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1 Introduction

This course presents some lecture notes given at the CIMPA Research school on Math-
ematical Modeling and Numerical Simulation at Simon Bolivar University, Caracas,
Venezuela, in april 2012. The aim is to give some elements on the theoretical and
numerical developments of integral equation formulations for time harmonic acoustic
scattering problems.

Wave scattering in the time harmonic regime is known to be an extremely active and
difficult area of research with many possible applications in civil and military domains.
The applications can require different physics related to wave scattering: acoustics,
electromagnetic, elasticity. Applications can be of different natures: radar, sonar,
aerospace and aeronautics design, medical imaging, underwater acoustics, diffraction
gratings, optics... Therefore, this is a huge area with very exciting applications that
need top level computational developments and emerging new ideas to solve the most
advanced challenging problems. In particular, high frequency scattering remains an
unsolved numerical problem with many applications. To illustrate these motivations,
Figure 1 presents images where scattering of waves is the main phenomena. There-
fore, you can see that you can meet this topic everyday and everywhere, from small
(nano photonics for example) to large (astronomy) scales problems.

Figure 1: Where wave scattering can be met.

An example of application which requires very powerful numerical methods for
the prediction of scattering phenomena is given on Figure 2. We can indeed see the
surface electromagnetic field created on an aircraft by an incident wave field. This can
be useful when for example you investigate ElectroMagnetic Compatibility (EMC)
problems where electromagnetic waves can penetrate inside the aircraft and badly
damage its electronic components. This is of first importance for aerospace compa-
nies for security reasons and prevention of accidents (but also for costs reduction)!
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Considering such a problem is clearly extremely difficult and then numerical methods
provide a good understanding of the physical problems at low cost. Another example
in aeronautics is related to the control of noise generation when the aircraft lands near
a town, therefore creating noise pollution and problems near airports since (hopefully)
restrictive administration rules must (are expected to?) be followed by the aircraft
companies.

Figure 2: An example of electromagnetic surface field computed through integral
equations

One common difficult point to all these problems is that they are set in an un-
bounded domain making the design of a suitable and accurate numerical method very
challenging. Different directions exist. I will develop here mainly the method of in-
tegral equation formulations. A first section gives some general notions about wave
propagation and introduces the scattering problem. A second section provides the ba-
sic elements for understanding integral equation formulations and writing the most
standard integral equations to solve. A last section is devoted to present the full strat-
egy for solving these integral equations and a conclusion.

I expect that you will enjoy the trip, oscillating between physics, mathematics and
numerics...

If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.

J.Von Neumann
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2 Basic equations in acoustics scattering

2.1 The one-dimensional case

In the one-dimensional case, the wave equation writes

∂2
xU −

1

c2
∂2
tU = −QδxQ (1)

in Rx×]0;T ], where U = U(x, t) is the perturbed acoustic pressure, x is the spatial
coordinate and t is the time variable. We consider a constant sound speed c for the
homogeneous1 isotropic2 medium Rx. The source is considered as a point source
with amplitude Q, located at point xQ. The free-space solutions (that is for Q = 0)
of Eq. (1) can be written as the sum of a left and a right traveling waves (ϕ and
ψ, respectively here, see Figure 3) if we assume that the initial data U0 and U1 are
compactly supported in a domain ]−R;R[. More precisely, if we have (for c = 1)

∂2
xU − ∂2

tU = 0, (x, t) ∈ Rx×]0;T [,
U(x, 0) = U0(x), x ∈ Rx

∂tU(x, 0) = U1(x), x ∈ Rx,
(2)

under the assumption that supp(U0,1) ⊂ B(0, R) (the ball centered at the origin with
radius R), then the solution U can be written as

U(x, t) =
ϕ(x+ t) + ψ(x− t) (3)

R−R

t

x

L−L

supp(ϕ(x+ t)) supp(ψ(x− t))

Figure 3: Left and right traveling waves.

Some calculations show that we have

U(x, t) =
1

2
(U0(x+ t) + U0(x− t)) +

1

2

∫ x+t

x−t
U1(y)dy, (4)

1 A medium is homogeneous (or uniform) if its physical properties are unchanged at different points.
2 Isotropy is uniformity in all orientations.
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that is 
2ϕ(x) = U0(x) +

∫ x

−∞
U1(y)dy,

2ψ(x) = U0(x)−
∫ x

−∞
U1(y)dy.

(5)

Let us remark that, for |x| sufficiently large, that is ∀x such that |x| > L, the supports
of the two wavefields ϕ and ψ are disjoints. This implies e.g. that for x = −L, we
have: U(x, t) = ϕ(x + t), and so ∂xU = ∂tU . In a symmetrical way, we have for
the right traveling wave: x = L, and U(x, t) = ψ(x − t), and so ∂xU = −∂tU .
By introducing the outwardly directed unit normal vector n to ] − L;L[, we have the
unification of the two boundary conditions

∂nU + ∂tU = 0, (6)

at x = ±L. This means that, if one wants to solve numerically the initial value
problem, which is a difficult task since it is set in an unbounded domain Rx, we may
rather consider to solve the following Initial Boundary Value Problem (IBVP): find
the approximate field Ua such that

∂2
xU

a − ∂2
tU

a = 0, (x, t) ∈ Ω×]0;T [,
Ua(x, 0) = Ua

0 (x), x ∈ Ω,
∂tU

a(x, 0) = Ua
1 (x), x ∈ Ω,

∂nU
a + ∂tU

a = 0, (x, t) ∈ {−L;L}×]0;T ],

(7)

which is set in a bounded spatial domain, that is Ω =] − L;L[. The main point here
is that numerically computing Ua in Ω requires a finite number of grid points unlike
working in Rx. Furthermore, in the special case of a one-dimensional problem with
constant wave speed, we can prove that we have: Ua(x, t) = U|Ω(x, t) in Ω×]0;T ]
which means that the restriction of the solution U of the initial system exactly coin-
cides with the solution Ua to the bounded domain problem. Therefore, the two waves
travel through the boundaries Γ := {−L;L} without being reflected back into the do-
main as the physics does. For this reason, the boundary condition Eq. (6) is said to be
a Transparent Boundary Condition (TBC). Let us also remark that deriving the TBC
can be done by using Laplace transform (that in some sense leads to working in the
frequency domain as done later for time harmonic waves).

