On Extensions of supersingular representations of $SL_2(\mathbb{Q}_p)$.

Ramla Abdellatif and Santosh Nadimpalli

January 29, 2017

Abstract

In this note for p > 5 we calculate the dimensions of $\operatorname{Ext}^{1}_{\operatorname{SL}_{2}(\mathbb{Q}_{p})}(\tau, \sigma)$ for any two irreducible supersingular representations τ and σ of $\operatorname{SL}_{2}(\mathbb{Q}_{p})$.

1 Introduction

In this note we calculate the space of extensions of supersingular representations of $SL_2(\mathbb{Q}_p)$ for p > 5. The dimensions of the space of extensions between irreducible supersingular representations of $GL_2(\mathbb{Q}_p)$ are calculated by Paškūnas in [Paš10]. Understanding extensions between irreducible smooth representations play a crucial role in Paškūnas work on the image of Colmez Montreal functor in (see [Paš13]). We hope that these results have similar application to mod p and p-adic local Langlands correspondence for $SL_2(\mathbb{Q}_p)$.

Let G be the group $\operatorname{GL}_2(\mathbb{Q}_p)$, K be the maximal compact subgroup $\operatorname{GL}_2(\mathbb{Z}_p)$ and Z be the center of G. We denote by I(1) the pro-p Iwahori subgroup of G. We denote by G_S the special linear group $\operatorname{SL}_2(\mathbb{Q}_p)$. For any subgroup H of $\operatorname{GL}_2(\mathbb{Q}_p)$ we denote by H_S the subgroup $H \cap \operatorname{SL}_2(\mathbb{Q}_p)$. All representations in this note are defined over vector spaces over $\overline{\mathbb{F}}_p$. Let σ be an irreducible smooth representation of K and σ extends uniquely as a representation of KZ such that $p \in Z$ acts trivially. The Hecke algebra $\operatorname{End}_G(\operatorname{ind}_{KZ}^G \sigma)$ is isomorphic to $\overline{\mathbb{F}}_p[T]$. For any constant λ in $\overline{\mathbb{F}}_p^{\times}$ let μ_{λ} be the unramified character of Z such that $\mu_{\lambda}(p) = \lambda$. Let $\pi(\sigma, \mu_{\lambda})$ be the representation

$$\frac{\operatorname{ind}_{KZ}^G \sigma}{T(\operatorname{ind}_{KZ}^G \sigma)} \otimes (\mu_{\lambda} \circ \operatorname{det}).$$

The representations $\pi(\sigma, \mu_{\lambda})$ are irreducible (see [Bre03]) and are called **supersingular representations** in the terminology of Barthel–Livné.

Let σ_r be the representation $\operatorname{Sym}^r \overline{\mathbb{F}}_p$ of $\operatorname{GL}_2(\mathbb{F}_p)$. We consider σ_r as a representation of K by inflation. The K-socle of $\pi(\sigma_r, \mu_\lambda)$ is a direct sum of two irreducible smooth representations σ_r and σ_{p-1-r} . Let $\pi_{0,r}$ and $\pi_{1,r}$ be the G_S representations generated by $\sigma_r^{I(1)}$ and $\sigma_{p-1-r}^{I(1)}$. The representations $\pi_{0,r}$ and $\pi_{1,r}$ are irreducible supersingular representations of G_S and

$$\operatorname{res}_{G_S} \pi(\sigma_r, \mu_\lambda) \simeq \pi_{0,r} \oplus \pi_{1,r}$$

Any irreducible supersingular representation of G_S is isomorphic to $\pi_{i,r}$ for some r such that $0 \le r \le p-1$ and $i \in \{0,1\}$. Moreover the only isomorphisms between $\pi_{i,r}$ are $\pi_{0,r} \simeq \pi_{1,p-1-r}$ and $\pi_{1,r} \simeq \pi_{0,p-1-r}$ (see [Abd14]). Our main theorem on extensions of supersingular representations of G_S is:

Theorem 1.1. Let $p \ge 5$ and $0 \le r \le (p-1)/2$. For any irreducible supersingular representation τ of G_S the space $\operatorname{Ext}^1_{G_S}(\tau, \pi_{i,r})$ is non-zero if and only if $\tau \simeq \pi_{j,r}$ for some $j \in \{0,1\}$. If $0 \le r < (p-1)/2$ then $\dim_{\overline{\mathbb{F}}_p} \operatorname{Ext}^1_{G_S}(\pi_{i,r}, \pi_{j,r}) = 2$ for $i \ne j$ and $\dim_{\overline{\mathbb{F}}_p} \operatorname{Ext}^1_{G_S}(\pi_{i,r}, \pi_{i,r}) = 1$. For r = (p-1)/2 we have $\dim_{\overline{\mathbb{F}}_p} \operatorname{Ext}^1_{G_S}(\pi_{0,r}, \pi_{0,r}) = 3$.

We briefly explain the method of proof. We essentially follow [Paš10]. The functor sending a smooth representation to its $I(1)_S$ -invariants induces an equivalence of categories of smooth representations of G_S generated by $I(1)_S$ -invariants and the module category of the pro *p*-Iwahori Hecke algebra (see [Koz16, Theorem 5.2]). We use the Ext spectral sequence thus obtained by this equivalence of categories to calculate $\operatorname{Ext}_{G_S}^1$. Extensions of pro *p*-Iwahori Hecke algebra modules are calculated from resolutions of Hecke modules due to Schneider and Ollivier. We crucially use results from work of Paškūnas [Paš10]. We first obtain lower bounds on the dimensions of $\operatorname{Ext}_{G_S}^1$ spaces using the spectral sequence and then obtain upper bounds using Paškūnas results on $\operatorname{Ext}_{K}^1(\sigma, \pi(\sigma, \mu_{\lambda}))$.

Acknowledgements I thank Eknath Ghate for showing the fundamental paper [Paš10] and for his interest in this work and discussions on the role of extensions in mod p-Langlands. I want to thank Radhika Ganapathy for various discussions on mod p representations and for her mod p seminar at the Tata Institute. After posting this paper on ArXiv the author has learnt that Ramla Abdellatif has independently obtained these results.

