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Abstract

In this note for p > 5 we calculate the dimensions of Ext1SL2(Qp)
(τ, σ) for any two irreducible super-

singular representations τ and σ of SL2(Qp).

1 Introduction

In this note we calculate the space of extensions of supersingular representations of SL2(Qp) for p > 5.
The dimensions of the space of extensions between irreducible supersingular representations of GL2(Qp) are
calculated by Paškūnas in [Paš10]. Understanding extensions between irreducible smooth representations
play a crucial role in Paškūnas work on the image of Colmez Montreal functor in (see [Paš13]). We hope
that these results have similar application to mod p and p-adic local Langlands correspondence for SL2(Qp).

Let G be the group GL2(Qp), K be the maximal compact subgroup GL2(Zp) and Z be the center of G.
We denote by I(1) the pro-p Iwahori subgroup of G. We denote by GS the special linear group SL2(Qp). For
any subgroup H of GL2(Qp) we denote by HS the subgroup H ∩ SL2(Qp). All representations in this note
are defined over vector spaces over F̄p. Let σ be an irreducible smooth representation of K and σ extends

uniquely as a representation of KZ such that p ∈ Z acts trivially. The Hecke algebra EndG(indGKZ σ) is

isomorphic to F̄p[T ]. For any constant λ in F×p let µλ be the unramified character of Z such that µλ(p) = λ.
Let π(σ, µλ) be the representation

indGKZ σ

T (indGKZ σ)
⊗ (µλ ◦ det).

The representations π(σ, µλ) are irreducible (see [Bre03]) and are called supersingular representations
in the terminology of Barthel–Livné.

Let σr be the representation SymrF̄p of GL2(Fp). We consider σr as a representation of K by inflation.
The K-socle of π(σr, µλ) is a direct sum of two irreducible smooth representations σr and σp−1−r. Let π0,r

and π1,r be the GS representations generated by σ
I(1)
r and σ

I(1)
p−1−r. The representations π0,r and π1,r are

irreducible supersingular representations of GS and

resGS
π(σr, µλ) ' π0,r ⊕ π1,r.

Any irreducible supersingular representation of GS is isomorphic to πi,r for some r such that 0 ≤ r ≤ p− 1
and i ∈ {0, 1}. Moreover the only isomorphisms between πi,r are π0,r ' π1,p−1−r and π1,r ' π0,p−1−r (see
[Abd14]). Our main theorem on extensions of supersingular representations of GS is:

Theorem 1.1. Let p ≥ 5 and 0 ≤ r ≤ (p − 1)/2. For any irreducible supersingular representation τ of
GS the space Ext1

GS
(τ, πi,r) is non-zero if and only if τ ' πj,r for some j ∈ {0, 1}. If 0 ≤ r < (p − 1)/2

then dimF̄p
Ext1

GS
(πi,r, πj,r) = 2 for i 6= j and dimF̄p

Ext1
GS

(πi,r, πi,r) = 1. For r = (p − 1)/2 we have

dimF̄p
Ext1

GS
(π0,r, π0,r) = 3.

We briefly explain the method of proof. We essentially follow [Paš10]. The functor sending a smooth
representation to its I(1)S-invariants induces an equivalence of categories of smooth representations of GS
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generated by I(1)S-invariants and the module category of the pro p-Iwahori Hecke algebra (see [Koz16,
Theorem 5.2]). We use the Ext spectral sequence thus obtained by this equivalence of categories to calculate
Ext1

GS
. Extensions of pro p-Iwahori Hecke algebra modules are calculated from resolutions of Hecke modules

due to Schneider and Ollivier. We crucially use results from work of Paškūnas [Paš10]. We first obtain lower
bounds on the dimensions of Ext1

GS
spaces using the spectral sequence and then obtain upper bounds using

Paškūnas results on Ext1
K(σ, π(σ, µλ)).

Acknowledgements I thank Eknath Ghate for showing the fundamental paper [Paš10] and for his
interest in this work and discussions on the role of extensions in mod p-Langlands. I want to thank Radhika
Ganapathy for various discussions on mod p representations and for her mod p seminar at the Tata Institute.
After posting this paper on ArXiv the author has learnt that Ramla Abdellatif has independently obtained
these results.

