La longue histoire de π

Fabien Durand

Université de Picardie Jules Verne

Références bibliographiques

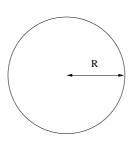
Le fascinant nombre pi, J.-P. Delahaye, Eds Belin-Pour la science

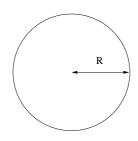
Références bibliographiques

- Le fascinant nombre pi, J.-P. Delahaye, Eds Belin-Pour la science
- ▶ La Quadrature du cercle et le nombre Pi, A. Krop, Eds Ellipses

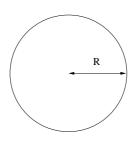
Références bibliographiques

- Le fascinant nombre pi, J.-P. Delahaye, Eds Belin-Pour la science
- La Quadrature du cercle et le nombre Pi, A. Krop, Eds Ellipses
- Autour du nombre Pi, P. Eymard et J.-P. Lafon, Eds Hermann



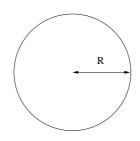


$$\pi = \frac{\text{P\'erim\`etre de }\mathcal{C}}{\text{Diam\`etre de }\mathcal{C}} \ \ (P = 2\pi R)$$



$$\pi = \frac{\text{P\'erim\`etre de }\mathcal{C}}{\text{Diam\`etre de }\mathcal{C}} \ \ (P = 2\pi R)$$

$$\pi = \frac{\text{Surface de } \mathcal{C}}{\text{Rayon de } \mathcal{C} \text{ au carr\'e}} \ \ (S = \pi R^2)$$



$$\pi = \frac{\text{P\'erim\`etre de }\mathcal{C}}{\text{Diam\`etre de }\mathcal{C}} \ \ (P = 2\pi R)$$

$$\pi = \frac{\text{Surface de } \mathcal{C}}{\text{Rayon de } \mathcal{C} \text{ au carr\'e}} \ \ (S = \pi R^2)$$

$$\pi = 3, 14159...$$

$$\frac{cheval}{oiseau} = \pi$$

$$\frac{cheval}{oiseau} = \pi$$

$$\frac{cheval}{oiseau} = \pi$$

Une devinette:

 Mon premier est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,

$$\frac{cheval}{oiseau} = \pi$$

- Mon premier est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon deuxième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,

$$\frac{cheval}{oiseau} = \pi$$

- Mon premier est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon deuxième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon troisième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,

$$\frac{cheval}{oiseau} = \pi$$

- Mon premier est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon deuxième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon troisième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon tout est un symbole mathématique.

$$\frac{cheval}{oiseau} = \pi$$

Une devinette:

- Mon premier est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon deuxième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon troisième est un animal qui travaille avec sa queue et qui n'a rien pour s'asseoir,
- Mon tout est un symbole mathématique.

Réponse : 3 castors sans chaise ($pi \approx 3,1416$)

Anaxagore 500 ans avant Jésus-Christ:

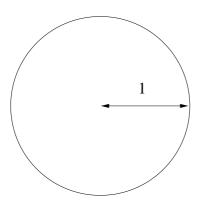
Anaxagore 500 ans avant Jésus-Christ:

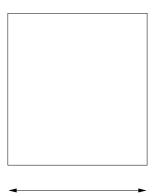
La quadrature du cercle

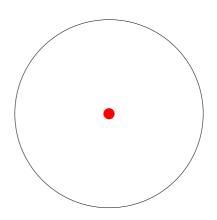
Anaxagore 500 ans avant Jésus-Christ :

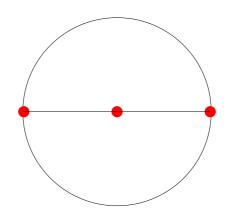
La quadrature du cercle

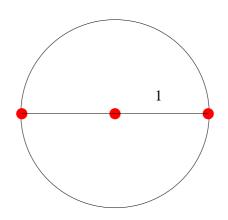
Construire à la règle et au compas un carré de même aire qu'un cercle donné.