2.2 Going to higher dimensions

Let us now come to the two- and three-dimensional cases by considering the wave
equation

∆U − 1

c2
∂2
tU +QδxQ

= 0, ∀x ∈ Ω+. (8)

For an easy reading, the vectors will be bold typed. The spatial variable is denoted by
x = (x1, ..., xd), for d = 2, 3. The Laplace operator is ∆ =

∑d
j=1 ∂

2
xj

. The domain
Ω+ is supposed to be unbounded, isotropic and homogeneous. This domain can be
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(like in the next Sections) the complementary set of a bounded (open set) scatterer
Ω−. Time harmonic waves consists in writing the point source with Q = Q̃e−ιωt and
the solutions to the wave equation

U(x, t) = u(x)e−ιωt. (9)

The real valued parameter ω is called the pulsation of the wave. The unknown u is the
complex pressure field and ι :=

√
−1 is the complex unit. By substitution of the two

above expressions into the wave equation (8), one gets

∆u+
ω2

c2
u+ Q̃δxQ

= 0,∀x ∈ Ω+, (10)

which is more commonly rewritten as

∆u+ k2u+ Q̃δxQ
= 0,∀x ∈ Ω+. (11)

The operator ∆ + k2 is called the Helmholtz3 operator.

Figure 4: Hermann Ludwig Ferdinand Von Helmholtz (1821-1894).

We also introduce the following physical quantities

frequency : f :=
ω

2π
,

wavelength : λ :=
2π

k
=
c

f
=

2πc

ω
(ms−1s = m).

(12)

The sound speed is yet a constant. For example, the value of the speed of sound in the
air at temperature 20 degrees Celsius is 324 ms−1.

Since we are dealing with a boundary value problem, one must impose a boundary
condition on the boundary Γ of Ω+ := Rd/Ω−. Different kinds of boundary conditions
can be considered. A first possibility is to fix the Dirichlet4 boundary condition

u := uimposed, on Γ, (13)
3Hermann Ludwig Ferdinand Von Helmholtz (1821-1894), was a German physicist.
4Johann Peter Gustav Lejeune Dirichlet (1805-1859) was a German mathematician.
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where we prescribe the value of the field at the interface Γ. This boundary condition
is also referred to as sound soft body boundary condition.

Figure 5: Johann Peter Gustav Lejeune Dirichlet (1805-1859).

Another possibility is to impose the value of the normal velocity field

∂nu := ∇u · n := ιρωvimposed
n . (14)

This inhomogeneous Neumann5 boundary condition is also called sound hard body
boundary condition in the acoustics literature.

Figure 6: Carl Gottfried Neumann (1832-1925).

In practice, the imposed surface field is given through the expression of the incident
(plane) wave field (see the next sections). As a remark, let us also note that other
more complex boundary conditions can be met as the impedance (Fourier6-Robin7)
boundary condition

∂nu+ αu := g,

5Carl Gottfried Neumann (1832-1925) was a German mathematician.
6Jean Baptiste Joseph Fourier (1768-1830) was a French mathematician and physicist.
7Victor Gustave Robin (1855-1897) was also a French mathematician.
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where, g is a given function and α is a complex-valued function, or even the general-
ized impedance boundary condition

∂nu+ αu+ β∆Γu := g,

if we define by ∆Γ the Laplace8-Beltrami9 operator over the surface Γ and by β a
complex-valued function on Γ. Let us remark also that for physical reasons the func-
tions α and β are required to satisfy certain (positivity) properties (that we do not
develop here) for well-posedness of the boundary value problem. Finally, if one wants
to represent the field in the time domain then we have to use the expression (9).

We now specifically consider the time harmonic scattering problem. More pre-
cisely, the problem is the following. We consider a time harmonic incident wave uinc

that highlights a bounded obstacle Ω− with surface Γ (for example the submarine
presented in Figure 7).

Figure 7: Scattering by a model submarine (by using a volumetric formulation, fi-
nite element methods, an artificial boundary condition and a domain decomposition
algorithm).

We want to compute the scattered field u solution to{
∆u+ k2u = 0, in Ω+,
u := −uinc, on Γ,

(15)

which is a boundary value problem set in an unbounded domain. What is really the
problem now? Can we solve it? The answer is no because there is no uniqueness of
the solution.

Indeed, let us come back to the one-dimensional example. Let us consider that we
want to solve {

∂2
xu+ k2u = 0, in Ω+ :=]0; +∞[,
u := 1, at x = 0.

(16)

8Pierre-Simon de Laplace (1749-1827) was French mathematician, astronom and physicist.
9Eugenio Beltrami (1835-1899) was an Italian mathematician
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Then, the solution writes down

u = A+eιkx + A−e−ιkx, (17)

where A± are two complex valued coefficients to determine. If one uses the boundary
condition, these constants must fullfil

A+ + A− = 1. (18)

But we see that it is not enough to conclude. The system is overdetermined. This
means that one (boundary?) condition is missed. Let us consider now that, at a given
point in the exterior domain ]0; +∞[, we impose the transparent boundary condition
derived before in the time domain. In the harmonic regime, one has

∂nU +
1

c
∂tU = ∂nu− ι

ω

c
u = ∂nu− ιku = 0. (19)

Then, by using (17), this implies that

A+(ιk − ιk) + A−(−ιk − ιk) = 0, (20)

that is: −2ιkA− = 0, or A− = 0. Together with Eq. (18), one can conclude that:
A+ = 1 and so that

u = eιkx. (21)

This means that, by adding the transparent boundary condition (19), we have been
able to get the uniqueness of the solution to the boundary value problem (16). The
boundary condition acted as a filter in the frequency regime so that we can select the
outgoing wave eιkx traveling to the right and filtering the incoming wave e−ιkx going
to the left. This boundary condition is of course at finite distance but translates the
expected behavior of the solution at infinity.

For higher dimensions, a suitable condition at infinity has been introduced in 1912
by Sommerfeld10 in order to precise the asymptotic behavior of the solution.

