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Abstract

In this note for p > 5 we calculate the dimensions of EXtéLz(@p)(T, o) for any two irreducible super-
singular representations 7 and o of SL2(Qp).

1 Introduction

In this note we calculate the space of extensions of supersingular representations of SLy(Q,) for p > 5.
The dimensions of the space of extensions between irreducible supersingular representations of GL2(Q)) are
calculated by Pagkiinas in [Pas§10]. Understanding extensions between irreducible smooth representations
play a crucial role in Pagkiinas work on the image of Colmez Montreal functor in (see [Pas§13]). We hope
that these results have similar application to mod p and p-adic local Langlands correspondence for SLy(Q,).

Let G be the group GL2(Q,), K be the maximal compact subgroup GL2(Z,) and Z be the center of G.
We denote by I(1) the pro-p Iwahori subgroup of G. We denote by Gg the special linear group SL2(Q,). For
any subgroup H of GLy(Q,) we denote by Hg the subgroup H N SL2(Q,). All representations in this note
are defined over vector spaces over IF,. Let o be an irreducible smooth representation of K and o extends
uniquely as a representation of K7 such that p € Z acts trivially. The Hecke algebra Endg(indf(z o) is
isomorphic to F,[T]. For any constant A in ?; let py be the unramified character of Z such that py(p) = A.
Let (o, py) be the representation

indf( 70
T(ind% , o)
The representations m(o, py) are irreducible (see [Bre03|]) and are called supersingular representations
in the terminology of Barthel-Livné.

® (o det).

Let o, be the representation Sym'F, of GL2(F,). We consider o, as a representation of K by inflation.
The K-socle of m(o,, 1)) is a direct sum of two irreducible smooth representations o, and o,_1_,. Let m
and 7, be the Gg representations generated by af(l) and aé(_ll)
irreducible supersingular representations of Gg and

_,- The representations m , and 7, are

resgg (0, ftn) ~ o, © T,

Any irreducible supersingular representation of Gg is isomorphic to m; , for some r such that 0 <r <p—1
and ¢ € {0,1}. Moreover the only isomorphisms between ; , are mo , ~ m1 p_1—, and m , =~ T p—1—r (S€€
[Abd14]). Our main theorem on extensions of supersingular representations of Gg is:

Theorem 1.1. Let p > 5 and 0 < r < (p — 1)/2. For any irreducible supersingular representation T of
Gs the space Extés (1,mir) is non-zero if and only if T ~ w;, for some j € {0,1}. If0 <r < (p—1)/2
then dimg_ Extés(m-,r,wj,r) =2 for i # j and dimg Extés(myr,myr) =1. Forr = (p—1)/2 we have
dimg Extés (To,r, Tor) = 3.

We briefly explain the method of proof. We essentially follow [Pasl10]. The functor sending a smooth
representation to its I(1)g-invariants induces an equivalence of categories of smooth representations of Gg



generated by I(1)g-invariants and the module category of the pro p-Iwahori Hecke algebra (see [KozI6l
Theorem 5.2]). We use the Ext spectral sequence thus obtained by this equivalence of categories to calculate
Exté s+ Extensions of pro p-Iwahori Hecke algebra modules are calculated from resolutions of Hecke modules
due to Schneider and Ollivier. We crucially use results from work of Pasktinas [Pas10]. We first obtain lower
bounds on the dimensions of Exté s Spaces using the spectral sequence and then obtain upper bounds using
Paskiinas results on Extr (o, 7(0, 113)).

Acknowledgements I thank Eknath Ghate for showing the fundamental paper [PaSI0] and for his
interest in this work and discussions on the role of extensions in mod p-Langlands. I want to thank Radhika
Ganapathy for various discussions on mod p representations and for her mod p seminar at the Tata Institute.
After posting this paper on ArXiv the author has learnt that Ramla Abdellatif has independently obtained
these results.