2 Pro-*p* Iwahori Hecke algebra

Let B be the Borel subgroup consisting of invertible upper triangular matrices, U be the unipotent radical of B and T be the maximal torus consisting of diagonal matrices. We denote by \overline{U} the unipotent radical of \overline{B} the Borel subgroup consisting of invertible lower triangular matrices. We denote by I the standard Iwahorisubgroup of G. Let I(1) be the pro-p Iwahori subgroup of G and $I(1)_S$ be the pro-p-Iwahori subgroup of G_S . We note that $I(1)_S(Z \cap I(1))$ is equal to I(1). Let \mathcal{H} be the pro-p Iwahori–Hecke algebra $\operatorname{End}_G(\operatorname{ind}_{I(1)_S}^{G_S} \operatorname{id})$. Let Rep_{G_S} and $\operatorname{Rep}_{G_S}^{I(1)_S}$ be the category of smooth representations of G_S and its full subcategory consisting of those smooth representations generated by $I(1)_S$ -invariant vectors respectively. We denote by $\operatorname{Mod}_{\mathcal{H}}$ the category of modules over the ring \mathcal{H} . We have two functors

$$\mathcal{I}: \operatorname{Rep}_{G_S}^{I(1)_S} \to \operatorname{Mod}_{\mathcal{H}}$$
$$\mathcal{I}(\pi) = \pi^{I(1)_S}$$

and

$$\mathcal{T}: \operatorname{Mod}_{\mathcal{H}} \to \operatorname{Rep}_{G_S}^{I(1)_S}$$
$$\mathcal{T}(M) = M \otimes_{\mathcal{H}} \operatorname{ind}_{I(1)_S}^{G_S} \operatorname{id}.$$

From [Koz16, Theorem 5.2] the functors \mathcal{T} and \mathcal{I} are quasi-inverse to each other. Let σ and τ be any two smooth representations of G_S and σ_1 be the G_S subrepresentation of σ generated by $I(1)_S$ -invariants of σ . We have

$$\operatorname{Hom}_{G}(\tau,\sigma) = \operatorname{Hom}_{G}(\tau,\sigma_{1}) = \operatorname{Hom}_{H}(\mathcal{I}(\tau),\mathcal{I}(\sigma_{1})) = \operatorname{Hom}_{H}(\mathcal{I}(\tau),\mathcal{I}(\sigma)).$$
(1)

We get a Grothendieck spectral sequence with \mathbf{E}_{2}^{ij} equal to $\mathrm{Ext}^{i}(\mathcal{I}(\tau), \mathbb{R}^{j}\mathcal{I}(\sigma))$ such that

$$\operatorname{Ext}^{i}(\mathcal{I}(\tau), \mathbb{R}^{j}\mathcal{I}(\sigma)) \Rightarrow \operatorname{Ext}_{G}^{i+j}(\tau, \sigma).$$
⁽²⁾

The 5-term exact sequence associated to the above spectral sequence gives the following exact sequence:

$$0 \to \operatorname{Ext}^{1}_{\mathcal{H}}(\mathcal{I}(\tau), \mathcal{I}(\sigma)) \xrightarrow{i} \operatorname{Ext}^{1}_{G}(\tau, \sigma) \xrightarrow{\delta}$$

$$\operatorname{Hom}_{\mathcal{H}}(\mathcal{I}(\tau), \mathbb{R}^{1}\mathcal{I}(\sigma)) \to \operatorname{Ext}^{2}_{\mathcal{H}}(\mathcal{I}(\tau), \mathcal{I}(\sigma)) \to \operatorname{Ext}^{2}_{G}(\tau, \sigma)$$

$$(3)$$

for all τ such that $\tau = \langle G_S \tau^{I(1)} \rangle$. In particular we apply these results when τ and σ are irreducible supersingular representations of G_S . We first recall the structure of the ring \mathcal{H} , its modules $M(i, r) = \pi_{i,r}^{I(1)}$ for i in $\{0, 1\}$ and $0 \leq r \leq p-1$. The \mathcal{H} module M(i, r) is a character and we first calculate the dimensions of the spaces $\operatorname{Ext}^1_{\mathcal{H}}(M(i, r), M(j, s))$.

Let T_S^0 and T_S^1 be the maximal compact subgroup of T_S and its maximal pro-*p*-subgroup. We denote by s_0 , s_1 and θ the matrices $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -p^{-1} \\ p & 0 \end{pmatrix}$ and $\begin{pmatrix} p & 0 \\ 0 & p^{-1} \end{pmatrix}$ respectively. Let $N(T_S)$ be the normaliser

of the torus T_S and W_0 be the Weyl group $N(T_S)/T_S$. The extended Weyl group $W = \theta^{\mathbb{Z}} \coprod s_0 \theta^{\mathbb{Z}}$ sits into an exact sequence of the form

$$0 \to \Omega := \frac{T_S^0}{T_S^1} \to \tilde{W} := \frac{N(T_S)}{T_S^1} \to W = \frac{N(T_S)}{T_S^0} \to 0.$$

The length function l on W, given by $l(\theta^i) = |2i|$ and $l(s_0\theta^i) = |1 - 2i|$, extends to a function on \tilde{W} such that $l(\Omega) = 0$. Let T_w be the element $\operatorname{Char}_{I(1)wI(1)}$ for all $w \in \tilde{W}$. We denote by e_1 the element $\sum_{w \in \Omega} T_w$. The functions T_w span \mathcal{H} and the relations in \mathcal{H} are given by

$$\begin{split} T_w T_v &= T_{wv} \text{ whenever } l(v) + l(w) = l(vw), \\ T_{s_i}^2 &= -e_1 T_{s_i}. \end{split}$$

The pro-*p*-Iwahori Hecke algebra is generated by $T_w T_{s_i}$ for w in Ω . For any character χ of Ω let e_{χ} be the element $\sum_{w \in \Omega} \chi^{-1}(w) T_w$. Let γ be a W_0 orbit of the characters χ and e_{γ} be the element $\sum_{\chi \in \gamma} e_{\chi}$. The elements $\{e_{\gamma}; \gamma \in \hat{\Omega}/W_0\}$ are central idempotents in the ring \mathcal{H} and we have

$$\mathcal{H} = \bigoplus_{\hat{\Omega}/W_0} \mathcal{H} e_{\gamma}.$$
 (4)

For the group G_S , we know that \mathcal{H} is the affine Hecke algebra. The characters of affine Hecke algebra are described in a simple manner we recall this for G_S . Let I be a subset of $\{s_0, s_1\}$ and W_I be the subgroup of W generated by elements of I and W_{\emptyset} is trivial group. The characters of \mathcal{H} are parametrised by pairs (λ, I) where λ is a character of Ω and $I \subset S_{\lambda}$. For such a pair (λ, I) the character $\chi_{\lambda,I}$ associated to it is given by

 $\chi_{\lambda,I}(T_{wt}) = 0 \text{ for all } w \in W \setminus W_I \text{ and for all } t \in \Omega,$ (5)

$$\chi_{\lambda,I}(T_{wt}) = \lambda(t)(-1)^{l(w)} \text{ for all } w \in W_I \text{ and for all } t \in \Omega.$$
(6)

If λ is nontrivial then we have $\chi_{\lambda,\emptyset}(T_t) = \lambda(t)$, for all $t \in \Omega$ and $\chi_{\lambda,\emptyset}(T_{wt}) = 0$ for all $w \neq id$ and $t \in \Omega$.

