T0T1 + T1T0 .

This implies that −(T0 − T1)2 commutes with T0 and T1, and is thus central in HS by
Theorem 4.2, as we have{

−T0(T0 − T1)2 = T 2
0 + T0T1 + T 2

0 T1 + T0T1T0 = −T0 + T0T1T0 ,

−(T0 − T1)2T0 = T 2
0 + T1T0 + T0T1T0 + T1T 2

0 = −T0 + T0T1T0 ,

and {
−T1(T0 − T1)2 = T1T0 + T 2

1 + T1T0T1 + T 2
1 T0 = −T1 + T1T0T1 ,

−(T0 − T1)2T1 = T0T1 + T 2
1 + T0T 2

1 + T1T0T1 = −T1 + T1T0T1 .

We now prove that any central element in HS is a polynomial in (T0 − T1)2. Thanks
to Theorem 4.2, we know that any element of HS can be written as a polynomial in T0

and T1 with coefficients in Fp. Moreover, the quadratic relations satisfied by T0 and T1

imply that this polynomial is a finite linear combination of monomials of the following
form : (T1T0)n, (T0T1)n, T0(T1T0)n or T1(T0T1)n, with n ∈ N. As the braid relations in
HS assure that these monomials are respectively equal to T(s1s0)n , T(s0s1)n , Ts0(s1s0)n and
Ts1(s0s1)n , they are in particular linearly independant over Fp. To conclude, we proceed
by induction on the maximal homogeneous degree of the polynomial in T0 and T1 defining
the central element Z ∈ HS we consider.

• First assume that Z is given by a polynomial of maximal homogeneous degree d ≤ 1.
This means that we have Z = αT0 + βT1 + γ for some α, β, γ ∈ Fp. The relation
ZT0 = T0Z then reduces to βT1T0 = βT0T1 and implies that β is null. Since Z − γ
is a central element in HS while T0 is not, we necessarily have α = 0, what proves
that Z = γ is given by a constant polynomial, hence belongs to Fp[(T0 − T1)2].

• Assume now that Z is given by a polynomial of maximal homogeneous degree equal
to 2 : it can be written as αT0T1 + βT1T0 + γT0 + δT1 + ψ with α, β, γ, δ, ψ ∈ Fp.
The relation ZT0 = T0Z then reduces to

(δ − α)T0T1 + βT0T1T0 = (δ − β)T1T0 + αT0T1T0 ,

what shows that α = δ = β. By (4.1), we have T1 +T1T0 +T0T1 = −(T0−T1)2−T0,
what implies that Z − (γ − α)T0 belongs to Fp[(T0 − T1)2] and is consequently a
central element in HS . Hence (γ−α)T0 must also be central in HS , what allows us
to deduce from the previous case that we have γ = α. This finally proves that Z is
equal to α(T0T1 + T1T0 + T0 + T1) + ψ = −α(T0 − T1)2 + ψ, and therefore belongs
to Fp[(T0 − T1)2].
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• Finally assume that Z is given by a polynomial of maximal homogeneous degree
d ≥ 2 and make the following induction hypothesis : any central element in HS
given by a polynomial of maximal homogeneous degree strictly less than d belongs
to Fp[(T0 − T1)2].

? If d = 2n is even, we have Z = α(T0T1)n + β(T1T0)n +Z1 with α, β ∈ Fp and
Z1 ∈ HS given by a polynomial of maximal homogeneous degree strictly less
than d. Since Z commutes to T0, we have

(4.2) −α(T0T1)n + βT0(T1T0)n + T0Z1 = α(T0T1)nT0 − β(T1T0)n + Z1T0 .

As −α(T0T1)n, T0Z1,−β(T1T0)n and Z1T0 are all of maximal homogenous de-
gree strictly less than 2n + 1, the computation of the homogeneous term of
degree 2n+ 1 in (4.2) shows that α = β. We hence deduce from (4.1) that

(4.3) Z = α((T0T1)n + (T1T0)n) + Z1 = −α(T0 − T1)2n + Z̃1 ,

where Z̃1 ∈ HS is given by a polynomial of maximal homogeneous degree
strictly less than 2n = d. As Z̃1 = Z + α(T0 − T1)2n is also a central element
in HS , it belongs to Fp[(T0 − T1)2] by induction hypothesis, and (4.3) hence
proves that Z is contained in Fp[(T0 − T1)2].

? If d = 2n+1 is odd, we have Z = α(T0T1)nT0+β(T1T0)nT1+Z1 with α, β ∈ Fp
and Z1 ∈ HS given by a polynomial of maximal homogeneous degree strictly
less than d. The computation of the homogeneous term of degree 2n+2 in the
equality T0Z = ZT0 (respectively T1Z = ZT1) shows that β = 0 (resp. α = 0).
This implies that Z = Z1 should be of maximal homogeneous degree strictly
less than d, what contradicts our assumption saying that Z is of maximal
homogeneous degree equal to d.

This shows that any central element in HS belongs to Fp[(T0−T1)2], what ends the proof
of Theorem 4.3. �

4.2. Classification of simple HS-modules
For any pair (ε0, ε1) ∈ {0,−1}2 of parameters, let MS

1 (ε0, ε1) be the HS-character
over Fp that maps Ti to εi for any i ∈ {0, 1}. Note that the quadratic relations involved
in the definition of HS imply that any HS-character over Fp is necessarily of that form.
To ease notations, we denote by MS

1 (ε) the HS-character MS
1 (ε, ε) for any ε ∈ {0,−1}.

By analogy with the terminology used in [21], the HS-characters MS
1 (0) and MS

1 (−1)

are respectively called the trivial character and the sign character.
We now introduce the analogue of the standard H-modules defined in [21] : for any

scalar λ ∈ Fp, let MS
2 (λ) be the two-dimensional HS-module Fpx ⊕ Fpy endowed with

the actions of T0 and T1 that are respectively defined by the following matrices in the
Fp-basis {x, y} :

(4.4)
(

0 0

1−1

)
and

(
−1 λ

0 0

)
.

We call MS
2 (λ) the standard HS-module with parameter λ. Moreover, any basis {x, y} of
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the Fp-vector space MS
2 (λ) in which the matrices describing the actions of T0 and T1 are

as in (4.4) is called an adapted basis for MS
2 (λ).

Remark 4.4. The central element −(T0−T1)2 acts on MS
2 (λ) via the scalar λ− 1.

Consequently, two standard HS-modules with distinct parameters cannot be isomorphic.

We now establish the irreducibility properties of the standard HS-modules.

Theorem 4.5. Let λ ∈ Fp.

1. The HS-module MS
2 (λ) is irreducible if, and only if, λ does not belong to {0, 1}.

2. The standard HS-module with parameter 1 is indecomposable of length 2 and fits
into the following non-split short exact sequence of HS-modules :

(4.5) 0 −→MS
1 (0) −→MS

2 (1) −→MS
1 (−1) −→ 0 .

3. The standard HS-module with parameter 0 is indecomposable of length 2 and fits
into the following non-split short exact sequence of HS-modules :

(4.6) 0 −→MS
1 (−1, 0) −→MS

2 (0) −→MS
1 (0,−1) −→ 0 .

Proof. First note that MS
2 (1) contains the trivial character MS

1 (0), generated by the
vector x+ y if {x, y} is an adapted basis of MS

2 (1), while MS
2 (0) contains the character

MS
1 (−1, 0), generated by y if {x, y} is an adapted basis ofMS

2 (0). This proves a sufficient
condition for MS

2 (λ) to be reducible is λ ∈ {0, 1}.
Now fix an adapted basis {x, y} of MS

2 (λ) and assume that MS
2 (λ) is a reducible

HS-module, what means that it contains a one-dimensional HS-submodule M generated
by a non-zero vector v := ax+ by with a, b ∈ Fp. Note that x generates the HS-module
MS

2 (λ), what implies that b is non-zero as M is strictly contained in MS
2 (λ). Up to

scaling, we can assume that b = 1, i.e. that v = αx+ y for some α ∈ Fp. If α = 0, then
v = y generatesMS

2 (λ) whenever λ is non-zero, what contradicts the fact that v generates
a one-dimensional HS-module, so λ must be null in this case. If α is non-zero, note that
v|T0 = (α − 1)y and that v|T1 = (λ − α)x. As x generates the HS-module MS

2 (λ), the
second equality implies that we must have λ = α. The first equality v|T0 = (α − 1)y

now implies that whenever α is different from 1, the vector y belongs to M , and so does
x = α−1(v − y), what contradicts the fact that M is one-dimensional over Fp. We thus
have λ = α = 1, and we deduce from this dichotomy that a necessary condition forMS

2 (λ)

to be reducible is λ ∈ {0, 1}. This ends the proof of statement (1) by contraposition.
Now assume that λ = 0, in which case MS

1 (−1, 0) is an HS-submodule of MS
2 (0) as

we already mentionned it. One checks immediately that the quotient of MS
2 (0) by this

HS-submodule is generated by the image of x and is isomorphic to the HS-character
M1(0,−1). This leads to the short exact sequence (4.6), which is necessarily non-split as
x generates the whole HS-module MS

2 (0). This ends the proof of (3).
Finally assume that λ = 1, in which case we already noticed that x + y generates

the trivial character MS
1 (0). One immediately checks that the quotient of MS

2 (1) by this
HS-submodule is generated by the image of y and is isomorphic to the sign character
MS

1 (−1). This leads to the short exact sequence (4.5), which is necessarily non-split as
y generates the HS-module MS

2 (0), and completes the proof of Theorem 4.5. �
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Theorem 4.6. Any two-dimensional simple right HS-module is isomorphic to a
standard HS-module MS

2 (λ) for a unique parameter λ ∈ Fp\{0, 1}.