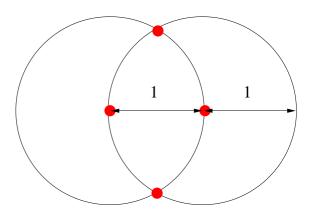


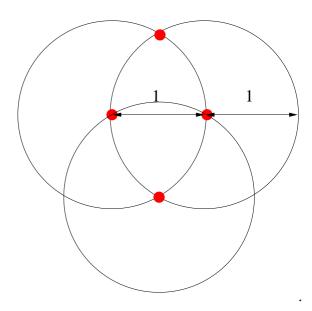


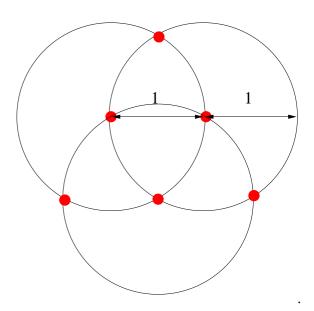


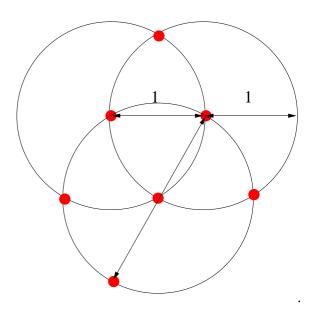


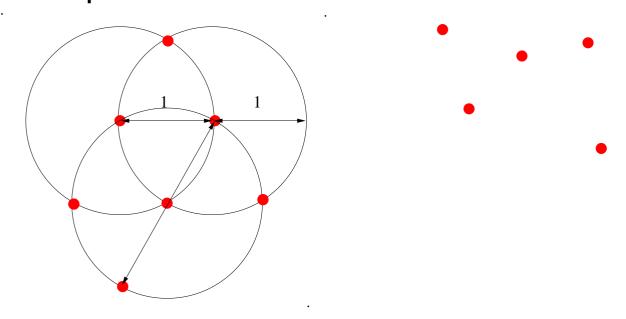


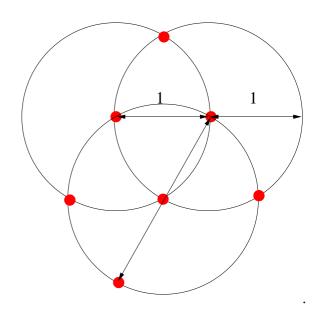


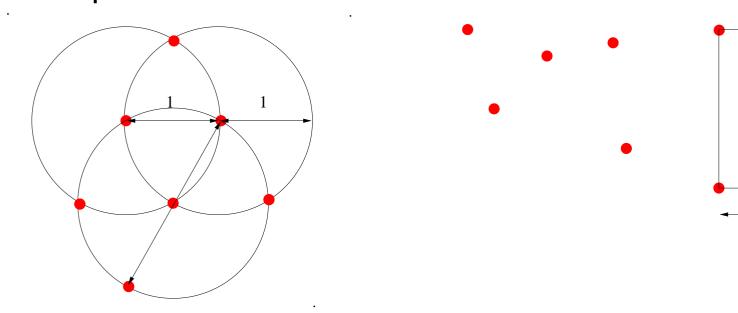












 470-410 av. J.-C. : Hippocrate de Chios semble savoir que les rapports

 $\frac{\text{Périmètre de }\mathcal{C}}{\text{Diamètre de }\mathcal{C}} \text{ et } \frac{\text{Surface de }\mathcal{C}}{\text{Rayon de }\mathcal{C} \text{ au carr\'e}}$ sont des constantes.

