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Abstract

For non markovian, piecewise monotonic maps of the interval associated to a potential,
we prove that the law of the entrance time in a cylinder, when renormalized by the measure
of the cylinder, converges to an exponential law for almost all cylinders. Thanks to this
result, we prove that the fluctuations of Rn, first return time in a cylinder, are lognormal.

1 Introduction

In this article, we study the asymptotic law of Rn, which is, for a stationary stochastic process,
the first time when the process repeats its n first symbols. In the same way, for a piecewise mono-
tonic map T of the interval, Rn is the first return time in an interval of continuity of Tn. When
the dynamical system is ergodic, Ornstein and Weiss [8] have proved that limn→∞

1
n log Rn = h,

where the convergence is almost sure and h is the entropy of the system. Results about fluctu-
ations of log Rn around nh are obtained for systems with the Gibbs property by Collet, Galves
and Schmitt [3]. Showing that the non-markov part of the system can be disregarded, and
proving something similar to the Gibbs property defined in [1], (third part), we give the same
results for piecewise monotonic maps of the interval associated to a bounded variation weight,
that is to say: the law of Rn, correctly renormalized, converges to a lognormal distribution. This
convergence strongly uses the fact that we can approximate the law of the entrance time in a
cylinder by an exponential law, which is proved in the fifth part.
Consider the following setting: T is a piecewise monotonic transformation (with b branches). T
is piecewise C2, which means that there is a subdivision (ai)i=b

i=0 of [0,1] such that T is monotonic
and extends to a C2 map on each ]ai, ai+1[. Denote by sing(T ) the set {ai, i = 0, . . . , b} of
the points where T is not continuous and let Ai =]ai, ai+1[. We call n-cylinder a set as fol-
lows: Ain

i1
= Ai1 ∩ T−1Ai2 ∩ . . . ∩ T−n+1Ain . Denote by Pn the set of n-cylinders. For all x in

[0, 1] \ ∪∞0 T−n(sing(T )) and all n, there is a unique n-cylinder containing x, called Pn(x).
We assume that the borelian σ-field B is generated by the finite partition ]ai, ai+1].
We are going to study the asymptotic law of Rn for a measure µϕ invariant by T , where ϕ is a
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measurable potential. The study of dynamical systems associated to a potential (different from
the inverse of the jacobian of T ) arise from statistical mechanics, where the potential figures the
interaction between the particles (see [1]). Another motivation is when the potential is equal to
zero, the equilibrium states are then measures which maximize the entropy.

Given a measurable potential ϕ, define the associated transfer operator (for f measurable)
by:

Pϕf(x) =
∑

T (y)=x

eϕ(y)f(y)

We define the topological pressure of the system as follows:

p(ϕ) = lim
n→∞

1
n

log sup
x∈[0,1]

Pn
ϕ1(x)

(p(ϕ) is well defined because the sequence (supx∈[0,1] P
n
ϕ1(x))n∈N is submultiplicative)

Definition 1.1 A measurable function f on [0,1] has bounded variation (f ∈ BV ([0, 1])) if
var[0,1]f = var f < ∞, where we define the variation on a set A by:

varA f = sup
n∑

i=1

|f(xi−1)− f(xi)|

the supremum is taken over all finite partitions of A: 0 = x0 < . . . < xn = 1, n ≥ 1.

Recall that a measure is ep(ϕ)−ϕ-conformal (in the sense of Denker et Urbanski [4]) if for all
measurable sets A such that T : A → T (A) is invertible:

ν(T (A)) =
∫

A
ep(ϕ)−ϕ dν

Assuming certain hypothesis on the potential (see the next section), Liverani, Saussol and Vai-
enti [7] prove the existence of a conformal measure ν and the existence of a unique measure
invariant by T , µϕ, absolutely continuous with respect to ν and satisfying exponential decay of
correlations. Under the same hypothesis on the weight, we can state our main result:
Define the entrance time in a cylinder A by:

τA(x) = inf{k ≥ 0, T k(x) ∈ A}

In the same way, we define the return time in a cylinder:

Rn(x) = inf{k > 0, T k(x) ∈ Pn(x)}

Define, for f with bounded variation, the quantity that usually appears in the central limit
theorem, i.e the asymptotic variance σ(f) (see [6]):

Cn(f) =
∫

f ◦ Tnfdµϕ − (
∫

fdµϕ)2

σ2(f) = C0(f) + 2
∞∑

n=1

Cn(f)
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σ2(f) is well defined because Cn(f) is the autocorrelation of f and so, it decays exponentially
fast.
Let h = hµϕ be the entropy associated to the measure µϕ i.e:

h = lim
n→∞

1
n

log #{A ∈ Pn, µϕ(A) > 0}

Theorem 1.1 Assume σ(ϕ) 6= 0, then
(

log Rn−nh
σ(ϕ)

√
n

)
n∈N

is a sequence of well defined random

variables on the probability space ([0, 1],B, µϕ) and:

log Rn − nh

σ(ϕ)
√

n
⇒ N (0, 1)

where ⇒ is a convergence in law.
(and σ(ϕ) = 0 if and only if there exists a measurable g such that ϕ = g − g ◦ T ).

2 Piecewise monotonic maps of the interval

Recall that T is a piecewise monotonic map of the interval. For x ∈ [0, 1], let:

Sn(x) = exp(
n−1∑
i=0

ϕ ◦ T i(x))

Let us make the following hypothesis on the potential and the system:

(H1) exp(ϕ) has bounded variation.

(H2) (distortion)
∑+∞

n=1 supC∈Pn varCϕ < ∞.

(H3) (dilatation) sup ϕ < p(ϕ).

(H4) (covering) ∀I interval ,∃N(I) ∈ N∗, C(I) > 0, inf P
N(I)
ϕ 1I ≥ C(I).