Proof. Assume thatM is a simple right HS-module of dimension 2 over Fp. AsM is a
finite-dimensional vector space over the algebraically closed field Fp, the central element
−(T0 − T1)2 of HS acts on M by a scalar µ ∈ Fp. Let ϕ be the endomorphism of M
defined by the action of T1 on M : then the quadratic relation T1(T1 + 1) = 0 implies
that the minimal polynomial of ϕ divides X(X+1). However, ϕ cannot be a homothety :
otherwise, Theorem 4.2 would imply that any non-zero eigenvector for the action of T0 on
M generates a one-dimensional HS-submodule ofM, what contradicts the simplicity of
the two-dimensionalHS-moduleM. This shows thatX(X+1) is the minimal polynomial
of ϕ and that M is the direct sum - as vector space over Fp - of kerϕ and ker(ϕ + 1),
these spaces being both non-zero, hence of dimension 1 over Fp. Pick a non-zero vector
x ∈ ker(ϕ+ 1) : asM is a simple HS-module of dimension 2 over Fp, the line ker(ϕ+ 1)

cannot be stable under the action of T0 onM, and the family {x, x|T0} is hence linearly
independant over Fp, what means that it defines a basis of the vector spaceM. A direct
computation gives the following relations inM :

x|T1 = −x , (x|T0)|T0 = −x|T0 , (x|T0)|T1 = (µ+ 1)x ,

where the last equality comes from the relation (4.1). This way, we obtain that in the
basis {x, x|T0}, the actions of T0 and T1 are respectively given by the matrices(

0 0

1−1

)
and

(
−1 1 + µ

0 0

)
.

This shows thatM is isomorphic to the standard HS-module MS
2 (1 + µ), what finishes

the proof as the uniqueness of the parameter comes from Remark 4.4 while the restriction
on its possible values comes from Theorem 4.5. �

Our next result states that any simple right HS-module necessarily appears among
the HS-modules we built so far. Recall that Remark 2.7 and Theorem 3.1 ensure that
any simple HS-module is of finite dimension over Fp.

Theorem 4.7. Any simple right HS-module is either a character or an irreducible
standard HS-module. In particular, its dimension over Fp is at most 2.

Proof. This proof essentially reduces to the proof of Theorem 4.6. Assume that M is
a (finite-dimensional) simple right HS-module which is not one-dimensional. As in the
proof of Theorem 4.6, the central element −(T0−T1)2 acts onM by a scalar λ ∈ Fp and
ker(T1 + 1) contains a non-zero vector x. The argument ending the proof of Theorem
4.6 implies here that x and y := x|T0 generate a two-dimensional HS-submodule of M
which is isomorphic to MS

2 (λ+ 1). AsM is simple, we must haveM = MS
2 (λ+ 1). �

Corollary 4.8. Any simple right HS-module is isomorphic to one, and only one,
of the following HS-modules :

• a character MS
1 (ε0, ε1) for a unique pair of parameters (ε0, ε1) ∈ {0,−1}2;

• a standard HS-module MS
2 (λ) for a unique parameter λ ∈ Fp\{0, 1}.
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4.3. Relationships with the corresponding objects for GL2(F ) - Part 1
We explained in Section 2.3 how HS can naturally be identified to an Fp-subalgebra

of the standard Iwahori-Hecke algebra H of GL2(F ). In particular, any element of HS
can be seen as an element of H, hence can be written as a polynomial in T, T−1 and S
with coefficients in Fp [21, Section 1.1]. Moreover, the restriction to HS endows any right
H-module with a structure of HS-module. The two following questions then naturally
arise and will be solved in this subsection.

• To which elements of Fp[T, T−1, S] do correspond the operators T0, T1 ∈ HS when
considered as elements of H?

• What is the structure of HS-module carried by the finite-dimensional simple right
H-modules that Vignéras classified in [21, Theorem 1.2]?

The next statement answers to the first question.

Lemma 4.9. The following relations hold in the standard Iwahori-Hecke algebra H
of GL2(F ) : T0 = T−1ST and T1 = S.

Proof. The second equality directly comes from the definitions of T1 and S. Now recall
that s0 = t−1st, where st is an element of length 1 in the extended affine Weyl group of
GL2(F ) [21, Annexe A.2]. As t and t−1 are both of length 0, the braid relations in H
imply that Ts0 = Tt−1Tst = (Tt)

−1TsTt = T−1ST , what proves the first equality. �

As T 2 and T−2 are central elements in H, we also have T0 = TST−1 in H. Using
Lemma 4.9, we obtain the following reformulation of Corollary 2.5.

Corollary 4.10. The standard Iwahori-Hecke algebra HS of SL2(F ) is isomorphic
to the Fp-subalgebra of H generated by the operators S and TST−1 = T−1ST .

We now address the second question and start by a recall of the classification of finite-
dimensional simple right H-modules as stated in [21]. For any pair (τ, ε) ∈ F×p ×{0,−1},
let M1(τ, ε) be the one-dimensional H-module over Fp that maps T to τ and S to ε. For
any pair (a, z) ∈ Fp×F×p , the standard H-module M2(a, z) is the two-dimensional vector
space Fpx ⊕ Fy endowed with the following action of H : in the adapted basis {x, y},

the actions of T and S are respectively given by the matrices
(

0 z

1 0

)
and

(
−1 a

0 0

)
. The

classification of finite-dimensional simple right H-modules given by [21] is then as follows.

Theorem 4.11. 1. Any finite-dimensional simple right H-module is isomorphic
to one of the following modules :

• an H-character M1(τ, ε) with (τ, ε) ∈ F×p × {0,−1};

• a standard H-module M2(a, z) with (a, z) ∈ Fp × F×p satisfying a2 6= z.

2. For any non-zero parameter a ∈ F×p , M2(a, a2) is an indecomposable H-module of
length 2 that fits into the following non-split short exact sequence of H-modules :

0 −→M1(a, 0) −→M2(a, a2) −→M1(−a,−1) −→ 0 .
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Corollary 4.10 directly leads to the following statement for one-dimensional modules.

Lemma 4.12. For any pair of parameters (τ, ε) ∈ F×p × {0,−1}, the HS-module
carried by M1(τ, ε) is equal to the HS-character MS

1 (ε).

Proof. By definition ofM1(τ, ε) and Corollary 4.10, one easily checks thatM1(τ, ε) maps
both operators T0 and T1 to ε. �

Now fix a pair (a, z) ∈ Fp×F×p and consider the two-dimensional H-module M2(a, z)

together with an adapted basis {x, y}. A direct computation based on Corollary 4.10
shows that in this adapted basis, the actions of T0 and T1 on M2(a, z) are respectively

given by the matrices
(

0 0

az−1 −1

)
and

(
−1 a

0 0

)
. Doing a suitable base change when a

is non-zero hence leads to the following result.

Lemma 4.13. Let (a, z) ∈ Fp × F×p be a pair of parameters.

1. If a is non-zero, the restriction to HS of the standard H-module M2(a, z) is iso-
morphic to the standard HS-module MS

2 (a2z−1).

2. The restriction to HS of the standard H-module M2(0, z) is a split HS-module
isomorphic to MS

1 (0,−1)⊕MS
1 (−1, 0).

As z is always assumed to be non-zero, the following statement is a direct consequence
of Lemma 4.13 and Corollary 4.8.

Corollary 4.14. Let (a, z) ∈ Fp × F×p be a pair of parameters.

1. If a is non-zero and satisfies a2 6= z, the HS-module carried by M2(a, z) is simple.

2. For a 6= 0, the HS-module carried by M2(a, a2) is indecomposible of length 2 and
fits into the following non-split short exact sequence of HS-modules :

0 −→MS
1 (0) −→M2(a, a2)|HS

−→MS
1 (−1) −→ 0 .

3. The HS-module carried by M2(0, z) is isomorphic to MS
1 (0,−1)⊕MS

1 (−1, 0).