• 408-355 av. J.-C., Euclide:

$$\frac{\mathsf{aire}(\mathcal{C}_1)}{\mathsf{aire}(\mathcal{C}_2)} = \frac{r_1^2}{r_2^2}$$

• 408-355 av. J.-C., Euclide:

$$\frac{\mathsf{aire}(\mathcal{C}_1)}{\mathsf{aire}(\mathcal{C}_2)} = \frac{r_1^2}{r_2^2}$$

• 287-212 av. J.-C., Archimède :

$$\frac{\text{p\'erim\`etre}(\mathcal{C}_1)}{\text{p\'erim\`etre}(\mathcal{C}_2)} = \frac{r_1}{r_2}$$

• 408-355 av. J.-C., Euclide:

$$\frac{\mathsf{aire}(\mathcal{C}_1)}{\mathsf{aire}(\mathcal{C}_2)} = \frac{r_1^2}{r_2^2}$$

• 287-212 av. J.-C., Archimède :

$$\frac{\text{p\'erim\`etre}(\mathcal{C}_1)}{\text{p\'erim\`etre}(\mathcal{C}_2)} = \frac{r_1}{r_2}$$

Archimède: Le périmètre de tout cercle vaut le triple du diamètre augmenté de moins de la septième partie, mais de plus des dix soixante et onzième parties du diamètre:

Avant Jésus-Christ

• 408-355 av. J.-C., Euclide:

$$\frac{\mathsf{aire}(\mathcal{C}_1)}{\mathsf{aire}(\mathcal{C}_2)} = \frac{r_1^2}{r_2^2}$$

• 287-212 av. J.-C., Archimède :

$$\frac{\text{p\'erim\`etre}(\mathcal{C}_1)}{\text{p\'erim\`etre}(\mathcal{C}_2)} = \frac{r_1}{r_2}$$

Archimède: Le périmètre de tout cercle vaut le triple du diamètre augmenté de moins de la septième partie, mais de plus des dix soixante et onzième parties du diamètre:

$$\frac{223}{71} \le \pi \le \frac{22}{7}$$

Avant Jésus-Christ

• 408-355 av. J.-C., Euclide:

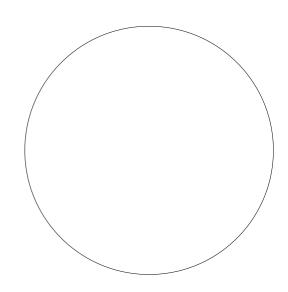
$$\frac{\mathsf{aire}(\mathcal{C}_1)}{\mathsf{aire}(\mathcal{C}_2)} = \frac{r_1^2}{r_2^2}$$

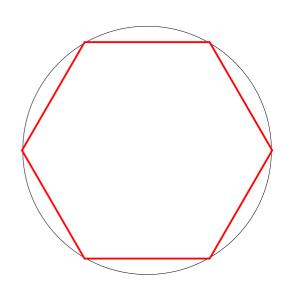
• 287-212 av. J.-C., Archimède :

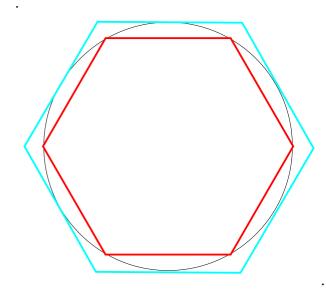
$$\frac{\text{p\'erim\`etre}(\mathcal{C}_1)}{\text{p\'erim\`etre}(\mathcal{C}_2)} = \frac{r_1}{r_2}$$

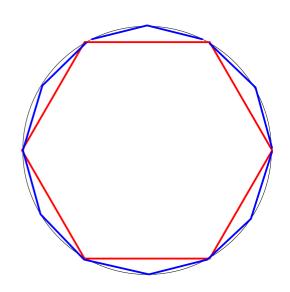
Archimède: Le périmètre de tout cercle vaut le triple du diamètre augmenté de moins de la septième partie, mais de plus des dix soixante et onzième parties du diamètre:

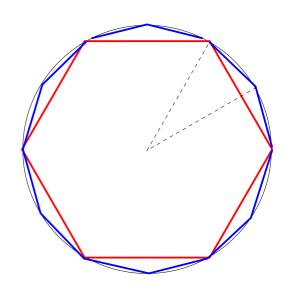
$$3,1408 \approx \frac{223}{71} \le \pi \le \frac{22}{7} \approx 3,1428$$

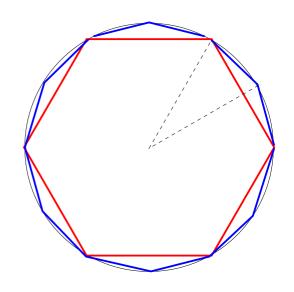




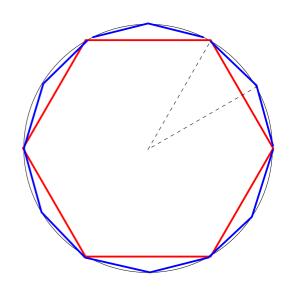








Avec combien de côtés?



