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Motivation
Motivation

Describe, model and understand some aspects of water drops and sea
waves using numerical models.
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Motivation

Motivation

Describe, model and understand some aspects of water drops and sea
waves using numerical models.

Ingredients:
@ The KdV and KP equations: Models
e Numerical discretization: Finite differences (centered and

compact themes), spatial discretization

e Fixed-point Methods: Time discretization_
(USB CCE)
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1D Model: Korteweg - de Vries

Korteweg-de Vries equation

The Korteweg-de Vries equation (KdV)

@+@+ @—0
ot oxd | ox
u:QCRxRY =R, ue G ([0,L] x [0,00))

describes the theory of water waves in shallow chan-
nels, such as a canal. It is a non-linear equation which
exhibits special solutions, known as Solitons, which
are stable and do not disperse with time. Further-
more there as solutions with more than one soliton
which can move towards each other, interact and then
emerge at the same speed with no change in shape.
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1D Model: Korteweg - de Vries

1D Model: Korteweg-de Vries

Steps to solve numerically the KdV equation:
© Discretize Q2
© Construct the space differentiation operators
© Construct the time discretization form
Q@ Solve
Assuming u(x,t > 0) is periodic in Q = [0, L]
u(L+ x,t) = u(x, t)

Discretizing 2

Q, = mesh(£, n) h=h,=h, =
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1D Model: Korteweg - de Vries

1D Model: Korteweg-de Vries

The discretization of space requieres two difference operators

ou Bu
— ~ Dyu(x,t) and Fia ooc(X, t)
These are not unique, we propose to construct them using:
@ Centered finite differences schemes
e Compact finite differences schemes
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1D Model: Korteweg - de Vries

Compact Finite Difference Schemes

Compact Finite Difference Schemes are discretization techniques with
appealing properties to our problem, they usually provide a higher
order aproximation and are of the form

0% =P'Qu=Du

e 0% % = P 1Qu = Dyt
Where

a(u (X1, t) + 0/ (1, 8) + B (xig2, 1) + 0/ (52, 1))
2h
a(u(xiya,t) — ulx_q,1t)) N b(u(xjt2,t) — u(xj_2,t)) N c(u(xjyz, t) —ulxi_3,1))
2h 4h 6h

See details in Lele 1991.

P:

Q:
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1D Model: Korteweg - de Vries

Space/Time Discretization of KdV

The space discretized KdV equation is

ou 1
. Dxxx DX ~u? =0
8t+ u+ (2u>

Now, the time discretization is done with a Cranck-Nicolson theme:

k+1 k k+1 k

u —u uttt +u 1/1 PR

T D [ )+ 2 Dy (U D -
At T < 2 >+2(2 (u7)* + 5 Dx(u ))

Advantages:
@ Invariant
© Numerically stable
© Easy to implement
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1D Model: Korteweg - de Vries

Space/Time Discretization of KdV

The CN equation can be solve for u**! using a fixed-point method

(/ + 5 DXXX> ut = (/ 5 DXXX> u 5 <2Dx(u )+ 2Dx(u )
and the following initial solution for the soliton

d

ulx,t =t) = ZA,-sech (K,- (x — xo)P%)

i=1
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Invariance in Time

Mean variation in time

Conservation of E

Linorm
E—
H
3
Sur N = o=

DA



Invariance in Time

Mean variation in time

Conservation of E

Lnorm
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Advantages in using compact themes

Using Centered (2nd order) FD  Using Compact (6th order) FD
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2D Model: KP equation

2D Model: Kadomtsev Petviashvili

The Kadomtsev Petviashvili equation (KP) is a partial differential
equation to describe nonlinear wave motion that is considered as
generalization of KdV equation to two dimensions. The KP equation

IS:
g @ + @ + @ + )\@ =0
Ox \ ot 0Ox3 u@x 2

where
A==FLu=u(xy t) R*xR" 2R t>0,uecC}

Like the KdV equation, the KP equation is completely integrable.
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2D Model: KP equation