(H2) is called a distortion hypothesis because it allows us to show the distortion property (see
lemma 2.5).
(H3) is called a dilatation hypothesis because it really plays the same role as the hypothesis
inf |T ′| ≥ ρ > 1 when the potential is the logarithm of the inverse of the derivative of T .
(H4) is equivalent, when ϕ is bounded from below (for example when ϕ is the logarithm of the
inverse of the derivative of T and T is strictly expanding), to the following:

∀I interval ,∃N(I) ∈ N∗, TN(I)I ⊃ [0, 1]

Lasota-Yorke inequality:

Theorem 2.1 Under the hypothesis (H1), (H2), (H3), there exist α < 1 and ξ > 0 such that
for all f ∈ BV ([0, 1]), f ≥ 0:

1
λ

var(Pϕ(f)) ≤ α var(f) + ξν(f)

Proof : The proof is deeply based on the sub-lemma 4.1.1 of [7]:
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Sub-lemma 4.1.1:
For all integer m, there exists Bm < ∞ such that, for all positive function f with bounded
variation:

var(Pm
ϕ f) ≤ 9 supSm var(f) + Bm

∫
fdν

By hypothesis: supSm ≤ em sup ϕ < λm; let m such that em(sup ϕ−p(ϕ)) < 1
9 (recall that

λ = ep(ϕ)):
1

λm
var(Pm

ϕ f) ≤ αmvar(f) + Bmν(f)

with αm < 1 and Bm < ∞. It is then sufficient to consider the iterate Pm
ϕ to get the desired

inequality. 2

Existence of conformal and invariant measures:

Theorem 2.2 (Liverani, Saussol, Vaienti [7])
Under the hypothesis (H1). . .(H4), there exists a non atomic ep(ϕ)−ϕ-conformal measure ν and
there exists a unique invariant probability measure µϕ absolutely continuous with respect to ν.
ν and µϕ are obtained in the following way:
there exist λ > 0 and hϕ such that:

Pϕhϕ = λhϕ , ν(hϕ) = 1 , P ∗
ϕ(ν) = λν

µϕ = hϕν, the density hϕ is positive, has bounded variation and λ = ep(ϕ). Moreover, inf(hϕ) > 0.

Theorem 2.3 ([7])
Under the same hypothesis, µϕ is the unique equilibrium state for ϕ, i.e:

p(ϕ) = hµϕ(T ) +
∫

ϕdµϕ = sup{hm(T ) +
∫

ϕdm}

where hm(T ) denotes the entropy of the measurable system (T,m) and the supremum is taken
over all the T-invariant measures m.

The main ingredient to show these theorems is the Lasota-Yorke inequality. The covering
hypothesis is needed to get a strictly positive density hϕ.

Decay of correlations:

Theorem 2.4 ([7])
Assuming the same hypothesis as before, the decay of correlation is exponential: there is γ > 0
and a constant K such that, if f has bounded variation and g is integrable:∣∣∣∣∫ fg ◦ Tndµϕ −

∫
fdµϕ

∫
gdµϕ

∣∣∣∣ ≤ Ke−γn(
∫
|f |dµϕ + var f)

∫
|g|dµϕ

in particular, if f = 1A and g = 1B with A interval and B measurable, then var f=2 and
for all n:

|µϕ(A ∩ T−nB)− µϕ(A)µϕ(B)| ≤ Ke−γn(2 + µϕ(A))µϕ(B)

This kind of mixing, which is weaker than Φ-mixing, is a key tool in the following.
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Central limit theorem: For functions with summable decay of correlation (which is the case
for ϕ0 = µϕ(ϕ) − ϕ since it has bounded variation and then decays exponentially fast), the
central limit theorem is true(see [6]), i.e, recall that:

σ2(f) = C0(f) + 2
∞∑

n=1

Cn(f)

and assume that σ(ϕ) 6= 0, then we have:∑n−1
i=0 ϕ0 ◦ T i

σ(ϕ0)
√

n
⇒ N (0, 1)

which is equivalent to:
− log Sn + nµϕ(ϕ)

σ(ϕ)
√

n
⇒ N (0, 1)

(and σ(ϕ) = 0 if and only if there exists a measurable function g such that ϕ = g − g ◦ T )

Distortion property:

Lemma 2.5 Assume (H2), then there is a constant c>1 such that, for all n, all A∈ Pn, all x
and y in A:

1
c
≤ Sn(y)

Sn(x)
≤ c

Proof :
Sn(y)
Sn(x)

= e(ϕ(y)−ϕ(x))+...+(ϕ◦T n−1(y)−ϕ◦T n−1(x))

x and y are in the same n-cylinder, therefore, for all k, Tn−k(x) and Tn−k(y) are in the same
k-cylinder and

Sn(y)
Sn(x)

≤ exp (
n∑

k=1

varCk(T n−k(x))ϕ) ≤ exp (
+∞∑
n=1

sup
C∈Pn

varCϕ)

We get the other inequality by changing x and y. 2

Remark 2.1 In case when eϕ is the inverse of the derivative of the transformation, the bounded
distortion property comes from the fact that T is C2 and from the uniform dilatation hypothesis
made for T (see [2]).

3 Estimates of the measure of a cylinder

In the following, K and β are generic positive constants independant from n and A. It is proven
in this section first that the measure of a n-cylinder decays exponentially fast to zero, then that,
for most n-cylinders, we can give an equivalent for this measure.

Lemma 3.1 There exists θ > 0 and a constant C such that, for all n and all n-cylinder A:

µϕ(A) ≤ Ce−θn
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Proof : Let A=Ain
i1

be a n-cylinder. For all n0 <n we get:

µϕ(A) ≤ µϕ(Ai1 ∩ T−n0Ain0
∩ . . . ∩ T

−
h

n
n0

i
n0Ai[ n

n0
]n0

)

Let us use the mixing inequality with the interval Ai1 and the measurable set Ain0
∩ . . . ∩

T
−(

h
n

n0

i
−1)n0Ai[ n

n0
]n0

:

µϕ(Ai1 ∩ . . . ∩ T
−

h
n

n0

i
n0Ai[ n

n0
]n0

)− µϕ(Ai1)µϕ(Ain0
∩ . . . ∩ T

−(
h

n
n0

i
−1)n0Ai[ n

n0
]n0

)

≤ Ke−γn0(2 + µϕ(Ai1))µϕ(Ain0
∩ . . . ∩ T

−(
h

n
n0

i
−1)n0Ai[ n

n0
]n0

)

≤ 3Ke−γn0µϕ(Ain0
∩ . . . ∩ T

−(
h

n
n0

i
−1)n0Ai[ n

n0
]n0

)

if we call s = sup{µϕ(Ai), i = 0, . . . , b− 1} we have:

µϕ(A) ≤ (s + 3Ke−γn0)µϕ(Ain0
∩ . . . ∩ T

−(
h

n
n0

i
−1)n0Ai[ n

n0
]n0

)

and, by induction:

µϕ(A) ≤ (s + 3Ke−γn0)
h

n
n0

i
+1

Now, there is n0 such that s + 3Ke−γn0 < 1 which ends the proof. 2

The following lemma gives an equivalent of the measure of almost all n-cylinders (which are
intervals). We cannot get the equivalent for all cylinders because of the following remark:

Remark 3.1 Let A be a n-cylinder whose boundary does not contain any singularity of T, then
T(A) is a (n-1)-cylinder. (When the system is markovian, the image of a n-cylinder is always a
(n-1)-cylinder, that is why we get the equivalent for all cylinders). Conversely, if the boundary
of A contains a singularity of T, T(A) can be much smaller than the (n-1)-cylinder it is included
in.