Avec combien de côtés?

96

Dans le passage de la Bible 1.Rois 7.23, on trouve l'affirmation suivante :

Dans le passage de la Bible 1.Rois 7.23, on trouve l'affirmation suivante :

Il fit la Mer en métal fondu, de dix coudées de bord à bord, à pourtour circulaire de 5 coudées de hauteur; un fil de 30 coudées en mesurait le tour

Dans le passage de la Bible 1.Rois 7.23, on trouve l'affirmation suivante :

Il fit la Mer en métal fondu, de dix coudées de bord à bord, à pourtour circulaire de 5 coudées de hauteur; un fil de 30 coudées en mesurait le tour

$$\pi = 3$$

• 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$
- 130, Chang Hong : $\pi \approx \sqrt{10} \approx 3,16$

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$
- 130, Chang Hong : $\pi \approx \sqrt{10} \approx 3,16$
- 263, Lui Hui : $\pi \approx 3,14159$ (192 côtés)

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$
- 130, Chang Hong : $\pi \approx \sqrt{10} \approx 3,16$
- 263, Lui Hui : $\pi \approx 3,14159$ (192 côtés)
- 480, Zu Chong Zhi : $\pi \approx \frac{355}{113} \approx 3,1415927$

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$
- 130, Chang Hong : $\pi \approx \sqrt{10} \approx 3,16$
- 263, Lui Hui : $\pi \approx 3,14159$ (192 côtés)
- 480, Zu Chong Zhi : $\pi \approx \frac{355}{113} \approx 3,1415927$
- 476-550, Aryabhata : $\pi \approx \frac{62832}{20000} = 3,1416$

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$
- 130, Chang Hong : $\pi \approx \sqrt{10} \approx 3,16$
- 263, Lui Hui : $\pi \approx 3,14159$ (192 côtés)
- 480, Zu Chong Zhi : $\pi \approx \frac{355}{113} \approx 3,1415927$
- 476-550, Aryabhata : $\pi \approx \frac{62832}{20000} = 3,1416$

le rapport de la circonférence au diamètre ne peut s'écrire sous la forme d'un rapport de deux entiers ...

- 2000 ans av. J.-C. : $\pi \approx 3$ à Babylone et en Chine.
- 287-212 av. J.-C., Archimède : $\pi \approx \frac{22}{7} \approx 3,14$
- 130, Chang Hong : $\pi \approx \sqrt{10} \approx 3,16$
- 263, Lui Hui : $\pi \approx 3,14159$ (192 côtés)
- 480, Zu Chong Zhi : $\pi \approx \frac{355}{113} \approx 3,1415927$
- 476-550, Aryabhata : $\pi \approx \frac{62832}{20000} = 3,1416$

le rapport de la circonférence au diamètre ne peut s'écrire sous la forme d'un rapport de deux entiers ...

• 1170-1250, Léonard de Pise (dit Fibonacci) : $\pi \approx 3,1418$ (96 côtés)

• 1380-1429, Al-Kashi : $\pi \approx 3,14159265358979$

• 1380-1429, Al-Kashi : $\pi \approx 3,14159265358979$

14 décimales de π

• 1380-1429, Al-Kashi : $\pi \approx 3,14159265358979$

14 décimales de π

$$3 \times 2^{28} = 805306368$$
 côtés

• 1380-1429, Al-Kashi : $\pi \approx 3,14159265358979$

14 décimales de π

 $3 \times 2^{28} = 805306368$ côtés

Son but : Calculer la circonférence d'un cercle égal à 600 000 fois celui de la Terre avec une précision inférieure à celle d'un crin de cheval.

