
BOUNDARY OF THE RAUZY FRACTAL SET IN R × C

GENERATED BY P (x) = x4 − x3 − x2 − x − 1
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Abstract. We study the boundary of the 3-dimensional Rauzy fractal E ⊂

R × C generated by the polynomial P (x) = x4 − x3 − x2 − x − 1. The finite
automaton characterizing the boundary of E is given explicitly. As a conse-
quence we prove that the set E has 18 neighboors where 6 of them intersect
the central tile E in a point. Our construction shows that the boundary is
generated by an iterated function system starting with 2 compact sets.
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1. Introduction

Consider A = {1, 2, 3} as an alphabet. Let A∗ be the set of finite words on A and
σ : A → A∗ be the map (called Tribonacci substitution) defined by

σ(1) = 12, σ(2) = 13, σ(3) = 1.

We extend σ to AN by concatenation : σ(a0 · · ·an . . .) = σ(a0) · · ·σ(an) . . .. It
is clear that σ has a unique fixed point u : σ(u) = u ∈ AN. The dynamical
system associated to σ is the couple (Ω, S) where S : AN → AN is the shift map

(S((xn)n∈N) = (xn+1)n∈N) and Ω is the S-orbit closure of u : Ω = {Snu|n ∈ N}.
It is well-known that (Ω, S) is minimal, uniquely ergodic and of zero entropy (see
[Q87, F02] for more details).
In 1982, G. Rauzy [R82] studied the Tribonacci substitution σ. He proved that
the dynamical system generated by σ is measure theoretically conjugate to an
exchange of domains X1, X2, X3 in a compact tile X = X1 ∪ X2 ∪ X3. The set
X is the classical two-dimensional Rauzy fractal. It has been extensively studied
and is related to many topics : numeration systems [M00, M06, M05], geometrical
representation of symbolic dynamical systems [AI01, AIS01, CS01, HZ98, M98,
T06, S96], multidimensional continued fractions and simultaneous approximations
[ABI02, CHM01, C02, HM06], self-similar tilings [A99, A00, AI01, P99] and Markov
partitions of Hyperbolic automorphisms of the torus [KV98, M98, P99].
Among the main properties of the set X , let us recall it is compact, connected, its
interior is simply connected, its boundary is fractal and it induces a periodic tiling
of R2 ([R82]).
It is possible to associate such a fractal set to a large class of substitutions over
an alphabet with d letters (called unimodular Pisot substitutions). Let us call
them Rauzy fractals. P. Arnoux and S. Ito [AI01] (see also [CS01]) proved that
the dynamical system associated to such a substitution σ is measure theoretically
conjugate to an exchange of domains X1, . . . , Xd in the Rauzy fractal Xσ = X1 ∪
. . . ∪ Xd ⊂ R

d−1 provided that the ”strong coincidence condition” is fulfilled. All
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these sets Xσ are compact and generate periodic tilings and self-replicating tilings
of Rd−1.
There are different ways to define the Rauzy fractal associated to a given substitu-
tion σ over an alphabet of d + 1 letters. One is through numeration systems.
Let d ≥ 2 and a1, a2, . . . , ad be integers such that a1 ≥ a2 ≥ . . . ≥ ad ≥ 1. Consider
A = {1, 2, . . . , d + 1} as an alphabet. Let σd be the substitution defined by

σd(i) = 11 . . . 1
︸ ︷︷ ︸

ai

(i + 1) if i ≤ d and σd(d + 1) = 1.

We define the Rauzy fractal associated to σd as follows. Consider the sequence
(Fn)n≥0 defined by

Fn+d+1 = a1Fn+d + a2Fn+d−1 + · · · + adFn+1 + Fn, ∀n ≥ 0,

with initial conditions (called Parry conditions)

F0 = 1, Fn = a1Fn−1 + · · · + anF0 + 1, ∀ 1 ≤ n ≤ d.

For any n ∈ N, using the greedy algorithm, we have n =
∑N

i=0 ciFi where the ci’s
are integers satisfying

k∑

i=0

ciFi < Fk+1 for all k ∈ {0, 1 . . . , N − 1}.

We deduce that (ci)0≤i≤N−1 belongs to Da1,...,ad
, where Da1,...,ad

is the set of se-
quences (εi)l≤i≤k, l, k ∈ Z, such that for all i ∈ {l, l + 1, . . . ,≤ k} :

(1) εi ∈ {0, 1, . . . , a1} ,
(2) εiεi−1 . . . εi−d <lex a1a2 . . . ad1 when i ≥ l + d, and,
(3) εiεi−1 . . . εl0

d−i+l <lex a1a2 . . . ad1 when l ≤ i ≤ l + d,

where <lex is the usual lexicographic ordering. We set

D∞
a1,...,ad

= {(εi)i≥l; l ∈ Z, (εi)l≤i≤n ∈ Da1,...,ad
, ∀n ≥ l} .

Now, consider the following polynomial

Pa1,...ad
(x) = xd+1 − a1x

d − a2x
d−1 − · · · − adx − 1.

It can be checked that P has a root β = β1 ∈]1, +∞[ and d roots with mod-
ulus less than 1. Let β1, β2, β3, . . . , βr be the roots of P belonging to R and
βr+1, . . . , βr+s, βr+1, . . . , βr+s its complex roots. For all i ∈ Z, we set

αi = (βi
2, . . . , β

i
r, β

i
r+1, . . . , β

i
r+s).

We also put α0 = 1 = (1, . . . , 1). Then, the Rauzy fractal associated to σ is the set
Ea1,...ad

⊂ Rr−1 × Cs ≈ Rd defined by

Ea1,...ad
=

{
+∞∑

i=d+1

εiα
i; (εi)i≥d+1 ∈ D∞

a1,...,ad

}

.

The set E1,1 = X is the classical two-dimensional Rauzy fractal.
The structure of the boundary of Rauzy fractals has been first investigated by Ito
and M. Kimura in [IK91]. They showed that the boundary of E1,1 is a Jordan
curve generated by the Dekking method [D82] and they calculated its Hausdorff
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dimension. Relating the boundary of Ea1,1 to the complex numbers having at least
two expansions in base α, A. Messaoudi [M00, M05] constructed a finite automaton
characterizing and generating this boundary. See also [ST10] for an other approach.
As a consequence it permitted to parameterize the boundary of Ea1,1, to compute
its Hausdorff dimension and to show it is a quasi circle.
In [T06], J. M. Thuswaldner studied the set Ea1,a2

. In particular, based on the
self replicating tiling, he gave an explicit formula for the fractal dimension of the
boundary of this set.
The purpose of this paper is to prove the following result.

Theorem 1. The set E1,1,1 ⊂ R × C has the following properties :

(1) There exists a finite automaton A with a unique initial state such that the
following are equivalent :
(a) z belongs to the boundary of E1,1,1;
(b) there exist two infinite paths (ǫi)i≥l and (ǫ′i)i≥l belonging to D∞

1,1,1 such

that z =
∑

i≥l εiα
i and (εi, ε

′
i)i≥l is an infinite path in A beginning in

the initial state;
(2) The set E1,1,1 tiles R × C and has exactly 18 neighboors and 6 of them

intersect the central tile E1,1,1 in a point;

(3) The boundary of E1,1,1 is
⋃18

i=1 Xi where Xi, i = 1, . . . , 6 are singletons,
and for all i ∈ [7, 18], there exist affine functions fij , j = 1, . . . , mi and
gij , j = 1, . . . , ni from R × C to itself such that

Xi =

mi⋃

j=1

fij(X7)
⋃ ni⋃

j=1

gij(X8).

For a graphic representation of E1,1,1, see the Annexe section (the colored image is
available at http://www.mathinfo.u-picardie.fr/fdurand/publications.html).

2. Notations, definitions and background

2.1. β-expansions. Let β > 1 be a real number. A β-representation of a non-
negative real number x is an infinite sequence (xi)i≤k, xi ∈ Z

+ = [0, +∞[, such
that

x = xkβk + xk−1β
k−1 + · · · + x1β + x0 + x−1β

−1 + x−2β
−2 + · · · .

where k is an integer. It is denoted by

x = xkxk−1 . . . x1x0.x−1x−2 . . . .