We denote by $\chi_{r,\emptyset}$ the character $\chi_{x\mapsto x^r,\emptyset}$. From the above description we get that $M(0,r) = \chi_{r,\emptyset}$ and $M(1,r) = \chi_{p-1-r,\emptyset}$ for $r \notin \{0, p-1\}$. If $r \in \{0, p-1\}$ then [OS16, Proposition 3.9] says that $\chi_{id,\emptyset}$ and $\chi_{id,S}$ are not supersingular characters. This shows that M(i,r) is either $\chi_{id,I}$ or $\chi_{id,J}$, for $r \in \{0, p-1\}$, where $I = \{s_0\}$ and $J = \{s_1\}$. Since the element T_{s_0} belongs to pro-p Iwahori–Hecke algebra of G and using the presentation in [BP12, Corollary 6.4] we obtain that $M(1,0) = \chi_{id,I}$ and $M(0,0) = \chi_{id,J}$. Similarly M(1,p-1) is given by the character $\chi_{id,J}$ and M(0,p-1) is given by the character $\chi_{id,I}$. Let $0 \leq r, s \leq (p-1)/2$ then (4) shows that

$$\operatorname{Ext}_{\mathcal{H}}^{1}(M(i,r), M(j,s)) = 0 \tag{7}$$

for $r \neq s$.

2.1 Resolutions of Hecke modules

In order to calculate extensions between the characters M(i, r), we use resolutions constructed by Schneider and Ollivier for \mathcal{H} . Let \mathfrak{X} be the Bruhat–Tits tree of G_S and let $A(T_S)$ be the standard apartment associated to T_S . We fix an edge E and vertices v_0 and v_1 contained in E such that the G_S -stabiliser of v_0 is K_S . For any facet F of \mathfrak{X} we denote by \mathbf{G}_F the \mathbb{Z}_p -group scheme with generic fibre \mathbf{SL}_2 and $\mathbf{G}_F(\mathbb{Z}_p)$ is the G-stabiliser of F. We denote by I_F the subgroup of $\mathbf{G}_F(\mathbb{Z}_p)$ whose elements under mod- \mathfrak{p} reduction of $\mathbf{G}_F(\mathbb{Z}_p)$ belong to the \mathbb{F}_p -points of the unipotent radical of $\mathbf{G}_F \times \mathbb{F}_p$. We denote by \mathcal{H}_F the finite subalgebra of \mathcal{H} defined as

$$\mathcal{H}_F := \operatorname{End}_{\mathbf{G}_F(\mathbb{Z}_p)}(\operatorname{ind}_{I_F}^{\mathbf{G}_F(\mathbb{Z}_p)}(\operatorname{id})).$$

In particular \mathcal{H}_E is a semi-simple algebra.

For any \mathcal{H} -module \mathfrak{m} the construction of Schneider and Ollivier [OS14, Theorem 3.12, (6.4)] gives us a $(\mathcal{H}, \mathcal{H})$ -exact resolution

$$0 \to \mathcal{H} \otimes_{\mathcal{H}_E} \mathfrak{m} \xrightarrow{\delta_1} (\mathcal{H} \otimes_{\mathcal{H}_{v_0}} \mathfrak{m}) \oplus (\mathcal{H} \otimes_{\mathcal{H}_{v_1}} \mathfrak{m}) \xrightarrow{\delta_0} \mathfrak{m} \to 0.$$
(8)

Using the resolution (8) and the observation that \mathcal{H}_E is semi-simple for $p \neq 2$ we get that

$$0 \to \operatorname{Hom}_{\mathcal{H}}(\mathfrak{m}, \mathfrak{n}) \to \bigoplus_{v_0, v_1} \operatorname{Hom}_{\mathcal{H}_{v_i}}(\mathfrak{m}, \mathfrak{n}) \to \operatorname{Hom}_{\mathcal{H}_E}(\mathfrak{m}, \mathfrak{n}) \xrightarrow{\delta} \operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}, \mathfrak{n}) \to \bigoplus_{v_0, v_1} \operatorname{Ext}^1_{\mathcal{H}_{v_i}}(\mathfrak{m}, \mathfrak{n}) \to 0$$
(9)

Note that we have an isomorphism of algebras

$$\mathcal{H}_{v_0} \simeq \mathcal{H}_{v_1} \simeq \operatorname{End}_{\operatorname{SL}_2(\mathbb{F}_p)}(\operatorname{ind}_{N(\mathbb{F}_p)}^{\operatorname{SL}_2(\mathbb{F}_p)} \operatorname{id}).$$

The above isomorphism is not a canonical isomorphism. Let K_0 and K_1 be the compact open subgroups $K \cap G_S$ and $K^{\Pi} \cap G_S$ respectively.

2.2 Extensions of supersingular modules over pro-p Iwahori–Hecke algebra.

The Hecke algebra \mathcal{H}_{v_i} is isomorphic to $\operatorname{End}_{K_i}(\operatorname{ind}_{I(1)}^{K_i}\operatorname{id})$. The Hecke algebra \mathcal{H}_{v_i} is generated by T_t and T_{s_i} for $t \in \Omega$. The relations among them are given by

$$T_{t_1}T_{t_2} = T_{t_1t_2},$$

$$T_tT_{s_i} = T_{ts_i} = T_{s_it^{-1}} = T_{s_i}T_{t^{-1}},$$

$$T_{s_i}^2 = -e_1T_{s_i}$$

where $e_1 = \sum_{t \in \Omega} T_t$.

Lemma 2.1. Let 0 < r < (p-1)/2 the space $\operatorname{Ext}^{1}_{\mathcal{H}}(M(i,r), M(j,s))$ is non-zero if and only if $i \neq j$ and has dimension 2 when $i \neq j$. If r = (p-1)/2 then the space $\operatorname{Ext}^{1}_{\mathcal{H}}(M(i,r), M(i,r))$ has dimension 2.