• 1380-1429, Al-Kashi : $\pi \approx 3,14159265358979$

14 décimales de π

 $3 \times 2^{28} = 805306368$ côtés

Son but : Calculer la circonférence d'un cercle égal à 600 000 fois celui de la Terre avec une précision inférieure à celle d'un crin de cheval.

• 1593, von Roomen, 2³⁰ côtés : 15 décimales exactes.

• 1380-1429, Al-Kashi : $\pi \approx 3,14159265358979$

14 décimales de π

 $3 \times 2^{28} = 805306368$ côtés

Son but : Calculer la circonférence d'un cercle égal à 600 000 fois celui de la Terre avec une précision inférieure à celle d'un crin de cheval.

- 1593, von Roomen, 2³⁰ côtés : 15 décimales exactes.
- 1600, van Ceulen, 2⁶² côtés : 35 décimales exactes.

La folie quadratrice

La folie quadratrice

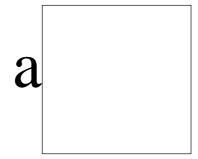
ou l'armée des quadrateurs

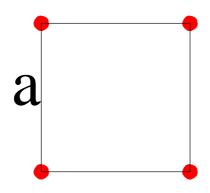
La folie quadratrice

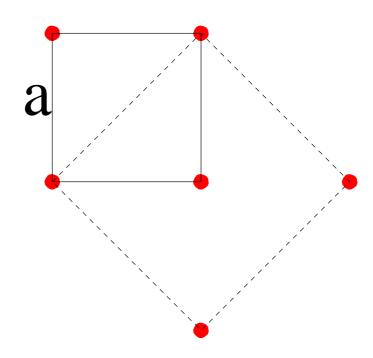
ou l'armée des quadrateurs

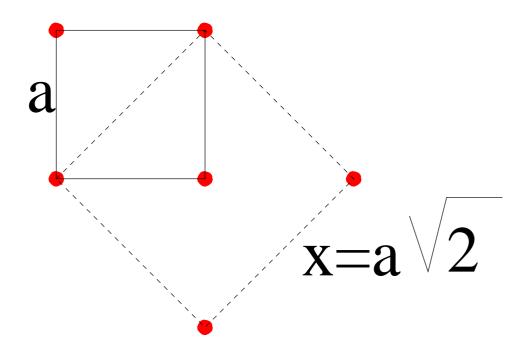
• 1775, l'Académie royale des Sciences décide :

de ne plus examiner aucune solution des problèmes de la duplication du cube, de la trisection de l'angle, ou de la quadrature du cercle, ni aucune machine annoncée comme un mouvement perpétuel.

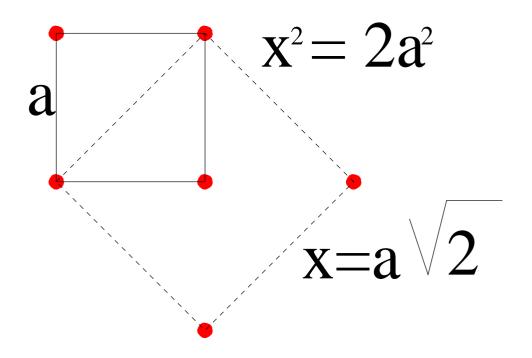








La duplication du carré



• 1540-1603 : Formule de Viete

$$\pi = 2\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2 + \sqrt{2}}} \frac{2}{\sqrt{2 + \sqrt{2 + \sqrt{2}}}} \cdots$$

• 1540-1603 : Formule de Viete

$$\pi = 2\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2 + \sqrt{2}}} \frac{2}{\sqrt{2 + \sqrt{2 + \sqrt{2}}}} \cdots$$

• 1647 : W. Oughtred (1574-1660), puis Isaac Barrow (1630-1677), utilisent π pour désigner le périmètre d'un cercle de diamètre 1.