More precisely, in the three-dimensional setting, the so-called Sommerfeld radia-
tion condition at infinity writes

lim
R∞→+∞

R∞|∂R∞u− ιku| = 0, (22)

uniformly in all directions. This physically means that the energy disturbances by
the structure should die at infinity. Mathematically, this provides the uniqueness of
the solution. In the d-dimensional setting, one must take care to the fact that the
Sommerfeld condition depends on d. Indeed, the condition writes down

lim
||x||→+∞

||x||(d−1)/2(∇u · x||x|| − ιku) = 0, (23)

uniformly in all directions. This last equation completes system (15) leading to a
well-posed scattering boundary value problem.

10Arnold Sommerfeld (1868-1951) was a German physicist.
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Figure 8: Arnold Sommerfeld (1868-1951) (photo from 1897).

2.3 An exact solution for single scattering: the disk case

When one wishes to develop some numerical methods, one must be able to have some
benchmark solutions. One possibility is to consider simple scattering geometries in
the two- and three-dimensional cases. The goal of this section is to precise the case of
one single disk, multiple scattering configurations being harder to treat.

Let us consider a single disk centered at the origin and with radius R. The polar
coordinates system is designated by (r, θ). We consider an incident plane wave uinc

defined by
uinc := eιk·x, (24)

where the vector wavenumber k is defined by

k := k(cos(θinc), sin(θinc))T . (25)

The angle of incidence θinc is given in the polar system. Plane waves are standard
physically admissible incident wave fields that are used in practice. In the polar coor-
dinates system, we then have

uinc := eιk(x1 cos(θinc)+x2 sin(θinc)) = eιkr(cos(θ) cos(θinc)+sin(θ) sin(θinc))

= eιkr cos(θ−θinc),
(26)

by using standard trigonometric formulae. To go further into the derivation of the
exact solution, one must use the following proposition.

Proposition 1. We have the Jacobi11 expansion

eιw cosϕ =
∑
n∈Z

(−ι)nJn(w)eιnϕ, (27)

11Carl Gustav Jacob Jacobi (1804-1851) was a German mathematician.
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where Jn are the Bessel12 special functions of the first kind.

The first kind Bessel functions Jα(x) are the solutions to the following differential
equation

x2 d
2

dx2
y + x

d

dx
y + (x2 − α2)y = 0, (28)

that are finite are the origin. These functions naturally arise here because of the partic-
ular cylindrical geometry of our problem. Indeed, the Helmholtz operator in the polar
coordinates system is given by

∆ + k2 := ∂2
r +

1

r
∂r +

1

r2
∂2
θ + k2. (29)

So, this means that if one looks for the Fourier series expansion of the solution as

u(r, θ) =
∑
m∈Z

um(r)eιmθ, (30)

then the coefficients um are the smooth functions solutions to

(r2∂2
r + r∂r + (k2 −m2))um = 0. (31)

This gives that um(r) = Jm(kr). The singular solutions at the origin of (28) are the
Bessel functions of the second kind, Yα, which are also called Neumann functions.
These are given by Ym(kr) in our situation. Finally, our incident wave writes

uinc(r, θ) =
∑
n∈Z

(−ι)nJn(kr)eιn(θ−θinc) (32)

by using the Equations (26) and (27). Figures 9 report the graphs of the Bessel func-
tions Jn and Yn to illustrate our discussion.

Then, one wants to compute the solution to the Helmholtz equation in the polar
coordinates system. The scattered field is given by

u(r, θ) =
∑
n∈Z

A+
nH

(1)
n (kr)eιnθ + A−nH

(2)
n (kr)eιnθ, (33)

where we consider that θinc = 0. This last assumption is not restriction since our prob-
lem has cylindrical symmetry. The new special functions H(1)

n and H(2)
n are respec-

tively called the Hankel13 function of the first- and second-kind of order n (sometimes
also called third order Bessel functions). They are defined by{

H
(1)
α (x) := Jα(x) + ιYα(x),

H
(2)
α (x) := Jα(x)− ιYα(x).

(34)

12Introduced by Daniel Bernoulli (1700-1782) (Swiss mathematician) and generalized by Friedrich
Bessel (German mathematician, (1784-1846)).

13Hermann Hankel (1839-1873) was a German mathematician.
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Figure 9: Special Bessel functions Jn(x) and Yn(x) for different values of x and n
(computed with Matlab functions besselj and bessely). Note the singularity or
not at the origin and the decay of the functions for large x arguments. Oscillations are
also present which translate the property that we are considering wave like problems.

If one uses the Dirichlet boundary condition, by separation of variables, one obtains

A+
nH

(1)
n (kR) + A−nH

(2)
n (kR) = −(−ι)nJn(kR) (35)

on the scatterer surface. Some asymptotic expansions allow however to show that the
outgoing modes are related to the functions H(1)

n while H(2)
n transports the incoming

modes. Because of the Sommerfeld radiation condition at infinity which tells that the
solution is outgoing, one has to fix: A−n = 0, for all n ∈ Z. You have to notice here
that this is very similar to the one-dimensional case. Finally, by using (35), one can
conclude that

A+
n = −(−ι)n Jn(kR)

H
(1)
n (kR)

(36)
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and that the exact solution can be written as

u(r, θ) = −
∑
n∈Z

(−ι)n Jn(kR)

H
(1)
n (kR)

H(1)
n (kr)eιnθ (37)

for r ≥ R. Very similar calculations lead to the expression of the exact solution for
the Neumann boundary condition on a disk and an incident plane wave. This solution
is also often called Mie14 series expansion. One gets

u(r, θ) = −
∑
n∈Z

(−ι)n J ′n(kR)

H
(1)′
n (kR)

H(1)
n (kr)eιnθ, (38)

where the prime ′ means that we consider the derivative of the function thanks to its ar-
gument. The strategy also applies to impedance and generalized impedance boundary
conditions.

In the three-dimensional case, an approach based on spherical harmonics functions
can be developed. The calculations are longer and can be found in reference textbooks
about acoustics. Let us remark that plane waves are then written as (24) but with

k := k(cos(θinc) sin(φinc), sin(θinc) sin(φinc), cos(φinc))T . (39)

3 Potential theory - integral equations

In this section, we present how to solve an exterior boundary value problem set in an
unbounded computational domain via the integral equations method. First, we recall
the basic acoustic scattering problem and some notations. Next, we give elements of
potential theory that are crucial for the integral equation method. Finally, we discuss
the derivation of the classical direct and indirect integral equations for both Dirichlet
and Neumann boundary conditions.