4.4. A first correspondence with mod p representations of SL2(F )

Before we start the study of the Iwahori-Hecke algebras attached to non-zero values
of r, let us use the results we proved so far to establish some connections between simple
right HS-modules and certain irreducible smooth representations of SL2(F ) over Fp. We
explained in the introduction that for any smooth representation π of GS over Fp, the
space πIS is naturally endowed with a structure of right HS(0)-module, hence of right
HS-module by Theorem 3.3. This subsection aims to use the classification results given
in [2] to describe the HS-module πIS whenever π is an irreducible smooth representation
of GS over Fp admitting non-zero IS-invariant vectors.

Remark 4.15. As we will use some results of [2], we assume from now on that any
choice made in this paper is done in a compatible way with those made in [2].
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4.4.1. The non-supercuspidal case
We first recall two important results. The first one is due to Vignéras [25, Section 6.5]

and gives the structure of H-module carried by the space of I-invariant vectors of any
non-supercuspidal irreducible smooth representation of GL2(F ) with central character
and with non-zero I-invariant vectors.

Proposition 4.16. Let St denote the Steinberg representation of GL2(F ).

1. The H-module carried by 1I is equal to the H-character M1(1, 0).

2. The H-module carried by StI is equal to the H-character M1(1,−1).

3. For any λ ∈ F×p , the H-module carried by (IndGB(µλ ⊗ 1))I is isomorphic to the
standard H-module M2(λ−1, λ−1).

The second result was proved by the author [2, Corollaire 2.11, Théorème 2.16 and
Remarque 2.17] and gathers all the results we need about the relationships between
non-supercuspidal irreducible smooth representations of SL2(F ) and GL2(F ) over Fp.

Proposition 4.17. 1. Any non-supercuspidal irreducible smooth representation
of SL2(F ) over Fp that has non-zero IS-invariant vectors is isomorphic to one, and
only one, of the following representations :

• the trivial character 1;

• the Steinberg representation StS;

• the parabolically induced representation IndGS

BS
(µλ) for a unique λ ∈ Fp\{0, 1}.

2. We have 1IS = 1I and the standard injection5 of StI into StISS is an isomorphism
of Fp-vector spaces.

3. For any λ ∈ F×p , the standard injection of (IndGB(µλ ⊗ 1))I into (IndGS

BS
(µλ))IS is

an isomorphism of Fp-vector spaces.

Combined with Corollary 2.5 and Lemmas 4.12 and 4.13, these two propositions lead
to the following statement.

Theorem 4.18. 1. The HS-module carried by 1IS is the trivial characterMS
1 (0).

2. The HS-module carried by StISS is the sign character MS
1 (−1).

3. For any parameter λ ∈ Fp\{0, 1}, the HS-module carried by (IndGS

BS
(µλ))IS is iso-

morphic to the standard HS-module MS
2 (λ−1).

Remark 4.19. The same comparison process proves that the HS-module carried
by (IndGS

BS
(1))IS is isomorphic to the (reducible) standard HS-module MS

2 (1).

5Via the restriction of St to GS , as explained in [2, Section 2.6].
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4.4.2. The supercuspidal case
We assume in this paragraph that F = Qp, as it is the only case so far where super-

cuspidal representations of SL2(F ) and GL2(F ) are fully understood (see respectively [2]
and [4, 6]). In particular, we know from [2, Théorème 4.12] that there are p isomorphism
classes of supercuspidal representations for SL2(Qp), for which an explicit system of rep-
resentatives {πr, 0 ≤ r ≤ p − 1} is built in [2, Section 4.1]. Using the same notations
as in [2] and [6], we can moreover connect as follows supercuspidal representations of
GL2(Qp) of the form π(r, 0,1) with those of SL2(Qp) [2, Théorème 4.12] :

(4.7) ∀ r ∈ {0, . . . , p− 1}, π(r, 0,1)|GS
' πr ⊕ πp−1−r .

As in [2, Section 4], we let vr := [I2, xr] be the element of πIS(1)
r that naturally generates

the representation πr of GS over Fp. We have the following result [25, Section 6.5], which
is an analogue of Proposition 4.16 in the supercuspidal case.

Proposition 4.20. The H-module carried by π(0, 0, 1)I is isomorphic to M2(0, 1).
Moreover, it has an adapted basis of the form {v0, y} with y being an element of π(0, 0, 1)I

that generates the Fp[GS ]-submodule πp−1 of π(0, 0,1)|GS
appearing in (4.7).

We also know from [2, Propositions 4.7 et 4.11] that up to isomorphism, π0 and πp−1

are the only supercuspidal representations of GS having non-zero IS-invariant vectors,
that dimFp

πIS0 = dimFp
πISp−1 = 1, and that v0 belongs to πIS0 . Using [2, Théorème 4.3]

together with Proposition 4.20 and Lemma 4.13 (3), we get the following result.

Theorem 4.21. We assume F = Qp and we use the notations introduced above.

1. The HS-module πIS0 is equal to the HS-character MS
1 (−1, 0).

2. The HS-module πISp−1 is equal to the HS-character MS
1 (0,−1).

Proof. Proposition 4.20 implies that πIS0 and πISp−1 are the lines generated by the vectors
of an adapted basis of the H-module π(0, 0,1)I ' M2(0, 1), what ends up the proof via
the computations leading to Lemma 4.13 (2). �

4.4.3. Application to the functor of IS-invariants
As in the dictionnary established by Vignéras [21] for GL2(F ), we have a notion of

supersingular HS-module.

Definition 4.22. A simple right HS-module is supersingular if it is not isomorphic
to a subquotient of some (IndGS

BS
(η))IS for a smooth character η : BS → F×p .

Recall here that the map sending a smooth representation of GS over Fp to its space
of IS-invariant vectors comes from a functor (called the functor of IS-invariants) going
from the category of smooth representations of GS over Fp generated by their IS-invariant
vectors to the category of right HS-modules. The comparison of Theorems 4.18 and 4.21
to the classification established in Corollary 4.8 leads to the following result.
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Corollary 4.23. 1. The functor of IS-invariants defines a bijection :
isomorphism classes of

non-supercuspidal irreducible smooth
representations of SL2(F ) over Fp

generated by their IS-invariant vectors

←→


isomorphism classes of
non-supersingular

simple right HS-modules

 .

2. When F = Qp, the previous bijection extends to a bijection :
isomorphism classes of irreducible smooth

representations of SL2(Qp) over Fp
generated by their IS-invariant vectors

←→
{

isomorphism classes of
simple right HS-modules

}
.

Remark 4.24. As all HS-modules appearing in Corollary 4.23 are simple modules,
Theorem 3.1 implies that they also define simple right H1

S-modules. In particular, they
define H1

S-submodules of the corresponding spaces of IS(1)-invariants vectors. We will
see later (Propositions 7.3 and 7.4) that they actually completely define the H1

S-modules
carried by these spaces of IS(1)-invariant vectors.

Remark 4.25. As it only deals with irreducible smooth representations having non-
zero IS-invariant vectors, the statement of Corollary 4.23 is highly partial : for instance,
it puts aside most of the supercuspidal representations of SL2(Qp) when p is odd.

4.5. Relationships with the corresponding objects for GL2(F ) - Part 2
We close this section with a result underlining the interplay between the two kinds of

restriction maps considered above. On the one hand, the restriction to GS of any smooth
representation of G over Fp defines a smooth representation of GS over Fp. On the other
hand, what we did in Section 2.3 allows us to restrict to HS any right H-module to
obtain a right HS-module. The next result is a direct consequence of [2, Remarque 2.17
et Théorème 4.3] together with [5, Lemma 27 and Theorem 28] and [6, Théorème 3.2.4].

Proposition 4.26. Let π be an irreducible smooth representation of G over Fp
having a central character and non-zero I-invariant vectors. If one of the following
conditions holds, then I acts trivially on πIS :

• either π is non-supercuspidal;

• or F = Qp.

Together with Lemmas 4.12 and 4.13, Propositions 4.16 and 4.20, Theorems 4.18
and 4.21, and [2, Théorème 4.12], Proposition 4.26 leads to the following statement,
which roughly says that taking invariant vectors under the standard Iwahori subgroups
commutes with restriction functors.

Corollary 4.27. 1. For any non-supercuspidal irreducible smooth representa-
tion π of GL2(F ) over Fp having a central character and non-zero I-invariant
vectors, the restriction to HS of the H-module πI is isomorphic to the HS-module
(π|SL2(F ))

IS .
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2. For any irreducible smooth representation π of GL2(Qp) over Fp having a central
character and non-zero I-invariant vectors, the restriction to HS of the H-module
πI is isomorphic to the HS-module (π|SL2(Qp))

IS .

5. The regular Iwahori-Hecke algebras and their simple modules

In this section, we describe the structure of the Iwahori-Hecke algebra HS(r) and of
its simple right modules for any parameter r ∈ {1, . . . ,

[
q−1

2

]
} distinct from q−1

2 when p
is odd. This is the counterpart of Vignéras did for GL2(F ) in [21, Section 2].

