Site officiel du LAMFA, UMR CNRS 7352 logée par l’Université de Picardie Jules Verne



Accueil > Membres > Benedetta Noris

Publications

par Laurent Renault - publié le , mis à jour le

Google Scholar public profile

 

21) F. Colasuonno and B. Noris. Radial positive solutions for p-Laplacian supercritical Neumann problems. To appear on "Bruno Pini Mathematical Analysis Seminar" (Proceedings of the mathematical analysis seminars held at the Department of Mathematics, University of Bologna) http://arxiv.org/abs/1709.04646.pdf

20) L. Abatangelo, V. Felli, B. Noris and M. Nys. Estimates for eigenvalues of Aharonov-Bohm operators with varying poles and non-half-integer circulation. Preprint 2017 https://arxiv.org/pdf/1706.05247.pdf

19) A. Boscaggin, F. Colasuonno and B. Noris. Multiple positive solutions for a class of $p$-laplacian Neumann problems without growth conditions. Preprint 2017 http://arxiv.org/abs/1703.05727

18) L. Abatangelo, V. Felli, B. Noris and M. Nys. Sharp boundary behaviour of eigenvalues for Aharonov-Bohm operators with varying poles. J. Funct. Anal. 2017, to appear. https://arxiv.org/abs/1605.09569

17) D. Bonheure, J.-B. Casteras and B. Noris. Multiple positive solutions of the stationary Keller-Segel system. Calc. Var. PDE, 56-74, 2017.
http://arxiv.org/abs/1603.07374

16) F. Colasuonno and B. Noris. A $p$-laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst., 37(6):3025-3057, 2017. http://arxiv.org/abs/1606.06657

15) D. Bonheure, J.-B. Casteras and B. Noris. Layered solutions with unbounded mass for the Keller-Segel equation. J. Fixed Point Theory App., 19(1), 529-558, 2017.

14) D. Bonheure, M. Grossi, B. Noris, and S. Terracini. Multi-layer radial solutions for a supercritical Neumann problem. J. Differential Equations, 261(1):455-504, 2016. http://arxiv.org/abs/1508.01619

13) B. Noris, M. Nys, and S. Terracini. On the eigenvalues of Aharonov-Bohm operators with varying poles : pole approaching the boundary of the domain. Comm. Math. Phys., 339(3):1101–1146, 2015. http://arxiv.org/abs/1411.5244

12) B. Noris, H. Tavares, and G. Verzini. Stable solitary waves with prescribed L2-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst., 35(12) : 6085–6112, 2015. http://arxiv.org/abs/1403.4695

11) A. Aftalion, B. Noris, and C. Sourdis. Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation. Comm. Math. Phys., 336(2):509–579, 2015. http://arxiv.org/abs/1403.4695

10) B. Noris, H. Tavares, and G. Verzini. Existence and orbital stability of the ground states with prescribed mass for the L2-critical and supercritical NLS on bounded domains. Analysis & PDE, 7(8):1807–1838, 2014. http://arxiv.org/abs/1307.3981

9) V. Bonnaillie-Noël, B. Noris, M. Nys, and S. Terracini. On the eigenvalues of Aharonov-Bohm operators with varying poles. Analysis & PDE, 7(6):1365–1395, 2014. http://arxiv.org/abs/1310.1211

8) M.-M. Boureanu, B. Noris, and S. Terracini. Sub and supersolutions, invariant cones and multiplicity results for p-Laplace equations. Contemporary Math. AMS volume, 595:91–119, 2013. http://arxiv.org/abs/1210.2274

7) B. Noris and G. Verzini. A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems. J. Differential Equations, 254:1529–1547, 2013. http://arxiv.org/abs/1112.3159

6) B. Noris, H. Tavares, S. Terracini, and G. Verzini. Convergence of minimax and continuation of critical points for singularly perturbed systems. J. Eur. Math. Soc., 14(4):1245–1273, 2012. http://arxiv.org/abs/0910.5317

5) M. Grossi and B. Noris. Positive constrained minimizers for supercritical problems in the ball. Proc. Amer. Math. Soc., 140:2141–2154, 2012. http://arxiv.org/abs/0912.0150

4) D. Bonheure, B. Noris, and T. Weth. Increasing radial solutions for Neumann problems without growth restrictions. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29(4):573–588, 2012. http://arxiv.org/abs/1109.4009

3) B. Noris and S. Terracini. Nodal sets of magnetic Schrödinger operators of Aharonov-Bohm type and energy minimizing partitions. Indiana Univ. Math. J., 59(4):1361–1403, 2010. http://arxiv.org/abs/0902.3926

2) B. Noris and M. Ramos. Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. Amer. Math. Soc., 138(5):1681–1692, 2010. http://arxiv.org/abs/0912.0150

1) B. Noris, H. Tavares, S. Terracini, and G. Verzini. Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math., 63(3):267–302, 2010. http://arxiv.org/abs/0810.5537