2 Pro-p Iwahori Hecke algebra

Let B be the Borel subgroup consisting of invertible upper triangular matrices, U be the unipotent radical of
B and T be the maximal torus consisting of diagonal matrices. We denote by U the unipotent radical of B
the Borel subgroup consisting of invertible lower triangular matrices. We denote by I the standard Iwahori-
subgroup of G. Let I(1) be the pro-p Iwahori subgroup of G and I(1)s be the pro-p-Iwahori subgroup of Gs.

We note that I(1)s(ZNI(1)) is equal to I(1). Let H be the pro-p Iwahori-Hecke algebra Endg(ind?&)s id).

Let Repg, and Repé(sl)s be the category of smooth representations of Gg and its full subcategory consisting
of those smooth representations generated by I(1)g-invariant vectors respectively. We denote by Mody, the
category of modules over the ring H. We have two functors

T: Repé(;)s — Mody
I(m) = ml(Ws

and

T : Mody — Repé(;)s

T(M) = M @ indf5, id.

From [Koz16l Theorem 5.2] the functors 7 and Z are quasi-inverse to each other. Let ¢ and 7 be any two
smooth representations of Gg and o1 be the Gg subrepresentation of o generated by I(1)g-invariants of o.
We have

Homeg(7,0) = Homg(7,01) = Hompy (Z(7),Z(01)) = Hompy (Z(7),Z(0)). (1)

We get a Grothendieck spectral sequence with EY equal to Ext’(Z(7),R/Z(c)) such that
Ext!(Z(7),RZ(c)) = Exta/ (1, 0). (2)
The 5-term exact sequence associated to the above spectral sequence gives the following exact sequence:

0 = Ext}, (Z(7),Z(0)) 5 Exth(r,0) > (3)
Homy (Z(T), RlI(a)) — Extg,[ (Z(7),Z(0)) — EXté(T, o)

for all 7 such that 7 =< Ggr!™) >. In particular we apply these results when 7 and o are irreducible
supersingular representations of Gg. We first recall the structure of the ring #, its modules M (i,r) = 771{(:)
for 4 in {0,1} and 0 < r < p—1. The H module M (7, r) is a character and we first calculate the dimensions

of the spaces Exty, (M (i,r), M(j,s)).
Let T(S) and TS1 be the maximal compact subgroup of Ts and its maximal pro-p-subgroup. We denote by

-1
S0, s1 and @ the matrices (01 (1)), (](3 % ) and (;8 p01> respectively. Let N(Ts) be the normaliser



of the torus Ts and Wy be the Weyl group N(Ts)/Ts. The extended Weyl group W = 6% [] 5067 sits into
an exact sequence of the form

T2 - N(T. N(T.
0—>Q::—§—>W::7(13)—>W: (OS)—>O.
T T Ty

The length function I on W, given by 1(6°) = [2i| and I(s06") = |1 — 2i|, extends to a function on W such
that [(©2) = 0. Let T, be the element Chary(1y,s(1) for all w € W. We denote by e; the element ¢, To-
The functions Ty, span ‘H and the relations in H are given by

TwTy, = Ty whenever [(v) + l[(w) = l(vw),
T2 = —eiTs,.

The pro-p-Iwahori Hecke algebra is generated by 13,7, for w in Q. For any character x of € let e, be the
element Y-, o x H(w)T,. Let v be a Wy orbit of the characters x and e, be the element > ey Ex- The

elements {e,;y € Q/ Wy} are central idempotents in the ring H and we have

H= P He,. (4)

Q/Wo

For the group Gg, we know that H is the affine Hecke algebra. The characters of affine Hecke algebra are
described in a simple manner we recall this for Gg. Let I be a subset of {sg, s1} and W be the subgroup of
W generated by elements of I and Wy is trivial group. The characters of H are parametrised by pairs (A, I)
where X is a character of © and I C Sy. For such a pair (A, I) the character x ; associated to it is given by

X1 (Twt) =0 for all w € W\W; and for all ¢ € , (5)
Xt (Twt) = () (=1)!™ for all w € Wy and for all t € Q. (6)

If X is nontrivial then we have x ¢(7;) = A(t), for all t € Q and x ¢(Tw:) = 0 for all w # id and ¢ € Q.