2D Model: Kadomtsev Petviashvili

If Q C R? is the region of interest, then
@ + @ + u@ + A @ —
ot 0x3 Ox Q. Oy?

ou FPu 0,1, O%u

0

can be solve in a similar way that the 1D case:
© Discretize Q2
© Construct the space differentiation operators

© Construct the time discretization form
Q Solve
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2D Model: KP equation

2D Model: Kadomtsev Petviashvili

Assuming u(x,y,t > 0) is periodic in Q = [0, L] x [0, L]
u(L+x,L+y,t)=u(x,y,t)
Discretizing 2
Qy = mesh(£, n) h=h,=h, =

we can generalize the differentiation operators D of the 1D case
using the Kronecker operator (®)

Hy = | ® Dy, Hye = | ® Dyxx, H,, = D, ® |
Note: H € R™*™ s time to move to sparse-mode. . .
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The discretization of 2, Q4, has an assosiated map between (x;, yj, t)
and (px, t).

Notation: ux = u(pk, t) = u(x;,y;, t), k = map(i,j)
Space discretized form of KP

1
g7+ Mot + HX(§u2) + AH  Hyu =0



2D Model: KP equation

2D Model: Kadomtsev Petviashvili

The discretization of 2,Q,, has an assosiated map between (x;, yj, t)

and (px, t).

Space discretized form of KP

0 1 _
a + Hxxxu + HX(Euz) + )‘Hx lHyyU = O

Notes:
@ Operator H, is singular (!)
@ Replace H™1, by an anti-derivative (restrictions!)
© Proposed anti-derivative, “V/"" D, : [-1,0, +1]

M=1®tril(1l), 1eR"™"
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2D Model: KP equation

Space discretized form of KP

0 1
3 + Hypes + HX(§u2) + AMH,u=0

Time discretization is done with the Crank-Nicolson theme for 2D:

1 .\? 1 2
Hx .k Hx = k41
(3 +# ()]
0

k+1 k
AWMD,, (%) _

k+1 _ .k 1

u vt 1 k+1 Ky =
A Tl (T ) g
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2D Model: KP equation
Space discretized form of KP
0 1
3 + Hypes + HX(§u2) + AMH,u=0
Time discretization is done with the Crank-Nicolson theme for 2D:

1 .\? 1 2
Hx .k Hx = k41
(3¢) + (37)
uk L gk

Solving it by using a fixed-point method (A = —1, At = &)

k+1 _ .k 1

u vt 1 k+1 Ky =
A Tl (T ) g

ol—l

At
_Hxxx)uk _

At
I+ 2t = (=
5 oot = (1= 5
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2D Model: KP equation

2D Model: Kadomtsev Petviashvili

The solution to u(x,y,t > 0 is known as the Soliton 2d

4 [— (x — Vt)* + wy? + %]

u(x,y,t) = 5 5
[(x — Vi) +wy?+ %]

2y
U(X7y7 t) aiay(’@ya t)
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Some Preliminary Numerical Results

2D Model: Preliminary Results

e M anti-derivative operator is stable: cond(M), etc. ..

u(x,y,t) Hyu(x,y,t) MH, u(x,y,t)

@ Numerical algorithms are based in sparse techniques

e Work in progress (!)
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Some Preliminary Numerical Results

2D Model: Preliminary Results

Another solution of the KP equation is the extension of the 1D
soliton to 2D. The following animation is the evolution in time of
such solution.

u(x,y,t)

]
artie
RO,
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Conclusions and Remarks

Final Remarks

© 00000

KdV 1D modeled successfully, showing its evolution in time
Numerical condition can deteriorate under simple conditions.
Noise propagates fast due to imposed periodicity.

High resolution required in space

KP equation discretized in space and time, no experimentation
yet

For space discretization: substitute low order finite diferentiation
for higher order compact themes. Experiment with lower mesh
densities.
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