3.1 Acoustic scattering problems

Let us define a d-dimensional bounded domain Ω− ⊂ Rd representing an impenetra-
ble body with boundary Γ := ∂Ω−. We denote by Ω+ := Rd \ Ω− the associated
homogeneous exterior domain of propagation. Consider the scattering of an incident
time-harmonic acoustic wave uinc by the obstacle Ω−. The scattered field u+ satisfies
the following exterior boundary-value problem

∆u+ + k2u+ = 0, in Ω+,
u+|Γ = −uinc|Γ or ∂nu+|Γ = −∂nuinc|Γ, on Γ,

lim
‖x‖→+∞

‖x‖(d−1)/2(∇u+ · x‖x‖ − ιku
+) = 0,

(40)

Figure 10 is a schematic representation of the problem.
14Gustav Adolf Feodor Wilhelm Ludwig Mie (1869-1957) was a German physicist.
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Ω−

Γ
u +

n

Ω+ u inc

Figure 10: Scattering problem configuration.

Let us introduce the functional Sobolev15 spaces [43]

Hs
loc(Ω

+) :=
{
v ∈ D′(Ω+)/ψv ∈ Hs(Ω+),∀ψ ∈ D(Rd)

}
, s ≥ 1,

H1
−(∆) := H1(∆,Ω−) :=

{
u ∈ H1(Ω−); ∆u ∈ L2(Ω−)

}
,

H1
+(∆) := H1

loc(∆,Ω
+) :=

{
u ∈ H1

loc(Ω
+); ∆u ∈ L2

loc(Ω
+)
}
.

For u ∈ H1
±(∆), the exterior (+) and interior (−) trace operators of order j (j = 0 or

1) can be defined by

γ±j : H1
±(∆) → H1/2−j(Γ)
u 7→ γ±j u

± = ∂jnu
±|Γ. (41)

In this functional setting, the existence and uniqueness of the solution to the scattering
problem 

Find u+ ∈ H1
loc(Ω

+) such that
∆u+ + k2u+ = 0, in D′(Ω+),
γ+
j u

+ = g := −γ+
j u

inc, in H1/2−j(Γ), for j = 0 or 1,

lim
‖x‖→+∞

‖x‖(d−1)/2(∇u+ · x‖x‖ − ιku
+) = 0,

(42)

can be proved [27].
The first main difficulty arising in the numerical solution of the exterior boundary-

value problem (42) is related to the unboundedness of the computational domain Ω+.
A solution is to apply the integral equations method [23, 27]. This approach allows to
reformulate the initial boundary-value problem as an integral equation defined on the
boundary Γ of the scattering obstacle Ω−. Then, this method reduces the dimension of
the problem to d − 1. Boundary integral equations are derived from potential theory.
Let us give in the some elements of this theory but before this, we need to introduce
the notion of fundamental solution.

3.2 Fundamental solution for the acoustic scattering problem

The aim here is to compute the response of a point source, that is the Green16 function,
placed at a point x to a point y. We denote this fundamental solution for these two

15Sergueı̈ Lvovitch Sobolev (1908-1989) was a Russian mathematician and physicist.
16George Green (1793-1841) is an American mathematician.
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points by G(x,y). It satisfies the following equation

− (∆xG+ k2G) = δ(x,y), (43)

where δ is again the delta Dirac distribution. It is expected that G is spherical for
the three-dimensional case (and radial for the two-dimensional problem) since it must
scattered uniformly in all directions. Let us first consider the spherical form of the
Helmholtz equation for a (θ, φ)-independent function (spherical symmetry)

∆φ = (∂2
r +

2

r
∂r)φ =

1

r

d2

dr2
(rφ). (44)

Then, the spherical solution to the Helmholtz equation can be written as the solution
to

d2

dr2
(rφ) + k2(rφ) = 0 (45)

that is
φ =

1

r
(A+eιkr + A−e−ιkr). (46)

Since the solution is required to be outgoing, then one gets that: A− = 0. Therefore,
we are looking at the Green’s function under the form

G(x,y) = A
eιkr

r
(47)

with r = ||x − y|| and A is a constant to determine. To this end, let us consider a
small spherical domain Sε enclosing the origin (when there is a singularity assuming
that x = 0). Then, we formally have∫

Sε

(∆ + k2)GdSε(y) = −
∫
Sε

δ0dSε(y) = −1. (48)

By using the Gauss theorem, one also obtains that∫
Sε

∆GdSε(y) =

∫
∂Sε

∂n(y)d∂Sε(y) = 4πA(ιkε− 1)eιkε. (49)

By making use of the spherical coordinates system we have∫
Sε

k2GdSε(y) = k2A

∫ ε

0

∫ 2π

0

∫ π

0

1

r
eιkrr2 sin(ϕ)dϕdθdr

= 4πA((1− ιkε)eιkε − 1).

(50)

This finally provides
− 4πA = −1, (51)

that is
A =

1

4π
. (52)
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As a conclusion, this formal derivation shown that the Green’s function is

G(x,y) =
eιkr

4πr
=

eιk||x−y||

4π||x− y|| . (53)

Similar calculations can be done for the two-dimensional case, resulting in the
Green’s function

G(x,y) =
ι

4
H

(1)
0 (k||x− y||). (54)

Figure 11: Modulus of the two-dimensional Green’s function given by Eq. (54).

Finally, let us remark that a more rigorous derivation of this Green’s function can
be obtained by using the distributional calculus.

3.3 Potential theory: basic relations - properties

One important point when working with integral equations is that equivalent formu-
lations to the initial scattering problem can be obtained. The essential property is that
any solution to the Helmholtz equation can be represented as the linear combination
of a single- and a double-layer potentials. The following proposition holds.

Proposition 2. Let us define the outgoing Green’s function G associated with the
Helmholtz operator in Rd by

G(x,y) =


ι

4
H

(1)
0 (k‖x− y‖), for d=2,

1

4π

eιk‖x−y‖

‖x− y‖ , for d=3,
(55)

where H(1)
0 designates the first-kind Hankel function of order zero. Let (v−, v+) ∈

H1(Ω−)×H1
loc(Ω

+) satisfying

∆v− + k2v−, in Ω−,
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and {
∆v+ + k2v+, in Ω+,
v+ outgoing wave.