A particular β-representation, called the β-expansion, is computed by the ”greedy
algorithm” (see [P60]): denote by ⌊y⌋ and {y} respectively the integer part and the
fractional part of a number y. There exists k ∈ Z such that βk ≤ x < βk+1. Let
xk = ⌊x/βk⌋ and rk = {x/βk}. Then for i < k, put xi = ⌊βri+1⌋ and ri = {βri+1}.
We get

x = xkβk + xk−1β
k−1 + · · ·

If k < 0 (x < 1), we put x0 = x−1 = · · · = xk+1 = 0. If an expansion ends by
infinitely many zeros, it is said to be finite, and the ending zeros are omitted.
The digits xi belong to the set A = {0, · · · , β − 1} if β is an integer, or to the
set A = {0, · · · , ⌊β⌋} if β is not an integer. The β-expansion of every positive real
number x is the lexicographically greatest among all β-representations of x.
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We denote by Fin(β) the set of numbers which have finite greedy β-expansion.
Let N ∈ Z, we denote by FinN (β) the set of numbers x such that in their β-
expansion (xi)i≤k, xi = 0 for all i < N . We will sometimes denote a β-expansion
xn · · ·xk, n ≥ k by (xi)k≤i≤n. We put

Eβ = {(xi)i≥k; k ∈ Z, ∀n ≥ k, (xi)k≤i≤n is a finite β-expansion}.

In the case where β is the dominant root of the polynomial Pa1,...ad
, it is known (see

[FS92]) that Eβ = D∞
a1,...,ad

= {(εi)i≥l; l ∈ Z, (εi)l≤i≤n ∈ Da1,...,ad
, ∀n ≥ l}. We will

need the two following classical lemmas.

Lemma 2 ([P60]). Let xn · · ·x0 and ym · · · y0 be two β-expansions. Then, the
following are equivalent

•
∑n

i=0 xiβ
i <

∑m

i=0 yiβ
i,

• xn · · ·x0 <lex ym · · · y0,

where <lex is the lexicographical order.

Lemma 3 ([FS92]). If β = β1, then Z[β] ∩ [0, +∞[⊂ Fin(β).

2.2. Boundary of Ea1,...,ad
. The coordinates of α have modulus strictly less than

1. Moreover, Lemma 3 and Theorem 2 of [A99] imply that 0 belongs to the interior
of the central tile Ea1,...,ad

. Hence, for all z ∈ Rr−1×Cs there exists k ∈ N such that
αkz ∈ Ea1,...,ad

. Then, all z ∈ Rr−1 × Cs can be written as follows z =
∑∞

i=l εiα
i,

where l ∈ Z and (εi)i≥l ∈ D∞
a1,...,ad

. The sequence (εi)i≥l is called α-expansion of
z. We should remark that these α-expansions are not unique : some z can have
many different α-expansions. In [M05] it is proven that the points belonging to the
boundary of Ea1,...,ad

have at least two different α-expansions. These points are
characterized by the following proposition which is a straightforward consequence
of a result due to W. Thurston [T90] (see also [M05]).

Proposition 4. There exists a finite automaton B such that for all distinct ele-
ments of D∞

a1,...,ad
, (bi)i≥l and (ci)i≥l, the following are equivalent :

•
∑∞

i=l biα
i =

∑∞

i=l ciα
i

• ((bi, ci))i≥l is recognizable by B (i.e an infinite path in B beginning in the
initial state).

The proof of this result does not give explicitly the states of the automaton. In
[M98] is given an algorithm that gives these states for E1,1. In [M06], they were
given for Ea1,1 where a1 ≥ 2.

3. Characterization of the boundary of E1,1,1

In the sequel we suppose d = 3 and a1 = a2 = a3 = 1, and P (x) = P1,1,1(x) =

x4 − x3 −x2 −x− 1 = (x− β1)(x− β2)(x−β3)(x−β3) where β1, β2, β3 are defined
in Section 1. Approximations of these numbers are β = β1 = 1.9275 . . . , β2 =
−0.7748 . . . and β3 = −0.0763 · · · + i0.8147 . . . . We recall that we defined for all
i ∈ Z, αi = (βi

2, β
i
3).

In this situation
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D = D1,1,1 = {(εi)l≤i≤n; l, n ∈ Z, εi ∈ {0, 1}, εiεi−1εi−2εi−3 6= 1111, l ≤ i ≤ n} ,

D∞ = D∞
1,1,1 = {(εi)i≥l; l ∈ Z, (εi)l≤i≤n ∈ D1,1,1, n ≥ l} and

E = E1,1,1 =

{
+∞∑

i=4

εiα
i; (εi)i≥4 ∈ D∞

}

=

{
+∞∑

i=4

εiα
i; εi ∈ {0, 1}, εiεi−1εi−2εi−3 6= 1111, i ≥ 4

}

.

An important and known result is:

Theorem 5. The set E is compact, connected and generates a periodic tiling of
R × C with group periods G = Zα0 + Zα + Zα2:

R × C =
⋃

p∈G

(E + p),

and the intersection of the interior of (E + p) with (E + q) is empty whenever
p 6= q, p, q ∈ G. Morever the boundary of E is of zero measure and is equal to the
union of all Ep, p ∈ G where Ep = E ∩ (E + p).

Proof. The proof can be deduced from [R82] (done in case of cubic Rauzy fractal),
see also [CS01]. For clarity, we will give the proof in the Annexe section. �

3.1. Definition of the automaton recognizing the points with at least two

expansions. In the sequel we proceed to the construction of the automaton A that
characterizes the boundary of E . This characterization will be proven in Section
3.2.
The set of states of the automaton A is

S =
{

±
∑3

i=0 ciα
i; c0c1c2c3 6= 1111, ci ∈ {0, 1}, 0 ≤ i ≤ 3

}

⋃ {
±(α−1 + 1 + α2),±(α−2 + α−1 + α),±(α−3 + α−2 + 1 + α3)

}
.

Let s and t be two states. The set of edges is the set of (s, (a, b), t) ∈ S×{0, 1}2×S
satisfying t = s

α
+ (a− b)α3. The set of initial states is {0} and the set of states is

S. A path (resp. infinite path) of A is a sequence (an, bn)k≤n≤l (resp. (an, bn)n≥k)
such that there exists a sequence (en)k≤n≤l+1 (resp. (en)n≥k) of elements of S for
which (en, (an, bn), en+1) belongs to S for all n ∈ {k, k+1, . . . , l +1} (resp. n ≥ k).
We say it starts in the initial state when ek = 0. The automaton is explicitly
defined in the Annexe at the end of this paper.
Let us explain the behavior of this automaton. Let ε = (εi)i≥l and ε′ = (ε′i)i≥l

belonging to D∞, x =
∑∞

i=l εiα
i and y =

∑∞

i=l ε′iα
i. For all k ≥ l we set

Ak(ε, ε′) = α−k+3
k∑

i=l

(εi − ε′i)α
i(1)

In Subsection 3.2 we will prove that x = y if and only if all the Ak, k ≥ l, belong
to S. But as, for all k ≥ l, we have

5



Ak+1(ε, ε
′) =

Ak(ε, ε′)

α
+ (εk+1 − ε′k+1)α

3,(2)

this means that x = y if and only if

(0, (εl, ε
′
l) , Al (ε, ε

′))
(
(Ak(ε, ε′), (εk+1, ε

′
k+1), Ak+1(ε, ε

′))
)

k≥l

is an infinite sequence of edges of S starting in the initial state. And, this is
equivalent to say that (εi, ε

′
i)i≥l is an infinite path of A starting in the initial state.

Let us give an example on how we can use this automaton to obtain information
about the digits of x and y. Let s be the smallest integer such that εs 6= ε′s.
Hence Ai(ε, ε

′) = 0 for i ∈ {l, · · · , s − 1}. Suppose εs > ε′s, that is εs = 1 and
ε′s = 0. Then, As = α3. ¿From (2) we deduce As+1(ε, ε

′) = α2 + (εs+1 − ε′s+1)α
3

which should belong to S. Hence As+1(ε, ε
′) = α2 ∈ S if εs+1 = ε′s+1, and,

As+1(ε, ε
′) = α2 + α3 ∈ S if (εs+1, ε

′
s+1) = (1, 0). Hence, (α3, (1, 0), α2 + α3),

(α3, (0, 0), α2) and (α3, (1, 1), α2) are edges coming from the state α3. Let us explain
why (α3, (0, 1), α2−α3) is not an edge, and hence why we cannot have (εs+1, ε

′
s+1) =

(0, 1). We should have that α2 − α3 = −α−1 − 1 − α belongs to S. Then β should
satisfy the same equality. Hence β−1 + 1 + β should belong to

{
3∑

i=0

ciβ
i; c0c1c2c3 6= 1111, ci ∈ {0, 1}, 0 ≤ i ≤ 3

}

⋃{
(β−1 + 1 + β2), (β−2 + β−1 + β), (β−3 + β−2 + 1 + β3)

}
,

which is not possible by Lemma 2.