Proof. Since $r \neq 0$ the characters M(0,r) and M(1,r) are isomorphic to $\chi_{r,\emptyset}$ and $\chi_{p-1-r,\emptyset}$ respectively (see (5)). Let E_c be a 2-dimensional $\overline{\mathbb{F}}_p$ module $\overline{\mathbb{F}}_p e_1 \oplus \overline{\mathbb{F}}_p e_2$ and $\overline{\mathbb{F}}_p[\Omega]$ acts on E by $T_t e_0 = t^r e_0$ and $T_t e_1 = t^{p-1-r} e_1$. We set $T_{s_i} e_0 = 0$ and $T_{s_i} e_1 = c e_0$ for some $c \neq 0$. This makes E a \mathcal{H}_{v_i} module and is a non-trivial extension

$$0 \to \chi_{r,\emptyset} \to E \to \chi_{p-1-r,\emptyset} \to 0.$$

Let E be a \mathcal{H}_{v_i} -extension of $W := \chi_{s,\emptyset}$ by $V := \chi_{r,\emptyset}$ i.e., we have an exact sequence

$$0 \to V \to E \xrightarrow{f} W \to 0.$$

There exists a $\overline{\mathbb{F}}_p[\Omega]$ -equivariant section $s: W \to E$ of f. Let V' be the image of this section. Now $E = V \oplus V'$. The action of T_{s_i} is trivial on V and observe that $f(T_{s_i}(V')) = T_{s_i}(f(V')) = 0$. If E is nontrivial then $T_{s_i}(V') = V$. This implies that r + s = p - 1 and hence E is isomorphic to E_c for some $c \neq 0$. This shows that the space of \mathcal{H}_{v_i} extensions of W by V is one dimensional if r + s = p - 1 and zero otherwise. Now consider the exact sequence (9) when \mathfrak{m} is M(i,r) and \mathfrak{n} is M(j,r). For i = j the map δ in zero (9) hence the space $\operatorname{Ext}^1_{\mathcal{H}}(M(i,r), M(i,r))$ is trivial for 0 < r < (p-1)/2 and has dimension 2 when r = (p-1)/2. When $i \neq j$ the Hom spaces in (9) are all trivial. This shows that the dimension of the space $\operatorname{Ext}^1_{\mathcal{H}}(M(i,r), M(i,r))$ is 2 from our calculations.

Lemma 2.2. The space of extensions $\operatorname{Ext}^{1}_{\mathcal{H}}(M(i,0), M(j,0))$ is trivial for i = j and has dimension 1 for $i \neq j$.

Proof. The algebra $e_1 \mathcal{H}_{v_i}$ is semi-simple algebra and hence we get that

$$\operatorname{Ext}_{\mathcal{H}_{v_i}}^i(\chi_{\operatorname{id},S},\chi_{\operatorname{id},S'}) = 0 \tag{10}$$

for all i > 0 and for subsets S and S' of $\{s_0, s_1\}$. Now consider the exact sequence (9) when \mathfrak{m} is M(i, r)and \mathfrak{n} is M(j, r). For i = j the map δ in (9) is zero hence the space $\operatorname{Ext}^1_{\mathcal{H}}(M(i, r), M(i, r))$ is trivial. When $i \neq j$ the first two Hom spaces in (9) are trivial. The space $\operatorname{Hom}_{\mathcal{H}_E}(\mathfrak{m}, \mathfrak{n})$ has dimension one. This shows that the dimension of the space $\operatorname{Ext}^1_{\mathcal{H}}(M(i, r), M(i, r))$ is 1 for $i \neq j$.

3 The Hecke module $\mathbb{R}^1 \mathcal{I}(\pi_{i,r})$.

Paškūnas calculated the cohomology groups $\mathbb{R}^1 \mathcal{I}(\pi_{i,r})$ and we now recall his results. Let $\tilde{\pi}_r$ be the supersingular representation $\pi(\sigma_r, \mu_1)$ of G. Recall that the K-socle of $\tilde{\pi}_r$ is isomorphic to $\sigma_r \oplus \sigma_{p-1-r}$ and the space of I(1) invariants has a basis $(\mathbf{v}_0, \mathbf{v}_1)$ where \mathbf{v}_0 and \mathbf{v}_1 belong to $\sigma_r^{N_p}$ and $\sigma_{p-1-r}^{N_p}$ respectively. Let I^+ and I^- be the groups $I \cap U$ and $I \cap \overline{U}$ respectively. Consider the spaces

$$M_0 := \langle I^+ \theta^n \mathbf{v}_1; n \ge 0 \rangle$$
 and $M_1 := \langle I^+ \theta^n \mathbf{v}_2; n \ge 0 \rangle$

and let Π be the matrix $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ which normalizes I and I(1). We denote by π_0 and π_1 the spaces $M_0 + \Pi M_1$ and $M_1 + \Pi M_0$. Let G^0 be subgroup of G consisting of elements with integral discriminant. Let G^+ be the group ZG^0 . We denote by Z_1 the group $I(1) \cap Z$.

Proposition 3.1 (Paškūnas). The spaces π_0 and π_1 are G^+ stable. The space $\tilde{\pi}_r$ is the direct sum of the representations π_1 and π_0 as G^+ representations and hence $\pi_{i,r}$ is isomorphic to π_i as G_S representations for $i \in \{0, 1\}$. If r be an integer such that 0 < r < (p-1)/2 then the Hecke module $\mathbb{R}^1 \mathcal{I}(\pi_{i,r})$ is isomorphic to $\mathcal{I}(\pi_{i,r}) \oplus \mathcal{I}(\pi_{i,r})$. In the Iwahori case (i.e, r = 0) the Hecke module $\mathbb{R}\mathcal{I}(\pi_{0,0}) \oplus \mathbb{R}\mathcal{I}(\pi_{1,0})$ is isomorphic to $\mathcal{I}(\pi_{0,0})^{\oplus 2} \oplus \mathcal{I}(\pi_{0,0})^{\oplus 2}$.

Proof. The first part follows from [Paš10, Corollary 6.5]. The second part follows from [Paš10, Proposition 10.5, Theorem 10.7 and equation (49)]. \Box

Corollary 3.2. Let τ be an irreducible supersingular representation of G_S . If the space of extensions $\operatorname{Ext}^1_{G_S}(\tau, \pi_{i,r})$ is non-trivial then $\tau \simeq \pi_{j,r}$ for some $j \in \{0, 1\}$.

Proof. This follows from (3), (7) and Proposition 3.1.

Corollary 3.3. Let 0 < r < (p-1)/2 and $i \neq j$ then the dimensions of the space $\operatorname{Ext}_{G_S}^1(\pi_{i,r}, \pi_{j,r})$ is 2.

Proof. Observe that for 0 < r < (p-1)/2 the modules M(i,r) and M(j,s) are not isomorphic. Now using the exact sequence (3) and Proposition 3.1 we get that

$$\operatorname{Ext}^{1}_{G_{S}}(\pi_{i,r},\pi_{j,r}) \simeq \operatorname{Ext}^{1}_{\mathcal{H}}(M(i,r),M(j,r)).$$

The corollary follows from the Lemma 2.1.

Remark 3.4. The results of Corollary 3.3 remain valid for r = 0 but we prove this later. It is interesting to note that for 0 < r < (p-1)/2 and $i \neq j$ any extension E of $\pi_{i,r}$ by $\pi_{j,r}$ for $i \neq j$ is generated by its $I(1)_S$ invariants, i.e., $E = \langle G_S E^{I(1)_S} \rangle$.