5.1. Structure of the Iwahori-Hecke algebra HS(r)

As we assume r 6= q− 1− r, the Fp-algebra HS(r) := EndFp[GS ](indGS

IS
(ωr⊕ωq−1−r))

can be decomposed as follows :

HS(r) =

(
Ar Br

Bq−1−r Aq−1−r

)
,

with Ak := EndFp[GS ](indGS

IS
(ωk)) and Bk := HomFp[GS ](indGS

IS
(ωk), indGS

IS
(ωq−1−k)) for

k ∈ {r, q − 1 − r}. The understanding of HS(r) hence reduces to the study of each of
its four components and of the relations existing between them. Before going further,
note that Ak is naturally an algebra over Fp while Bk is certainly not. Nevertheless, the
composition of functions endows Bk with a natural structure of (Aq−1−k, Ak)-bimodule
as we have Aq−1−k ◦Bk ◦Ak ⊂ Bk.

5.1.1. Structure of the Fp-algebra Ak

Let k be equal to r or to q − 1 − r. Compact Frobenius reciprocity implies that the
Fp-algebra Ak is isomorphic to the convolution algebra Hk of functions f : GS → Fp
with compact support modulo IS that satisfy f(igj) = ωk(ij)f(g) for any i, j ∈ IS and
any g ∈ GS . Any element of Ak can consequently be seen as a function over GS , what
allows us to consider its support in GS or its value at some element of GS . We can now
state the following structure result for Ak, where A denotes the commutative Fp-algebra
Fp[X,Y ]/(XY, Y X).

Theorem 5.1. Let Tk and Sk be the elements of Ak defined as follows : Tk has
support equal to ISα

−1
0 IS and value 1 at α−1

0 , while Sk has support equal to ISα0IS
and value 1 at α0. The Fp-linear map sending Tk to X and Sk to Y then defines an
isomorphism of Fp-algebras from Ak to A.

Proof. Things work the same way as in the proof of [21, Appendix 1.3]. For any integer
n, let Tn ∈ Ak be the element with support equal to ISα−n0 IS and value 1 at α−n0 : then
we know from [2, Proposition 3.30] that {Tn, n ∈ Z} is a basis of the Fp-vector space
Ak. Now recall that we have the following decompositions into disjoint left cosets, where
Cm := {[x0] + $F [x1] + . . . + $m−1

F [xm−1], xi ∈ kF } is a set of representatives for the
elements of OF /$m

F OF (for any m ∈ N) :
∀ n ∈ N∗, ISα−n0 IS =

⊔
x∈C2n

u(−x)α−n0 IS ;

∀ n ∈ N, ISαn0 IS =
⊔

x∈C2n

ū(−$Fx)αn0 IS .
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As [4, Lemma 3 (1)] implies that ωk(ū($Fx)) = ωk(u(x)) = 1 for any x ∈ OF , we
deduce from [4, Equation (9)] that for any integer n, the operator Tn acts as follows on
the standard function [I2, 1] ∈ indGS

IS
(ωk) :

∀ n ∈ N, Tn([I2, 1]) =
∑
x∈C2n

[ū(−$Fx)αn0 , 1] ;

∀ n ∈ N∗, T−n([I2, 1]) =
∑
x∈C2n

[u(−x)α−n0 , 1] .

These equalities completely determine Tn as it is a GS-equivariant and Fp-linear operator.
A direct computation based on [4, Equation (9)] and (1.1) now proves that we have :

(5.1)
{
∀ n ∈ N, T1 ◦ Tn = Tn+1 = Tn ◦ T1 ;

∀ n ∈ N∗, T−1 ◦ T−n = T−(n+1) = T−n ◦ T−1 .

To finish the proof of Theorem 5.1, it is left to show that T1 ◦ T−1 = T−1 ◦ T1 = 0, as we
set Tk := T1 and Sk := T−1. Once again, it is enough to check it is true after evaluation
at the standard function [I2, 1]. Applying [4, Equation (9)] to T1 ◦ T−1, we obtain that

(T1 ◦ T−1)([I2, 1]) =
∑
x∈C2

∑
y∈C2

[u(−x)α−1
0 ū(−$F y)α0, 1]

=
∑
x∈C2

∑
y∈C2

[u(−x)ū(−$−1
F y), 1]

=
∑
x∈C2

[u(−x), 1] +
∑

y∈C2\{0}

∑
x∈C2

[u(−x)ū(−$−1
F y), 1] .

As ωk is trivial on IS(1), where u(x) sits for any x ∈ OF , the first sum in the last
expression above is equal to Card(C2)[I2, 1], i.e. to 0 as we have Card(C2) ≡ 0 mod p.
Now remark that for any y ∈ O×F and any x ∈ F , we have :

u(−x)ū(−$−1
F y) = u(−x)u(−$F y

−1)s1α0

(
−y $F

0 −y−1

)
.

This implies that u(−x)ū(−$−1
F y) belongs to the double coset ISs1α0IS for any pair

(x, y) ∈ O2
F with y = [y0] +$F [y1] and y0 6= 0. If y is such that y0 = 0 (i.e. of the form

[y1]$F with y1 ∈ k×F ), then we have

u(−x)ū(−$−1
F y) = u(−x)u(−[y1]−1)s1

(
−[y1] 1

0 −[y1]−1

)
∈ ISs1IS .

Putting this two statements together, we obtain that
∑

y∈C2\{0}

∑
x∈C2

[u(−x)ū(−$−1
F y), 1]

has support in ISs1IS t ISs1α0IS . As k is not in {0 , q−1
2 }, [2, Proposition 3.30]6

ensures that there is no non-zero element in Hk with support contained in ISs1α
Z
0IS .

Consequently, we have
∑

y∈C2\{0}

∑
x∈C2

[u(−x)ū(−$−1
F y), 1] = 0, hence (T1◦T−1)([I2, 1]) = 0,

what ends the proof as a similar argument shows that (T−1 ◦ T1)([I2, 1]) = 0. �

6With the notations used in [2], we have ISs1α0IS = ISw0α0IS .
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Remark 5.2. Recall that {ωr, ωq−1−r} is an orbit for the action of t by conjugation
on the set of smooth characters of ΓS . Let ψk denote the isomorphism of Fp-algebras
Ak → Aq−1−k induced by this action and ϕk : Ak → A be the isomorphism given by
Theorem 5.1 : the composite map ϕq−1−k ◦ ψk ◦ ϕ−1

k defines an automorphism of the
Fp-algebra A which is not the identity map but the automorphism swapping X and Y .

5.1.2. Structure of the (Aq−1−k, Ak)-bimodule Bk

For any integer n ∈ Z, let fn,k be the element of the (IS , ω
k)-isotypical component of

indGS

IS
(ωq−1−k) with support equal to ISs1α

−n
0 IS = ISα

n
0 s1IS and value 1 at αn0 s1, and

let Sn,k be the element of Bk corresponding to fn,k by compact Frobenius reciprocity.
The computation of HomFp[IS ](ω

i, indGS

IS
(ωj))) done in the proof of Theorem 3.1 shows

that the family {Sn,k, n ∈ Z} is a basis of the Fp-vector space Bk. Now recall that
IS(αn0 s1)−1IS admits the following decomposition into disjoint left cosets :

IS(αn0 s1)−1IS =


⊔

x∈C2(−n)+1

u(x)(αn0 s1)−1IS if n ≥ 0 ;⊔
x∈C2n−1

ū($Fx)(αn0 s1)−1IS if n ≥ 1 .

Using [4, Equation (9)] together with the relation (αn0 s1)−1 = −αn0 s1, we obtain the
following expression of Sn,k([I2, 1]), that completely determines Sn,k by Fp-linearity and
GS-equivariance :

Sn,k([I2, 1]) =


∑

x∈C2(−n)+1

[u(x)(αn0 s1)−1, 1] if n ≤ 0 ;∑
x∈C2n−1

[ū($Fx)(αn0 s1)−1, 1] if n ≥ 1 ;

=


∑

x∈C2(−n)+1

[u(x)αn0 s1, (−1)q−1−k] if n ≤ 0 ;∑
x∈C2n−1

[ū($Fx)αn0 s1, (−1)q−1−k] if n ≥ 1 .

Note thatBk is also endowed with a structure of left Aq−1−k-module (by pre-composition)
and of right Ak-module (by post-composition). The decompositions above will be useful
to prove the next lemma, that describes the structure of (Aq−1−k, Ak)-bimodule carried
by Bk.

Lemma 5.3. Let k be equal to r or to q − 1− r with r 6= q − 1− r.

1. For any integer n ≥ 0, the following equalities hold in Bk :

(5.2) Tq−1−k ◦ S−n,k = S−n,k ◦ Sk = S−(n+1),k ;

(5.3) Sq−1−k ◦ S−n,k = S−n,k ◦ Tk = 0 .
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2. For any integer n ≥ 1, the following equalities hold in Bk :

(5.4) Tq−1−k ◦ Sn,k = Sn,k ◦ Sk = 0 ;

(5.5) Sq−1−k ◦ Sn,k = Sn,k ◦ Tk = Sn+1,k .