Then, we have

L([∂nv(y)]Γ)(x)−D([v(y)]Γ)(x) =

{
v−(x), for x ∈ Ω−,
v+(x), for x ∈ Ω+,

(56)

where
[v]Γ := γ−0 v

− − γ+
0 v

+, [∂nv]Γ := γ−1 v
− − γ+

1 v
+,

and
Lp(x) :=

∫
Γ

G(x,y)p(y)dΓ(y), x /∈ Γ, (57)

Dφ(x) :=

∫
Γ

∂n(y)G(x,y)φ(y)dΓ(y), x /∈ Γ, (58)

for (p, φ) ∈ H1/2(Γ)×H−1/2(Γ).

The operators L and D defined above are called the single- and the double-layer
potentials respectively. To obtain integral equations set on the boundary Γ, we need
the trace formulae for these two potentials (see for instance [43]).

Proposition 3. The first and second traces on Γ of the single-layer and the double-
layer potentials are given by 

γ−0 ◦ L = γ+
0 ◦ L = L

γ−1 ◦ L = (
I
2

+N )

γ+
1 ◦ L = (−I

2
+N )

(59)

and 
γ−0 ◦D = (−I

2
+D)

γ+
0 ◦D = (

I
2

+D)

γ−1 ◦D = γ+
1 ◦D = S

(60)

where I is the identity operator and L,N ,D and S the four elementary boundary
integral operators expressed, for all x ∈ Γ, by

Lp(x) :=

∫
Γ

G(x,y)p(y)dΓ(y)

Np(x) :=

∫
Γ

∂n(x)G(x,y)p(y)dΓ(y)

Dφ(x) :=

∫
Γ

∂n(y)G(x,y)φ(y)dΓ(y)

Sφ(x) :=

∮
Γ

∂2

∂n(x)∂n(y)
G(x,y)φ(y)dΓ(y).

(61)
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Note that the expression defining S is not an integral (its singularity is not inte-
grable) but a finite part expression associated with a hypersingular kernel and that N
and D are strongly singular operators which must be understood though the Cauchy17

Principal Value (CPV) definition. Indeed, if G is given by

G(x,y) =
1

4π

eιk‖x−y‖

‖x− y‖ , for d = 3, (62)

then some calculations show that we have

∂n(x)G(x,y) =
1

4π
∇x

eιk‖x−y‖

‖x− y‖ · n(x). (63)

But we have that
∇x‖x− y‖ =

x− y

‖x− y‖ · n(x) (64)

leading therefore to

∂n(x)G(x,y) =
ιk

4π

x− y

‖x− y‖2
· n(x)eιk‖x−y‖. (65)

A similar but simpler problem if to consider

f2(x) =

∫ b

a

1

y − xdx, a < x < b,

which must be understood in the sense of CPV. Indeed some calculations show that

f2(x) = lim
ε1→0

∫ x−ε1

a

1

y − xdx+ lim
ε2→0

∫ b

x+ε2

1

y − xdx

= log(
b− x
x− a) + lim

ε1→0
log ε1 − lim

ε2→0
log ε2 = log(

b− x
x− a) = CPV(f2)(x)

if and only if ε1 = ε2. The hypersingular character of S is seen by differentiation. An
example of a similar situation is to consider

f3(x) = lim
ε→0

[

∫ x−ε

a

1

(y − x)2
dx+

∫ b

x+ε

1

(y − x)2
dx]

= − 1

x− a −
1

b− x + lim
ε→0

2

ε

which does not even exist in the CPV sense. However, in the integral equation, it is
found that the infinite term is cancelled out by

lim
ε→0

2

ε

∫ x+ε

x−ε

1

(y − x)2
dx = lim

ε→0
−2

ε

17Augustin Louis, baron Cauchy (1789-1857) was a French mathematician.
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and therefore the f3 integral is meaningful in the Hadamard Finite Part (HFP) integral
with the finite part given by

HPF(f3)(x) = − 1

x− a −
1

b− x.

Let us remark that by integration by parts, the weak form of integral equations will
only involve singular integrals that can be numerically integrated.

We preferred to keep formally the integral expression for the sake of clarity. Let us
now summarize the continuity properties of the elementary boundary integral opera-
tors (see for instance [43, Theorem 4.4.1] or Theorems 7.1 and 7.2 in [41]).

Proposition 4. For a smooth boundary Γ, the boundary integral operators given in
Proposition 3 define the following continuous mappings

L : Hs(Γ) −→ Hs+1(Γ),
N : Hs(Γ) −→ Hs(Γ),
D : Hs(Γ) −→ Hs(Γ),
S : Hs(Γ) −→ Hs−1(Γ),

(66)

for all s ∈ R. Moreover, the operators N and D are compact from Hs(Γ) onto itself
for all s ∈ R.

In the case of a Lipschitz18 boundary [28, 41], the above continuity properties still
hold for−1 ≤ s ≤ 0 (respectively for 0 ≤ s ≤ 1) for operators L andN (respectively
D and S), while the compactness properties of N and D fail. A possible approach to
rigorously extend the following developments is to use e.g. some regularizing tech-
niques [18].

The representation (56) allows to determine the near-field around the scatterer. A-
nother physical quantity of interest is the scattering amplitude (or the far-field pattern).
For instance, in the two-dimensional case, we have

a0(θ) =
ι

4

√
2

ιπk

∫
Γ

e−ιky·θ(γ+
1 u

+(y) + ιkθ · n(y)γ+
0 u

+(y))dΓ(y).

3.4 Standard integral equations formulations

The Helmholtz representation formula (56) leads to the construction of an infinite
number of integral equations (equivalent if invertible) in the case of a closed sur-
face. In the case of an open surface, only one integral equation can be written (the
EFIE). The aim of this part is to introduce the most standard integral equations for
both Dirichlet and Neumann boundary conditions. We usually distinguish between
direct and indirect integral equations, each of them having their own mathematical
properties.