4 Calculation of degree one self extensions.

Let us first consider the case when $0 < r \le (p-1)/2$. In order to determine the dimensions of $\text{Ext}^1(\pi_{i,r}, \pi_{i,r})$ we first show that the map

$$\operatorname{Ext}_{G_{S}}^{1}(\pi_{i,r}, \pi_{i,r}) \to \operatorname{Hom}_{\mathcal{H}}(\mathcal{I}(\pi_{i,r}), \mathbb{R}^{1}\mathcal{I}(\pi_{i,r})))$$
(11)

is non-zero. Explicitly the above map takes an extension E, with $0 \to \pi_{i,r} \to E \to \pi_{i,r} \to 0$, to the delta map in the associated long exact sequence, given by: $\mathcal{I}(\pi_{i,r}) \xrightarrow{\delta_E} \mathbb{R}^1 \mathcal{I}(\pi_{i,r})$. Note that the dimension of $E^{I(1)}$ is one if and only if $\delta_E \neq 0$.

Lemma 4.1. For $0 < r \le (p-1)/2$ then map (11) is non-zero.

Proof. For $0 < r \leq (p-1)/2$ there exists a self extension E of $\tilde{\pi}_r$ such that the map $\mathcal{I}(\tilde{\pi}_r) \xrightarrow{\delta_E} \mathbb{R}^1 \mathcal{I}(\tilde{\pi}_r)$ is non-zero. We fix an extension E such that $\delta_E \neq 0$. Since δ_E is a Hecke-equivariant map and $\mathcal{I}(\tilde{\pi}_r)$ is an irreducible Hecke-module of dimension 2 we get that the inclusion map of $\mathcal{I}(\tilde{\pi}_r)$ in $\mathcal{I}(E)$ is an isomorphism i.e, dim $E^{I(1)} = 2$. Now consider the pullback diagram

The long exact sequences in I(1)-group cohomology attached to (12) gives us:

Since the dimension of $\mathcal{I}(E)$ is 2 we get that δ_1 is injective and hence the map δ_2 is non-zero. The dimension of the space $\mathcal{I}(\pi_{i,r})$ is one hence f is an isomorphism. This shows that the space $\mathcal{I}(E_1)$ has dimension 2. For r = (p-1)/2 the representations $\pi_{1,r} \simeq \pi_{0,r}$. We assume without loss of generality img δ_2 is contained in $\mathbb{R}^1 \mathcal{I}(\pi_{i,r})$. For any r such that $0 < r \le (p-1)/2$ consider the pushout of $\tilde{\pi}_r$ by $\pi_{i,r}$

The self extension E_2 of $\pi_{i,r}$ is non-split and the induced map δ_{E_2} is non-zero. To see this consider the long exact sequence in cohomology attached to (13):

$$0 \longrightarrow \mathcal{I}(\pi_{i,r}) \xrightarrow{g} \mathcal{I}(E_2) \longrightarrow \mathcal{I}(\pi_{i,r}) \xrightarrow{\delta_3} \mathbb{R}^1 \mathcal{I}(\pi_{i,r})$$

$$\uparrow \qquad \uparrow \\ 0 \longrightarrow \mathcal{I}(\tilde{\pi}_r) \xrightarrow{\simeq} \mathcal{I}(E_1) \xrightarrow{0} \mathcal{I}(\pi_{i,r}) \xrightarrow{\delta_2} \mathbb{R}^1 \mathcal{I}(\tilde{\pi}_r)$$

Note that $\mathbb{R}^1 \mathcal{I}(\tilde{\pi}_r)$ is isomorphic to $\mathbb{R}^1 \mathcal{I}(\pi_{0,r}) \oplus \mathbb{R}^1 \mathcal{I}(\pi_{1,r})$ and $\mathbb{R}^1 \mathcal{I}(p_2)$ is the projection map. This shows that $\mathbb{R}^1 \mathcal{I}(p_2) \delta_2 \neq 0$ and hence $\delta_3 \neq 0$ using which we get that g is an isomorphism. This shows that E_2 is a non-split self-extension of $\pi_{i,r}$ by $\pi_{i,r}$.

Corollary 4.2. For any integer r such that 0 < r < (p-1)/2 we have $\dim_{\mathbb{F}_p} \operatorname{Ext}^1_G(\pi_{i,r}, \pi_{i,r}) \ge 1$.

Theorem 4.3. Let $p \ge 5$ and $0 \le r < (p-1)/2$ then the dimension of $\operatorname{Ext}_{G_S}^1(\pi_{i,r}, \pi_{i,r})$ is 1 and dimension of $\operatorname{Ext}_{G_S}^1(\pi_{i,r}, \pi_{j,r})$ is 2 for $i \ne j$. For r = (p-1)/2 the dimension of $\operatorname{Ext}_{G_S}^1(\pi_{0,r}, \pi_{0,r})$ is 3.

Proof. The subgroup $G_S Z$ is an index 2 subgroup of G and id and Π are two double coset representatives for $K \setminus G/G_S Z$. We note that $K \cap G_S$ and $K^{\Pi} \cap G_S$ are representatives for the two distinct classes of maximal

compact subgroups of G_S and we denote them by K_1 and K_2 respectively. Let σ'_r be the representation σ^{Π}_r of K^{Π} . Using Mackey-decomposition we get that

$$\operatorname{res}_{G_S} \operatorname{ind}_{KZ}^G \sigma_r = \operatorname{ind}_{K^\Pi \cap G_S}^{G_S} \sigma_r^\Pi \oplus \operatorname{ind}_{K \cap G_S}^{G_S} \sigma_r = \operatorname{ind}_{K_1}^{G_S} \sigma_r \oplus \operatorname{ind}_{K_2}^{G_S} \sigma_r'.$$
(14)

using the long exact sequence of Ext groups for the exact sequence,

$$0 \to \operatorname{ind}_{ZK}^G \sigma_r \xrightarrow{T} \operatorname{ind}_{ZK}^G \to \tilde{\pi}_r \to 0$$

we get that an exact sequence

$$\operatorname{Hom}_{G}(\operatorname{ind}_{ZK}^{G}\sigma_{r},\tilde{\pi}_{r}) \to \operatorname{Ext}_{G}^{1}(\tilde{\pi}_{r},\tilde{\pi}_{r}) \to \operatorname{Ext}_{G}^{1}(\operatorname{ind}_{ZK}^{G}\sigma_{r},\tilde{\pi}_{r}) \xrightarrow{T} \operatorname{Ext}_{G}^{1}(\operatorname{ind}_{ZK}^{G}\sigma_{r},\tilde{\pi}_{r}).$$
(15)

