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Abstract. The aim of the project is to obtain numerically the progressive waves of the systems.

We use Freefem++ and Scilab to perform the numerical simulations.
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Introduction

The disease cycle is described as follows: susceptible leaves (denoted by S) inoculated with spores
first become latent (L), then turn infectious (I) and produce spores (Us short-range dispersed
spores and Ul long-range) during some infectious period after which they are removed (R) as
they cannot be infected again. The total density of leaves is (N). Each segment is solution of
the following differential system:
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∂Us

∂t
= Ds∆Us − δUs + γpI

∂Ul

∂t
= Dl∆Ul − δUl + γ(1− p)I.

Here i, j, δ, e,Ds ,Dl, γ, p, α, k are positive constants.
This system of equations was studied in [1]. In particular, we know that this system is

well-posed.
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1 Progressive waves

We consider progressive waves: for Y = (S,L, I,R,Us, Ul)

Y (x, y, t) = Ỹ (w, y), with w = x− ct.

The system becomes time-independant and is written as follows:
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Let φ = (φ1, ..., φ6) ∈
(
C∞(R2)

)6
. To multiply equations by φ and integrate over space

provide the variational formulation of the problem
∫
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∫
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∫
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(cUs,x − δUs + γpI)φ5 −

∫

Ω
Ds∇Us.∇φ5 +

∫
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Ds∂nUs φ5 = 0

∫
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(cUl,x − δUl + γ(1 − p)I)φ6 −

∫

Ω
Dl∇Ul.∇φ6 +

∫
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Dl∂nUl φ6 = 0.

To simplify the computations, we choose boundary conditions such that the above integrals
on the boundary vanish.

Theorem 1.1 Let H(Ω) be the space of functions with the first space derivative in L2(Ω) and
null Dirichlet boundary conditions. There exists a unique weak solution (S,L, I,R) ∈ (L2(Ω))4

and (Us, Ul) ∈ (H(Ω))2.

Proof. We can prove that the operator is continuous and coercive in (H(Ω))3, the Lax-Milgram
lemma provides the result. Let φ5 ∈ H(Ω), the Cauchy-Schwarz inequality provides

∣∣∣∣
∫

Ω
(cUs,x − δUs)φ5 −

∫

Ω
Ds∇Us.∇φ5

∣∣∣∣ ≤ C(||Us,X ||+ ||Us||)||φ5||+ C(||∇Us|| ||∇φ5||.
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Lemma 1.2 (Exercise) We have

||φ||∞ ≤ 2(||φ|| ||φX || ||φy|| ||φXy||)
1/4.

In the same way, we obtain such inequalities for the other integrals, and the continuity is proved.
We choose (φ1, φ2, φ3, φ4, φ5, φ6) = (S,L, I,R,Us, Ul) ∈ (L2(Ω))4 × (H(Ω))2, and sum the

integrals defining the bilinear form give the coercivity. �

2 Space discretization

2.1 Finite elements method

To solve the variationnal method, we choose the test functions φ in finite dimension subspace
Vh of (L2(Ω))4 × (H(Ω))2 and solve the problem

a(Yh, φh)) = 0, ∀φh ∈ Vh.

Such methods are called Galerkin method. Here, we choose Vh as finite elements. We prove
that the solution exists and is unique for sufficiently smooth data. We need P1 Lagrange finite
elements (dense in the space L2(Ω) and H(Ω)):

Vh :=
{
φ ∈ L2(Ω);∀K ∈ Th, v|K ∈ P1

}
.

To solve the non-linear problem, a fixed point method is chosen. We have

a(Yh, φh)) = 0 ⇐⇒ Yh = a(Yh, φh))− Yh.

The algorithm reads as follows: let ε > 0,
while ||Y n+1

h − Y n
h )|| > ε

do Y n+1
h = a(Y n

h , φh))− Y n
h .

2.2 Finite differences method

Let us denotes Mx > 0, My > 0 the number of discretizations, and ∆w = ∆y > 0 the space
steps. We choose explicit Euler method to approximate the first derivative, and the scheme is
written as follows: for m ∈ {1, ...,Mx} and n ∈ {1, ...,My},
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1

jc
∆wL̃m,n +

1

ic
∆wĨm,n
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Ũm,n
s +

γ∆w

c
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We can write this scheme as system of linear equations as follows:
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pĨ
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Ĩ,
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3 Numerical simulations

We choose e = 0.001, δ = 50, α = 0.2, k = 10000, j = 10, i = 10, γ = 200, p = 0.8;Ds = 2,Dl =
200;

3.1 Simulations with Freefem++

The computational domain is Ω = [0, l]× [0, l], with l = 10 c = 1. To simplify the computations
of the mini-project, we assume that Sh, Lh, Ih, Rh are known as

Sh = 1/(1 + exp(−x+ 5))

Ih = 1/(1 + x)

Lh = 0.5

Rh = 0.2.

We have to determine only the progressive of long-range and short-range spores Us and Ul, we
will solve only the last equations with the boundary conditions:

Us = Ul = 0 if x = 0 or x = l.

Us = Ul = 0.5 exp(−(x− l/2)2) if y = 0 or y = l.

Figure 1: Mesh of the square.

5



Figure 2: At left, surface of infectious leaves. At right, surface of sensitives.

Figure 3: Short-range spores.

Figure 4: Long-range spores.
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3.2 Simulations with Scilab

The computational domain is Ω = [0, l] × [0, l], with l = 10, with Mx = My = 100. We start
from I = (1, 1, ..., 1)T and we compute the scheme.

Algorithm 1: Fixed Point

1 Input M, tol

2 Output Ũl, Ũs, S̃, L̃, Ĩ , R̃ ∈ R(M−1)2 Ĩ0 ←ones((M − 1)2, 1)
3 compute LU factorization of: As, Al, BL, BI , BR

4 while ||I(n+1) − I(n)||2 > tol do

5 solve AsŨ
(n)
s = γ∆w

c pĨ(n)

6 solve AlŨ
(n)
l = γ∆w

c (1− p)Ĩ(n)

7 compute LU factorization of BS

8 solve BSS̃
(n) = α∆w

c Ñ
(
1− Ñ

k

)

9 solve BLL̃
(n) = eδ∆w

c

(
Ũ

(n)
s + Ũ

(n)
l

)
S̃(n)

Ñ

10 solve BLĨ
(n+1) = ∆w

jc L̃
(n)

11 solve BRR̃
(n) = ∆w

ic Ĩ(n+1)

12 end

Figure 5: At left, surface of latent leaves and right surface of removed leaves.

In Figure 5, we represent the progressive wave of the spores become latent (L̃) and the spores
removed after the infection (R̃).
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Figure 6: Surface of short and long range spores.

Figure 6 presents results obtained for long-rang (Ũl) and short-rang (Ũs) spores, respectively.

Figure 7: At left, surface of sensitives leaves and right, surface of infectious.

In Figure 7 shows the leaves inoculated (S̃) and the infectious (Ĩ) produced by the spores.
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