Let us introduce the following notations
18Rudolf Otto Sigismund Lipschitz (1832-1903) was a German mathematician.
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• KD(Ω−) = {kDm,m ∈ N}, the set of Dirichlet irregular frequencies (interior
Dirichlet eigenvalues), is the set of values of k such that the boundary value
problem {

−∆v = k2v, in Ω−,

γ−0 v = 0, on Γ,

admits a non vanishing solution.

• KN(Ω−) = {kNm ,m ∈ N}, the set of Neumann irregular frequencies (interior
Neumann eigenvalues), is the set of values of k such that the boundary value
problem {

−∆v = k2v, in Ω−,

γ−1 v = 0, on Γ,

admits a non vanishing solution.

3.4.1 The Dirichlet problem: direct integral formulations

The total field w is expressed by w := u+ + uinc. The direct formulations consist in
seeking the total field under the form

w(x) = Lp(x) + uinc(x), x ∈ Ω+. (67)

The integral representation (67) ensures that w is solution to the Helmholtz equation
in Ω− ∪ Ω+, and satisfies the Sommerfeld radiation condition. Then, we have to
determine the unknown p such that w satisfies also the Dirichlet boundary condition
(γ+

0 w = 0). More precisely, the representation (67) corresponds to the particular
choice of solutions (v−, v+) := (−uinc, u+) in Proposition 2, i.e.

[v]Γ = 0 [∂nv]Γ = −γ+
1 w|Γ := p

and

Lp(x) =

{
−uinc(x) for x ∈ Ω−

u+(x) for x ∈ Ω+.
(68)

Then, we get the following single-layer potential representation of the total field:

Lp(x) + uinc(x) =

{
0 for x ∈ Ω−

w(x) for x ∈ Ω+.

Clearly, this formulation is completely equivalent to extending artificially the total
field by zero inside Ω−, which explains that this approach is also referred sometimes
to as the null field method.

The next step is to obtain an integral equation for the physical unknown p =
−γ+

1 w|Γ ∈ H−1/2(Γ). To achieve this, the idea is to apply a trace operator to the
relation

Lp(x) + uinc(x) = 0, ∀x ∈ Ω−. (69)

23



At this point, many choices are available. Let us cite three of them leading to classical
integral equations of potential theory.

• EFIE : This equation is obtained by applying the trace operator γ−0 to (69).
Thanks to the trace relations of Proposition 3, this leads to the well-known Elec-
tric Field Integral Equation (EFIE):

Lp = −γ+
0 u

inc, on Γ. (70)

• MFIE : This equation is obtained by applying the normal trace operator γ−1 to
(69). Thanks to the trace relations of Proposition 3, this leads to the so-called
Magnetic Field Integral Equation (MFIE):

(
I
2

+N )p = −γ+
1 u

inc, on Γ. (71)

• CFIE : This equation is obtained by applying to (69) the Fourier-Robin (impe-
dance) trace operator γ−1 + ηγ−0 , with η 6= 0. Once again, the trace relations of
Proposition 3 give the Combined Field Integral Equation (CFIE):{

(
I
2

+N ) + ηL
}
p = −(γ+

1 u
inc + ηγ+

0 u
inc), on Γ. (72)

The existence and uniqueness results for the above direct integral equations ((70),
(71) or (72)) are given in the following theorem.

Theorem 1. The following properties hold.

1. The operator L defines an isomorphism from H−1/2(Γ) onto H1/2(Γ) if and
only if k 6∈ KD(Ω−). Under this condition, the EFIE (70) is uniquely solvable
in H−1/2(Γ).

2. The operator

(
I
2

+N )

defines an isomorphism fromH−1/2(Γ) ontoH−1/2(Γ) if and only if k 6∈ KN(Ω−).
Under this condition, the MFIE (71) is uniquely solvable in H−1/2(Γ).

3. The operator

(
I
2

+N ) + ηL

defines an isomorphism from H−1/2(Γ) onto H−1/2(Γ) for all k > 0 provided
=(η) 6= 0 (imaginary part of η). Under this condition, the CFIE (72) is uniquely
solvable in H−1/2(Γ) for any frequency k > 0.
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In the case where k in an irregular frequency, the integral equations EFIE and MFIE
have non zero kernels. Nevertheless, it can be shown that the spurious modes of the
EFIE will not radiate in the exterior. Thus, the field is not corrupted outside the object:
Lp = 0 on Γ =⇒ Lp = 0 in Ω+. Then, the EFIE provides accurate computations and
often represents a reference solution. Unlike the EFIE, the spurious solutions of the
MFIE do radiate in the exterior domain, leading hence to a wrong solution. Finally, by
its construction itself, the CFIE is free of the internal-resonance problem. We consider
in the sequel η = −ιkα/(1− α), α ∈]0, 1[,

(1− α)
ι

k
(
I
2

+N ) + αL = −((1− α)
ι

k
γ+

1 u
inc + αγ+

0 u
inc), on Γ. (73)

A common choice of α for engineering computations is α = 0.2 which gives an almost
minimal condition number for the CFIE.

3.4.2 The Dirichlet problem: indirect integral formulations

The indirect formulations are based on the assumption that the solution can be ex-
pressed in terms of a source density function defined on the boundary. The unknowns
are then generally non-physical quantities. The physical variables are solved after-
wards in terms of these source densities. Here, we focus on the most commonly
used indirect integral formulation independently proposed by Burton-Miller [19] and
Brakhage-Werner [13]. The idea is to seek the exterior field as a superposition of the
single- and double-layer potentials acting on a fictitious surface density ψ:

u+(x) = (D + ηL)ψ(x), ∀x ∈ Ω+, (74)

where η is a complex-valued coupling parameter to choose. The above expression
leads, thanks to the trace relations (3), to the following integral equation :{

(
I
2

+D) + ηL
}
ψ = −γ+

0 u
inc, on Γ. (75)

We consider the above integral equation in the space H1/2(Γ) and we can prove the
following result.

Theorem 2. The operator

(
I
2

+D) + ηL

defines an isomorphism from H1/2(Γ) onto H1/2(Γ) for all k > 0 provided =(η) 6= 0.
Under this condition, (75) is uniquely solvable in H1/2(Γ) for all frequency k > 0.