Proof of the remark:
If A is a n-cylinder, its boundary in contained in ∪n−1

i=0 T−i(sing T ). If its boundary does not
contain any singularity of T then it is included in ∪n−1

i=1 T−i(sing T ). The boundary of T (A) is
then included in ∪n−2

i=0 T−i(sing T ) and T (A) is a union of (n-1)-cylinders. By an argument of
connexity, as T|A is continuous, T (A) is one n-cylinder.

Example:

In this example, A is a 2-cylinder, the boundary of A contains a singularity of T and T (A)
is strictly included in the 1-cylinder B.

Lemma 3.2 Let k0 > 0 and n > k0. Let A ∈ Pn such that, for all k ≤ n − k0, T k(A) has no
singularity of T in its boundary. Then, there exists a constant c(k0) > 1 such that, for all x in
A:

1
c(k0)

≤ µϕ(A)
λ−nSn(x)

≤ c(k0).
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[rgb]0,0,0 ︸ ︷︷ ︸
A

︸ ︷︷ ︸
T (A)︸ ︷︷ ︸

B

Figure 1: non markov map

Proof : Let A ∈ Pn such that, for all k ≤ n−k0, T k(A) has no singularity of T in its boundary
and let x ∈ A:

µϕ(A) = ν(hϕ1A) =
1

λn−k0
ν(Pn−k0

ϕ (hϕ1A)).

Pn−k0
ϕ (hϕ1A)(z) =

∑
T n−k0 (y)=z,y∈A

Sn−k0(y)hϕ(y). (1)

Let us take z ∈ [0, 1] \∪n∈NT−n(singT ) (we can restrict to such z without changing the integral
because ν(∪n∈NT−n(singT )) = 0), z is in a k0-cylinder Ck0(z). T−n+k0(Ck0(z)) is constituted
at most by bn−k0 n-cylinders and T−n+k0(z) by at most bn−k0 points. Each of them are in a
different n-cylinder.
if A is one of these n-cylinders then A∩T−n+k0(z) = zA, if it’s not the case then A∩T−n+k0(z) =
∅. Therefore we get:

Pn−k0
ϕ (hϕ1A)(z) ≤ Sn−k0(zA)hϕ(zA) ≤ sup(hϕ)Sn−k0(zA)

Let x ∈ A, we use the distorsion property (since x and zA are in the same n − k0-cylinder) in
order to get:

Pn−k0
ϕ (hϕ1A)(z) ≤ KSn−k0(x)

µϕ(A)
λ−n+k0Sn−k0(x)

≤ K

Moreover, because of the previous remark, Tn−k0(A) is a k0-cylinder and the sum (1) is not zero
when T−n+k0(z) ∩A 6= ∅ which occurs when Tn−k0(A) = Ck0(z) hence:

Pn−k0
ϕ (hϕ1A)(z) = 1T n−k0 (A)(z)

∑
T n−k0 (y)=z,y∈A

Sn−k0(y)hϕ(y)

≥ 1T n−k0 (A)(z)Sn−k0(zA)hϕ(zA)

≥ 1
c
1T n−k0 (A)(z)Sn−k0(x) inf(hϕ)
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now we get:

µϕ(A) ≥ λ−n+k0

c
ν(Tn−k0(A))Sn−k0(x) inf(hϕ)

and Tn−k0(A) is a k0-cylinder; now denoting c(k0) = (1
c infA∈Ck0

ν(A)× inf(hϕ))−1:

µϕ(A)
λ−n+k0Sn−k0(x)

≥ 1
c(k0)

.

and Sn(x) = Sn−k0(x)Sk0(T
n−k0(x)). But Sk0 is bounded and multiplying by λk0 we get the

result. 2

Lemma 3.3 Let B(n, C) = {A ∈ Pn,∀x ∈ A : 1
C ≤ µϕ(A)

λ−nSn(x)
≤ C}. There is K such that, for

all ε > 0, there exists D(ε) and Nε such that, for n > Nε:

µϕ(
⋃

A∈B(n,D(ε))

A) ≥ 1−Kε

Proof : Let ρ = λe− sup ϕ. We use the hypothesis sup ϕ < p(ϕ) to state that ρ > 1.(recall that
λ = ep(ϕ))
Let ε > 0 and k0(ε) such that:

k ≥ k0(ε) ⇒
1
ρk

<
ε

k2

Let n > k0(ε), according to the previous lemma, if A∈ Pn and if, for all k ≤ n − k0(ε), T k(A)
has no singularity of T in its boundary, then A ∈ B(n, D(ε)); (with D(ε) = c(k0(ε))). We show
that the measure of this set is close to one by considering its complement:
Let F (n, ε) = {A ∈ Pn,∃k ≤ n− k0, T

k(A) has a singularity of T in its boundary }
Let A ∈ F (n, ε) and x in A: there exists k ∈ [k0, n] such that Tn−k(A) has one singularity s of
T in its boundary; we get then:

ν([Tn−k(x), s]) ≤ ν(Tn−k(A))

But ν is a λe−ϕ conformal measure so we get

1 ≥ ν(Tn(A)) =
∫

T n−1(A)
λe−ϕdν ≥ λe− sup ϕν(Tn−1(A)) > ρkν(Tn−k(A))

hence ν(Tn−k(A)) ≤ 1
ρk and:

ν([Tn−k(x), s]) <
ε

k2

ν({s}) = 0 and the conformal measure ν is regular and has no atom, therefore, there exists a
union of intervals Vk such that each singularity s is a bound of an interval and ν(Vk) = ε

k2 . Since
the density hϕ is bounded, we obtain: µϕ(Vk) ≤ K ε

k2 and, using the invariance by T of µϕ:

µϕ(
⋃

A∈F (n,ε)

A) ≤ µϕ(
n⋃

k=k0

T k−n(Vk))

≤
n∑

k=k0

µϕ(Vk)

≤ Kε

2
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4 Return times and entrance times.