We denote by x, g the character X, .- 9. From the above description we get that M (0,7) = x, ¢ and
M@1,7) = xp—1-rp forr ¢ {0,p—1}. If r € {0, p—1} then [OS16] Proposition 3.9] says that xiq ¢ and xiq,s are
not supersingular characters. This shows that M (¢, r) is either xiq,7 or Xiq,7, for r € {0,p—1}, where I = {so}
and J = {s1}. Since the element Ty, belongs to pro-p Iwahori-Hecke algebra of G and using the presentation
in [BP12], Corollary 6.4] we obtain that M (1,0) = xiq,; and M(0,0) = xia,s. Similarly M(1,p — 1) is given
by the character xiq,s and M (0,p—1) is given by the character x;q,;. Let 0 < 7,5 < (p—1)/2 then shows
that

Exty, (M (i,r), M(j,s)) =0 (7)

for r # s.

2.1 Resolutions of Hecke modules

In order to calculate extensions between the characters M (i, r), we use resolutions constructed by Schneider
and Ollivier for H. Let X be the Bruhat-Tits tree of Gg and let A(Ts) be the standard apartment associated
to Ts. We fix an edge E and vertices vy and vy contained in E such that the Gg-stabiliser of vy is Kg.
For any facet F' of X we denote by Gp the Z,-group scheme with generic fibre SLy and Gp(Z,) is the
G-stabiliser of F. We denote by Ip the subgroup of Gr(Z,) whose elements under mod- p reduction of
Gr(Z,) belong to the Fp-points of the unipotent radical of Gp xF,. We denote by Hp the finite subalgebra
of H defined as
Hr = Enda, (z,)(ind5" " (id)).

In particular Hg is a semi-simple algebra.

For any H-module m the construction of Schneider and Ollivier [OS14] Theorem 3.12, (6.4)] gives us a
(H, H)-exact resolution

0—>H®7{Em5—1>(7'[®yv0 m)@(f}‘l@q{vl m)6—0>m—>0. (8)



Using the resolution and the observation that Hpg is semi-simple for p # 2 we get that

0 — Homy (m,n) — @ Homy, (m,n) — Homgy, (m,n) LN Extj,(m,n) — @ Ext%_[v’_ (m,n) =0 (9)

Vo,V1 v0,V1

Note that we have an isomorphism of algebras

. SLa(F,) .
Hoy >~ Hyy =~ EndSLQ(FP)(lndN(]}(p)P) id).

The above isomorphism is not a canonical isomorphism. Let Ky and K7 be the compact open subgroups
K NGg and KN Gg respectively.

2.2 Extensions of supersingular modules over pro-p Iwahori—-Hecke algebra.

The Hecke algebra H,, is isomorphic to Endg, (indf((il) id). The Hecke algebra H,, is generated by T; and
T, for t € . The relations among them are given by

Ty, Ty, = Thytys

TtTSi = TtSj, = Lg;t—1 = TSiTt717
2 _

Tsi = —€1Tsi

where e; =), o Tt

Lemma 2.1. Let 0 < 7 < (p — 1)/2 the space Exty, (M (i,r), M(j,s)) is non-zero if and only if i # j and
has dimension 2 when i # j. If r = (p — 1)/2 then the space Exty, (M (i,7), M(i,7)) has dimension 2.

Proof. Since r # 0 the characters M (0,7) and M(1,r) are isomorphic to x, ¢ and x,_1_,¢ respectively
(see (). Let E. be a 2-dimensional F, module F,e; & Fpeq and F,[Q] acts on E by Tyeg = t"ep and
Tier = tP717"e1. We set Ts,eq = 0 and Ty,e; = ceg for some ¢ # 0. This makes E a H,, module and is a
non-trivial extension

0= xrp—E = Xp_i—rp — 0.