Now using (14) the exact sequence (15) becomes

$$0 \to \operatorname{Hom}_{K_1}(\sigma_r, \tilde{\pi}_r) \oplus \operatorname{Hom}_{K_2}(\sigma'_r, \tilde{\pi}_r) \to \operatorname{Ext}^1_G(\tilde{\pi}_r, \tilde{\pi}_r) \to \operatorname{Ext}^1_{K_1}(\sigma_r, \tilde{\pi}_r) \oplus \operatorname{Ext}^1_{K_2}(\sigma'_r, \tilde{\pi}_r).$$
(16)

The groups K_1 is contained in K/Z_1 . For all $i \ge 0$ we note that

$$\operatorname{Ext}_{K_1}^i(\sigma_r, \tilde{\pi}_r) \simeq \operatorname{Ext}_{K/Z_1}^i(\operatorname{ind}_{K_1}^{K/Z_1}(\sigma_r), \tilde{\pi}_r) \simeq \bigoplus_{0 \le a < p-1} \operatorname{Ext}_{K/Z_1}^i(\sigma_r \otimes \det^a, \tilde{\pi}_r).$$

The spaces $\operatorname{Ext}_{K/Z_1}^1(\sigma_r \otimes \operatorname{det}^a, \tilde{\pi}_r)$ can be calculated from the work of Paškūnas. We recall his calculations as needed. There exists a G smooth representation Ω such that $\operatorname{res}_K \Omega$ is an injective envelope of $\operatorname{Soc}_K(\tilde{\pi}_r)$ in the category of smooth representations of K. In particular we get that $\tilde{\pi}_r$ is contained in Ω . The restriction $\operatorname{res}_K \Omega$ is isomorphic to $\operatorname{inj}\sigma_r \oplus \operatorname{inj}\sigma_{p-1-r}$. Now $\operatorname{Ext}_{K/Z_1}^1(\sigma_r \otimes \operatorname{det}^a, \tilde{\pi}_r)$ is isomorphic to $\operatorname{Hom}_{K/Z_1}(\sigma_r \otimes \operatorname{det}^a, \Omega/\tilde{\pi}_r)$.

We now use the notations from [Paš10, Notations, Section 9]. We make one modification. Paškūnas uses the notation χ for the character

$$\begin{pmatrix} [\lambda] & 0\\ 0 & [\mu] \end{pmatrix} \mapsto (\lambda)^r (\lambda \mu)^a$$

for all $\lambda, \mu \in \mathbb{F}_p^{\times}$ and [] is the Teichmuller lift. For convenience we use the notation $\chi_{a,r}$ instead of χ . The idempotent e_{χ} in [Paš10, Section 9] will be denoted $e_{\chi_{a,r}}$. The space $\operatorname{Hom}_{K_1}(\sigma_r \otimes \det^a, \Omega/\tilde{\pi}_r)$ is the same as

$$\ker(\mathcal{I}(\Omega/\tilde{\pi}_r)e_{\chi_{r,a}} \xrightarrow{T_{n_s}} \mathcal{I}(\Omega/\tilde{\pi}_r)e_{\chi_{r,a}^s})$$
(17)

and from [Paš10, Proposition 10.10] has dimension less than or equal to 2. For $0 \le r \le (p-1)/2$ the space $\operatorname{Hom}_{K/Z_1}(\sigma_r \otimes \det^a, \tilde{\pi}_r)$ is non-zero if and only if a = 0 and has dimension 1 if r < (p-1)/2 and 2 otherwise. Using (17) for $0 \le r < (p-1)/2$ the space $\operatorname{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \tilde{\pi}_r)$ is non-zero if and only if a = 0 and has dimension at most 2 (see [Paš10, Proposition 10.10] for 0 < r < (p-1)/2 and [Paš13, Corollary 6.13 and Corollary 6.16] for r = 0). When r = (p-1)/2 the space $\operatorname{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \tilde{\pi}_r)$ is non-zero for a = 0 and a = (p-1)/2 and in each of these cases the dimension of the space $\operatorname{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \tilde{\pi}_r)$ is less than or equal to 2.

Now using exact sequence (16) the space $\operatorname{Ext}_{G_S}^1(\tilde{\pi}_r, \tilde{\pi}_r)$ has dimension less than or equal to 6 for $0 \leq r < (p-1)/2$ and its dimension is less than or equal to 12 if r = (p-1)/2. For $r \neq 0$ using this upper bound and the lower bounds from Corollary 4.2 and Corollary 3.3 we deduce the theorem in this case. When r = 0 Paškūnas showed that (see [Paš10, Proposition 6.15]) the dimension of $\operatorname{Ext}_{G^+/Z}^1(\pi_{i,0}, \pi_{j,0})$ is 2 when $i \neq j$ and 1 otherwise. Since $G_S/\{\pm 1\}$ has index a factor of 2 in G^+/Z and $G_S \cap Z$ acts trivially on $\pi_{i,0}$ we get that

$$\operatorname{Ext}_{G^+/Z}^1(\pi_{i,0},\pi_{j,0}) \hookrightarrow \operatorname{Ext}_{G_S/\{\pm 1\}}^1(\pi_{i,0},\pi_{j,0}) = \operatorname{Ext}_{G_S}^1(\pi_{i,0},\pi_{j,0}).$$
(18)

From our upper bounds the inclusions (18) are strict and hence we prove the theorem.

Corollary 4.4. The Hecke module $\mathbb{R}^1 \mathcal{I}(\pi_{i,0})$ is isomorphic to the module $\mathcal{I}(\pi_{i,0}) \oplus \mathcal{I}(\pi_{i,0})$ for $i \neq j$.

Proof. From the Theorem 4.3, exact sequence (3) and (10) we get that dimension of the space

$$\operatorname{Hom}_{\mathcal{H}}(\mathcal{I}(\pi_{0,0}), \mathbb{R}^{1}\mathcal{I}(\pi_{0,0}))$$

is 1 and using the Proposition 3.1 we get that $\mathbb{R}^1 \mathcal{I}(\pi_{i,0}) \simeq \mathcal{I}(\pi_{i,0}) \oplus \mathcal{I}(\pi_{i,0})$.

The mod p reduction of the compact groups K_0 and K_1 is isomorphic to $\operatorname{SL}_2(\mathbb{F}_p)$. Let σ_r^0 and σ_r^1 be the representations of K_0 and K_1 obtained by inflation of $\operatorname{Sym}^r \overline{\mathbb{F}_p}^2$. The Satake transform identifies the Hekce algebra $\operatorname{End}_{G_S}(\operatorname{ind}_{K_i}^{G_S} \sigma_r^i)$ with a polynomial algebra in one variable and we choose a generator τ_r^i of this algebra. Let $\pi(K_i, r, \lambda)$ be the quotient

$$\frac{\operatorname{ind}_{K_i}^{G_S} \sigma_r^i}{(\tau_r^i - \lambda)(\operatorname{ind}_{K_i}^{G_S} \sigma_r^i)}$$

It was shown by Abdellatif that $\pi(K_0, r, 0)$ and $\pi(K_1, p-1-r, 0)$ are non-split extensions of $\pi_{0,r}$ by $\pi_{1,r}$.