In this part, we show that, in some sense, the asymptotic law of Rn can be written as a sum of
entrance times laws with fluctuating rates (these rates are the mass of the cylinders).

Definition 4.1 A n-cylinder A is said k-recurrent (for n > k) if

∀ l < k − 1, A ∩ T−l(A) = ∅ and A ∩ T−k+1(A) 6= ∅

Ek is the set of the k-recurrent cylinders and E<k the set of the cylinders which recur before k.

Property 4.1 If k < n :
#(Ek) ≤ bk−1 and #(E<k) ≤ bk

Proof of the property:
If A = Ain

i1
∈ Ek, there exists x in A such that T k−1(x) is in A.

x ∈ A and so x ∈ Ai1 , T (x) ∈ Ai2 , . . . , T
n−1(x) ∈ Ain

T k−1(x) ∈ A and so T k−1(x) ∈ Ai1 , . . . , T
n+k−2(x) ∈ Ain

Hence: Aik = Ai1 , . . . , Ain = Ain−k+1
. For A we only have the choice for Ai1 , . . . , Aik−1

and
#(Ek) ≤ bk−1. Finally

#(E<k) ≤
k∑

i=1

#(Ek) ≤ bk

Lemma 4.1 Let (tn) be a sequence such that limn→∞
tn
n = +∞, then:

lim
n→∞

|µϕ{Rn > tn} −
∑

A∈Pn

µϕ(A)µϕ{τA > tn}| = 0. (2)

Proof : Recall the definition of Rn:

Rn(x) = inf{k > 0, T k(x) ∈ Pn(x)}.

For all t > 0 We have:
µϕ{Rn > t} =

∑
A∈Pn

µϕ{A ∩ τA > t}

For all r with n < r < t we get :

|µϕ{A ∩ τA > t} − µϕ(A)µϕ{τA > t}| ≤ |µϕ{A ∩ τA > t} − µϕ{A ∩ T−s+1(Ac), r < s ≤ t}|+

|µϕ{A ∩ T−s+1(Ac), r < s ≤ t} − µϕ(A)µϕ{T−s+1(Ac), r < s ≤ t}|+

µϕ(A)|µϕ{T−s+1(Ac), r < s ≤ t} − µϕ{τA > t}|.

Bound for the third term:
Using the inclusion ⋂

r<s≤t

T−s+1Ac

 \

 ⋂
1≤s≤t

T−s+1Ac

 ⊂

 ⋃
1≤s≤r

T−s+1A
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it comes:

|µϕ{T−s+1(Ac), r < s ≤ t} − µϕ{T−s+1(Ac), 1 ≤ s ≤ t}| ≤ µϕ{∪1≤s≤rT
−s+1(A)} ≤ rµϕ(A)

so an upper bound for the third term is: rµϕ(A)2. For the second one, the mixing inequality
(see Th. 2.4) gives the following bound: 3Ke−γr. As for the first one, we get the estimate:

r∑
i=1

µϕ{A ∩ T−i+1(A)}

It remains to sum over all n-cylinders. For the third term, we get:∑
A∈Pn

rµϕ(A)2 ≤ rCe−θn
∑

A∈Pn

µϕ(A) ≤ rCe−θn

For the second one, we get (since card(Pn) ≤ bn):∑
A∈Pn

3Ke−γr ≤ 3KenLog(b)−rγ

A good choice of r will give the convergence to zero. For the first term, we must set apart the
cylinders which recur too fast:
If A ∈ Ec

<k then µϕ{A ∩ T−i+1(A)} ≤ µϕ(A) ≤ Ce−θn and

∑
A∈Ec

<k

r∑
i=1

µϕ{A ∩ T−i+1(A)} ≤
∑

A∈Ec
<k

rCe−θn ≤ rCe−θn+kLog(b)

Besides, if A ∈ Ec
<k, ∀i < k : µϕ{A ∩ T−i+1(A)} = 0 and

∑
A∈E<k

r∑
i=1

µϕ{A ∩ T−i+1(A)} ≤
∑

A∈E<k

r∑
i=k

µϕ{A ∩ T−i+1(A)}

And if i ≥ k, the mixing property yields to:

µϕ{A ∩ T−i+1(A)} ≤ (3Ke−γk + Ce−θn)µϕ(A)

r∑
i=k

µϕ{A ∩ T−i+1(A)} ≤ r(3Ke−γk + Ce−θn)µϕ(A)

∑
A∈Ec

<k

r∑
i=k

µϕ{A ∩ T−i+1(A)} ≤ r(3Ke−γk + Ce−θn)

Now we choose r = min(n2,
√

ntn) and k = [ θn
log(b) ] (we only have to change θ to ensure k < n)

which gives us the convergence of all terms to zero. 2
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5 Approximation of the law of the entrance time in a cylinder
by an exponential law.

This rather technical part is devoted to the control of the law of the entrance times in a cylinder.
As it was pointed out in the previous part, this control is needed to estimate the asymptotic law
of the return times.
Here the following theorem is proved:

Theorem 5.1 For all ε > 0, there exists Nε such that, for all n > Nε there exists Hn,ε ⊂ Pn

with:

µϕ

 ⋃
A∈Hn,ε

A

 > 1−Kε

There exists two strictly positive constants β and K such that, for all n-cylinder A∈ Hn,ε:

sup
t>0

∣∣∣∣µϕ

{
τA >

t

µϕ(A)

}
− e−t

∣∣∣∣ ≤ Ke−βn .

In order to prove this theorem, we use the method of Galves and Schmitt ([5]).

Lemma 5.2 For all t > 0, we have, if A is measurable:

µϕ

{
τA ≤

t

µϕ(A)

}
≤ t + µϕ(A)

The proof is in [5] (lemma 2). For all k and m positive real numbers, let:

Xk =
[k]∑
l=0

χA ◦ T l X[k,m] = X[m] −X[k]

We have: {τA ≤ k} = {Xk ≥ 1}.