Let E be a H,,-extension of W := x, ¢ by V := X, ¢ i.e, we have an exact sequence

O%V%ELI/V%O.

There exists a F,[Q]-equivariant section s : W — E of f. Let V' be the image of this section. Now
E =V @ V’'. The action of Ty, is trivial on V' and observe that f(Ts,(V')) = Ts,(f(V')) = 0. If E is
nontrivial then T, (V') = V. This implies that » + s = p — 1 and hence F is isomorphic to E. for some
¢ # 0. This shows that the space of H,, extensions of W by V is one dimensional if r + s = p — 1 and zero
otherwise. Now consider the exact sequence @ when m is M (i,r) and nis M (j,r). For i = j the map J in
zero ([9) hence the space Extj, (M (4,7), M (i, 7)) is trivial for 0 < r < (p — 1)/2 and has dimension 2 when
r = (p—1)/2. When i # j the Hom spaces in @D are all trivial. This shows that the dimension of the space
Exty, (M (i,r), M(i,r)) is 2 from our calculations. O

Lemma 2.2. The space of extensions Exty, (M (i,0), M(4,0)) is trivial for i = j and has dimension 1 for
1# 7.
Proof. The algebra e;H,, is semi-simple algebra and hence we get that

EXt%-Lvi (Xid,ss Xid,s’) = 0 (10)

for all i > 0 and for subsets S and S of {s¢, s1}. Now consider the exact sequence (9) when m is M(i,r)
and n is M (j,r). For i = j the map J in (9) is zero hence the space Exty, (M (i,7), M(i,r)) is trivial. When
i # j the first two Hom spaces in are trivial. The space Homy, , (m,n) has dimension one. This shows
that the dimension of the space Exty, (M (i,7), M (i,7)) is 1 for ¢ # j. O



3 The Hecke module R'Z(m;,).

Paskunas calculated the cohomology groups R'Z(m; ) and we now recall his results. Let 7, be the super-
singular representation (o, 1) of G. Recall that the K-socle of 7, is isomorphic to o, & op_1_, and the

space of I(1) invariants has a basis (v, vi) where vy and v; belong to or” and UIJ,V_”l_T respectively. Let I™
and I~ be the groups I NU and I N U respectively. Consider the spaces

My :=<I170"vy; n>0> and My :=< IT0"vy; n>0>

and let IT be the matrix <2 é) which normalizes I and I(1). We denote by 7y and m; the spaces Mo+ ITM;

and M; +IIMj. Let G° be subgroup of G consisting of elements with integral discriminant. Let GT be the
group ZG°. We denote by Z; the group I(1) N Z.

Proposition 3.1 (Paskiinas). The spaces mg and w1 are Gt stable. The space 7, is the direct sum of the
representations w1, and Ty as Gt representations and hence i 18 1somorphic to m; as Gs representations
fori € {0,1}. If r be an integer such that 0 < r < (p —1)/2 then the Hecke module R'Z(m; ) is isomorphic
to Z(mir) ®I(m;y). In the Iwahori case (i.e, r = 0) the Hecke module RZ(mg o) & RZ(m1,9) is isomorphic to
I(’IT()’())EB2 b I(Tfoyo)@Q.

Proof. The first part follows from [Pas10, Corollary 6.5]. The second part follows from [Pas10, Proposition
10.5, Theorem 10.7 and equation (49)]. O

Corollary 3.2. Let 7 be an irreducible supersingular representation of Gg. If the space of extensions
Extg, (7,7i,) is non-trivial then T ~ 7;, for some j € {0,1}.

Proof. This follows from , and Proposition O

Corollary 3.3. Let 0 <r < (p—1)/2 and i # j then the dimensions of the space Extés (Tiry i) 45 2.