This integral equation is uniquely solvable if and only if =(η) > 0. An almost
optimal value of η has been obtained in [2, 36, 38] as: η = ιk.
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3.4.3 The Neumann problem: direct integral formulations

Let us now briefly discuss the derivation of direct integral equations in the case of a
Neumann boundary condition. The total field w := u+ +uinc is sought under the form

w(x) = Dφ(x) + uinc(x), x ∈ Ω+. (76)

Proposition 2 for (v−, v+) := (−uinc, u+) leads to:

[v]Γ = −γ+
0 w := φ,

[∂nv]Γ = 0,

and

Dφ(x) =

{
−uinc(x) for x ∈ Ω−

u+(x) for x ∈ Ω+.

Then, we get

Dφ(x) + uinc(x) =

{
0 for x ∈ Ω−

w(x) for x ∈ Ω+.

Applying a trace operator to the relation

Dφ(x) + uinc(x) = 0, ∀x ∈ Ω−, (77)

the physical unknown φ = −γ+
0 w ∈ H1/2(Γ) is solution to the following direct inte-

gral equations

• EFIE :
Sφ = −γ+

1 u
inc, on Γ. (78)

• MFIE :
(−I

2
+D)φ = −γ+

0 u
inc, on Γ. (79)

• CFIE : {
(−I

2
+D) + ηS

}
φ = −(ηγ+

1 u
inc
|Γ + γ+

0 u
inc), on Γ. (80)

The existence and uniqueness results for the above integral equations are summarized
in the next result.

Theorem 3. The following properties hold

1. The operator S defines an isomorphism from H1/2(Γ) onto H−1/2(Γ) if and
only if k 6∈ KN(Ω−). Under this condition, the EFIE (78) is uniquely solvable
in H1/2(Γ).
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2. The operator

(−I
2

+D)

defines an isomorphism from H1/2(Γ) onto H1/2(Γ) if and only if k 6∈ KD(Ω−).
Under this condition, the MFIE (79) is uniquely solvable in H1/2(Γ).

3. The operator

(−I
2

+D) + ηS

defines an isomorphism from H1/2(Γ) onto H−1/2(Γ) for all k > 0 provided
=(η) 6= 0. Under this condition, the CFIE (80) is uniquely solvable in H1/2(Γ)
for all frequency k > 0.

The reference CFIE in this chapter is

(1− α)
ι

k
(−I

2
+D)− α

k2
S = −((1− α)

ι

k
γ+

0 u
inc − α

k2
γ+

1 u
inc), on Γ. (81)

3.4.4 The Neumann problem: indirect integral formulations

The Burton-Miller (or Brakhage-Werner) integral representation of the exterior field
is expressed by

u+(x) = (L+ ηD)ϕ(x), ∀x ∈ Ω+, (82)

where η is a complex-valued coupling parameter to determine. Then, the field (82)
solves the exterior boundary-value problem (42) if the surface density ϕ is solution to
the following integral equation{

(−I
2

+N ) + ηS
}
ϕ = −γ+

1 u
inc, (83)

called the Burton-Miller or Brakhage-Werner (BW) integral equation. We have the
following existence and uniqueness result.

Theorem 4. The operator

(−I
2

+N ) + ηS

defines an isomorphism fromH1/2(Γ) ontoH−1/2(Γ) for all k > 0 provided=(η) 6= 0.
Under this condition, (83) is uniquely solvable in H1/2(Γ) for all frequency k > 0.

An almost optimal value of η has been numerically discussed in [2, 36, 38] as:
η = 1/ιk.
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4 Approximation of integral equations by boundary el-
ement methods

Integral equations are numerically by a boundary element method. We now describe
how to develop this approximation for the EFIE for both the Dirichlet and Neumann
problems. We also explain to extend the method to other standard integral equa-
tions. The numerical developments are made in the two-dimensional setting, the three-
dimensional case being much harder.

4.1 The example of the single-layer representation (EFIE) for the
Dirichlet problem

We describe now the numerical approximation methodology for solving the EFIE step
by stepand next computing the relevant physical quantities.

Variational formulation and boundary element approximation.

In the two-dimensional case and for a Dirichlet boundary condition, let us recall
that our scattering problem writes Find p ∈ H−1/2(Γ) such that∫

Γ

G(x,y)p(y)dΓ(y) = −uinc, in H1/2(Γ).
(84)

Like for PDEs where a finite element approach can be applied for a numerical solution
after writing a weak formulation, the next step consists in taking the duality product
of (84) for a test-function in H−1/2(Γ). Therefore, we are looking for the solution to
the variational formulation{

Find p ∈ H−1/2(Γ) such that ∀q ∈ H−1/2(Γ)
< q,Gp >H−1/2(Γ),H1/2(Γ)= − < q, uinc >H−1/2(Γ),H1/2(Γ) .

(85)

We assume now, for the sake of easiness, that Γ is sufficiently smooth so that p ∈
L2(Γ). Then, the duality product can be identified to the L2(Γ) usual hermitian prod-
uct

(u, v)L2(Γ) =

∫
Γ

uvdΓ. (86)

As a consequence, our formulation can be written
Find p ∈ L2(Γ) such that

(∀q ∈ L2(Γ)),

∫
Γ

∫
Γ

G(x,y)p(y)q(x)dΓ(y)dΓ(x)

= −
∫

Γ

uinc(x)q(x)dΓ(x).

(87)

28



Let us now assume that we are working in the two-dimensional setting. The closed
boundary is then a line in the R2 plane. We next introduce a polygonal curve Γh made
of Nh segments Kj = [aKj ; aKj+1], for j = 1, ..., Nh. The length of Kj is denoted by

|Kj| := hj = meas(Kj) = ||aKj aKj+1||, j = 1, ..., Nh. (88)

Furthermore, the maximal step size is h := maxj=1,...,Nh
hj . Then, we have

Γh = ∪Nh
j=1Kj = ∪K∈ThK, (89)

and the surface triangulation is Th = {Kj}Nh

j=1. In the three-dimensional setting, mesh-
ing is harder (see Fig. 12).

Figure 12: Designing meshes is harder in 3D (created with Gmsh).