3.2. Characterization of the points with at least two expansions.

Lemma 6. Let (εi)i≥0, (ε
′
i)i≥0 ∈ D∞. Then,

∣
∣
∣
∣
∣

+∞∑

i=0

(εi − ε′i)β
i
2

∣
∣
∣
∣
∣
≤

1

1 + β2
,

∣
∣
∣
∣
∣

+∞∑

i=0

(εi − ε′i)β
i
3

∣
∣
∣
∣
∣
≤

C

1 − |β3|6
.

where C = max
{∣
∣
∣
∑5

i=0(ci − di)β
i
3

∣
∣
∣ ; (ci)0≤i≤5 ∈ D, (di)0≤i≤5 ∈ D

}

.

Proof. The second inequality is easy to establish. For the first inequality, as −1 <
β2 < 0, all sequences (ci)i≥0 which terms are 0 or 1 satisfy the following inequality :

β2

1 − β2
2

=

+∞∑

i=0

β2i+1
2 ≤

+∞∑

i=0

ciβ
i
2 ≤

+∞∑

i=0

β2i
2 =

1

1 − β2
2

.

This achieves the proof. �

For all ε = (εi)i≥l and ε′ = (ε′i)i≥l belonging to D∞, we set

S(ε, ε′) = {Ak(ε, ε′); k ≥ l} =

{

α−k+3
k∑

i=l

(εi − ε′i)α
i; k ≥ l

}

.
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Proposition 7. Let x =
∑∞

i=l εiα
i, y =

∑∞

i=l ε′iα
i, where ε = (εi)i≥l and ε′ =

(ε′i)i≥l belong to D∞. Then, x = y if and only if the set S(ε, ε′) is finite. Moreover

S(ε, ε′) ⊂ S =

{

±
3∑

i=0

ciα
i; (ci)0≤i≤3 ∈ D

}

⋃{
±(α−1 + 1 + α2),±(α−2 + α−1 + α),±(α−3 + α−2 + 1 + α3)

}

and

S =
⋃

(ε,ε′)∈∆

S(ε, ε′),

where ∆ =
{
((εi)i≥l, (ε

′
i)i≥l) ∈ D∞ ×D∞;

∑∞

i=l εiα
i =

∑∞

i=l ε′iα
i
}
.

Proof. It is easy to establish that if S(ε, ε′) is finite then x = y. Let us prove the
reciprocal. Let x =

∑∞

i=l εiα
i =

∑∞

i=l ε′iα
i = y with ε = (εi)i≥l and ε′ = (ε′i)i≥l

belonging to D∞. Let us prove that Ak = Ak(ε, ε′) belongs to S for all k ≥ l. As
x = y, for all k ≥ l, we have

Ak =

∞∑

i=k+1

(ε′i − εi)α
i−k+3 =

∞∑

i=4

(ε′i+k−3 − εi+k−3)α
i.(3)

Let us fix k ≥ l and assume Ak 6= 0. ¿From (1), we deduce there exist n, p, q, r ∈ Z

such that

Ak = nα3 + pα2 + qα + r.(4)

But nβ3 + pβ2 + qβ + r or −(nβ3 + pβ2 + qβ + r) belongs to Z[β] ∩ R+, which is
contained in Fin(β) (see Lemma 3). We deduce there exists (ci)s≤i≤m ∈ D such
that cm = 1 and

nβ3 + pβ2 + qβ + r = ±
m∑

i=s

ciβ
i.(5)

We suppose it is equal to
∑m

i=s ciβ
i. The other case can be treated in the same

way. As β, β2 and β3 are algebraically conjugate, from (1), (4) and (5) we have

β−k+3
k∑

i=l

εiβ
i = β−k+3

k∑

i=l

ε′iβ
i +

m∑

i=s

ciβ
i.(6)

¿From Lemma 2, β−k+3
∑k

i=l εiβ
i < β4, consequently m ≤ 3. Setting ci = 0 for

i > m, we have

Ak =
3∑

i=s

ciα
i.(7)

Remark that if s ≥ 0 then Ak belongs to S. Hence we suppose s ≤ −1.
Suppose s = −1 and c−1 = 1. Let us show that Ak is equal to α−1 + 1 + α2 and
consequently belongs to S. In order to do so, we show that the other cases are
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not possible. Using Lemma 6 and (3), the first entry of (Ak), (Ak)1, should satisfy
|(Ak)1| ≤ β4

2(1 + β2)
−1 which is less than a = 1.6004. This excludes the following

points : α−1+α+α2+α3, α−1+α+α3, α−1 +α and α−1+α3 because the absolute
value of their first entries is greater than the value below it in the following array :

β−1
2 + β2 + β2

2 + β3
2 β−1

2 + β2 + β3
2 β−1

2 + β2 β−1
2 + β3

2

1.9 2.5 2.0 1.7

In the same way we should have |(Ak)2| ≤ C|β3|4(1 − |β3|6)−1 which is less than
b = 1, 8120. This excludes the following points : α−1 + 1 + α3, α−1 + α2 + α3 and
α−1 +1+α2 +α3, because the absolute value of their second entries is greater than
the value below it in the following array :

β−1
3 + 1 + β3

3 β−1
3 + β2

3 + β3
3 β−1

3 + 1 + β2
3 + β3

3

2.0 1.9 1.9

In order to exclude the other cases, except 1
α

+1+α2, we used (2) to compute Ak+i,
i ≥ 1. Let us explain the strategy. Suppose neither (Ak)1 nor (Ak)2 is greater than
respectively a and b. Then, we compute Ak+1 using (2). We have three possible

values : Ak

α
, Ak

α
+ α3 and Ak

α
− α3. To check that Ak does not belong to S, it

suffices to show that for all these values, either the first entry or the second is
respectively greater than a or b. If it is not the case, for each value that does not
satisfy this (both entries are less than, respectively, a and b) we apply again this
strategy. Applying this just once we show that 1

α
+ 1 + α + α3 does not belong to

S. The values of the relevant entries are in the following array and should be read
in the following way : The value (1.9 for example) below a relevant entry of Ak+1

(resp. 1
β2

2

+ 1
β2

+ 1 + β2
2) is greater than the absolute value of the relevant entry :

| 1
β2

2

+ 1
β2

+ 1 + β2
2 | > 1.9.

Ak
1
α

+ 1 + α + α3

Ak+1
1

β2

2

+ 1
β2

+ 1 + β2
2

1
β2

3

+ 1
β3

+ 1 + β2
3 + β3

3
1

β2

2

+ 1
β2

+ 1 + β2
2 − β3

2

1.9 1.9 2.4

For the following case, 1
α

+ 1, we need to apply the strategy twice because for

Ak+1 = 1
β2

3

+ 1
β3

− β3
3 both entries are respectively less than a and b.

Ak
1
α

+ 1
Ak+1

1
β2

3

+ 1
β3

1
β2

3

+ 1
β3

+ β3
3

1.83 2.0

Ak+2
1

β3

3

+ 1
β2

3

− β2
3

1
β3

3

+ 1
β2

3

− β2
3 + β3

3
1

β3

3

+ 1
β2

3

− β2
3 − β3

3

2.1 1.63 2.7

For the case Ak = 1
α

+ 1 + α we need two steps because at the first one both
1

β2

2

+ 1
β2

+ 1 and 1
β2

2

+ 1
β2

+ 1 + β3
3 have entries less than, respectively, a and b.
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Ak
1
α

+ 1 + α
Ak+1

1
β2

2

+ 1
β2

+ 1 − β3
2

1.84
Ak+2

1
β3

2

+ 1
β2

2

+ 1
β2

1
β3

2

+ 1
β2

2

+ 1
β2

+ β3
2

1
β3

3

+ 1
β2

3

+ 1
β3

− β3
3

1.77 2.23 1.818
1

β3

3

+ 1
β2

3

+ 1
β3

+ β2
3

1
β3

2

+ 1
β2

2

+ 1
β2

+ β2
2 + β3

2
1
β3

3

+ 1
β2

3

+ 1
β3

+ β2
3 − β3

3

1.86 1.63 2.24

For the three following cases, 1
α

+ α2, 1
α

and 1
α

+ α + α2, we need three steps.