2 Pro-p Iwahori Hecke algebra

Let B be the Borel subgroup consisting of invertible upper triangular matrices, U be the unipotent radical of
B and T be the maximal torus consisting of diagonal matrices. We denote by Ū the unipotent radical of B̄
the Borel subgroup consisting of invertible lower triangular matrices. We denote by I the standard Iwahori-
subgroup of G. Let I(1) be the pro-p Iwahori subgroup of G and I(1)S be the pro-p-Iwahori subgroup of GS .
We note that I(1)S(Z ∩ I(1)) is equal to I(1). Let H be the pro-p Iwahori–Hecke algebra EndG(indGS

I(1)S
id).

Let RepGS
and Rep

I(1)S
GS

be the category of smooth representations of GS and its full subcategory consisting
of those smooth representations generated by I(1)S-invariant vectors respectively. We denote by ModH the
category of modules over the ring H. We have two functors

I : Rep
I(1)S
GS

→ ModH

I(π) = πI(1)S

and

T : ModH → Rep
I(1)S
GS

T (M) = M ⊗H indGS

I(1)S
id .

From [Koz16, Theorem 5.2] the functors T and I are quasi-inverse to each other. Let σ and τ be any two
smooth representations of GS and σ1 be the GS subrepresentation of σ generated by I(1)S-invariants of σ.
We have

HomG(τ, σ) = HomG(τ, σ1) = HomH(I(τ), I(σ1)) = HomH(I(τ), I(σ)). (1)

We get a Grothendieck spectral sequence with Eij2 equal to Exti(I(τ),RjI(σ)) such that

Exti(I(τ),RjI(σ))⇒ Exti+jG (τ, σ). (2)

The 5-term exact sequence associated to the above spectral sequence gives the following exact sequence:

0→Ext1
H(I(τ), I(σ))

i−→ Ext1
G(τ, σ)

δ−→ (3)

HomH(I(τ),R1I(σ))→ Ext2
H(I(τ), I(σ))→ Ext2

G(τ, σ)

for all τ such that τ =< GSτ
I(1) >. In particular we apply these results when τ and σ are irreducible

supersingular representations of GS . We first recall the structure of the ring H, its modules M(i, r) = π
I(1)
i,r

for i in {0, 1} and 0 ≤ r ≤ p− 1. The H module M(i, r) is a character and we first calculate the dimensions
of the spaces Ext1

H(M(i, r),M(j, s)).

Let T 0
S and T 1

S be the maximal compact subgroup of TS and its maximal pro-p-subgroup. We denote by

s0, s1 and θ the matrices

(
0 1
−1 0

)
,

(
0 −p−1

p 0

)
and

(
p 0
0 p−1

)
respectively. Let N(TS) be the normaliser

2



of the torus TS and W0 be the Weyl group N(TS)/TS . The extended Weyl group W = θZ
∐
s0θ

Z sits into
an exact sequence of the form

0→ Ω :=
T 0
S

T 1
S

→ W̃ :=
N(TS)

T 1
S

→W =
N(TS)

T 0
S

→ 0.

The length function l on W , given by l(θi) = |2i| and l(s0θ
i) = |1 − 2i|, extends to a function on W̃ such

that l(Ω) = 0. Let Tw be the element CharI(1)wI(1) for all w ∈ W̃ . We denote by e1 the element
∑
w∈Ω Tw.

The functions Tw span H and the relations in H are given by

TwTv = Twv whenever l(v) + l(w) = l(vw),

T 2
si = −e1Tsi .

The pro-p-Iwahori Hecke algebra is generated by TwTsi for w in Ω. For any character χ of Ω let eχ be the
element

∑
w∈Ω χ

−1(w)Tw. Let γ be a W0 orbit of the characters χ and eγ be the element
∑
χ∈γ eχ. The

elements {eγ ; γ ∈ Ω̂/W0} are central idempotents in the ring H and we have

H =
⊕

Ω̂/W0

Heγ . (4)

For the group GS , we know that H is the affine Hecke algebra. The characters of affine Hecke algebra are
described in a simple manner we recall this for GS . Let I be a subset of {s0, s1} and WI be the subgroup of
W generated by elements of I and W∅ is trivial group. The characters of H are parametrised by pairs (λ, I)
where λ is a character of Ω and I ⊂ Sλ. For such a pair (λ, I) the character χλ,I associated to it is given by

χλ,I(Twt) = 0 for all w ∈W\WI and for all t ∈ Ω, (5)

χλ,I(Twt) = λ(t)(−1)l(w) for all w ∈WI and for all t ∈ Ω. (6)

If λ is nontrivial then we have χλ,∅(Tt) = λ(t), for all t ∈ Ω and χλ,∅(Twt) = 0 for all w 6= id and t ∈ Ω.