Proof. Observe that for 0 < r < (p — 1)/2 the modules M (i,r) and M (j, s) are not isomorphic. Now using
the exact sequence and Proposition we get that

Extés (i, i) = Bxty, (M (i, 7), M(4,7)).
The corollary follows from the Lemma [2.1 O

Remark 3.4. The results of Corollary[3.3 remain valid for r = 0 but we prove this later. It is interesting
to note that for 0 < r < (p—1)/2 and i # j any extension E of m;, by m;, for i # j is generated by its
I(1)s invariants, i.e, E =< GgET(Ms >,

4 Calculation of degree one self extensions.

Let us first consider the case when 0 < r < (p—1)/2. In order to determine the dimensions of Ext!(m; ., 7;.,)
we first show that the map

Extg, (w0, mi,r) — Homyy(Z(m; ), R'Z(m;,))) (11)

is non-zero. Explicitly the above map takes an extension F, with 0 — m;,, — E — m;, — 0, to the delta

map in the associated long exact sequence, given by: Z(m; ) LLN R'Z(m; ). Note that the dimension of
ET(M) is one if and only if 6z # 0.

Lemma 4.1. For 0 <r < (p—1)/2 then map is non-zero.



Proof. For 0 < r < (p —1)/2 there exists a self extension F of 7, such that the map Z(7,) LLN RYZ(7,) is
non-zero. We fix an extension E such that g # 0. Since dp is a Hecke-equivariant map and Z(7,.) is an
irreducible Hecke-module of dimension 2 we get that the inclusion map of Z(7,.) in Z(E) is an isomorphism
i.e, dim E'™ = 2. Now consider the pullback diagram

0 o FEq - 0

The long exact sequences in I(1)-group cohomology attached to gives us:

0 —— I(7) 7, I(B) — I(mi,) % RIZ(7,)

| |

0 I(7) I(E) — I(7,) o RIZ(7,).

Since the dimension of Z(E) is 2 we get that d; is injective and hence the map d3 is non-zero. The dimension
of the space Z(m; ) is one hence f is an isomorphism. This shows that the space Z(E;) has dimension 2.
For r = (p — 1)/2 the representations 7 , ~ mp,,. We assume without loss of generality img dy is contained
in R'Z(m; ;). For any r such that 0 < r < (p — 1)/2 consider the pushout of 7, by m; ,

0 T, Es5 T4, 0
0 Ty Ey Ti,r 0 (13)

The self extension Ey of ;- is non-split and the induced map g, is non-zero. To see this consider the long
exact sequence in cohomology attached to :

5
0 T(miy) 2 T(Ey) —— T(miy) 22 RVI (i)

Rlz-(pg)
0 ——— I(7,) —— I(B1) —— L(m,) — RI(7,)

Note that R'Z(7,) is isomorphic to R'Z (g ) © R'Z(m ) and R'Z(pz) is the projection map. This shows
that R1Z(ps)da # 0 and hence d3 # 0 using which we get that g is an isomorphism. This shows that E; is a
non-split self-extension of m; , by m; ;. L]

Corollary 4.2. For any integer r such that 0 <r < (p —1)/2 we have dimg Exté (w0, mir) > 1.

Theorem 4.3. Let p > 5 and 0 < r < (p — 1)/2 then the dimension of Extg (m;, mi,) is 1 and dimension
of Extbs (i, i) 38 2 for i # j. Forr = (p—1)/2 the dimension of Ext};s (mo,r,T0,r) 1S 3.