Lemma 5.3 There exists γ0 such that, for all ε, there exists Nε such that, for all n > Nε there
exists In,ε ⊂ Pn such that, for all A ∈ In,ε

µϕ

{
τA ≤

t

µϕ(A)

}
≥ t2

t2 + µϕ(A)(1 + t) + t(1 + Ke−nγ0)

Moreover,

µϕ

 ⋃
A∈In,ε

A

 > 1− ε

Proof : Let X = X[ t
µϕ(A)

]. Using the Schwarz inequality, we get:

E(X)2 ≤ E(X2)µϕ(X ≥ 1)

and E(X)2 ≥ t2. Moreover,

E(X2) =

[ t
µϕ(A)

]∑
l=0

E(χA ◦ T l) + 2

[ t
µϕ(A)

]∑
l=1

(
[

t

µϕ(A)
]− l + 1

)
µϕ{A ∩ T−l(A)}

11



The first term is E(X) ≤ t + µϕ(A). We bound the second for cylinders which don’t recur too
fast; For A ∈ Ec

<[ns] (where s is positive) we get:

[ t
µϕ(A)

]∑
l=1

(
[

t

µϕ(A)
]− l − 1

)
µϕ{A ∩ T−l(A)} =

[ t
µϕ(A)

]∑
l=[ns]

(
[

t

µϕ(A)
]− l − 1

)
µϕ{A ∩ T−l(A)}

the mixing property gives for this term:

[ t
µϕ(A)

]∑
l=[ns]

(
[

t

µϕ(A)
]− l + 1

)[
Ke−γl(2 + µϕ(A))µϕ(A) + µϕ(A)2

]

≤ µϕ(A)2
[ t
µϕ(A)

]∑
l=[ns]

(
[

t

µϕ(A)
]− l + 1

)
+ Kµϕ(A)

[ t
µϕ(A)

]∑
l=[ns]

(
[

t

µϕ(A)
]− l + 1

)
e−γl

≤ µϕ(A)2(
t

µϕ(A)
)(

t

µϕ(A)
+ 1) + Kµϕ(A)(

t

µϕ(A)
)

[ t
µϕ(A)

]∑
l=[ns]

e−γl

≤ t(t + µϕ(A)) + Kte−nsγ

We choose now s = θ
2logb (where θ is given by lemma (3.1)) so that, for n big enough:

µϕ

 ⋃
A∈E<[ns]

A

 ≤ Cbnse−θn ≤ Ce−n θ
2 < ε

We take In,ε = Ec
<[ns]. 2

Let gA(t) = µϕ

{
τA > t

µϕ(A)

}
= µϕ {X = 0}.

Independence property We need to show that gA(t) is close to e−t; for that, we show that
this function satisfies some kind of independence property. We will first show that gA(t) is close
to e−t when t is equal to some power of µϕ(A); then, given t > 0, we will divide it by this power
of µϕ(A).

Recall that we denote by K any constant independant of n and of the cylinders.

Lemma 5.4 For n big enough and for all n-cylinder A :

sup
s≥
√

µϕ(A)

|gA(
√

µϕ(A) + s)− gA(
√

µϕ(A))gA(s)| ≤ Kµϕ(A)
3
4

Proof : We must estimate |gA(t + s) − gA(t)gA(s)|. To begin with, we dig a hole ∆ between
[0, t

µϕ(A) ] and [ t
µϕ(A) ,

t+s
µϕ(A) ]. This hole, thanks to the mixing inequality, will enable us to express

the probability of not being in A during the time [0, t
µϕ(A) ]∪[ t+∆

µϕ(A) ,
t+s

µϕ(A) ] in terms of the product

of the probability of not being in A during each of the intervals [0, t
µϕ(A) ] and [ t+∆

µϕ(A) ,
t+s

µϕ(A) ].

|gA(t + s)− gA(t)gA(s)| ≤ |gA(t + s)− µϕ{X[ t
µϕ(A)

] + X[ t
µϕ(A)

+∆, t+s
µϕ(A)

] = 0}|

+ |µϕ{X[ t
µϕ(A)

] + X[ t
µϕ(A)

+∆, t+s
µϕ(A)

] = 0} − gA(t)µϕ{X[∆, s
µϕ(A)

] = 0}|

+ |gA(t)||µϕ{X[∆, s
µϕ(A)

] = 0} − gA(s)|

12



Bounds for the first term:

|gA(t + s)− µϕ{X[ t
µϕ(A)

] + X[ t
µϕ(A)

+∆, t+s
µϕ(A)

] = 0}| = µϕ{X[ t
µϕ(A)

, t
µϕ(A)

+∆] > 0}

= µϕ{X∆−1 > 0} ≤ ∆µϕ(A) (3)

because of the T-invariance. For the third term as well:

|µϕ{X[∆, s
µϕ(A)

] = 0} − gA(s)| ≤ ∆µϕ(A) (4)

For the second term we use the mixing inequality and we denote:

PA(f) = Pϕ(f1A)

Let us renormalize Pϕ with:

Lϕ =
Pϕ

λ
, LA =

PA

λ

|µϕ{X[ t
µϕ(A)

] + X[ t
µϕ(A)

+∆, t+s
µϕ(A)

] = 0} − gA(t)µϕ{X[∆, s
µϕ(A)

] = 0}|

=

∣∣∣∣∣∣∣
∫ [ t

µϕ(A)
]∏

0

1Ac ◦ T i

[ t+s
µϕ(A)

]∏
[ t
µϕ(A)

]+∆+1

1Ac ◦ T ihϕdν −
∫ [ t

µϕ(A)
]∏

0

1Ac ◦ T ihϕdν

∫ [ s
µϕ(A)

]∏
∆+1

1Ac ◦ T i dµϕ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

1AcL
[ t
µϕ(A)

]

Ac (hϕ)

[ s
µϕ(A)

]∏
∆+1

1Ac ◦ T idν −
∫

1AcL
[ t
µϕ(A)

]

Ac (hϕ)dν

∫ [ s
µϕ(A)

]−∆−1∏
0

1Ac ◦ T i dµϕ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

1Ac
L

[ t
µϕ(A)

]

Ac (hϕ)
hϕ

[ s
µϕ(A)

]−∆−1∏
0

1Ac ◦ T i

 ◦ T∆+1 dµϕ

−
∫

1Ac
L

[ t
µϕ(A)

]

Ac (hϕ)
hϕ

dµϕ

∫ [ s
µϕ(A)

]−∆−1∏
0

1Ac ◦ T i dµϕ

∣∣∣∣∣∣∣
≤ Ke−γ(∆+1)

∫ 1AcL
[ t
µϕ(A)

]

Ac (hϕ) dν + var

1Ac
L

[ t
µϕ(A)

]

Ac (hϕ)
hϕ

∫ [ s
µϕ(A)

]−∆−1∏
0

1Ac ◦ T i dµϕ

≤ Ke−γ(∆+1)

[∫
1AcL

[ t
µϕ(A)

]

Ac (hϕ) dν + var(1AcL
[ t
µϕ(A)

]

Ac (hϕ))‖ 1
hϕ
‖∞

+var(
1
hϕ

)‖1AcL
[ t
µϕ(A)

]

Ac (hϕ)‖∞
]

(5)

In (5), we have used the following property of the variation:

var(fg) ≤ ‖f‖∞var(g) + ‖g‖∞var(f).