Proof. By Fp-linearity and GS-equivariance of the operators involved in the statement
of Lemma 5.3, we only have to check that the equalities above are true after evaluation
at [I2, 1] ∈ indGS

IS
(ωk). First assume that n ≥ 0, in which case we have :

(Tq−1−k ◦ S−n,k)([I2, 1]) = Tq−1−k

 ∑
x∈C2n+1

[u(x)α−n0 s1, (−1)q−1−k]


=

∑
x∈C2n+1

∑
y∈C2

[u(x)α−n0 s1ū(−$F y)α0, (−1)q−1−k]

=
∑

x∈C2n+1

∑
y∈C2

[u(x)α−n0 u($F y)s1α0, (−1)q−1−k]

=
∑

x∈C2n+1

∑
y∈C2

[u(x)u($2n+1
F y)α−n0 s1α0, (−1)q−1−k]

=
∑

z∈C2n+3

[u(z)α
−(n+1)
0 s1, (−1)q−1−k]

= S−(n+1),k([I2, 1]) .

By construction, we have Sq−1−r◦Tq−1−r = 0, hence this first computation already shows
that for any integer n ≥ 1, we have Sq−1−k ◦ S−n,k = Sq−1−k ◦ (Tq−1−k)n ◦ S0,k = 0.
When n = 0, we have

(Sq−1−k ◦ S0,k)([I2, 1]) = Sq−1−k

(∑
x∈C1

[u(x)s1, (−1)q−1−k]

)

=
∑
x∈C1

∑
y∈C2

[u(x)s1u(−y)α−1
0 , (−1)q−1−k]

=
∑
x∈C1

∑
y∈C2

[u(x)s1α
−1
0 u(−$−2

F y), (−1)q−1−k] ,

and the argument used in the proof of Theorem 5.1 to show that T1 ◦ T−1 = 0 allows us
to conclude here7 that Sq−1−k ◦ S0,k = 0.

7For the sceptical (or lazy) reader, all computations are explicitely written in [1, page 184].
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Now assume that n ≥ 1, in which case we have :

(Sq−1−k ◦ Sn,k)([I2, 1]) = Sq−1−k

 ∑
x∈C2n−1

[ū($Fx)αn0 s1, (−1)q−1−k]


=

∑
x∈C2n−1

∑
y∈C2

[ū($Fx)αn0 s1u(−y)α−1
0 , (−1)q−1−k]

=
∑

x∈C2n−1

∑
y∈C2

[ū($Fx)αn0 ū(y)s1α
−1
0 , (−1)q−1−k]

=
∑

x∈C2n−1

∑
y∈C2

[ū($Fx)ū($2n
F y)αn0 s1α

−1
0 , (−1)q−1−k]

=
∑

x∈C2n−1

∑
y∈C2

[ū($F (x+$2n−1
F y))αn+1

0 s1, (−1)q−1−k]

=
∑

z∈C2n+1

[ū($F z)α
n+1
0 s1, (−1)q−1−k]

= Sn+1,k([I2, 1]) .

For any integer n ≥ 2, this proves that Tq−1−k ◦Sn,k = Tq−1−k ◦ (Sq−1−k)n−1 ◦S1,k = 0.
When n = 1, we have

(Tq−1−k ◦ S1,k)([I2, 1]) = Tq−1−k

(∑
x∈C1

[ū($Fx)α0s1, (−1)q−1−k]

)

=
∑
x∈C1

∑
y∈C2

[ū($Fx)α0s1ū(−$F y)α0, (−1)q−1−k]

=
∑
x∈C1

∑
y∈C2

[ū($Fx)u($−1
F y)s1, (−1)q−1−k] .

As in the computation of Sq−1−k ◦ S0,k, we obtain8 that Tq−1−k ◦ S1,k = 0. The same
kind of calculations9 for Tk and Sk gives the other relations, what finishes the proof. �

5.1.3. Description of the elements of Bq−1−k ◦Bk as elements of Ak

To obtain a full understanding of the Fp-algebra HS(r), we now have to express the
element Sn,q−1−k ◦ Sm,k ∈ Ak as a polynomial in Tk and Sk for any integers n,m ∈ Z.
By Lemma 5.3, it is enough to compute S1,q−1−k ◦ S1,k, S1,q−1−k ◦ S1,k ◦ S0,q−1−k,
S0,q−1−k ◦ S1,k and S0,q−1−k ◦ S0,k : this forms the content of the next statement.

8The reader can this time refer to [1, pages 185 and 186] to get all the details.
9Left as an exercise to the reader, but also extensively written in [1, pages 186 à 188].
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Lemma 5.4. The following equalities hold in Ak :
S1,q−1−k ◦ S0,k = (−1)q−1−kSk ;

S0,q−1−k ◦ S1,k = (−1)q−1−kTk ;

S1,q−1−k ◦ S1,k = S0,q−1−k ◦ S0,k = 0 .

Proof. As usual, it is enough to check that these equalities are true after evaluation at
[I2, 1] ∈ indGS

IS
(ωk). First note that we have

(S1,q−1−k ◦ S0,k)([I2, 1]) = S1,q−1−k

(∑
x∈C1

[u(x)s1, (−1)q−1−k]

)

=
∑
x∈C1

∑
y∈C1

[u(x)s1ū($F y)α0s1, (−1)q−1]

=
∑
x∈C1

∑
y∈C1

[u(x)u(−$F y)α−1
0 , (−1)q−1−k]

=
∑
z∈C2

[u(z)α−1
0 , (−1)q−1−k]

= (−1)q−1−kSk([I2, 1]) ,

so the first equality of Lemma 5.4 holds. Similarly, the second equality is true as we have

(S0,q−1−r ◦ S1,k)([I2, 1]) = S0,q−1−k

(∑
x∈C1

[ū($Fx)α0s1, (−1)q−1−k]

)

=
∑
x∈C1

∑
y∈C1

[ū($Fx)α0s1u(y)s1, (−1)q−1]

=
∑
x∈C1

∑
y∈C1

[ū($F (x−$F y))α0, (−1)q−1−k]

=
∑
z∈C2

[ū(−$F z)α0, (−1)q−1−k]

= (−1)q−1−kTk([I2, 1]) .

We now prove that S1,q−1−k ◦ S1,k is equal to 0. First note that we have

(S1,q−1−k ◦ S1,k)([I2, 1]) = S1,q−1−k

(∑
x∈C1

[ū($Fx)α0s1, (−1)q−1−k]

)

=
∑
x∈C1

∑
y∈C1

[ū($Fx)α0s1ū($F y)α0s1, (−1)q−1] ,



28 R. Abdellatif

hence

(S1,q−1−k ◦ S1,k)([I2, 1]) =
∑
x∈C1

∑
y∈C1

[ū($Fx)u(−$−1
F y), (−1)q−1−k] .

This shows that (S1,q−1−k ◦ S1,k)([I2, 1]) is actually equal to
(5.6)∑
x∈C1

[ū($Fx), (−1)q−1−k]+
∑
x∈C1

∑
y∈C1\{0}

[ū($Fx)ū(−$F y
−1)

(
$−1
F y 1

0 $F y
−1

)
s1, (−1)q−1] .

As in the proof of Theorem 5.1, the first sum in (5.6) vanishes because it is equal to
Card(C1)[I2, (−1)q−1−k] with Card(C1) ≡ 0 mod p. The remaining part of (5.6) defines
an element of Ak having support in ISs1α

Z
0IS , hence is zero by [2, Proposition 3.30].

This proves that S1,q−1−k ◦ S1,k is equal to 0 and finishes the proof as the vanishing of
S0,q−1−k ◦ S0,k can be obtain by similar computations (left as an exercise to the reader
and written in full detail in [1, page 191]). �

Corollary 5.5. Let m ∈ Z and n ∈ N. We have the following identities in Ak.

1. For any integer n ≥ 0, we have

S−n,q−1−k ◦ Sm,k =

{
(−1)q−1−kTn+m

k if m ≥ 1 ;

0 if m ≤ 0 .

2. For any integer n ≥ 1, we have

Sn,q−1−k ◦ Sm,k =

{
(−1)q−1−kSn−mk if m ≤ 0 ;

0 if m ≥ 1 .

Proof. This directly comes from the relations proved in Lemmas 5.3 and 5.4. For instance,
if n and m are two nonnegative integers with m ≥ 1, we have

S−n,q−1−k ◦ Sm,k = Tnk ◦ S0,q−1−k ◦ S1,q−1−k ◦ Tm−1
k = Tnk ◦ ((−1)q−1−kTk) ◦ Tm−1

k

= (−1)q−1−kTm+n
k ,

what proves the first case of assertion (1) of the corollary. �

5.2. Classification of simple HS(r)-modules
We will classify all simple right HS(r)-modules as follows : we will first (re)prove that

any such module is of finite dimension at most 2 over Fp, then we will determine all such
modules of fixed dimension over Fp. To do this, we introduce the idempotent elements
e1 and e2 of HS(r) respectively given by the identity maps of Ar and of Aq−1−r via the
diagonal embedding of Ar⊕Aq−1−r into HS(r). They satisfy the usual relations, namely
e1 + e2 = 1 and eiej = δijei for any (i, j) ∈ {1, 2}2, where δij is the Kronecker symbol
(equal to 1 if i = j and to 0 otherwise).