Ak
1
α

+ α2

Ak+1
1

β2

3

+ β3
1

β2

3

+ β3 − β3
3

1.89 2.34
Ak+2

1
β3

3

+ 1 + β2
3

1
β3

3

+ 1 + β2
3 − β3

3

1.83 2.26
Ak+3

1
β4

3

+ 1
β3

+ β3 + β2
3

1
β4

3

+ 1
β3

+ β3 + β2
3 + β3

3
1

β4

2

+ 1
β2

+ β2 + β2
2 − β3

2

1.818 2.32 1.77

Ak
1
α

Ak+1
1

β2

2

1
β2

2

− β3
2

1.66 2.13

Ak+2
1

β3

2

+ β2
2 + β3

2
1

β3

3

+ β2
3 − β3

3

2.01 2.17
Ak+3

1
β4

3

+ β3
1

β4

3

+ β3 + β3
3

1
β4

3

+ β3 − β3
3

2.00 2.21 1.92

Ak
1
α

+ α + α2

Ak+1
1

β2

2

+ 1 + β2
1

β2

2

+ 1 + β2 − β3
2

1.89 2.35

Ak+2
1

β3

2

+ 1
β2

+ 1 + β2
2

1
β3

2

+ 1
β2

+ 1 + β2
2 + β3

2

1.84 2.30
Ak+3

1
β4

2

+ 1
β2

2

+ 1
β2

+ β2
1

β4

3

+ 1
β2

3

+ 1
β3

+ β3
1

β4

2

+ 1
β2

2

+ 1
β2

+ β2

−β2
2 −β2

3 + β3
3 −β2

3 − β3
3

1.77 1.818 2.23

Hence the only possible Ak (with c−1 = 1) is 1
α

+ 1 + α2.
Suppose now s ≤ −2 and cs = 1. It is useful for the sequel to remark that
U = (ui)i≥s = (cs, cs+1, . . . , c2, c3, εk+1, εk+2, εk+3, . . . ) belongs to D∞. Indeed, if
c3 = 0, it is clear. If c3 = 1 and c2 = 0 then by (6), εk = 1. Hence εk+1εk+2εk+3 6=
111 and U belongs to D∞. The other cases can be treated in the same way.
Using (3) and (7) we obtain

u =

3∑

i=s

ciα
i +

∞∑

i=4

εi+k−3α
i =

∞∑

i=4

ε′i+k−3α
i = v.

9



We set V = (ε′i+k−3)i≥s where ε′i+k−3 = 0 when s ≤ i ≤ 3. Then (U, V ) belongs to

∆, As+4(U, V ) = csα
−1+cs+1+cs+2α+cs+3α

2+cs+4α
3 and A3(U, V ) =

∑3
i=s ciα

i.
Doing what we did for x and y to u and v we obtain that As+4(U, V ) = α−1+1+α2.
Let us show that for all n ≥ s + 5, An(U, V ) belongs to

C =
{
±(α−2 + α−1 + α),±(α−3 + α−2 + 1 + α3)

}
.

This will imply that Ak belongs to S for all k ≥ l. We have that As+5(U, V ) belongs
to

{
1

α2
+

1

α
+ α,

1

α2
+

1

α
+ α + α3,

1

α2
+

1

α
+ α − α3

}

.

The third one can be excluded because 1
β2

3

+ 1
β3

+ β3 − β3
3 ≥ 1.85. We proceed as

before to exclude the second element :

Ak
1

α2 + 1
α

+ α + α3

Ak+1
1

β3

3

+ 1
β2

3

+ 1 + β2
3

1
β3

3

+ 1
β2

3

+ 1 + β2
3 − β3

3

2.00 2.55
Ak+2

1
β4

3

+ 1
β3

3

+ 1
β3

+ β3
1

β4

3

+ 1
β3

3

+ 1
β3

+ β3 + β3
3

1
β4

3

+ 1
β3

3

+ 1
β3

+ β3 − β3
3

2.45 2.54 2.47

Consequently, As+5(U, V ) = 1
α2 + 1

α
+ α. We deduce As+6(U, V ) = 1

α3 + 1
α2 +

1 + α3 because 1
β3

3

+ 1
β2

3

+ 1 > 2.03 and 1
β3

3

+ 1
β2

3

+ 1 − β3
3 > 2.56. Once again,

As+7(U, V ) = 1
α4 + 1

α3 + 1
α

+ α2 − α3 because 1
β4

3

+ 1
β3

3

+ 1
β3

+ β2
3 > 1.85 and

1
β4

3

+ 1
β3

3

+ 1
β3

+ β2
3 + β3

3 > 2.16. But an easy computation leads to 1
α4 + 1

α3 + 1
α

+

α2 − α3 = −( 1
α2 + 1

α
+ α) = −As+5(U, V ). Then continuing in the same way we

can check An(U, V ) = −An+2(U, V ) and An ∈ C for n ≥ s + 5. As 3 ≥ s + 5, we
obtain that Ak(ε, ε′) = A3(U, V ) belongs to C. Thus S(ε, ε′) is included in S.
To complete the proof we should show that each element of S belongs to Γ =
∪(ε,ε′)∈∆S(ε, ε′).
Remark that if Ak belongs to Γ then −Ak also belongs to Γ. Consequently it

is sufficient to consider the cases where Ak =
∑3

i=0 ciα
i with (ci)0≤i≤3 ∈ D or

Ak = α−1 + 1 + α2, α−2 + α−1 + α or α−3 + α−2 + 1 + α3.
Notice that we have

−α3 =

+∞∑

i=1

(α4i + α4i+1 + α4i+2) = 1 + α + α2 +

+∞∑

i=1

(α4i+1 + α4i+2 + α4i+3)

= α + α2 + α4 +

+∞∑

i=1

(α4i+2 + α4i+3 + α4i+4)

= α2 + α4 + α5 +

+∞∑

i=1

(α4i+3 + α4i+4 + α4i+5).

Hence, 1+α+α2, α+α2 and α2 belong to Γ. Multiplying by α we deduce α+α2+α3,
α2 +α3 and α3 belong to Γ. Now subtracting −α2 we obtain 1+α and α belong to
Γ. We have that 1 belongs to Γ because

∑+∞

i=1 α4i = 1 +
∑+∞

i=1 α4i+1. Now, 1 + α2

belongs to Γ because
10



∞∑

i=2

α2i = 1 + α2 +
∞∑

i=2

α2i+1.

Multiplying by α we deduce α + α3 belongs to Γ. Because

α−3 + α−2 + 1 + α3 +
∞∑

i=1

(α4i+2 + α4i+3) =
∞∑

i=1

(α4i + α4i+1),(8)

we obtain that α−3 + α−2 + 1 + α3 belongs to Γ. Multiplying (8) by, respectively,
α and α2 we obtain, respectively, that α−2 + α−1 + α and α−1 + 1 + α2 belong to
Γ. From

α4 +

∞∑

i=1

α4i+3 = 1 + α3 +

∞∑

i=1

α4i+1 = 1 + α + α3 +

∞∑

i=1

α4i+2

it is clear 1 + α3 and 1 + α + α3 belong to Γ.
The equality

α4 +

∞∑

i=1

α4i+2 = 1 + α2 + α3 +

∞∑

i=1

α4i+1

implies that 1 + α2 + α3 belongs to Γ and achieves the proof. �

Proposition 8. Let A be the automaton defined in Subsection 3.1. Then, for all
(εi)i≥l and (ε′i)i≥l belonging to D∞ the following assertions are equivalent :

•
∑

i≥l εiα
i =

∑

i≥l ε′iα
i ;

• (εi, ε
′
i)i≥l is an infinite path in A beginning in the initial state.