Corollary 4.5. The extensions of G_S smooth representations $[\pi_{1,0} \rightarrow \pi(K_0,0,0) \rightarrow \pi_{0,0}]$ and $[\pi_{1,0} \rightarrow \pi(K_1, p-1, 0) \rightarrow \pi_{0,0}]$ are equivalent.

Proof. For r = 0 there is exactly one extension class E in $\operatorname{Ext}^{1}_{G_{S}}(\pi_{i,0}, \pi_{j,0})$ for $i \neq j$ such that E is generated by its $I(1)_{S}$ invariants.

5 Extensions of non-supersingular modules.

In this section we are interested in calculating extensions of non-supersingular Hecke modules. The degree one extensions of $SL_2(\mathbb{Q}_p)$ are calculated by (Julien...). However, he uses ordinary parts functor and higher derivatives defined by Emerton. We hope that results of this section help us undertand the $I(1)_S$ invariants of these extensions. To begin with we recall the structure of all non-supersingular Hecke modules. We follow an approach via representation theory. We describe the structure of $\mathcal{I}(\eta)$, $\mathcal{I}(St \otimes \eta \circ det)$ and finally $\mathcal{I}(\operatorname{ind}_{B_S}^{G_S} \eta)$ for $\eta \neq \operatorname{id}$.

The Hecke algebra \mathcal{H} is generated by $\{T_t; t \in \Omega\}$, T_{s_0} and T_{s_1} . We now describe the action of these operators on $\mathcal{I}(\pi)$ where π is a non-supersingular representation of G_S . From [BP12, Corollary 6.4] we deduce the structure of $\mathfrak{m}(r, \lambda, \eta) := \pi(\sigma_r, \lambda, \eta)^{I(1)}$ as a module of \mathcal{H} . Note that the operator T_{Π} in the article and T_{s_1} are related as $T_{s_1} = T_{\Pi}T_{s_0}T_{\Pi^{-1}}$. Since we are looking at restriction to G_S we may assume that η is trivial and we will use the notation $\mathfrak{m}(r, \lambda)$ for $\mathfrak{m}(r, \lambda, \eta)$ The module $\mathfrak{m}(r, \lambda)$ has a basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ such that

- 1. $\mathbf{v}_1 e_{\chi_{p-1-r}} = \mathbf{v}_1$ and $\mathbf{v}_2 e_{\chi_r} = \mathbf{v}_2$,
- 2. If 0 < r < p 1 then $\mathbf{v}_1 T_{s_0} = 0$, $\mathbf{v}_1 T_{s_1} = \lambda \mathbf{v}_2$, $\mathbf{v}_2 T_{s_1} = 0$ and $\mathbf{v}_2 T_{s_0} = \lambda \mathbf{v}_1$,
- 3. If r = 0 then $\mathbf{v}_1(1 + T_{s_1}) = \lambda \mathbf{v}_2$, $\mathbf{v}_2 T_{s_1} = 0$, $\mathbf{v}_1 T_{s_0} = 0$ and $\mathbf{v}_2(1 + T_{s_0}) = \lambda \mathbf{v}_1$
- 4. If r = (p-1) then $\mathbf{v}_1 T_{s_1} = \lambda \mathbf{v}_2$, $\mathbf{v}_2 T_{s_1} = -\mathbf{v}_2$, $\mathbf{v}_1 T_{s_0} = -\mathbf{v}_1$ and $\mathbf{v}_2 T_{s_0} = \lambda \mathbf{v}_1$

Let κ be non-trivial character of B_S and we assume that $\kappa = \mu_\lambda \chi_{p-1-r}$. Observe that $(r, (\lambda)^{1/2}) \neq (0, \pm 1)$. This shows us that the representation $\operatorname{ind}_{B_S}^{G_S}(\kappa)$ is isomorphic to $\pi(p-1-r, \lambda^{-1/2}, \operatorname{id})$. Hence the module $\mathcal{I}(\operatorname{ind}_{B_S}^{G_S}(\mu_\lambda \chi_r))$ is isomorphic to $\mathfrak{m}(p-1-r, \lambda^{-1/2})$. Now the Hecke modules $\mathcal{I}(\operatorname{id})$ and $\mathcal{I}(\operatorname{St})$ are both characters and fit in an exact sequence of the form

$$0 \to \mathcal{I}(\mathrm{St}) \to \mathfrak{m}(0,1) \to \mathcal{I}(\mathrm{id}) \to 0.$$

It is clear that the vector $\mathbf{v}_3 := \mathbf{v}_1 - \mathbf{v}_2$ is stable under the action of T_{s_0} and T_{s_1} and moreover $T_{s_0} \mathbf{v}_3 = -\mathbf{v}_3$ and $T_{s_0} \mathbf{v}_3 = -\mathbf{v}_3$. The module $\mathfrak{m}(0, 1, \mathrm{id})$ is indecomposable and has quotient isomorphic to the character T_{s_0} and T_{s_1} to zero. We denote by $\mathfrak{m}(-1)$ and $\mathfrak{m}(0)$ for the subrepresentation and sub quotient of $\mathfrak{m}(0, 1)$. This completes the classification of simple non-supersingular modules. From the decomposition (see) we know that extensions can only exist between the subquotients of the modules $\mathfrak{m}(r,\lambda)$ and $\mathfrak{m}(p-1-r,\lambda')$. If 0 < r < p-1 then extensions can only exist between the simple modules $\mathfrak{m}(r,\lambda)$ and $\mathfrak{m}(p-1-r,\lambda')$. Another possibility is $\mathfrak{m}(0,\lambda)$ when $\lambda \neq \pm 1$ can have extensions with $\mathfrak{m}(0,\lambda)$, $\mathfrak{m}(0,\lambda')$ with $\lambda' \neq \pm 1$, $\mathfrak{m}(0)$ and $\mathfrak{m}(-1)$. In next few lemmas we determine these relations.

Lemma 5.1. Let (r_1, λ_1) and (r_2, λ_2) such that $0 < r_i < p - 1$. Then,

- 1. If $r_1 = r_2 \neq (p-1)/2$ or $r_1 \neq r_2$ and $r_1 + r_2 = p-1$ the dimension of $\operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 3 if $\lambda_1 \neq \lambda_2$ and is 2 otherwise.
- 2. If $r_1 = r_2 = (p-1)/2$ then the dimension of $\operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 5 when $\lambda_1 \neq \lambda_2$ and is 4 otherwise.
- 3. If $r_1 \neq r_2$ and $r_1 + r_2 \neq p-1$ the dimension of $\operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is zero.