We denote by χr,∅ the character χx 7→xr,∅. From the above description we get that M(0, r) = χr,∅ and
M(1, r) = χp−1−r,∅ for r /∈ {0, p−1}. If r ∈ {0, p−1} then [OS16, Proposition 3.9] says that χid,∅ and χid,S are
not supersingular characters. This shows that M(i, r) is either χid,I or χid,J , for r ∈ {0, p−1}, where I = {s0}
and J = {s1}. Since the element Ts0 belongs to pro-p Iwahori–Hecke algebra of G and using the presentation
in [BP12, Corollary 6.4] we obtain that M(1, 0) = χid,I and M(0, 0) = χid,J . Similarly M(1, p− 1) is given
by the character χid,J and M(0, p−1) is given by the character χid,I . Let 0 ≤ r, s ≤ (p−1)/2 then (4) shows
that

Ext1
H(M(i, r),M(j, s)) = 0 (7)

for r 6= s.

2.1 Resolutions of Hecke modules

In order to calculate extensions between the characters M(i, r), we use resolutions constructed by Schneider
and Ollivier for H. Let X be the Bruhat–Tits tree of GS and let A(TS) be the standard apartment associated
to TS . We fix an edge E and vertices v0 and v1 contained in E such that the GS-stabiliser of v0 is KS .
For any facet F of X we denote by GF the Zp-group scheme with generic fibre SL2 and GF (Zp) is the
G-stabiliser of F . We denote by IF the subgroup of GF (Zp) whose elements under mod- p reduction of
GF (Zp) belong to the Fp-points of the unipotent radical of GF ×Fp. We denote by HF the finite subalgebra
of H defined as

HF := EndGF (Zp)(ind
GF (Zp)
IF

(id)).

In particular HE is a semi-simple algebra.

For any H-module m the construction of Schneider and Ollivier [OS14, Theorem 3.12, (6.4)] gives us a
(H,H)-exact resolution

0→ H⊗HE
m

δ1−→ (H⊗Hv0
m)⊕ (H⊗Hv1

m)
δ0−→ m→ 0. (8)
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Using the resolution (8) and the observation that HE is semi-simple for p 6= 2 we get that

0→ HomH(m, n)→
⊕
v0,v1

HomHvi
(m, n)→ HomHE

(m, n)
δ−→ Ext1

H(m, n)→
⊕
v0,v1

Ext1
Hvi

(m, n)→ 0 (9)

Note that we have an isomorphism of algebras

Hv0 ' Hv1 ' EndSL2(Fp)(ind
SL2(Fp)

N(Fp) id).

The above isomorphism is not a canonical isomorphism. Let K0 and K1 be the compact open subgroups
K ∩GS and KΠ ∩GS respectively.

2.2 Extensions of supersingular modules over pro-p Iwahori–Hecke algebra.

The Hecke algebra Hvi is isomorphic to EndKi
(indKi

I(1) id). The Hecke algebra Hvi is generated by Tt and

Tsi for t ∈ Ω. The relations among them are given by

Tt1Tt2 = Tt1t2 ,

TtTsi = Ttsi = Tsit−1 = TsiTt−1 ,

T 2
si = −e1Tsi

where e1 =
∑
t∈Ω Tt.

Lemma 2.1. Let 0 < r < (p − 1)/2 the space Ext1
H(M(i, r),M(j, s)) is non-zero if and only if i 6= j and

has dimension 2 when i 6= j. If r = (p− 1)/2 then the space Ext1
H(M(i, r),M(i, r)) has dimension 2.

Proof. Since r 6= 0 the characters M(0, r) and M(1, r) are isomorphic to χr,∅ and χp−1−r,∅ respectively
(see (5)). Let Ec be a 2-dimensional F̄p module F̄pe1 ⊕ F̄pe2 and F̄p[Ω] acts on E by Tte0 = tre0 and
Tte1 = tp−1−re1. We set Tsie0 = 0 and Tsie1 = ce0 for some c 6= 0. This makes E a Hvi module and is a
non-trivial extension

0→ χr,∅ → E → χp−1−r,∅ → 0.