Proof. Let x =
∑

i≥l εiα
i and y =

∑

i≥l ε′iα
i. By Proposition 7 and the definition

of the automaton (see subsection 3.1), we deduce that x = y if and only if

(0, (εl, ε
′
l) , Al (ε, ε

′))
(
(Ak(ε, ε′), (εk+1, ε

′
k+1), Ak+1(ε, ε

′))
)

k≥l

is an infinite sequence of edges of S starting in the initial state. And, this is
equivalent to say that (εi, ε

′
i)i≥l is an infinite path of A starting in the initial

state. �

This proposition proves the first part of Theorem 1.

Corollary 9. Let (εi)i≥l be an element of D∞ and (ε′i)l≤i≤m an element of D with

l, m ∈ Z such that
∑+∞

i=l εiα
i =

∑m
i=l ε′iα

i. Then ε′i = 0 for all i > m and εi = ε′i
for all l ≤ i ≤ m.

3.3. Neighboors of E. Here we prove that the set E has 18 neighboors where 6
of them have an intersection with E reduced to a singleton, and that the boundary
can be generated by just 2 subregions.

Lemma 10. Let (εi)i≥4 and (ε′i)i≥l be two elements of D∞ such that
∑∞

i=4 εiα
i =

∑∞

i=l ε′iα
i, where l < 4 and ε′l = 1, then ε′lα

l + ε′l+1α
l+1 · · ·+ ε′3α

3 belongs to S. In
particular l ≥ −3 and
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ε′lα
l + · · · + ε′3α

3 = α−3 + α−2 + 1 + α3 if l = −3,

ε′lα
l + · · · + ε′3α

3 = α−2 + α−1 + α if l = −2,

ε′lα
l + · · · + ε′3α

3 = α−1 + 1 + α2 if l = −1.

Proof. Let (εi)i≥4 and (ε′i)i≥l be two elements of D∞ such that
∑∞

i=4 εiα
i =

∑∞

i=l ε′iα
i where l < 4 and ε′l = 1. ¿From Proposition 7, for all l ≤ i ≤ 3,

ε′lα
i + ε′l+1α

i+1 · · · + ε′l−i+3α
3 belongs to S. In particular, for i = l, we obtain the

result. �

Lemma 11. Let u ∈ S. Then, there exist (εi)i≥4 and (ε′i)i≥4 belonging to D∞

such that
∑∞

i=4 εiα
i = u +

∑∞

i=4 ε′iα
i.

Proof. This comes from Proposition 7 and the identity (3). �

In our context, Lemma 2 in [M05] can be formulated in the following way.

Lemma 12. Let x ∈ R×C, then x belongs to the boundary of E if and only if there
exists l ≤ 3 such that x =

∑+∞

i=4 ǫiα
i =

∑+∞

i=l ǫ′iα
i, where (ǫi)i≥4 and (ǫ′i)i≥l belong

to D∞, and, ǫ′l 6= 0.

Theorem 13. The boundary of E is the union of the 18 non empty regions E(u),
u ∈ {a,−a; a ∈ A}, whose pairwise intersections have measure zero, where

E(u) = E ∩ (E + u) and

A = {1, 1 + α, 1 + α2, 1 + α + α2, α−3 + α−2 + 1 + α3 = 1 + 2α + α2,

α, α + α2, α2, α−2 + α−1 + α = −1 + α2}.

Proof. Let u be an element of A, then u is a state of the automaton A. ¿From
Lemma 11, there exist (εi)i≥4 and (ε′i)i≥4 belonging to D∞ such that

∑∞

i=4 εiα
i =

u +
∑∞

i=4 ε′iα
i. Thus, from Theorem 5, E ∩ (E + u) is not empty and with measure

zero. It will be useful to check that

α−3 + α−2 + 1 + α3 = 1 + 2α + α2 and α−2 + α−1 + α = −1 + α2.

Consequently, Theorem 5 implies
⋃

u∈A E(u)∪ E(−u) is contained in the boundary
of E .
Now, let z be an element of the boundary of E , then by Lemma 12 there exist two
elements of D∞, (εi)i≥4 and (ε′i)i≥l, l ∈ Z, l < 4 such that z =

∑+∞

i=4 εiα
i =

∑+∞

i=l ε′iα
i. We can suppose εl = 1. Let us consider the following four cases.

Suppose l = −3. ¿From Lemma 10, we deduce that z ∈ E(α−3 + α−2 + 1 + α3).

Suppose l = −2. ¿From Lemma 10, we deduce that z ∈ E(α−2 + α−1 + α).

Suppose l = −1. ¿From Lemma 10, we deduce that z =
∑+∞

i=4 εiα
i = α−1 + 1 +

α2 +
∑+∞

i=4 ε′iα
i. Proposition 8 implies that t = (0, 1)(0, 1)(0, 0)(0, 1)(0, 0)(ε4, ε

′
4) . . .

is an infinite path of the automaton A starting at the initial state. Using the
automaton, we see that t = (0, 1)(0, 1), (0, 0)(0, 1)(0, 0)awww . . . , where a = (1, 1)
or (0, 0) and w = (0, 1)(1, 0)(1, 0)(0, 1). Consequently, z = α−1 + 1 + α2 + α4 +
α5 +

∑∞

i=2(α
4i + α4i+1) or z = α−1 + 1 + α2 + α5 +

∑∞

i=2(α
4i + α4i+1). Thus,
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z = −α− α2 + α6 +
∑∞

i=2(α
4i + α4i+1) or z = −1− 2α− α2 +

∑∞

i=1(α
4i + α4i+1),

and, z ∈ E(−α − α2) ∪ E(−1 − 2α − α2).

Suppose l ≥ 0. Then z =
∑+∞

i=4 εiα
i = ε′0 + ε′1α + ε′2α

2 + ε′3α
3 +

∑+∞

i=4 ε′iα
i.

If ε′3 = 0, then z ∈ E(u) where u = ε′0 + ε′1α + ε′2α
2.

If ε′3 = 1 and ε′4 = 0, then z = (ε′0−1)+(ε′1−1)α+(ε′2−1)α2+α4+
∑+∞

i=5 ε′iα
i ∈ E(u)

where u = (ε′0 − 1) + (ε′1 − 1)α + (ε′2 − 1)α2.
Now suppose ε′3 = ε′4 = 1 and ε′5 = 0. Then ε′1 = 0 or ε′2 = 0, and, z =

ε′0 + (ε′1 − 1)α + (ε′2 − 1)α2 + α5 +
∑+∞

i=6 ε′iα
i. Hence :

• If ε′0 = 0, then z ∈ E(u) where u = (ε′1 − 1)α + (ε′2 − 1)α2.
• If ε′0 = 1, then t = (0, 1)(0, ε′1)(0, ε′2)(0, 1)(ε4, 1)(ε5, 0) . . . is an infinite

path in the automaton beginning in the initial state. This implies that
t = (0, 1)(0, 1)(0, 0)(0, 1)(1, 1)(0, 0)ww . . . where w = (0, 1)(1, 0)(1, 0)(0, 1).
Hence z = 1+α+α3+α4+α6+

∑∞

i=2(α
4i+1+α4i+2). Thus z+α−2+α−1+

α = α5 + α6 +
∑∞

i=2(α
4i+1 + α4i+2) and z belongs to E(−α−2 − α−1 − α).

If ε′3 = ε′4 = ε′5 = 1, then ε′2 = ε′6 = 0. Hence z = ε′0 + ε′1α − α2 + α6 +
∑+∞

i=7 ε′iα
i.

• If ε′0 = ε′1 = 0, then z ∈ E(−α2).
• When ε′0 + ε′1 = 1, there is no infinite path in the automaton starting in

the initial state and beginning with (0, ε′0)(0, ε′1)(0, 0)(0, 1)(ε4, 1)(ε5, 1).
• Hence it remains to consider the case : ε′0 + ε′1 = 2. But it is easy to check

that this implies ε′6 = 1 which is not possible.

This ends the proof. �

This theorem, together with the remark before the acknowledgements proves the
second part of Theorem 1.
Using the automaton given in the Annexe, we deduce the following result which is
the third and last part of Theorem 1.