Now, hϕ has bounded variation and inf(hϕ) > 0. This implies: 1
hϕ

has bounded variation.

Moreover, ‖1AcL
[ t
µϕ(A)

]

Ac (hϕ)‖∞ ≤ K because LAc and f 7→ f1Ac are operators with norm less

13



than one.

(5) ≤ Ke−γ(∆+1)

[∫
1AcL

[ t
µϕ(A)

]

Ac (hϕ) dν + K + K var(L
[ t
µϕ(A)

]

Ac (hϕ))
]

≤ Ke−γ(∆+1)

[
gA(t) + K + K var(L

[ t
µϕ(A)

]

Ac (hϕ))
]

≤ Ke−γ(∆+1)

[
K + K var(L

[ t
µϕ(A)

]

Ac (hϕ))
]

(6)

Where we have used again:

var(fg) ≤ ‖f‖∞var(g) + ‖g‖∞var(f).

We must estimate var(L
[ t
µϕ(A)

]

Ac (hϕ)), for that, we use the fact that Lϕ = LA + LAc .

LN
Ac = (Lϕ − LA)N = LN

ϕ −
N−1∑
r=0

Lr
ϕLALN−r−1

ϕ +
∑

0≤i+j≤N−2

Li
ϕLALN−i−j−2

Ac LALj
ϕ

Since Lϕ(hϕ) = hϕ, we get:

LN
Ac(hϕ) = hϕ −

N−1∑
r=0

Lr
ϕLA(hϕ) +

∑
0≤i+j≤N−2

Li
ϕLALN−i−j−2

Ac LALj
ϕ(hϕ)

A computation gives:
Li

ϕLALN−i−j−2
Ac LALj

ϕ = Li
ϕLBi,jLN−i−1

ϕ

with Bi,j = A ∩ T−1(Ac) ∩ T−2(Ac) ∩ .. ∩ T−(N−i−j−2)(Ac) ∩ T−(N−i−j−1)(A). Assume that A
is a n-cylinder with n > N and let k ≤ N : A is completely included in an interval where Tn is
monotone. Besides, T−k(A) is made with at most bk intervals and each of them is included in
an interval where T k is monotone. As a consequence, A∩T−k(A) is either empty, or an interval,
or the union of two intervals (when two branches of T k with opposite slope meet in a single
point). Moreover, as k ≤ N , T−k(Ac) either countains A or is disjoint from A. That is why Bi,j

is either an interval (empty or not) or the union of two intervals, therefore:

LN
Ac(hϕ) = hϕ −

N−1∑
r=0

Lr
ϕLA(hϕ) +

∑
0≤i+j≤N−2

Li
ϕLBi,j (hϕ) (7)

We shall estimate the variation of each term.
One the one hand, if A is an interval or the union of two intervals, we apply the Lasota-Yorke
inequality to the function 1Ahϕ to get:

varLA(hϕ) = varLϕ(1Ahϕ) ≤ α var(1Ahϕ) + ξν(1Ahϕ)
≤ α(var(hϕ) + var(1A)‖hϕ‖∞) + ξν(A)‖hϕ‖∞
≤ α var(hϕ) + (4α + ξν(A))‖hϕ‖∞ (8)

On the other hand, iterating the Lasota-Yorke inequality and using the conformality of ν gives:
(for f with bounded variation)

varLN
ϕ (hϕ) ≤ αNvar(hϕ) + Kν(hϕ) (9)
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grouping (8) and (9), we have:

var(Lr
ϕLA(hϕ)) ≤ αrvar(LA(hϕ)) + Kν(LA(hϕ))

≤ αr+1var(hϕ) + αr(4α + ξν(A))‖hϕ‖∞ + Kν(A)‖hϕ‖∞ (10)

Since Bi,j is either an interval or the union of two intervals (and it is included in A), we can
apply (10):

var(Li
ϕLBi,j (hϕ)) ≤ αi+1var(hϕ) + αi(4α + ξν(Bi,j))‖hϕ‖∞ + Kν(Bi,j)‖hϕ‖∞

≤ αi+1var(hϕ) + αi(4α + ξν(A))‖hϕ‖∞ + Kν(A)‖hϕ‖∞

As α < 1, we can write:

var(Lr
ϕLA(hϕ)) ≤ K + Kν(A) ≤ K

var(Li
ϕLBi,j (hϕ)) ≤ K

Let us now sum over r, i and j by using the relation:
∑

0≤i+j≤N−2 1 = N(N−1)
2 ≤ N2:

N−1∑
r=0

var(Lr
ϕLA(hϕ)) ≤ KN

∑
0≤i+j≤N−2

var(Li
ϕLBi,j (hϕ)) ≤ KN2

and according to the relation (7), we obtain, for N big enough:

var(LN
Ac(hϕ)) ≤ K + KN + KN2 ≤ KN2

Combining (3), (4) and (6), we get (with N = [ t
µϕ(A) ]):

|gA(t + s)− gA(t)gA(s)| ≤ K(
t

µϕ(A)
)2e−γ(∆+1) + 2∆µϕ(A)

if t
µϕ(A) is big enough. Now we choose the size of the hole ∆: the only requierement is ∆ < s

µϕ(A) .