Theorem 5.6. Let r ∈ {1, . . . ,
[
q−1

2

]
} be such that r 6= q − 1− r. Any simple right

HS(r)-module is of finite dimension at most 2 over Fp.
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Proof. LetM be a simple right HS(r)-module. For any i ∈ {1, 2}, denote byMi := M |ei
the image ofM under the action of the idempotent element ei : the vector space defining
M is then decomposed as M1 ⊕M2 and the action of HS(r) on M naturally endows M1

(respectively M2) with a structure of Ar-submodule (resp. of Aq−1−r-submodule) of M .
Assume that M1 is non-zero and pick a non-zero Ar-submodule V1 of M1. The

relations between the elements of HS(r) we proved in the previous section imply that
V := V1 +(V1|Br) is stable under the action of HS(r) onM and is hence equal toM since
M is a simpleHS(r)-module. Applying e1, we obtain that V1 = M1, what proves thatM1

is a simple Ar-module. As Theorem 5.1 asserts that Ar is a commutative Fp-algebra, we
conclude that M1 is either zero or one-dimensional over Fp. A similar argument proves
that the Aq−1−r-module M2 is either zero or one-dimensional over Fp. As M is non-zero
by simplicity, this finally shows that M is of finite dimension equal to 1 or 2 over Fp. �

The proof of Theorem 5.6 suggests that the classification of all simple right HS(r)-
modules heavily relies on the description of the one-dimensional A-modules over Fp.
They are naturally dispatched into two families both parametrized by λ ∈ Fp : the first
one consists in the characters µ1(λ) mapping X to λ and Y to 0, while the second one
is made of characters µ2(λ) mapping X to 0 and Y to λ. Note that the unique common
element to these families is the character µ1(0) = µ2(0) : it will be denoted µ(0).

We will also use the following notations, where k denotes either r or q−1−r : for any
index i ∈ {1, 2} and any parameter λ ∈ F×p , we let µi,k(λ) be the character of Ak defined
by µi(λ) via the isomorphism Ak ' A given by Theorem 5.1. For instance, µ1,r(λ) is the
character of Ar that maps Tr to λ and Sr to 0, while µk(0) is the character of Ak that
maps both Tk and Sk to 0.

Let M be a simple right HS(r)-module. For any i ∈ {1, 2}, we let Mi := M |ei be the
image of M under the action of the idempotent element ei. As we already noticed in the
proof of Theorem 5.6, the vector space M splits as M1 ⊕M2 and the action of HS(r)

on M naturally endows M1 (respectively M2) with a structure of Ar-submodule (resp.
of Aq−1−r-submodule) of M . The end of the proof of Theorem 5.6 moreover shows that
each of M1 and M2 is either reduced to {0} or one-dimensional over Fp.

5.2.1. Classification of one-dimensional simple right HS(r)-modules
Assume that M is one-dimensional over Fp. The observations we just made above

imply the existence of a parameter λ and of an index i ∈ {1, 2} such that we have either
(M1,M2) = (µi,r(λ), 0) or (M1,M2) = (0, µi,q−1−r(λ)). As M1 and M2 play symmetric
roles, we can assume for instance that we have M2 = {0} and M1 = µi,r(λ), and pick a
non-zero vectorm inM1. Seen as elements ofHS(r), the operators Tr and Sr respectively
act on m by the scalars δ1iλ and δ2iλ :{

m|Tr = δ1iλm ,

m|Sr = δ2iλm .

Now recall that Lemma 5.4 shows in particular that Tr = (−1)q−1−r(S0,q−1−r ◦S1,r) and
that Sr = (−1)q−1−r(S1,q−1−r ◦S0,r). As the right action of Br on M maps any element
of M1 into M2 = {0}, we necessarily have{

m|Tr = (−1)q−1−rm|(S0,q−1−r ◦ S1,r) = (−1)q−1−r(m|S1,r)|S0,q−1−r = 0 ,

m|Sr = (−1)q−1−rm|(S1,q−1−r ◦ S0,r) = (−1)q−1−r(m|S0,r)|S1,q−1−r = 0 .
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The comparison of the two expressions we have for m|Tr and for m|Sr shows that λ must
be equal to 0, as either δ1i or δ2i is non-zero. The relations given by Lemma 5.3 and
Corollary 5.5 conversely assure thatMr

1 (0) := µr(0)⊕{0} andMr
2 (0) := {0}⊕µq−1−r(0)

are right HS(r)-modules of dimension 1 over Fp. The following statement summarizes
what we just proved.

Theorem 5.7. Let r ∈ {1, . . . ,
[
q−1

2

]
} be such that r 6= q− 1− r. There are exactly

two simple right HS(r)-modules of dimension 1 over Fp, namely

Mr
1 (0) := µr(0)⊕ {0} and Mr

2 (0) := {0} ⊕ µq−1−r(0) .

5.2.2. Classification of two-dimensional simple right HS(r)-modules
Now assume thatM is of dimension 2 over Fp, what means thatM1 andM2 are both

non-zero and that there exist two indices i, j ∈ {1, 2} and two parameters λi, λj ∈ Fp
satisfyingM1 = µi,r(λi) andM2 = µj,q−1−r(λj). By simplicity ofM , Theorem 5.7 forces
λi and λj to be both non-zero.

Fix a non-zero vector m1 ∈ M1, so that m1|S0,r and m1|S1,r both belong to M2.
They cannot be simultaneously equal to 0 : otherwise, the computations led in the proof
of Theorem 5.7 would imply here that either λi or λj is zero, what is not. Assume for
instance that m1|S0,r is non-zero : as it lies in M2, Lemma 5.3 assures that we have

δ2jλj(m1|S0,r) = (m1|S0,r)|Sq−1−r = m1|(Sq−1−r ◦ S0,r) = 0 .

As λj is non-zero, this chain of equalities proves that δ2j = 0, i.e. that j = 1. The same
argument with Tq−1−r replacing Sq−1−r proves that

δ1jλj(m1|S0,r) = m1|(Tq−1−r ◦ S0,r) = m1|S−1,r = (m1|Sr)|S0,r = δi2λi(m1|S0,r) ,

what implies that δ1jλj = δi2λi. Knowing that δ1jλj = λj is non-zero, this proves that
we necessarily have i = 2 and λj = λi. Consequently, the non-vanishing of m1|S0,r

leads to the existence of a non-zero parameter λ ∈ F×p satisfying M1 = µ2,r(λ) and
M2 = µ1,q−1−r(λ). One similarly checks that the non-vanishing of m1|S1,r implies the
existence of a non-zero parameter λ ∈ F×p satisfyingM1 = µ1,r(λ) andM2 = µ2,q−1−r(λ).

Conversely, let λ ∈ F×p be a non-zero parameter and set the following relations on the
vector spaces Mr

12(λ) := Fpm1 ⊕ Fpm2 and Mr
21(λ) := Fpn1 ⊕ Fpn2 :

m1|S0,r = 0 ;

m1|S1,r = m2 ;

m1|Tr = λm1 ;

m1|Sr = 0 ;

m1|Tq−1−r = 0 ;

m1|Sq−1−r = 0 ;

m1|S0,q−1−r = 0 ;

m1|S1,q−1−r = 0 ;

and



n1|S0,r = n2 ;

n1|S1,r = 0 ;

n1|Tr = 0 ;

n1|Sr = λn1 ;

n1|Tq−1−r = 0 ;

n1|Sq−1−r = 0 ;

n1|S0,q−1−r = 0 ;

n1|S1,q−1−r = 0 .

Recall that the right action of HS(r) we consider here satisfies the following cancellation
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relations10 : {
ArBq−1−r = BrAr = Bq−1−rAq−1−r = Aq−1−rBr = 0 ;

ArAq−1−r = BrBr = Bq−1−rBq−1−r = Aq−1−rAr = 0 .

Together with the relations given by Lemma 5.3 and Corollary 5.5, these relations assure
that Mr

12(λ) and Mr
21(λ) are both stable under the right action of HS(r). One can for

instance check that the following relations hold in Mr
12(λ) :

m2|Tq−1−r = m1|(Tq−1−r ◦ S1,r) = 0 ;

m2|Sq−1−r = m1|(Sq−1−r ◦ S1,r) = m1|(S1,r ◦ Tr) = λm2 ;

m2|S1,q−1−r = m1|(S1,q−1−r ◦ S1,r) = 0 ;

m2|S0,q−1−r = m1|(S0,q−1−r ◦ S1,r) = (−1)q−1−rm1|Tr = (−1)q−1−rλm1 ;

m2|Tr = 0 ;

m2|Sr = 0 ;

m2|S1,r = 0 ;

m2|S0,r = 0 .