Proof. The subgroup GgZ is an index 2 subgroup of G and id and II are two double coset representatives for
K\G/GsZ. We note that K N Gg and K N @g are representatives for the two distinct classes of maximal



II

compact subgroups of Gg and we denote them by K; and K5 respectively. Let o, be the representation o,.

of K. Using Mackey-decomposition we get that

.G .G e, e . 1Gs
resgs indg z o = ind g g ol e indyx? g, 0r = indg? o, & ind? 0. (14)

using the long exact sequence of Ext groups for the exact sequence,
0= ind§y or = indS, — 7 — 0
we get that an exact sequence
Homg (ind$ - 0, 7,) — Extey (7, 7p) — Extg (ind$ g o, 77 KN Extl (ind$ - oy, 7). (15)
Now using the exact sequence becomes
0 — Homg, (0, 7,) ® Homg, (o)., ) — Extg (7, 7r) — Ext, (0, 7,) @ Exti, (o)., 7). (16)
The groups K is contained in K/Z;. For all ¢ > 0 we note that

Extl, (o, ) ~ Extzk/z1 (indﬁ{z1 (0p), 7r) =~ @ E){‘n’k/z1 (or @ det®, 7T,).
0<a<p—1

The spaces Exty /7, (0r®det?, 7,.) can be calculated from the work of Paskiinas. We recall his calculations
as needed. There exists a G smooth representation {2 such that resk 2 is an injective envelope of Sock (7,.) in
the category of smooth representations of K. In particular we get that 7, is contained in 2. The restriction
res () is isomorphic to injo, @ injo,_1_,. Now Ext}(/zl (0, ® det”, 7,.) is isomorphic to Homg,z, (o, ®
det®, Q/7,).

We now use the notations from [Pas10, Notations, Section 9]. We make one modification.
Paskunas uses the notation y for the character

(5 ) = e

for all A\, € F and [ ] is the Teichmuller lift. For convenience we use the notation x, , instead of x. The
idempotent e, in [Pas10, Section 9] will be denoted e, ,. The space Hom, (o, ® det®, Q/7,) is the same as

ker(Z(Q/7,)ey, . —2 T(Q/7,)ex: ) (17)

and from [Pas§10, Proposition 10.10] has dimension less than or equal to 2. For 0 < r < (p — 1)/2 the space
Homg 7, (0 ®@det?, ;) is non-zero if and only if a = 0 and has dimension 1 if » < (p—1)/2 and 2 otherwise.
Using for 0 <r < (p—1)/2 the space Ext}(/zl (o @ det®, 7,.) is non-zero if and only if @ = 0 and has
dimension at most 2 (see [Pas10, Proposition 10.10] for 0 < r < (p —1)/2 and [PasI3] Corollary 6.13 and
Corollary 6.16] for r = 0). When r = (p — 1)/2 the space Ext}(/zl (o, ® det”, 7,.) is non-zero for a = 0 and
a = (p—1)/2 and in each of these cases the dimension of the space Ext}, 2, (0 ® det®, ;) is less than or
equal to 2.

Now using exact sequence the space Exté s (7, Tr) has dimension less than or equal to 6 for 0 < r <
(p — 1)/2 and its dimension is less than or equal to 12 if » = (p — 1)/2. For r # 0 using this upper bound
and the lower bounds from Corollary [4.2]and Corollary [3.3] we deduce the theorem in this case. When r =0
Pagkiinas showed that (see [Pasl0, Proposition 6.15]) the dimension of Extéﬂz (mi,0,75,0) is 2 when ¢ # j
and 1 otherwise. Since Gg/{%1} has index a factor of 2 in G*/Z and Gg N Z acts trivially on m; o we get
that

Exte z(mi0,mj0) = Extg, a1y (Tio, m50) = Exté (mi0,7j.0)- (18)
From our upper bounds the inclusions are strict and hence we prove the theorem. O

Corollary 4.4. The Hecke module R'Z(m; ) is isomorphic to the module Z(m; ) & I(mjo) fori # j.