Take ∆ = 1
µϕ(A)1/4 , s ≥

√
µϕ(A) and t =

√
µϕ(A):

sup
s≥
√

µϕ(A)

|gA(
√

µϕ(A) + s)− gA(
√

µϕ(A))gA(s)| ≤ K
1

µϕ(A)
e
−γ( 1

µϕ(A)1/4
+1)

+ 2µϕ(A)3/4

if n is big enough: 1
µϕ(A)e

−γ( 1

2
√

µϕ(A)
+1)

≤ µϕ(A)3/4 therefore

sup
s≥
√

µϕ(A)

|gA(
√

µϕ(A) + s)− gA(
√

µϕ(A))gA(s)| ≤ Kµϕ(A)3/4

2

Define r = r(A) =
√

µϕ(A) and θ = θ(A) = −log gA(r).
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Lemma 5.5 For n big enough and for all n-cylinder A :

|gA(kr(A))− ekθ(A)| ≤ Kµϕ(A)3/4

1− e−θ(A)

Proof : See [G.S](lemma 6). 2

Lemma 5.6 There exists γ1 and γ2 such that, for all ε > 0, there exists Nε such that, for all
n > Nε, for all A ∈ In,ε (where In,ε is given by lemma (5.3)):

1−Ke−γ1n ≤ θ(A)
r(A)

≤ 1 + Ke−γ2n

Proof : On the one hand, for 0 ≤ u ≤ 1
2 , −log(1− u) ≤ u + u2. Now we get, by choosing n big

enough and using lemma (5.2):

θ(A) ≤ µϕ

{
τA ≤

r(A)
µϕ(A)

}
+
(

µϕ

{
τA ≤

r(A)
µϕ(A)

})2

≤ r(A) + µϕ(A) + (r(A) + µϕ(A))2

≤ r(A)(1 + Ke−nγ2)

since, by lemma (3.1), µϕ(A) ≤ Ce−nθ. On the other hand, by lemma (5.3), if A ∈ In,ε :

θ(A) ≥ 1− e−θ(A) ≥ r(A)2

r(A)2 + µϕ(A)(1 + r(A)) + r(A)(1 + Ke−nγ0)
(11)

θ(A)
r(A)

≥
√

µϕ(A)
µϕ(A) + µϕ(A)(1 +

√
µϕ(A)) +

√
µϕ(A)(1 + Ke−nγ0)

≥ 1
1 + Ke−nγ1

≥ 1−Ke−nγ1

which concludes the proof. 2

Proof of theorem (5.1):
Let ε > 0. We only consider cylinders A ∈ In,ε and n big enough so as to use the previous
lemmas. Let t > 0, t = kr(A) + v with k = [ t

r(A) ] and 0 ≤ v < r(A):

|gA(t)− e−t| ≤ |gA(t)− gA(kr(A))|+ |gA(kr(A))− e−θ(A)k|+ |e−θ(A)k − e−r(A)k|+ |e−r(A)k − e−t|

In the rest of the proof, we use the lemma (3.1) which says that the measure of the n-cylinders
decrease exponentially fast. First term, by lemma (5.2) and (5.3):

|gA(t)− gA(kr(A))| = µϕ

{
kr(A)
µϕ(A)

< τA ≤
t

µϕ(A)

}
= µϕ

{
0 < τA ≤

v

µϕ(A)

}
≤ µϕ(A)(1 +

v

µϕ(A)
) ≤ 2r(A) ≤ Ke−βn

Second term: by lemma (5.5) : |gA(kr(A)) − e−θ(A)k| ≤ K
µϕ(A)

3
4

1−e−θ(A) and, taking the inverse in
the inequality (11):

1
1− e−θ(A)

≤ 2 +
√

µϕ(A) +
1√

µϕ(A)
(1 + Ke−nγ0)
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K
µϕ(A)

3
4

1− e−θ(A)
≤ Kµϕ(A)

3
4 + Kµϕ(A)

1
4 ≤ Ke−nβ

Fourth term:
|e−r(A)k − e−t| ≤ v ≤

√
µϕ(A) ≤ Ke−nβ

Third term: a computation shows that

|e−θ(A)k − e−r(A)k| ≤ 2k|θ(A)− r(A)|(e−θ(A)k + e−r(A)k)

Lemma (5.6) ensures that

−Ke−nγ1r(A) ≤ θ(A)− r(A) ≤ Ke−nγ2r(A)

|e−θ(A)k − e−r(A)k| ≤ Kr(A)ke−nβ(e−θ(A)k + e−r(A)k)

≤ Ke−nβ(r(A)ke−r(A)k + θ(A)ke−θ(A)k r(A)
θ(A)

) ≤ Ke−nβ

because ue−u and r(A)
θ(A) are bounded. This ends the proof.

6 Proof of the main theorem 1.1.

The mass of the cylinders, on the one hand, and the laws of the entrance times on the other
hand, have a different influence on the sum (2). So, we have to determinate which of the two is
the most important and will give the behaviour of the law of Rn.

We have to prove the convergence in law which means the following:

lim
n→+∞

µϕ{Rn > enheuσ(ϕ)
√

n} =
1√
2π

∫ ∞

u
e−

x2

2 dx

Let ε > 0. Let us cut this quantity in several parts so as to use the lemma (5.1) and the
approximation of the law of entrance times:

µϕ{Rn > enheuσ(ϕ)
√

n} = µϕ{Rn > enheuσ(ϕ)
√

n} −
∑

A∈Pn

µϕ(A)µϕ

{
τA > enheuσ(ϕ)

√
n
}

(12)

+
∑

A∈Pn

µϕ(A)µϕ

{
τA > enheuσ(ϕ)

√
n
}
−

∑
A∈Hn,ε∩Gn,ε

µϕ(A)µϕ

{
τA > enheuσ(ϕ)

√
n
}

(13)

+
∑

A∈Hn,ε∩Gn,ε

µϕ(A)µϕ

{
τA > enheuσ(ϕ)

√
n
}
−

∑
A∈Hn,ε∩Gn,ε

µϕ(A)e−µϕ(A)enheuσ(ϕ)
√

n
(14)

+
∑

A∈Hn,ε∩Gn,ε

µϕ(A)e−µϕ(A)enheuσ(ϕ)
√

n
(15)

Thanks to the lemma (4.1), limn→+∞(12) = 0.
By the lemma (3.3), there exist Nε and D(ε) such that for all n > Nε, for all A ∈ B(n, D(ε))
and all x in A : (we use the notation B(n, D(ε)) = Gn,ε)

1
D(ε)

≤ µϕ(A)
λ−nSn(x)