Theorem 14. Let X = E(1 + α + α2) and Y = E(1 + α). Then,

a) E(1) = 1 + αX, b) E(α2) = − 1
α
− 1 − α + X

α
,

c) E(1 + α2) =
{

α4

1−α2

}

, d) E(α−2 + α−1 + α) =
{

α5+α6

1−α4

}

,

e)E(α−3 + α−2 + 1 + α3) =
{

α4+α5

1−α4

}

f) E(α) = f0(X) ∪ f1(X) ∪ f1(Y )

g) E(α + α2) = g0(X) ∪ g1(X) ∪ g1(Y ) ∪ g2(Y ) ∪ g3(Y ), where

f0(z) = α + α2z, f1(z) = α + α4 + α2z, g0(z) = α5 + α4z,
g1(z) = α5 + α6 + α4z, g2(z) = αz, g3(z) = α4 + αz,

h) X =

4⋃

i=0

hi(X) ∪ h1(Y ) ∪ h3(Y ) and i) Y =

11⋃

i=5

hi(Y ) ∪
17⋃

i=12

hi(X), where
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h0(z) = α4 + α4z, h1(z) = α4 + α6 + α4z
h2(z) = α4 + α5 + α4z, h3(z) = α4 + α5 + α6 + α4z,
h4(z) = 1 + α + α2 + α7 + α5z, h5(z) = h2(z)
h6(z) = α4 + α7 + α4z, h7(z) = α4 + α8 + α9 + α7z,
h8(z) = h0(z), h9(z) = α4 + α5 + α7 + α4z,
h10(z) = α4 + α5 + α8 + α9 + α7z, h11(z) = 1 + α + α6 + α7 + α5z
h12(z) = α4 + α8 + α7z, h13(z) = h7(z),
h14(z) = α4 + α5 + α8 + α7z, h15(z) = h10(z)
h16(z) = 1 + α + α6 + α5z, h17(z) = h11(z),

Proof. a) The set 1+αX is clearly included in 1+αE . Moreover it is easy to check
that 1 + αX is a subset of α4 + αE which is included in E . Hence 1 + αX ⊂ E(1).
On the other hand, let z ∈ E(1). Then, there exist (εi)i≥4 and (ε′i)i≥4 in D∞

such that z = 1 +
∑

i≥4 εiα
i =

∑

i≥4 ε′iα
i. ¿From Proposition 8, the finite path

(1, 0)(0, 0)(0, 0)(0, 0)(ε4, ε
′
4) (ε5, ε

′
5) is a finite path in the automaton A starting at

the initial state. Following this path in the automaton we deduce (ε4, ε
′
4) = (0, 1)

and (ε5, ε
′
5) = (1, 0). It gives z = 1 + α5 + α2w = α4 + α2w′ where w, w′ ∈ E .

Consequently E(1) ⊂ (1 + αE)∩ (α4 + αE) = 1 + α(E ∩ (1 + α+ α2 + E)) = 1 + αX .
b) We have 1+α+α2+αE(α2) = (α4+αE)∩(1+α+α2+αE) ⊂ E∩(1+α+α2+E) =
X . Hence E(α2) ⊂ − 1

α
− 1−α + X

α
. To prove the other inclusion, let z ∈ X . Then

by the automaton we deduce that z = 1 + α + α2 + αw = α4 + αw′, w, w′ ∈ E .
Hence − 1

α
− 1 − α + z

α
= w = α2 + w′ and − 1

α
− 1 − α + X

α
⊂ E(α2).

c) Let z ∈ E(1 + α2) : z =
∑

i≥4 εiα
i = 1 + α2 +

∑

i≥4 ε′iα
i, (εi)i≥4, (ε′i)i≥4 ∈ D∞.

Proposition 8 and the automaton show that (0, 1)(0, 0)(0, 1)(0, 0)(ε4, ε
′
4) . . . is an

infinite path starting in the initial state and (εi, ε
′
i)i≥4 is equal to uuu . . . where

u = (1, 0)(0, 1). Then, z = α4 + α6 + α8 + · · · = 1 + α2 + α5 + α7 + α9 + . . . and
E(1 + α2) = α4(1 − α2)−1.
d) Let z ∈ E(α−2 + α−1 + α). ¿From Proposition 8 and using the automaton we
deduce that z = α−2 + α−1 + α + α4 +

∑∞

i=2(α
4i−1 + α4i) =

∑∞

i=1(α
4i+1 + α4i+2).

Hence E(α−2 + α−1 + α) = (α5 + α6)(1 − α4)−1.
e) Proposition 8 and the automaton give the result.
f) Let z ∈ E(α). Then, there exist (εi)i≥4 and (ε′i)i≥4 in D∞ such that z =
∑

i≥4 εiα
i = α +

∑

i≥4 ε′iα
i. ¿From Proposition 8, (0, 0)(0, 1)(0, 0)(0, 0)(ε4, ε

′
4) . . .

is a path in the automaton starting in the initial state. Hence, (ε4, ε
′
4)(ε5, ε

′
5)(ε6, ε

′
6)

belongs to {(0, 0), (1, 1), (0, 1)}(1, 0)(0, 1). Consequently, z belongs to the union of
(α5+α2E)∩(α+α2E), (α4+α5+α2E)∩(α+α4+α2E) and (α5+α2E)∩(α+α4+α2E)
which is equal to f0(X) ∪ f1(X) ∪ f1(Y ). Hence E(α) = f0(X) ∪ f1(X) ∪ f1(Y ).
g) Let z ∈ E(α + α2). Then, there exist (εi)i≥4 and (ε′i)i≥4 in D∞ such that
z =

∑

i≥4 εiα
i = α + α2 +

∑

i≥4 ε′iα
i. ¿From Proposition 8, the infinite path

(0, 0)(0, 1)(0, 1)(0, 0)(ε4, ε
′
4) . . . is a path in the automaton starting in the initial

state. Hence, we either have

(1) ((εi, ε
′
i))4≤i≤7 ∈ (0, 1)(1, 0){(0, 0), (1, 1), (1, 0)}(0, 1),

(2) (ε4, ε
′
4) ∈ {(0, 0), (1, 1)}, or

(3) ((εi, ε
′
i))i≥4 ∈ (0, 1){(0, 0)(0, 0), (0, 0)(1, 1), (1, 1)(0, 0)}ww . . . ,

where w = (0, 1)(1, 0)(1, 0)(0, 1). This means that z belongs to
14



(
(α5 + α4E) ∩ (α + α2 + α4 + α7 + α4E)

)

∪
(
(α5 + α6 + α4E) ∩ (α + α2 + α4 + α6 + α7 + α4E)

)

∪
(
(α5 + α6 + α4E) ∩ (α + α2 + α4 + α7 + α4E)

)

∪
(
(αE ∩ (α + α2 + αE)

)
∪
(
(α4 + αE) ∩ (α + α2 + α4 + αE)

)

∪ {z1, z2, z3}
= g0(X) ∪ g1(X) ∪ g1(Y ) ∪ g2(Y ) ∪ g3(Y ) ∪ {z1, z2, z3}

where z1 =
∑+∞

i=2 (α4i + α4i+1) = α + α2 + α4 + α7 +
∑+∞

i=2 (α4i+2 + α4i+3), z2 =
α6+z1 and z3 = α5+z1. We can also check that (1, 0)(1, 0)(0, 0)(0, 0)uuu . . . , where
u = (0, 1)(1, 1)(1, 0)(1, 0), is an infinite path of the automaton starting in the initial

state. Consequently, z1 = α4 + α5 +
∑+∞

i=2 (α4i+1 + α4i+2) and

z1 ∈
(
(α4 + αE) ∩ (α + α2 + α4 + αE)

)
= g3(Y ).