Proof. From the Theorem exact sequence and we get that dimension of the space
Homy(Z(m0,0), R'Z(70,0))

is 1 and using the Proposition we get that R'Z(m; 0) ~ Z(m;0) & I(mj0). O

The mod p reduction of the compact groups Ko and K; is isomorphic to SLy(F,). Let 02 and o be the
representations of Ky and K; obtained by inflation of SymTFpQ. The Satake transform identifies the Hekce

algebra EndGS(indIGf ol) with a polynomial algebra in one variable and we choose a generator ¢ of this
algebra. Let w(K;,r, \) be the quotient
indf(f ol

(7} = \)(ind5 o)

It was shown by Abdellatif that 7(Ko,r,0) and 7(K1,p — 1 —r,0) are non-split extensions of mg , by 7y ..

Corollary 4.5. The extensions of Gs smooth representations w10 — 7(Ko,0,0) — mo0] and [m10 —
m(K1,p—1,0) — m,0] are equivalent.

Proof. For r = 0 there is exactly one extension class E in Ext%;s (73,0, m;5,0) for @ # j such that E is generated
by its I(1)g invariants. O

5 Extensions of non-supersingular modules.

In this section we are interested in calculating extensions of non-supersingular Hecke modules. The degree
one extensions of SLo(Q,) are calculated by (Julien...). However, he uses ordinary parts functor and higher
derivatives defined by Emerton. We hope that results of this section help us undertand the I(1)g invariants
of these extensions. To begin with we recall the structure of all non-supersingular Hecke modules. We
follow an approach via representation theory. We describe the structure of Z(7), Z(St ® n o det) and finally
I(indgg n) for n # id.

The Hecke algebra H is generated by {T;t € Q}, Ts, and Ts,. We now describe the action of these
operators on Z(w) where 7 is a non-supersingular representation of Gg. From [BP12, Corollary 6.4] we
deduce the structure of m(r, \,n) := (o, A\,n)'*) as a module of H. Note that the operator Ti; in the
article and Ty, are related as Ty, = TnTs,I11-1. Since we are looking at restriction to Gg we may assume
that 7 is trivial and we will use the notation m(r, \) for m(r, A\, ) The module m(r, ) has a basis {vy,va}
such that

1. viey, ., =Vviand vae,, = vy,

2. If0<r<p—1thenviTs, =0, viTs = Avy, voTs, =0and voTs, = A vy,

3. If r=0then vi(1+Ts,) = Ava, voT,, =0, viTs, =0 and vo(1+Ts,) = Avy

4. Ifr=(p—1) then vi Ty, = Ava, voTs, = —va, viTs, = — vy and vo Ty, = A vy

Let x be non-trivial character of Bg and we assume that x = pxXp—1—r. Observe that (r, (N1/2) #
(0,£1). This shows us that the representation indgg(l-@) is isomorphic to w(p — 1 — r, \"*/2id). Hence the

module I(indgz (paxr)) is isomorphic to m(p — 1 — 7, A=*/2). Now the Hecke modules Z(id) and Z(St) are
both characters and fit in an exact sequence of the form

0 — Z(St) - m(0,1) — Z(id) — 0.

It is clear that the vector vs := v — vq is stable under the action of T, and T, and moreover T, v = — V3
and Ts, v3 = —v3. The module m(0, 1,id) is indecomposable and has quotient isomorphic to the character
T,, and T, to zero. We denote by m(—1) and m(0) for the subrepresentation and sub quotient of m(0, 1).
This completes the classification of simple non-supersingular modules.



From the decomposition (see) we know that extensions can only exist between the subquotients of the
modules m(r,\) and m(p — 1 —r, A'). If 0 < r < p — 1 then extensions can only exist between the simple
modules m(r, A\) and m(p — 1 — r, ). Another possibility is m(0,\) when A # +1 can have extensions with
m(0, A), m(0, \') with \' # £1, m(0) and m(—1). In next few lemmas we determine these relations.

Lemma 5.1. Let (r1, A1) and (72, A2) such that 0 < r; < p—1. Then,

1. Ifri=re# (p—1)/2 orr1 #712 and r1 + 19 = p — 1 the dimension of Ext%{(m(rl, A1), m(r2, A2)) is 3
if A\ # Ao and is 2 otherwise.