Let E be a Hvi -extension of W := χs,∅ by V := χr,∅ i.e, we have an exact sequence

0→ V → E
f−→W → 0.

There exists a F̄p[Ω]-equivariant section s : W → E of f . Let V ′ be the image of this section. Now
E = V ⊕ V ′. The action of Tsi is trivial on V and observe that f(Tsi(V

′)) = Tsi(f(V ′)) = 0. If E is
nontrivial then Tsi(V

′) = V . This implies that r + s = p − 1 and hence E is isomorphic to Ec for some
c 6= 0. This shows that the space of Hvi extensions of W by V is one dimensional if r + s = p− 1 and zero
otherwise. Now consider the exact sequence (9) when m is M(i, r) and n is M(j, r). For i = j the map δ in
zero (9) hence the space Ext1

H(M(i, r),M(i, r)) is trivial for 0 < r < (p − 1)/2 and has dimension 2 when
r = (p− 1)/2. When i 6= j the Hom spaces in (9) are all trivial. This shows that the dimension of the space
Ext1

H(M(i, r),M(i, r)) is 2 from our calculations.

Lemma 2.2. The space of extensions Ext1
H(M(i, 0),M(j, 0)) is trivial for i = j and has dimension 1 for

i 6= j.

Proof. The algebra e1Hvi is semi-simple algebra and hence we get that

ExtiHvi
(χid,S , χid,S′) = 0 (10)

for all i > 0 and for subsets S and S′ of {s0, s1}. Now consider the exact sequence (9) when m is M(i, r)
and n is M(j, r). For i = j the map δ in (9) is zero hence the space Ext1

H(M(i, r),M(i, r)) is trivial. When
i 6= j the first two Hom spaces in (9) are trivial. The space HomHE

(m, n) has dimension one. This shows
that the dimension of the space Ext1

H(M(i, r),M(i, r)) is 1 for i 6= j.
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3 The Hecke module R1I(πi,r).

Paškūnas calculated the cohomology groups R1I(πi,r) and we now recall his results. Let π̃r be the super-
singular representation π(σr, µ1) of G. Recall that the K-socle of π̃r is isomorphic to σr ⊕ σp−1−r and the

space of I(1) invariants has a basis (v0,v1) where v0 and v1 belong to σ
Np
r and σ

Np

p−1−r respectively. Let I+

and I− be the groups I ∩ U and I ∩ Ū respectively. Consider the spaces

M0 :=< I+θn v1; n ≥ 0 > and M1 :=< I+θn v2; n ≥ 0 >

and let Π be the matrix

(
0 1
p 0

)
which normalizes I and I(1). We denote by π0 and π1 the spaces M0 +ΠM1

and M1 + ΠM0. Let G0 be subgroup of G consisting of elements with integral discriminant. Let G+ be the
group ZG0. We denote by Z1 the group I(1) ∩ Z.

Proposition 3.1 (Paškūnas). The spaces π0 and π1 are G+ stable. The space π̃r is the direct sum of the
representations π1 and π0 as G+ representations and hence πi,r is isomorphic to πi as GS representations
for i ∈ {0, 1}. If r be an integer such that 0 < r < (p− 1)/2 then the Hecke module R1I(πi,r) is isomorphic
to I(πi,r)⊕ I(πi,r). In the Iwahori case (i.e, r = 0) the Hecke module RI(π0,0)⊕RI(π1,0) is isomorphic to
I(π0,0)⊕2 ⊕ I(π0,0)⊕2.

Proof. The first part follows from [Paš10, Corollary 6.5]. The second part follows from [Paš10, Proposition
10.5, Theorem 10.7 and equation (49)].

Corollary 3.2. Let τ be an irreducible supersingular representation of GS. If the space of extensions
Ext1

GS
(τ, πi,r) is non-trivial then τ ' πj,r for some j ∈ {0, 1}.

Proof. This follows from (3), (7) and Proposition 3.1.

Corollary 3.3. Let 0 < r < (p− 1)/2 and i 6= j then the dimensions of the space Ext1
GS

(πi,r, πj,r) is 2.

Proof. Observe that for 0 < r < (p− 1)/2 the modules M(i, r) and M(j, s) are not isomorphic. Now using
the exact sequence (3) and Proposition 3.1 we get that

Ext1
GS

(πi,r, πj,r) ' Ext1
H(M(i, r),M(j, r)).