These computations moreover prove that the vector spaces Mr
12(λ) and Mr

21(λ) respec-
tively split as µ1,r(λ) ⊕ µ2,q−1−r(λ) and µ2,r(λ) ⊕ µ1,q−1−r(λ). By Theorem 5.7, this
shows thatMr

12(λ) andMr
21(λ) are simple right HS(r)-modules. Moreover, a direct com-

putation (by contradiction) shows that these modules are pairwise non-isomorphic. The
next statement summarizes what we just proved.

Theorem 5.8. Let r ∈ {1, . . . ,
[
q−1

2

]
} be such that r 6= q − 1 − r and let M be

a simple right HS(r)-module of dimension 2 over Fp. There exists a unique parameter
λ ∈ F×p such that M is isomorphic to one, and only one, of the two following simple right
HS(r)-modules :

Mr
12(λ) := µ1,r(λ)⊕ µ2,q−1−r(λ) or Mr

21(λ) := µ2,r(λ)⊕ µ1,q−1−r(λ) .

Gathering Theorems 5.6, 5.7 and 5.8 finally leads to the following classification result
for simple right HS(r)-modules.

Corollary 5.9. Let r ∈ {1, . . . ,
[
q−1

2

]
} be such that r 6= q − 1 − r. Any simple

right HS(r)-module is isomorphic to one, and only one, element of the following list :

• the character Mr
1 (0);

• the character Mr
2 (0);

• the two-dimensional module Mr
12(λ) for a unique parameter λ ∈ F×p ;

• the two-dimensional module Mr
21(λ) for a unique parameter λ ∈ F×p .

10If one wants to write these relations using the composition law, one has to reverse them (as we did
any time we needed to use the composition law) since we consider a right action, which is the one that
naturally appears when one works with modules coming from spaces of invariant vectors. This notation
is extremely convenient in the regular case, as it allows us to compute the action of HS(r) by multiplying
matrices in the usual way.



32 R. Abdellatif

Remark 5.10. For the sake of completeness, let us mention here that it is pointless
to define Mr

12(0) or Mr
21(0) as these two objects would just be the direct sum of the

characters Mr
1 (0) and Mr

2 (0).

6. The exceptional Iwahori-Hecke algebra and its simple modules

6.1. Introduction of the exceptional Iwahori-Hecke algebra H?
S

When p is odd, the decomposition of H1
S given by Theorem 3.1 makes appear an

algebra that does fit neither into the regular case nor into the Iwahori case, namely
EndFp[GS ](indGS

IS
(ω

q−1
2 )). This phenomenon has no analogue in the GL2 case as it reflects

the existence of a smooth quadratic character of IS that cannot be extended to a smooth
character of GS ; this cannot happen in the GL2 case as such a character would factorize
through the determinant map, hence extend to GL2(F ) [21, Section 2.1.1].

To understand the structure of this new algebra and of its simple right modules, we
mimic what we did in the Iwahori case by defining the exceptional Iwahori-Hecke algebra
H?S as the Fp-algebra generated by the family (T ?w )w∈WS

satisfying the following braid
and quadratic relations.

• Braid relations : if w,w′ ∈WS satisfy `(ww′) = `(w) + `(w′), then T ?ww′ = T ?wT ?w′ .

• Quadratic relations : for any i ∈ {0, 1},
(
T ?si
)2

= 0.

As in the Iwahori case, one can check that H?S is a free Fp-module having (T ?w )w∈WS
as

a basis. Moreover, the proofs of Theorems 4.2 and 4.3 can be directly transposed to this
setting, as it is for instance written in [1, Théorème 6.3.42], to give the following result.

Theorem 6.1. Assume that p is odd.

1. The Fp-algebra H?S is generated by the operators T ?0 := T ?s0 and T ?1 := T ?s1 .

2. The center of H?S is equal to the polynomial Fp-subalgebra Fp[(T ?0 − T ?1 )2].

The introduction of H?S is motivated by the following statement, whose proof is the
exact analogue for r = q−1

2 of the argument leading to Theorem 3.3. Note here that
compact Frobenius reciprocity induces an isomorphism from EndFp[GS ](indGS

IS
(ω

q−1
2 )) to

the (IS , ω
q−1
2 )-isotypical component of indGS

IS
(ω

q−1
2 ).

Theorem 6.2. Let f0, f1 be the elements of EndFp[GS ](indGS

IS
(ω

q−1
2 )) respectively

corresponding by compact Frobenius reciprocity to the elements ψ0, ψ1 of the (IS , ω
q−1
2 )-

isotypical component of indGS

IS
(ω

q−1
2 ) defined as follows : for i ∈ {0, 1}, ψi has support

equal to ISsiIS and value 1 at si. There exists a unique homomorphism of Fp-algebras

EndFp[GS ](indGS

IS
(ω

q−1
2 ))→ H?S

that maps ψ0 to T ?0 and ψ1 to T ?1 , and this homomorphism is actually an isomorphism
of Fp-algebras.

This motivates the study of simple right H?S-modules (that are again of finite dimen-
sion over Fp via Remark 2.7) to complete the classification of simple right H1

S-modules.
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6.2. Classification of simple H?
S-modules

The first assertion of Theorem 6.1 implies that any one-dimensional H?S-module is
completely determined by its values on T ?0 and T ?1 , which must be equal to zero because
of the quadratic relations satisfied by these operators. This proves the following result.

Lemma 6.3. There exists a unique one-dimensional right H?S-module, namely the
one mapping both T ?0 and T ?1 to 0. We denote it by M?

1 (0).

To describe the simple right H?S-modules of higher dimension over Fp, we introduce
an analogue of the standard HS-modules for the exceptional case.

Definition 6.4. For any λ ∈ Fp, we define the standard H?S-module M?
2 (λ) with

parameter λ as the two-dimensional H?S-module Fpx⊕ Fpy endowed with the actions of
T ?0 and T ?1 respectively given by the following matrices in the basis {x, y} :(

0 0

1 0

)
and

(
0 λ

0 0

)
.

Any basis {x, y} as above is called an adapted basis for the module M?
2 (λ).

Remark 6.5. As in the Iwahori case (Remark 4.4), a direct computation shows
that the central element −(T ?0 −T ?1 )2 acts onM?

2 (λ) by the scalar λ, hence two standard
H?S-modules with distinct parameters cannot be isomorphic.

The next result establishes irreducibility properties of standard H?S-modules.

Theorem 6.6. Let λ ∈ Fp.

1. The standard H?S-module M?
2 (λ) is irreducible if, and only if, λ is non-zero.

2. The standard H?S-module M?
2 (0) is indecomposable of length 2, and is hence a non-

trivial extension of the H?S-character M?
1 (0) by itself.

Proof. If the H?S-module M?
2 (λ) is reducible, Lemma 6.3 implies that M?

2 (λ) contains
the H?S-character M?

1 (0). Let {x, y} be an adapted basis for M?
2 (λ) and pick a non-zero

vector v = ax + by that generates an H?S-submodule isomorphic to M?
1 (0). As T ?0 and

T ?1 both act on v by 0, we deduce from Definition 6.4 that a = 0 (as v|T ?0 = 0), hence
λb = 0 (as v|T ?1 = 0). As v is non-zero, b cannot be null and λ is hence equal to zero.
Conversely, if {x, y} is an adapted basis for M?

2 (0), the H?S-submodule generated by y
is isomorphic to M?

1 (0), what ends the proof of the first statement of Theorem 6.6. The
H?S-module M?

2 (0) is nevertheless indecomposable as it is generated by the first vector
of any adapted basis, what ends the proof of Theorem 6.6 thanks to Lemma 6.3. �

We close this section with an analogue of Theorem 4.7 in the exceptional case.

Theorem 6.7. Up to isomorphism, any (finite-dimensional) simple right H?S-
module is either the H?S-character M?

1 (0), or a standard H?S-module with non-zero pa-
rameter. Moreover, there is no non-trivial isomorphism between two such modules.

Proof. Remark 6.5 assures that two standard H?S-modules with distinct parameters can-
not be isomorphic, and a standard H?S-module cannot be isomorphic to M?

1 (0) as they
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have different dimensions over Fp. By Theorem 6.6 and Lemma 6.3, we are hence re-
duced to prove that any simple right H?S-module which is not a character contains some
standard H?S-module with a non-zero parameter.

Let M be a simple right H?S-module which is not a character and let λ ∈ Fp be the
scalar that defines the action of the central element −(T ?0 − T ?1 )2 ∈ H?S on the finite-
dimensional Fp-vector space M . The action of T ?1 on M is not given by a homothety :
otherwise, any eigenvector of T ?0 would generate an H?S-submodule of M of dimension 1,
what contradicts the simplicity of M as M is not one-dimensional. Fix a non-zero vector
v ∈ ker T ?1 , what makes sense as (T ?1 )2 = 0 : the simplicity of M then implies that the
family {v, v|T ?0 } is linearly independant over Fp. As in the proof of Theorem 4.6, a direct
computation shows that {v, v|T ?0 } generates a two-dimensional H?S-module and that the
action of T ?0 and T ?1 in this basis are respectively given by the following matrices :(

0 0

1 0

)
and

(
0 λ

0 0

)
.