Proof. We will first calculate the dimensions of $\operatorname{Ext}_{\mathcal{H}_{v_i}}^1(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$. Let E be an extension of $\mathfrak{m}(r_1,\lambda_1)$ by $\mathfrak{m}(r_2,\lambda_2)$. Let \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 and \mathbf{v}_4 be a basis of E such that \mathbf{v}_1 and \mathbf{v}_2 be basis for $\mathfrak{m}(r_2,\lambda_2)$ such that the relations 5 hold. Now we have

$$egin{aligned} T_{s_i} \, \mathbf{v}_3 &= a \, \mathbf{v}_1 + b \, \mathbf{v}_2 \ T_{s_i} \, \mathbf{v}_4 &= c \, \mathbf{v}_1 + d \, \mathbf{v}_2 + \lambda_2 \, \mathbf{v}_3 \end{aligned}$$

Now $0 = T_{s_i}^2 \mathbf{v}_3 = b\lambda_1 \mathbf{v}_1$ and hence b is zero. We also have $0 = T_{s_i}^2 \mathbf{v}_4 = d\lambda_1 \mathbf{v}_1 + a\lambda_2 \mathbf{v}_1$ and hence $(d\lambda_1 + a\lambda_2) = 0$. Moreover we have

$$t^{r_2} a \mathbf{v}_1 = T_{s_i} T_t \mathbf{v}_3 = T_{t^{-1}} T_{s_i} \mathbf{v}_3 = a t^{p-1-r_1} \mathbf{v}_1$$

$$t^{p-1-r_2} (c \mathbf{v}_1 - (a\lambda_2/\lambda_1) \mathbf{v}_2 + \lambda_2 \mathbf{v}_3) = T_{s_i} T_t \mathbf{v}_4 = T_{t^{-1}} T_{s_i} \mathbf{v}_4 = T_{t^{-1}} (c \mathbf{v}_1 + d \mathbf{v}_2 + \lambda_2 \mathbf{v}_3)$$

$$= c t^{p-1-r_1} \mathbf{v}_1 - (a\lambda_2/\lambda_1) t^{r_1} \mathbf{v}_2 + \lambda_2 t^{p-1-r_2} \mathbf{v}_3.$$

Suppose $r_1 = r_2 \neq (p-1)/2$ then a = 0 and c is arbitrary. If $(r_1 = r_2 = (p-1)/2)$ then both a and c can take arbitrary values. Suppose $r_1 \neq r_2$ and $r_1 + r_2 \neq p - 1$ then a = 0 and also c = 0 which is expected since the modules are in different blocks. Suppose $r_1 + r_2 = p - 1$ then only c = 0 and a is arbitrary. Hence when $r_1 = r_2 \neq (p-1)/2$ the space $\operatorname{Ext}^1_{\mathcal{H}_{v_i}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 1 when $r_1 = r_2 = (p-1)/2$ and has dimension 2 when $r_1 = r_2 = (p-1)/2$. If $r_1 + r_2 = p - 1$ and $r_1 \neq r_2$ the dimension of $\operatorname{Ext}^1_{\mathcal{H}_{v_i}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 1. In the rest of the cases it is zero.

We return to the final calculations. Consider the case when $r_1 = r_2 \neq (p-1)/2$. The dimension of the space $\operatorname{Hom}_{\mathcal{H}_E}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 2, the dimension of the space $\operatorname{Hom}_{\mathcal{H}_{v_i}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is one since intertwining operators have to commute by T_t and each module is indecomposable. Now $\operatorname{Hom}_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 1 if $\lambda_1 = \lambda_2$ and zero otherwise. This shows that the space $\operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 3 if $\lambda_1 = \lambda_2$ and has dimension 2 otherwise.

Assume that $r_1 = r_2 = (p-1)/2$. In this case the dimension of $\operatorname{Hom}_{\mathcal{H}_E}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 4, the dimension of $\operatorname{Hom}_{\mathcal{H}_{v_i}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 2. Now $\operatorname{Hom}_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 1 if $\lambda_1 = \lambda_2$ and zero otherwise. This shows that the space $\operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 5 if $\lambda_1 = \lambda_2$ and has dimension 4 otherwise.

If $r_1 \neq r_2$ then extensions can only exist when $r_1 + r_2 = p - 1$. In this case the dimension of $\operatorname{Hom}_{\mathcal{H}_E}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 2, the dimension of $\operatorname{Hom}_{\mathcal{H}_{v_i}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ is 1 using similar calculations in $r_1 = r_2$ case. Finally the space $\operatorname{Hom}_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 1 if $\lambda_1 = \lambda_2$ and zero otherwise. This shows that $\operatorname{Ext}^1_{\mathcal{H}}(\mathfrak{m}(r_1,\lambda_1),\mathfrak{m}(r_2,\lambda_2))$ has dimension 3 if $\lambda_1 = \lambda_2$ and has dimension 2 otherwise.

Now we will study the extensions of $\mathfrak{m}(0)$ by non-supersingular Hecke modules.

References

- [Abd14] Ramla Abdellatif, Classification des représentations modulo p de SL(2, F), Bull. Soc. Math. France 142 (2014), no. 3, 537–589. MR 3295722
- [BP12] Christophe Breuil and Vytautas Paškūnas, Towards a modulo p Langlands correspondence for GL₂, Mem. Amer. Math. Soc. 216 (2012), no. 1016, vi+114. MR 2931521
- [Bre03] Christophe Breuil, Sur quelques représentations modulaires et p-adiques de $GL_2(\mathbf{Q}_p)$. I, Compositio Math. **138** (2003), no. 2, 165–188. MR 2018825
- [Koz16] Karol Kozioł, Pro-p-Iwahori invariants for SL₂ and L-packets of Hecke modules, Int. Math. Res. Not. IMRN (2016), no. 4, 1090–1125. MR 3493443
- [OS14] Rachel Ollivier and Peter Schneider, Pro-p Iwahori-Hecke algebras are Gorenstein, J. Inst. Math. Jussieu 13 (2014), no. 4, 753–809. MR 3249689
- [OS16] _____, A canonical torsion theory for pro-p Iwahori-Hecke modules, J 13 (2016), no. 0, 65. MR 0
- [Paš10] Vytautas Paškūnas, Extensions for supersingular representations of $GL_2(\mathbb{Q}_p)$, Astérisque (2010), no. 331, 317–353. MR 2667891
- [Paš13] _____, The image of Colmez's Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1–191. MR 3150248

Santosh Nadimpalli,

School of Mathematics, Tata Institute of Fundamental Research, Mumbai, 400005. nvrnsantosh@gmail.com, nsantosh@math.tifr.res.in