• 1540-1603 : Formule de Viete

$$\pi = 2\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2 + \sqrt{2}}} \frac{2}{\sqrt{2 + \sqrt{2 + \sqrt{2}}}} \cdots$$

- 1647 : W. Oughtred (1574-1660), puis Isaac Barrow (1630-1677), utilisent π pour désigner le périmètre d'un cercle de diamètre 1.
- Archimède : périmètre = $\pi\epsilon\rho\iota\mu\epsilon\tau\rho\sigma\zeta$

• 1656 : Formule de Wallis

$$\frac{\pi}{2} = \frac{2.2.4.4.6.6.8.8...}{33.5.5.7.7.9.9...}$$

• 1656 : Formule de Wallis

$$\frac{\pi}{2} = \frac{2.2.4.4.6.6.8.8...}{33.5.5.7.7.9.9...}$$

1673 : Formule de Leibniz

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} + \cdots$$

• 1656 : Formule de Wallis

$$\frac{\pi}{2} = \frac{2.2.4.4.6.6.8.8...}{33.5.5.7.7.9.9...}$$

1673 : Formule de Leibniz

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} + \cdots$$

• 1680-1752 : Formule de Machin

$$\pi = 16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)$$

• 1707-1783 : Euler

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \cdots$$

Un premier pas vers l'impossibilité

Un premier pas vers l'impossibilité

• 1761, Lambert :

 π n'est pas un nombre rationnel

• 1837, Wantzel: Les nombres que l'on peut construire à la règle et au compas sont exactement sont que l'on peut obtenir (de façon finie) à partir de :

$$1, 2, 3, 4, \ldots, +, -, \times, /, \sqrt{.}$$

• 1837, Wantzel: Les nombres que l'on peut construire à la règle et au compas sont exactement sont que l'on peut obtenir (de façon finie) à partir de :

$$1, 2, 3, 4, \ldots, +, -, \times, /, \sqrt{.}$$

• 1882, Lindemann:

 π est transcendant

• 1837, Wantzel: Les nombres que l'on peut construire à la règle et au compas sont exactement sont que l'on peut obtenir (de façon finie) à partir de :

$$1, 2, 3, 4, \ldots, +, -, \times, /, \sqrt{.}$$

• 1882, Lindemann:

 π est transcendant

ni π ni $\sqrt{\pi}$ ne sont constructibles à la règle et au compas

• 1837, Wantzel: Les nombres que l'on peut construire à la règle et au compas sont exactement sont que l'on peut obtenir (de façon finie) à partir de :

$$1, 2, 3, 4, \ldots, +, -, \times, /, \sqrt{.}$$

• 1882, Lindemann :

 π est transcendant

ni π ni $\sqrt{\pi}$ ne sont constructibles à la règle et au compas

La quadrature du cercle est impossible

ullet 1995, Hiroyuki Goto (21 ans). Décimales de π mémorisées :

• 1995, Hiroyuki Goto (21 ans). Décimales de π mémorisées : **42 000** (en 9h00).

- 1995, Hiroyuki Goto (21 ans). Décimales de π mémorisées : **42 000** (en 9h00).
- 1995, Formule de Bailey-Borwein-Plouffe

$$\pi = S = \sum_{i=0}^{+\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right).$$

- 1995, Hiroyuki Goto (21 ans). Décimales de π mémorisées : **42 000** (en 9h00).
- 1995, Formule de Bailey-Borwein-Plouffe

$$\pi = S = \sum_{i=0}^{+\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right).$$

2005, Kanada. Décimales calculées par un ordinateur :
1 241 100 000 000 (en 600 heures)

- 1995, Hiroyuki Goto (21 ans). Décimales de π mémorisées : **42 000** (en 9h00).
- 1995, Formule de Bailey-Borwein-Plouffe

$$\pi = S = \sum_{i=0}^{+\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right).$$

- 2005, Kanada. Décimales calculées par un ordinateur :
 1 241 100 000 000 (en 600 heures)
- 2005, Akira Haraguchi (59 ans). Décimales de π mémorisées : 83 431 (en 13h00)

Pour finir : des statistiques

Pour finir : des statistiques

Fréquence de distribution des décimales sur les 50 000 000 000 premières :

'0': 5000012647

'1': 4999986263

'2': 5000020237

'3': 4999914405

'4': 5000023598

'5': 4999991499

'6': 4999928368

'7': 5000014860

'8': 5000117637

'9' : 4999990486