This means that {v, v|T ?0 } generates an H?S-submodule of M isomorphic toM?
2 (λ), what

shows thatM 'M?
2 (λ) by simplicity ofM . Theorem 6.6 then implies that λ is non-zero,

what finishes the proof of Theorem 6.7. �

7. Pro-p-Iwahori-Hecke modules and mod p representations of SL2(F )

We start with a reformulation of Theorem 3.1 based on Theorems 3.3 and 6.2.

Corollary 7.1. The Fp-algebra H1
S decomposes as follows :

1. when p is odd, we have

(7.1) H1
S ' HS ⊕H?S

⊕
0<r< q−1

2

HS(r) ;

2. when p = 2, we have

(7.2) H1
S ' HS ⊕

⊕
0<r< q−1

2

HS(r) .

Any right H1
S-module then defines by restriction a right HS(r)-module for any pa-

rameter r ∈ {0, . . .
[
q−1

2

]
}. Starting from a simple right H1

S-module, there is exactly one
value of the parameter r for which the HS(r)-module we get is non-zero. This leads to
the following definition.

Definition 7.2. Let r ∈ {0, . . .
[
q−1

2

]
} be a parameter.

1. A simple right H1
S-module comes from a simple HS(r)-module when the unique

non-zero module it defines via decompositions (7.1) or (7.2) is an HS(r)-module.

2. A simple right H1
S-module is :

• put on the component k = 0 when it comes from a simple right HS-module.
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• put on the component k = q−1
2 when it comes from a simple right H?S-module

via the decomposition (7.1), assuming that p is odd.

• put on the component k = r with r 6∈ {0, q−1
2 } when it comes from a simple

right HS(r)-module.

7.1. The Iwahori case
Recall that we still assume the choices made in this paper to be done in a compatible

way with those of [2]. Gathering Theorems 4.18 and 4.21, Remarks 4.19 and 4.24 and
the results of [2, Sections 2.4 and 4.1], we directly obtain the two following propositions.
Note that while Proposition 7.3 deals with non-supercuspidal representations, and is thus
valid for arbitrary F , Proposition 7.4 is about supercuspidal representations, and hence
only holds in the case F = Qp.

Proposition 7.3. Recall that StS denotes the Steinberg representation of SL2(F ).

1. The H1
S-module carried by 1IS(1) is put on the component k = 0 and isomorphic to

the character MS
1 (0).

2. The H1
S-module carried by StIS(1)

S is put on the component k = 0 and isomorphic
to the character MS

1 (−1).

3. For any non-zero scalar λ ∈ F×p , the H1
S-module carried by

(
IndGS

BS
(µλ)

)IS(1)

is put

on the component k = 0 and isomorphic to the standard module MS
2 (λ−1).

Proposition 7.4. Assume that F = Qp.

1. The H1
S-module carried by πIS(1)

0 is isomorphic to the character MS
1 (−1, 0) put on

the component k = 0.

2. The H1
S-module carried by πIS(1)

p−1 is isomorphic to the character MS
1 (0,−1) put on

the component k = 0.

7.2. The regular case
Fix a parameter r ∈ {1, . . .

[
q−1

2

]
} satisfying r 6= q−1

2 when p is odd and λ ∈ F×p .
Thanks to [2, Proposition 2.9 and Lemme 2.10], we know that IndGS

BS
(µλ) has exactly

two non-zero IS-isotypical components, namely those attached to ωr and to ωq−1−r.
The H1

S-module carried by IndGS

BS
(µλ) hence comes from an HS(r)-module and a direct

computation left to the reader11 proves the following result.

Proposition 7.5. Let λ ∈ F×p be a non-zero scalar and let r ∈ {1 . . .
[
q−1

2

]
} be a

parameter satisfying r 6= q−1
2 when p is odd.

1. The H1
S-module carried by

(
IndGS

BS
(µλω

r)
)IS(1)

is isomorphic to M12(λ−1) put on
the component k = r.

2. The H1
S-module carried by

(
IndGS

BS
(µλω

q−1−r)
)IS(1)

is isomorphic to M21(λ−1) put
on the component k = r.

11But extensively done in [1, Appendice 7.6].



36 R. Abdellatif

When F = Qp, [2, Section 4.1] gives a complete description of supercuspidal repre-
sentations of GS over Fp. In particular, the first part of [2, Proposition 4.11] implies that
the structure of one-dimensional right H1

S-module carried by πIS(1)
r and π

IS(1)
p−1−r comes

from an HS(r)-module respectively defined by a non-trivial action of Ar and Ap−1−r.
We hence have the following result.

Proposition 7.6. We keep the notations and assumptions of Proposition 7.5 and
we furthermore assume that F = Qp.

1. The H1
S-module carried by πIS(1)

r is isomorphic to the character Mr
1 (0) put on the

component k = r.

2. The H1
S-module carried by πIS(1)

p−1−r is isomorphic to the character Mr
2 (0) put on the

component k = r.

7.3. The exceptional case
Assume that p is odd. The next result shows how the simple right H1

S-modules that
are left can be realized as spaces of IS(1)-invariant vectors of some irreducible smooth
representations of GS over Fp.

Proposition 7.7. Assume that p is odd.

1. For any non-zero scalar λ ∈ F×p , the H1
S-module carried by

(
IndGS

BS
(µλω

q−1
2 )
)IS(1)

is isomorphic to the standard H?S-module M?
2 (λ−1) put on the component k = q−1

2 .

2. Assuming that F = Qp, the H1
S-module carried by πIS(1)

p−1
2

is then isomorphic to the

character M?
1 (0) put on the component k = p−1

2 .

Proof. By compact Frobenius reciprocity and [2, Lemme 2.10 and Proposition 4.11], the
H1
S-modules we consider are put on the component k = q−1

2 . By [2, Proposition 4.7], we
know that πIS(1)

p−1
2

is one-dimensional over Fp so the second part of the proposition directly
comes from Lemma 6.3. The first part of the proposition follows from the argument we
used in the Iwahori case (Section 4.4.1) and is left as an exercise to the reader. �

7.4. Application to the functor of IS(1)-invariants
As in the Iwahori case (Definition 4.22), the formulation of our correspondence re-

quires the introduction of a suitable notion of supersingular module.

Definition 7.8. A simple right H1
S-module is called supersingular if it is not iso-

morphic to a subquotient of some (IndGS

BS
(η))IS(1) for a smooth character η : BS → F×p .

Remark 7.9. This definition of supersingularity, which fits to the « historical » one
(see also [21, Definition 5.1]) and is motivated by the representation theory of SL2(F ),
is equivalent to the other definitions that appeared later in the litterature. For instance,
Vignéras defined supersingular modules as simple modules whose central character is
null, i.e. vanishes on all central elements of positive length [22, Definitions 3 and 4]. It
is straightforward to check that for SL2(F ), these modules are exactly those we defined
as supersingular.
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In a recent work [26, Definition 6.10], Vignéras gave another definition of supersin-
gularity and proved that supersingular modules are all simple modules that contain a
supersingular character of the affine Iwahori-Hecke algebra [26, Corollary 6.13]. As no-
ticed at the beginning of this paper, we are in a setting where the (pro-p-)Iwahori-Hecke
algebra coincides with its affine subalgebra, hence supersingular modules are necessary
one-dimensional. As [26, Theorem 6.15] asserts that supersingular characters are those
whose restriction to each « irreducible component » (see [26, bottom of page 26] for the
definition) is neither the trivial character nor the sign character, one can immediately
check that for SL2(F ), Definition 7.8 is equivalent to [26, Definition 6.10].

The comparison of the statements we proved so far with the classification of irreducible
smooth representations of GS over Fp given in [2] directly leads to the following result.

Corollary 7.10. 1. The functor of IS(1)-invariants defines a bijection :
isomorphism classes of

non-supercuspidal irreducible
smooth representations
of SL2(F ) over Fp

←→


isomorphism classes of
non-supersingular

simple right H1
S-modules

 .

2. When F = Qp, the previous bijection extends to a bijection :{
isomorphism classes of irreducible

smooth representations of SL2(Qp) over Fp

}
←→

{
isomorphism classes of
simple right H1

S-modules

}
.

Remark 7.11. In a recent work [10, Theorem 4.6 and Corollary 4.7], Kozioł proved
that for F = Qp with p odd, the bijection given in Corollary 7.10 comes from an equiv-
alence of categories. Note that [10, Theorem 4.6] and [14, Theorem 1.3] also prove that
such an equivalence fails if we do not assume F = Qp.
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