The corollary follows from the Lemma 2.1.

Remark 3.4. The results of Corollary 3.3 remain valid for r = 0 but we prove this later. It is interesting
to note that for 0 < r < (p − 1)/2 and i 6= j any extension E of πi,r by πj,r for i 6= j is generated by its
I(1)S invariants, i.e, E =< GSE

I(1)S >.

4 Calculation of degree one self extensions.

Let us first consider the case when 0 < r ≤ (p−1)/2. In order to determine the dimensions of Ext1(πi,r, πi,r)
we first show that the map

Ext1
GS

(πi,r, πi,r)→ HomH(I(πi,r),R1I(πi,r))) (11)

is non-zero. Explicitly the above map takes an extension E, with 0 → πi,r → E → πi,r → 0, to the delta

map in the associated long exact sequence, given by: I(πi,r)
δE−−→ R1I(πi,r). Note that the dimension of

EI(1) is one if and only if δE 6= 0.

Lemma 4.1. For 0 < r ≤ (p− 1)/2 then map (11) is non-zero.
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Proof. For 0 < r ≤ (p − 1)/2 there exists a self extension E of π̃r such that the map I(π̃r)
δE−−→ R1I(π̃r) is

non-zero. We fix an extension E such that δE 6= 0. Since δE is a Hecke-equivariant map and I(π̃r) is an
irreducible Hecke-module of dimension 2 we get that the inclusion map of I(π̃r) in I(E) is an isomorphism
i.e, dimEI(1) = 2. Now consider the pullback diagram

0 π̃r E1 πi,r 0

0 π̃r E π̃r 0. (12)

The long exact sequences in I(1)-group cohomology attached to (12) gives us:

0 I(π̃r) I(E1) I(πi,r) R1I(π̃r)

0 I(π̃r) I(E) I(π̃r) R1I(π̃r).

f δ2

δ1

Since the dimension of I(E) is 2 we get that δ1 is injective and hence the map δ2 is non-zero. The dimension
of the space I(πi,r) is one hence f is an isomorphism. This shows that the space I(E1) has dimension 2.
For r = (p− 1)/2 the representations π1,r ' π0,r. We assume without loss of generality img δ2 is contained
in R1I(πi,r). For any r such that 0 < r ≤ (p− 1)/2 consider the pushout of π̃r by πi,r

0 πi,r E2 πi,r 0

0 π̃r E1 πi,r 0 (13)

The self extension E2 of πi,r is non-split and the induced map δE2
is non-zero. To see this consider the long

exact sequence in cohomology attached to (13):

0 I(πi,r) I(E2) I(πi,r) R1I(πi,r)

0 I(π̃r) I(E1) I(πi,r) R1I(π̃r)

g δ3

' 0 δ2

R1I(p2)

Note that R1I(π̃r) is isomorphic to R1I(π0,r) ⊕ R1I(π1,r) and R1I(p2) is the projection map. This shows
that R1I(p2)δ2 6= 0 and hence δ3 6= 0 using which we get that g is an isomorphism. This shows that E2 is a
non-split self-extension of πi,r by πi,r.

Corollary 4.2. For any integer r such that 0 < r < (p− 1)/2 we have dimF̄p
Ext1

G(πi,r, πi,r) ≥ 1.

Theorem 4.3. Let p ≥ 5 and 0 ≤ r < (p− 1)/2 then the dimension of Ext1
GS

(πi,r, πi,r) is 1 and dimension

of Ext1
GS

(πi,r, πj,r) is 2 for i 6= j. For r = (p− 1)/2 the dimension of Ext1
GS

(π0,r, π0,r) is 3.

Proof. The subgroup GSZ is an index 2 subgroup of G and id and Π are two double coset representatives for
K\G/GSZ. We note that K ∩GS and KΠ ∩GS are representatives for the two distinct classes of maximal
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compact subgroups of GS and we denote them by K1 and K2 respectively. Let σ′r be the representation σΠ
r

of KΠ. Using Mackey-decomposition we get that

resGS
indGKZ σr = indGS

KΠ∩GS
σΠ
r ⊕ indGS

K∩GS
σr = indGS

K1
σr ⊕ indGS

K2
σ′r. (14)

using the long exact sequence of Ext groups for the exact sequence,

0→ indGZK σr
T−→ indGZK → π̃r → 0

we get that an exact sequence

HomG(indGZK σr, π̃r)→ Ext1
G(π̃r, π̃r)→ Ext1

G(indGZK σr, π̃r)
T−→ Ext1

G(indGZK σr, π̃r). (15)