Moreover, it shows that z2 belongs to g3(Y ). In the same way, z1 = α5 + α6 +

α8 +
∑+∞

i=2 (α4i+3 + α4i+4). Thus, z3 = 2α5 + α6 + α8 +
∑+∞

i=2 (α4i+3 + α4i+4) =

α5 +
∑+∞

i=2 (α4i + α4i+1). But 2α5 + α6 = α + α2 + α7, consequently z3 belongs to
(
αE) ∩ (α + α2 + αE)

)
= g2(Y ).

h) Let z ∈ X = E(1 + α + α2). Then, there exist (εi)i≥4 and (ε′i)i≥4 in D∞ such
that z =

∑

i≥4 εiα
i = 1 + α + α2 +

∑

i≥4 ε′iα
i. ¿From Proposition 8, we necessarily

have (ε4, ε
′
4) = (1, 0) and one of the following situations :

(1) ((εi, ε
′
i))i≥5 ∈ (1, 0){(0, 0), (1, 1)}ww . . . where w = (0, 1)(1, 0);

(2) ((εi, ε
′
i))i≥5 ∈ (0, 1){(0, 0), (1, 1)}ww . . . where w = (0, 1)(1, 0)(1, 0)(0, 1);

(3) (εi, ε
′
i)5≤i≤8 ∈ {(0, 0), (1, 1)}2(0, 1)(1, 0);

(4) (εi, ε
′
i)5≤i≤9 = (1, 0)(1, 0)(0, 1)(1, 0)(0, 1);

(5) (εi, ε
′
i)5≤i≤8 ∈ {(0, 0), (1, 1)}(1, 0)(0, 1)(1, 0).

This means z belongs to
⋃4

i=0 hi(X) ∪ h1(Y ) ∪ h3(Y ) ∪ {x1, x2, x3, x4} where

x1 =α4 + α5 +
+∞∑

i=4

α2i = 1 + α + α2 +
+∞∑

i=3

α2i+1,

x2 =x1 + α6,

x3 =α4 +

+∞∑

i=2

(α4i + α4i+1) = 1 + α + α2 + α5 + α7 +

+∞∑

i=2

(α4i+2 + α4i+3),

x4 =x3 + α6,

h0(X) =(α4 + α4E) ∩ (1 + α + α2 + α7 + α4E),

h1(X) =(α4 + α6 + α4E) ∩ (1 + α + α2 + α6 + α7 + α4E),

h2(X) =(α4 + α5 + α4E) ∩ (1 + α + α2 + α5 + α7 + α4E),

h3(X) =(α4 + α5 + α6 + α4E) ∩ (1 + α + α2 + α5 + α6 + α7 + α4E),

h4(X) =(α4 + α5 + α6 + α8 + α5E) ∩ (1 + α + α2 + α7 + α5E),

h1(Y ) =(α4 + α6 + α4E) ∩ (1 + α + α2 + α7 + α4E) and

h3(Y ) =(α4 + α5 + α6 + α4E) ∩ (1 + α + α2 + α5 + α7 + α4E).
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We easily can check (using Proposition 8 and the automaton) that

x1 = x3 = α4 +

+∞∑

i=2

(α4i + α4i+1),

and thus x1 ∈ h0(X), x2 ∈ h1(X), and x2 = x4, which concludes the proof of h).
i) Let z ∈ X = E(1 + α). Then, there exist (εi)i≥4 and (ε′i)i≥4 in D∞ such that
z =

∑

i≥4 εiα
i = 1 + α +

∑

i≥4 ε′iα
i. ¿From Proposition 8, we necessarily have

(ε4, ε
′
4) = (1, 0) and one of the following situations :

(1) ((εi, ε
′
i))i≥5 ∈ {(0, 0), (1, 1)}(0, 1)2{(0, 0), (1, 1)}2ww . . . ;

(2) ((εi, ε
′
i))i≥5 ∈ (1, 0){(0, 0), (1, 1)}2(1, 0)(0, 1)ww . . . ;

(3) ((εi, ε
′
i))5≤i≤7 ∈ {(0, 0), (1, 1)}(0, 1){(0, 0), (1, 1)};

(4) ((εi, ε
′
i))5≤i≤8 ∈ {(0, 0), (1, 1)}(0, 1)2(1, 0){(0, 0), (1, 1), (1, 0)}(0, 1)(1, 0);

(5) ((εi, ε
′
i))5≤i≥8 ∈ (1, 0)(0, 1){(0, 0), (1, 1), (0, 1)}(1, 0)(0, 1).

where w = (0, 1)(1, 0)(1, 0)(0, 1). Hence z belongs to

(
11⋃

i=5

hi(Y )

)

∪

(
17⋃

i=12

hi(X)

)

∪ {yi; 1 ≤ i ≤ 8},

where

y1 =α4 +

+∞∑

i=2

(α4i+3 + α4i+4) = 1 + α + α6 + α7 + α10 +

+∞∑

i=3

(α4i+1 + α4i+2),

y2 =y1 + α9, y3 = y1 + α8, y4 = y1 + α5, y5 = y1 + α5 + α9.

y6 =y1 + α5 + α8 = 1 + α +

+∞∑

i=2

(α4i+1 + α4i+2), y7 = y6 + α7, y8 = y6 + α6,

h5(Y ) =(α4 + α5 + α4E) ∩ (1 + α + α5 + α6 + α4E),

h6(Y ) =(α4 + α7 + α4E) ∩ (1 + α + α6 + α7 + α4E),

h7(Y ) =(α4 + α8 + α9 + α7E) ∩ (1 + α + α6 + α7 + α10 + α7E),

h8(Y ) =(α4 + α4E) ∩ (1 + α + α6 + α4E),

h9(Y ) =(α4 + α5 + α7 + α4E) ∩ (1 + α + α5 + α6 + α7 + α4E),

h10(Y ) =(α4 + α5 + α8 + α9 + α7E) ∩ (1 + α + α5 + α6 + α7 + α10 + α7E),

h11(Y ) =(α4 + α5 + α8 + α5E) ∩ (1 + α + α6 + α7 + α5E),

h12(Y ) =(α4 + α8 + α7E) ∩ (1 + α + α6 + α7 + α10 + α7E),

h13(X) =(α4 + α8 + α9 + α7E) ∩ (1 + α + α6 + α7 + α9 + α10 + α7E),

h14(X) =(α4 + α5 + α8 + α7E) ∩ (1 + α + α5 + α6 + α7 + α10 + α7E),

h15(X) =(α4 + α5 + α8 + α9 + α7E) ∩ (1 + α + α5 + α6 + α7 + α9 + α10 + α7E),

h16(X) =(α4 + α5 + α8 + α5E) ∩ (1 + α + α6 + α5E),

h17(X) =(α4 + α5 + α7 + α8 + α5E) ∩ (1 + α + α6 + α7 + α5E),
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Let us prove that for each integer i ∈ {1, . . . , 8}, there exists j ∈ {5, . . . , 11} or
k ∈ {12, . . . , 17} such that yi belongs to hj(X) or to hk(Y ).
Indeed, since y1 = α4 +α3z1 (see case g)), then y1 ∈ (α4 +α7 +α4E)∩ (2α4 +α5 +
α7 + α4E) = h6(Y ). We deduce that y2 and y3 belong also to h6(Y ), and, y4 and
y5 belong to h9(Y ).

Using the automaton we can verify that y6 = 1+α+α5+α6+
∑+∞

i=2 (α4i+2+α4i+3).
Hence, y6 belongs to 1 + α + α5 + α6 + α4E . But it also belongs to α4 + α5 + α4E .
Thus y6 ∈ h5(Y ) and y7 ∈ h9(Y ).
We have y8 = y6 + α6 ∈ (1 +α +α6 + α5E). On the other hand we can check using

the automaton that y8 = α4 +α5 +α8 +
∑+∞

i=5 α2i, hence y8 ∈ (α4 +α5 +α8 +α5E)
and y8 belongs to h16(X). �

Remarks and comments. There are points which have at least 6 expansions in
base α. For example:

α +
∑+∞

i=2 α2i =
∑+∞

i=1 (α4i + α4i+1)
= 1 + α + α2 +

∑∞

i=2 α2i+1

= 1 + α +
∑∞

i=1(α
4i+1 + α4i+2))

= α + α2 + α4 +
∑∞

i=1(α
4i+3 + α4i+4)

= α−3 + α−2 + 1 + α3 +
∑∞

i=1(α
4i+2 + α4i+3).

We address the two following questions :

(1) Can you parameterize the boundary of E1,1,1 ?
(2) Does this boundary be homeomorphic to the sphere ?

The technics used in this work can be used to study Ea1,a2,...,ad
with the assumption

that a1 ≥ a2 ≥ · · · ≥ ad ≥ 1.
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4. Annexe

In the sequel we prove Theorem 5, show the Rauzy fractal and its automaton. We
will need several intermediate results.