2. Ifry = rg = (p— 1)/2 then the dimension of Exty,(m(ri, A1), m(ra, o)) is 5 when A\ # Ao and is 4
otherwise.

3. If r1 # 7y and r1 + 1o # p — 1 the dimension of Ext%{(m(rl, A1), m(re, A2)) is zero.

Proof. We will first calculate the dimensions of Ext%_[“_(m(rl,Al),m(rg,)\g)). Let E be an extension of

m(r1, A1) by m(re, A2). Let v, vy and v and v4 be a basis of E such that v; and va be basis for m(rg, A2)
such that the relations [5l hold. Now we have

Ts, vy =avi+bvy

Ts, va=cvi+dva+Aavs

Now 0 = T2 v3 = bA\;vy and hence b is zero. We also have 0 = T2 v4 = dX; vi+alyv1 and hence
(d\1 + aXz) = 0. Moreover we have

t""zavl = TsiTt V3 = ﬂ’lTsi vy = atpflf'rl vy
P12 (v —(adg /A1) Vo +Xovs) = Ts, Ty vy = Ty 1Ty, vy = Ty-1(cvi +d Vo +Xa V3)

= Ctpilirl V1 7(0,A2/)\1)tr1 Vo +)\2tp7177‘2 V3.

Suppose 1 = ro # (p — 1)/2 then a = 0 and c is arbitrary. If (r; = ro = (p — 1)/2) then both a and
¢ can take arbitrary values. Suppose ry # ro and r1 + 19 # p — 1 then @ = 0 and also ¢ = 0 which is
expected since the modules are in different blocks. Suppose r; + 72 = p — 1 then only ¢ = 0 and a is
arbitrary. Hence when r = 73 # (p — 1)/2 the space Ext%{v‘ (m(71, A1), m(rz, A2)) has dimension 1 when
r1 =19 = (p—1)/2 and has dimension 2 when ry = ry = (pl— 1)/2. fry +ro =p—1and r # ry the
dimension of Ext%{vi (m(71, A1), m(rz, A2)) is 1. In the rest of the cases it is zero.

We return to the final calculations. Consider the case when r1 = ro # (p — 1)/2. The dimension
of the space Homy ,(m(r1, A1), m(r2, A2)) is 2, the dimension of the space Homy, (m(ri, A1), m(rz, A2))
is one since intertwining operators have to commute by T; and each module is indecomposable. Now
Homy (m(r1, A1), m(r2, A2)) has dimension 1 if A\; = A2 and zero otherwise. This shows that the space
Ext%d(m(rl, A1), m(r2, A2)) has dimension 3 if A\ = Ay and has dimension 2 otherwise.

Assume that 7 = ro = (p — 1)/2. In this case the dimension of Homy, (m(r1, A1), m(r2, A2)) is 4, the
dimension of Homy,,, (m(r1, A1), m(r2, A2)) is 2. Now Homy (m(71, A1), m(rz, A2)) has dimension 1 if A\; = Ag
and zero otherwise. This shows that the space Ext%{(m(rl, A1), m(r2, A2)) has dimension 5 if Ay = A2 and
has dimension 4 otherwise.

If r1 # ro then extensions can only exist when r; + ro = p — 1. In this case the dimension of
Homgyyp, (m(r1, A1), m(r2, A2)) is 2, the dimension of Homg, (m(r1, A1), m(r2,A2)) is 1 using similar calcu-
lations in 71 = ro case. Finally the space Homy (m(ry, A1), m(r2, A2)) has dimension 1 if A\; = Ay and zero
otherwise. This shows that Extj, (m(r1, A1), m(ra, \2)) has dimension 3 if \; = Xy and has dimension 2
otherwise. O

Now we will study the extensions of m(0) by non-supersingular Hecke modules.
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