Now using (14) the exact sequence (15) becomes

0→ HomK1
(σr, π̃r)⊕HomK2

(σ′r, π̃r)→ Ext1
G(π̃r, π̃r)→ Ext1

K1
(σr, π̃r)⊕ Ext1

K2
(σ′r, π̃r). (16)

The groups K1 is contained in K/Z1. For all i ≥ 0 we note that

ExtiK1
(σr, π̃r) ' ExtiK/Z1

(ind
K/Z1

K1
(σr), π̃r) '

⊕
0≤a<p−1

ExtiK/Z1
(σr ⊗ deta, π̃r).

The spaces Ext1
K/Z1

(σr⊗deta, π̃r) can be calculated from the work of Paškūnas. We recall his calculations
as needed. There exists a G smooth representation Ω such that resK Ω is an injective envelope of SocK(π̃r) in
the category of smooth representations of K. In particular we get that π̃r is contained in Ω. The restriction
resK Ω is isomorphic to injσr ⊕ injσp−1−r. Now Ext1

K/Z1
(σr ⊗ deta, π̃r) is isomorphic to HomK/Z1

(σr ⊗
deta,Ω/π̃r).

We now use the notations from [Paš10, Notations, Section 9]. We make one modification.
Paškūnas uses the notation χ for the character(

[λ] 0
0 [µ]

)
7→ (λ)r(λµ)a

for all λ, µ ∈ F×p and [ ] is the Teichmuller lift. For convenience we use the notation χa,r instead of χ. The
idempotent eχ in [Paš10, Section 9] will be denoted eχa,r

. The space HomK1
(σr⊗deta,Ω/π̃r) is the same as

ker(I(Ω/π̃r)eχr,a

Tns−−→ I(Ω/π̃r)eχs
r,a

) (17)

and from [Paš10, Proposition 10.10] has dimension less than or equal to 2. For 0 ≤ r ≤ (p− 1)/2 the space
HomK/Z1

(σr⊗deta, π̃r) is non-zero if and only if a = 0 and has dimension 1 if r < (p−1)/2 and 2 otherwise.

Using (17) for 0 ≤ r < (p − 1)/2 the space Ext1
K/Z1

(σr ⊗ deta, π̃r) is non-zero if and only if a = 0 and has
dimension at most 2 (see [Paš10, Proposition 10.10] for 0 < r < (p − 1)/2 and [Paš13, Corollary 6.13 and
Corollary 6.16] for r = 0). When r = (p − 1)/2 the space Ext1

K/Z1
(σr ⊗ deta, π̃r) is non-zero for a = 0 and

a = (p − 1)/2 and in each of these cases the dimension of the space Ext1
K/Z1

(σr ⊗ deta, π̃r) is less than or
equal to 2.

Now using exact sequence (16) the space Ext1
GS

(π̃r, π̃r) has dimension less than or equal to 6 for 0 ≤ r <
(p − 1)/2 and its dimension is less than or equal to 12 if r = (p − 1)/2. For r 6= 0 using this upper bound
and the lower bounds from Corollary 4.2 and Corollary 3.3 we deduce the theorem in this case. When r = 0
Paškūnas showed that (see [Paš10, Proposition 6.15]) the dimension of Ext1

G+/Z(πi,0, πj,0) is 2 when i 6= j

and 1 otherwise. Since GS/{±1} has index a factor of 2 in G+/Z and GS ∩ Z acts trivially on πi,0 we get
that

Ext1
G+/Z(πi,0, πj,0) ↪→ Ext1

GS/{±1}(πi,0, πj,0) = Ext1
GS

(πi,0, πj,0). (18)

From our upper bounds the inclusions (18) are strict and hence we prove the theorem.

Corollary 4.4. The Hecke module R1I(πi,0) is isomorphic to the module I(πi,0)⊕ I(πj,0) for i 6= j.
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Proof. From the Theorem 4.3, exact sequence (3) and (10) we get that dimension of the space

HomH(I(π0,0),R1I(π0,0))

is 1 and using the Proposition 3.1 we get that R1I(πi,0) ' I(πi,0)⊕ I(πj,0).