4.1. Proof of Theorem 5.

Lemma 15. Let i ≥ 4, then βi = Giβ
3 + (Gi−1 + Gi−2 + Gi−3)β

2 + (Gi−1 +
Gi−2)β + Gi−1 where (Gi)i≥0 is the sequence defined by: G0 = G1 = G2 = 0, G3 =
1, Gn = Gn−1 + Gn−2 + Gn−3 for all i ≥ 4. In particular for all (εi)4≤i≤N ∈

D,
∑N

i=4 εiβ
i = nβ3 +anβ2 +bnβ +cn where n =

∑N

i=4 εiGi, an =
∑N

i=4 εi(Gi−1 +

Gi−2 + Gi−3), bn =
∑N

i=4 εi(Gi−1 + Gi−2) and cn =
∑N

i=4 εiGi−1.

Proof. It is left to the reader. �
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Proposition 16. R × C =
⋃

p∈Zα0+Zα+Zα2(E + p).

Proof. ¿From Lemma 15 and Proposition 1 in [A99]), we know that the set E =
{nα3 + pα0 + qα + rα2, n ∈ N, p, q, r ∈ Z} is dense in R × C .
Let z ∈ R × C and ε > 0, then there exist a positive integer N such that for all
integer k ≥ N, |z − zk| < ε where

zk = nkα3 + pkα0 + qkα + rkα2, (nk, pk, qk, rk) ∈ N × Z
3 ∀k ≥ N.

On the other hand, we can write every integer nk in base Gn (by using greedy

algorithm) as nk =
∑N

i=4 εiGi where (εi)4≤i≤N ∈ D. Therefore by Lemma 15, there
exists tk = ank

α2 +bnk
α+cnk

α0 ∈ G = Zα0 +Zα+Zα2 such that xk = nkα3 +tk ∈
E . We deduce that for all k ≥ N, |xk − zk| ≤ |xk − z| + |z − zk| < ε + |z| + M
where M = max{|x|, x ∈ E}. Since for all k ≥ N , xk − zk belongs to G, which is
a discrete group, then there exists an increasing sequence (ki)i≥1 of integers such
that for all i, xki

−zki
= y0 where y0 = pα0 +qα+rα2 is an element of G. Since for

all i, xki
= zki

+y0 belongs to E and E is a compact set, we deduce that z +y0 ∈ E .
Thus we are done. �

Proposition 17. For all u, v ∈ Zα0 + Zα + Zα2, we have u = v whenever
Int ((E + u)) ∩ (E + v) 6= ∅.

Proof. We proceed by contradiction. Assume that there exist integers p, q, r ∈ Z

and an element z =
∑+∞

i=4 εiα
i of E such that z + pα0 + qα + rα2 ∈ Int(E). Then

there exists an integer n0 ≥ 0 such that for all n ≥ n0

n∑

i=4

εiα
i + pα0 + qα + rα2 ∈ E .(9)

Case 1 : The set {i ≥ 4, εi 6= 0} is infinite.

Since β > 1, there exists an integer N ≥ n0 such that
∑N

i=4 εiβ
i +p+ qβ+ rβ2 > 0.

By Lemma 3, we deduce that

N∑

i=4

εiβ
i + p + qβ + rβ2 =

M∑

i=l

diβ
i(10)

where (di)l≤i≤M ∈ D and l, M ∈ Z. ¿From (9) and (10), we obtain that
∑M

i=l diα
i =

∑∞

i=4 eiα
i ∈ E , for some (ei)i≥4 ∈ D. Corollary 9 implies that there exists an integer

K ≤ M verifying ei = 0 for all i ≥ K. Therefore

N∑

i=4

εiβ
i + p + qβ + rβ2 =

K∑

i=4

eiβ
i .(11)

Lemma 15 gives that mβ3+(r+am)β2 +(q+bm)β+(p+cm) = lβ3+alβ
2+blβ+cl,

where m =
∑N

i=4 εiGi and l =
∑K

i=4 eiGi. Thus l = m and εi = ei for all i (because
of the unicity of representation in base Gn) and finally p = q = r = 0.

Case 2 : The set {i ≥ 4, εi 6= 0} is finite.

Let N = max{i ≥ 4, εi 6= 0}. If
∑N

i=4 εiβ
i + p + qβ + rβ2 ≥ 0, then we are done

using the same argument as in Case 1.

Now, assume that
∑N

i=4 εiβ
i+p+qβ+rβ2 < 0. We have

∑N

i=4 εiα
i+p+qα+rα2 =

∑+∞

i=4 diα
i.
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Since
∑N

i=4 εiα
i is an interior point of E (see [A99]), we deduce that there exists

a nonnegative integer M such that −p − qα − rα2 +
∑M

i=4 diα
i =

∑+∞

i=4 eiα
i ∈ E .

Since −p− qβ− rβ2 +
∑M

i=4 diβ
i > 0 we deduce that −p− qα− rα2 +

∑M
i=4 diα

i =
∑k

i=l fiα
i =

∑+∞

i=4 eiα
i where (fi)l≤i≤k ∈ D and l, k ∈ Z.

¿From Corollary 9 , there exists an integer L such that ei = 0 for all i ≥ L and by
an argument used in Case 1 we obtain p = q = r = 0. �

Proposition 18. The boundary of E has Lebesgue measure zero and is equal to the
union of all Ep, p ∈ G, where Ep = E ∩ (E + p).

Proof. Let z be an element of ∂E = E \ IntE , the boundary of E . There exists a
sequence (zn)n≥0 such that lim zn = z and for all n, zn 6∈ E . Then by Proposition
16, there exists a sequence (pn)n≥0 of elements of G = Zα0 + Zα + Zα2\{0} such
that for all n, zn ∈ (E + pn) with pn ∈ G = Zα0 + Zα + Zα2\{0}. Hence the
sequence (pn)n≥0 is bounded. Since G is a discrete group, we deduce that (pn)n≥0

is a finite sequence. Consequently there exists p ∈ Zα0 + Zα + Zα2 such that
z ∈ E ∩ (E + p). Thus, ∂E is included in

⋃

p∈G Ep.

On the other hand, if z ∈ E∩(E+p), p ∈ G\{0}, then by Proposition 17, z 6∈ Int(E).
Hence z ∈ ∂E . The fact that the boundary has measure zero is proven in [A02]. �

4.2. The Rauzy fractal. Here is a two-dimensional image of the Rauzy fractal in
R × C generated by P (x) = x4 − x3 − x2 − x − 1.

Figure 1. Rauzy fractal in R×C generated by P (x) = x4 −x3 −
x2 − x − 1
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4.3. The automaton. Here is the automaton built in Section 3.

0−α − α2 − α3 α + α2 + α3

−α3 α3

−1 − α 1 + α

−α2 − α3 −α − α2 α2 + α3α + α2

−1 − α2 1 + α2

1 + α + α2 −α2 −α − α3 α + α3 α2 −1 − α − α2

1 + α + α3 −1 − α − α3−α α−1 1

1
α

+ 1 + α2 − 1
α
− 1 − α2

1
α2 + 1

α
+ α − 1

α2 − 1
α
− α−1 − α2 − α3 1 + α2 + α3

1
α3 + 1

α2 + 1 + α3 − 1
α3 − 1

α2 − 1 − α3

−1 − α3 1 + α3

(0, 0), (1, 1)

(0, 1) (1, 0)

(0, 0), (1, 1) (0, 0), (1, 1)

(1, 0) (0, 1)

(0, 0), (1, 1)

(0, 1)

(0, 0), (1, 1)

(1, 0)

(0, 1)

(0, 0)

(1, 1)

(0, 1)

(1, 1)

(0, 0)

(0, 1)

(1, 1), (0, 0)

(0, 1)

(1, 1), (0, 0)

(1, 0)

(0, 1)

(1, 0)(0, 1) (0, 1)

(0, 0)

(1, 1)

(1, 0)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(0, 1)

(0, 0)(1, 1)

(1, 0)

(0, 0) (1, 1)

(0, 1) (1, 0)

(0, 0)
(1, 1)

(0, 0)
(1, 1)

(0, 1) (1, 0)

(0, 0)

(1, 1)

(0, 0)

(1, 1)

(0, 0)(1, 1) (0, 0)(1, 1)

(1, 0) (0, 1)

(0, 1) (1, 0)

(1, 0) (0, 1)

(1, 0) (0, 1)

(1, 0) (0, 1)
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Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS-UMR 6140,
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