≤ D(ε) (16)
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µϕ

 ⋃
A∈Gn,ε

A

 ≥ 1−Kε

By the theorem (5.1),there exists N ′
ε such that, for all n > N ′

ε, there exists Hn,ε ∈ Pn such that,
for all A in this set:

sup
t>0

∣∣∣µϕ {τA > t} − e−tµϕ(A)
∣∣∣ ≤ Ke−βn

µϕ

 ⋃
A∈Hn,ε

A

 ≥ 1−Kε (17)

If n > max(Nε, N
′
ε):

|(13)| =

∣∣∣∣∣∣
∑

A∈(Hn,ε∩Gn,ε)c

µϕ(A)µϕ

{
τA > enheuσ(ϕ)

√
n
}∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑

A∈(Hn,ε∩Gn,ε)c

µϕ(A)

∣∣∣∣∣∣
≤

∑
A∈Gc

n,ε

µϕ(A) +
∑

A∈Hc
n,ε

µϕ(A)

≤ Kε

As for the term (14), by the theorem (5.1), for all ε > 0:

|(14)| ≤
∑

A∈Hn,ε∩Gn,ε

µϕ(A)
∣∣∣µϕ

{
τA > enheuσ(ϕ)

√
n
}
− e−µϕ(A)enheuσ(ϕ)

√
n
∣∣∣

≤ Ke−βn
∑

A∈Pn

µϕ(A) ≤ Ke−βn

We now turn to the term (15), which we can write µϕ(Yn,ε) if we call Yn,ε the random variable:

Yn,ε =
∑

A∈Hn,ε∩Gn,ε

1Ae−µϕ(A)enheuσ(ϕ)
√

n

Let η > 0, the Markov inequality will give us some information about lim inf µϕ(Yn,ε):

µϕ(Yn,ε) ≥ e−e−η
√

n
µϕ{(log Yn,ε ≥ −e−η

√
n) ∩ (

⋃
Gn,ε∩Hn,ε

A)}

and by the lemma (3.3), we have the two following inclusions:(D(ε)λ−nSn ≤
e−η

√
n

enheuσ(ϕ)
√

n

)
∩ (

⋃
Gn,ε∩Hn,ε

A)

 ⊂

(log Yn,ε ≥ −e−η
√

n) ∩ (
⋃

Gn,ε∩Hn,ε

A)


(

λ−nSn ≤
e−2η

√
n

enheuσ(ϕ)
√

n

)
⊂

(
D(ε)λ−nSn ≤

e−η
√

n

enheuσ(ϕ)
√

n

)
for n big enough. Consequently, we get the inequalities:

µϕ(Yn,ε) ≥ e−e−η
√

n
µϕ

(λ−nSn ≤
e−2η

√
n

enheuσ(ϕ)
√

n

)
∩ (

⋃
Gn,ε∩Hn,ε

A)


≥ e−e−η

√
n
µϕ

(− log Sn + n log λ− nh

σ(ϕ)
√

n
≥ u +

2η

σ(ϕ)

)
∩ (

⋃
Gn,ε∩Hn,ε

A)
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and p(ϕ) = log λ = h + µϕ(ϕ) so

ee−η
√

n
µϕ(Yn,ε) ≥ µϕ

(− log Sn + nµϕ(ϕ)
σ(ϕ)

√
n

≥ u +
2η

σ(ϕ)

)
∩ (

⋃
Gn,ε∩Hn,ε

A)


≥ µϕ

(
− log Sn + nµϕ(ϕ)

σ(ϕ)
√

n
≥ u +

2η

σ(ϕ)

)
− µϕ(

⋃
(Gn,ε∩Hn,ε)c

A)

≥ µϕ

(
− log Sn + nµϕ(ϕ)

σ(ϕ)
√

n
≥ u +

2η

σ(ϕ)

)
− µϕ(

⋃
Gc

n,ε

A)− µϕ(
⋃

Hc
n,ε

A)

≥ µϕ

(
− log Sn + nµϕ(ϕ)

σ(ϕ)
√

n
≥ u +

2η

σ(ϕ)

)
−Kε

By applying the central-limit theorem to the system (T, µϕ, ϕ), we obtain, letting first n go to
infinity, then η to zero:

lim inf
n→∞

µϕ(Yn,ε) ≥
1√
2π

∫ ∞

u
e−

x2

2 dx−Kε

For the lim sup, we use the inequality, for η > 0 (notice that Yn,ε ≤ 1):

µϕ(Yn,ε) ≤ e−eη
√

n
µϕ{(log Yn,ε < −eη

√
n)∩(

⋃
Gn,ε∩Hn,ε

A)}+µϕ{(log Yn,ε ≥ −eη
√

n)∩(
⋃

Gn,ε∩Hn,ε

A)}

Using the other inequality in the lemma (3.3), we get the following inclusions:(λ−nSn

D(ε)
≤ eη

√
n

enheuσ(ϕ)
√

n

)
∩ (

⋃
Gn,ε∩Hn,ε

A)

 ⊃

(log Yn,ε ≥ −eη
√

n) ∩ (
⋃

Gn,ε∩Hn,ε

A)


(

λ−nSn ≤
e2η

√
n

enheuσ(ϕ)
√

n

)
⊃

(
λ−nSn

D(ε)
≤ e−η

√
n

enheuσ(ϕ)
√

n

)
for n big enough. Consequently, we get the inequalities:

µϕ(Yn,ε) ≤ e−eη
√

n
µϕ{(log Yn,ε < −eη

√
n) ∩ (

⋃
Gn,ε∩Hn,ε

A)}

+µϕ

(− log Sn + nµϕ(ϕ)
σ(ϕ)

√
n

≥ u− 2η

σ(ϕ)

)
∩ (

⋃
Gn,ε∩Hn,ε

A)


≤ e−eη

√
n

+ µϕ

(
− log Sn + nµϕ(ϕ)

σ(ϕ)
√

n
≥ u− 2η

σ(ϕ)

)
Letting first n go to infinity, then η to zero:

lim sup
n→∞

µϕ(Yn,ε) ≤
1√
2π

∫ ∞

u
e−

x2

2 dx

Gathering all the results about the terms (12), (14), (15), (16):

lim inf
n→∞

µϕ{Rn > enheuσ(ϕ)
√

n} ≥ 1√
2π

∫ ∞

u
e−

x2

2 dx−Kε
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lim sup
n→∞

µϕ{Rn > enheuσ(ϕ)
√

n} ≤ 1√
2π

∫ ∞

u
e−

x2

2 dx + Kε

This concludes the proof.
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