The mod p reduction of the compact groups K0 and K1 is isomorphic to SL2(Fp). Let σ0
r and σ1

r be the

representations of K0 and K1 obtained by inflation of SymrF̄p
2
. The Satake transform identifies the Hekce

algebra EndGS
(indGS

Ki
σir) with a polynomial algebra in one variable and we choose a generator τ ir of this

algebra. Let π(Ki, r, λ) be the quotient

indGS

Ki
σir

(τ ir − λ)(indGS

Ki
σir)

.

It was shown by Abdellatif that π(K0, r, 0) and π(K1, p− 1− r, 0) are non-split extensions of π0,r by π1,r.

Corollary 4.5. The extensions of GS smooth representations [π1,0 → π(K0, 0, 0) → π0,0] and [π1,0 →
π(K1, p− 1, 0)→ π0,0] are equivalent.

Proof. For r = 0 there is exactly one extension class E in Ext1
GS

(πi,0, πj,0) for i 6= j such that E is generated
by its I(1)S invariants.

5 Extensions of non-supersingular modules.

In this section we are interested in calculating extensions of non-supersingular Hecke modules. The degree
one extensions of SL2(Qp) are calculated by (Julien...). However, he uses ordinary parts functor and higher
derivatives defined by Emerton. We hope that results of this section help us undertand the I(1)S invariants
of these extensions. To begin with we recall the structure of all non-supersingular Hecke modules. We
follow an approach via representation theory. We describe the structure of I(η), I(St⊗ η ◦ det) and finally
I(indGS

BS
η) for η 6= id.

The Hecke algebra H is generated by {Tt; t ∈ Ω}, Ts0 and Ts1 . We now describe the action of these
operators on I(π) where π is a non-supersingular representation of GS . From [BP12, Corollary 6.4] we
deduce the structure of m(r, λ, η) := π(σr, λ, η)I(1) as a module of H. Note that the operator TΠ in the
article and Ts1 are related as Ts1 = TΠTs0TΠ−1 . Since we are looking at restriction to GS we may assume
that η is trivial and we will use the notation m(r, λ) for m(r, λ, η) The module m(r, λ) has a basis {v1,v2}
such that

1. v1 eχp−1−r = v1 and v2 eχr = v2,

2. If 0 < r < p− 1 then v1 Ts0 = 0, v1 Ts1 = λv2, v2 Ts1 = 0 and v2 Ts0 = λv1,

3. If r = 0 then v1(1 + Ts1) = λv2, v2 Ts1 = 0, v1 Ts0 = 0 and v2(1 + Ts0) = λv1

4. If r = (p− 1) then v1 Ts1 = λv2, v2 Ts1 = −v2, v1 Ts0 = −v1 and v2 Ts0 = λv1

Let κ be non-trivial character of BS and we assume that κ = µλχp−1−r. Observe that (r, (λ)1/2) 6=
(0,±1). This shows us that the representation indGS

BS
(κ) is isomorphic to π(p− 1− r, λ−1/2, id). Hence the

module I(indGS

BS
(µλχr)) is isomorphic to m(p − 1 − r, λ−1/2). Now the Hecke modules I(id) and I(St) are

both characters and fit in an exact sequence of the form

0→ I(St)→ m(0, 1)→ I(id)→ 0.

It is clear that the vector v3 := v1−v2 is stable under the action of Ts0 and Ts1 and moreover Ts0 v3 = −v3

and Ts0 v3 = −v3. The module m(0, 1, id) is indecomposable and has quotient isomorphic to the character
Ts0 and Ts1 to zero. We denote by m(−1) and m(0) for the subrepresentation and sub quotient of m(0, 1).
This completes the classification of simple non-supersingular modules.

8



From the decomposition (see) we know that extensions can only exist between the subquotients of the
modules m(r, λ) and m(p − 1 − r, λ′). If 0 < r < p − 1 then extensions can only exist between the simple
modules m(r, λ) and m(p− 1− r, λ′). Another possibility is m(0, λ) when λ 6= ±1 can have extensions with
m(0, λ), m(0, λ′) with λ′ 6= ±1, m(0) and m(−1). In next few lemmas we determine these relations.

Lemma 5.1. Let (r1, λ1) and (r2, λ2) such that 0 < ri < p− 1. Then,

1. If r1 = r2 6= (p− 1)/2 or r1 6= r2 and r1 + r2 = p− 1 the dimension of Ext1
H(m(r1, λ1),m(r2, λ2)) is 3

if λ1 6= λ2 and is 2 otherwise.

2. If r1 = r2 = (p − 1)/2 then the dimension of Ext1
H(m(r1, λ1),m(r2, λ2)) is 5 when λ1 6= λ2 and is 4

otherwise.

3. If r1 6= r2 and r1 + r2 6= p− 1 the dimension of Ext1
H(m(r1, λ1),m(r2, λ2)) is zero.

Proof. We will first calculate the dimensions of Ext1
Hvi

(m(r1, λ1),m(r2, λ2)). Let E be an extension of

m(r1, λ1) by m(r2, λ2). Let v1, v2 and v3 and v4 be a basis of E such that v1 and v2 be basis for m(r2, λ2)
such that the relations 5 hold. Now we have

Tsi v3 = av1 +bv2

Tsi v4 = cv1 +dv2 +λ2 v3

Now 0 = T 2
si v3 = bλ1 v1 and hence b is zero. We also have 0 = T 2

si v4 = dλ1 v1 +aλ2 v1 and hence
(dλ1 + aλ2) = 0. Moreover we have

tr2av1 = TsiTt v3 = Tt−1Tsi v3 = atp−1−r1 v1

tp−1−r2(cv1−(aλ2/λ1) v2 +λ2 v3) = TsiTt v4 = Tt−1Tsi v4 = Tt−1(cv1 +dv2 +λ2 v3)

= ctp−1−r1 v1−(aλ2/λ1)tr1 v2 +λ2t
p−1−r2 v3 .

Suppose r1 = r2 6= (p − 1)/2 then a = 0 and c is arbitrary. If (r1 = r2 = (p − 1)/2) then both a and
c can take arbitrary values. Suppose r1 6= r2 and r1 + r2 6= p − 1 then a = 0 and also c = 0 which is
expected since the modules are in different blocks. Suppose r1 + r2 = p − 1 then only c = 0 and a is
arbitrary. Hence when r1 = r2 6= (p − 1)/2 the space Ext1

Hvi
(m(r1, λ1),m(r2, λ2)) has dimension 1 when

r1 = r2 = (p − 1)/2 and has dimension 2 when r1 = r2 = (p − 1)/2. If r1 + r2 = p − 1 and r1 6= r2 the
dimension of Ext1

Hvi
(m(r1, λ1),m(r2, λ2)) is 1. In the rest of the cases it is zero.

We return to the final calculations. Consider the case when r1 = r2 6= (p − 1)/2. The dimension
of the space HomHE

(m(r1, λ1),m(r2, λ2)) is 2, the dimension of the space HomHvi
(m(r1, λ1),m(r2, λ2))

is one since intertwining operators have to commute by Tt and each module is indecomposable. Now
HomH(m(r1, λ1),m(r2, λ2)) has dimension 1 if λ1 = λ2 and zero otherwise. This shows that the space
Ext1

H(m(r1, λ1),m(r2, λ2)) has dimension 3 if λ1 = λ2 and has dimension 2 otherwise.

Assume that r1 = r2 = (p − 1)/2. In this case the dimension of HomHE
(m(r1, λ1),m(r2, λ2)) is 4, the

dimension of HomHvi
(m(r1, λ1),m(r2, λ2)) is 2. Now HomH(m(r1, λ1),m(r2, λ2)) has dimension 1 if λ1 = λ2

and zero otherwise. This shows that the space Ext1
H(m(r1, λ1),m(r2, λ2)) has dimension 5 if λ1 = λ2 and

has dimension 4 otherwise.

If r1 6= r2 then extensions can only exist when r1 + r2 = p − 1. In this case the dimension of
HomHE

(m(r1, λ1),m(r2, λ2)) is 2, the dimension of HomHvi
(m(r1, λ1),m(r2, λ2)) is 1 using similar calcu-

lations in r1 = r2 case. Finally the space HomH(m(r1, λ1),m(r2, λ2)) has dimension 1 if λ1 = λ2 and zero
otherwise. This shows that Ext1

H(m(r1, λ1),m(r2, λ2)) has dimension 3 if λ1 = λ2 and has dimension 2
otherwise.

Now we will study the extensions of m(0) by non-supersingular Hecke modules.
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