Now that the surface is discretized, we must consider a finite dimensional space of
approximation for p (and q). Since p is in L2(Γ) (or is even less regular), we can try
to compute an approximation of p as a piecewise constant function per element K.
Therefore, we introduce the finite element space

Mh :=
{
qh ∈ L2(Γh)/qK = qh|K ∈ P0,∀K ∈ Th

}
, (90)

where P0 designates the space of constant (polynomials). The weak continuous for-
mulation (87) is then discretized as

Find ph ∈Mh such that

(∀qh ∈Mh),

∫
Γh

∫
Γh

G(xh,yh)ph(yh)qh(xh)dΓh(yh)dΓh(xh)

= −
∫

Γh

uinc(xh)qh(xh)dΓh(xh).

(91)
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Let us now decompose ph as

ph =
∑

segments

constant per segment. (92)

The finite element method over the surface is generally called a boundary element
method. Then, (91) leads to the solution of the linear system

Nh∑
j=1

[[a]]i,jpj = bi, 1 ≤ i ≤ Nh, (93)

where
pj := ph|Kj

, 1 ≤ j ≤ Nh, (94)

and

bi := −
∫
Ki

uinc(xh)dKi(xh), 1 ≤ i ≤ Nh. (95)

More importantly, we have

1 ≤ i, j ≤ Nh, [[a]]i,j :=

∫
Ki

∫
Kj

G(xh,yh)dKj(yh)dKi(xh). (96)

Let us recall that the Green’s function G is given by

G(x,y) =
ι

4
H

(1)
0 (k||x− y||),x 6= y, (97)

and so is singular at the origin when x = y. Let us remind that the two points Gauss
quadrature formula is given by∫ +1

−1

f(x)dx =
2∑
`=1

w`f(x`), (98)

where the weights arew` = 1, 1, for ` = 1, 2, and the roots are x1 = −
√

1/3 and x2 =√
1/3. It is easy to see that a change of variable provides the following integration

formula ∫ b

a

f(x)dx =
(b− a)

2

∫ +1

−1

f(
(b− a)

2
x+

a+ b

2
)dx (99)

and then ∫ b

a

f(x)dx ≈ (b− a)

2

2∑
`=1

w`f(
(b− a)

2
x` +

a+ b

2
). (100)

Let us note

1 ≤ i, j ≤ Nh, [[a]]i,j :=

∫
Ki

gKj
(xh)dKi(xh), (101)
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with
1 ≤ j ≤ Nh, gKj

(xh) :=

∫
Kj

G(xh,yh)dKj(yh)

=

∫
Kj

ι

4
H

(1)
0 (k||xh − yh||)dKj(yh).

(102)

For the numerical treatment, we separate the cases where Ki and Kj are different or
not.
Situation 1: Ki 6= Kj (i 6= j): In this situation, we can apply twice the Gauss
quadrature formula to numerically integrate (101)-(102) by a double summation

1 ≤ i, j ≤ Nh, i 6= j, [[a]]i,j =
2∑

`,m=1

w`wmG(xih,`,y
j
h,m) (103)

where xih,` and yjh,m are the mapped Gauss points on the segments Ki and Kj , respec-
tively.
Situation 2: Ki = Kj (i = j): This situation is more delicate. Indeed, let us integrate
once (101) by the Gauss quadrature (100). Then we obtain

i = 1, ..., Nh,[[a]]i,i =
2∑
`=1

w`gKj
(xih,`), (104)

with
gKi

(xih,`) =

∫
Ki

G(xih,`,yh)dKi(yh). (105)

But the integral above cannot be directly approximated again by the Gauss quadrature
since we have singularities at xih,` = yih,`. One way to overcome this problem is to use
a semi-numerical quadrature approach based on the following splitting. Let us recall
that the singularity of H(1)

0 is logarithmic. More precisely, we have

G(x,y) =
1

2π
ln

1

||x− y|| +
ι

4
− 1

2
ln(

k

2
) +O(||x− y||2 ln(

1

||x− y||)) (106)

for ||x− y|| → 0. This implies that we have the following decomposition

gKj
(xh) =

∫
Kj

G(xh,yh)dKj(yh) =∫
Kj

1

2π
ln

1

||xh − yh||
dKj(yh) +

∫
Kj

K(xh,yh)dKj(yh)
(107)

The second integral which is related to the decomposition (106) involves a regular
integrand K which therefore can be computed via (100). For the singular part, we can
use the Hoop formula that provides an explicit analytical formula for the logarithmic
singularity. We have∫

Kj

− 1

2π
ln ||xh − yh||dKj(xh)

= − 1

2π
(RK

j+1 · τKj
ln ||RK

j+1|| −RK
j · τKj

ln ||RK
j ||)

−|Kj|+ dKj
(xh)Ω.

(108)
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In the above formula, we use the following notations
τKj

= tangential unit vector =
aKj a

K
j+1

|Kj|
,

RK
j = xha

K
j ,R

K
j+1 = xha

K
j+1,

dKj
(xh) = dist⊥Kj

(xh) : distance from xh to Kj,

Ω = solid angle under which xh sees Kj , 0 ≤ Ω ≤ π.

(109)

Since Kj = Ki, then Ω = 0 and dKj
(xh) = 0, which simplifies (108). An illustration

of the notations is given on the figure below.

•

• a
K
j

aKj+1

Kj: evaluation segment

τKj

• xh: observation point

RK
j

RK
j+1 dKj

(xh): distance from xh to Kj
Ω

Let us now consider that we have been able to compute the matrix coefficients
[[a]]i,j , for 1 ≤ i, j ≤ Nh. We have to approximate the right hand side by computing

bi := −
∫
Ki

uinc(xh)dKi(xh), 1 ≤ i ≤ Nh (110)

which can be directly done by the Gauss quadrature formula.

Linear system solution.

Finally, (93) leads to solving a linear system

Aph = bh (111)

with {
Aij = [[a]]ij ∈ C, 1 ≤ i, j ≤ Nh

ph ∈ CNh ,bh ∈ CNh .
(112)

System (111) is full, complex-valued, symmetrical but non definite positive. For rela-
tively moderate values of Nh, the linear system can be solved by a Gauss elimination
solver. However, for larger values of Nh, Krylov solvers are preferred (most particu-
larly for three-dimensional problems) in conjunction with a fast matrix-vector product
evaluation (integral evaluations in fact) based on Multilevel Fast Multipole Methods
(MFMM) or closely related techniques. We refer to the specialized literature for fur-
ther details.
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Computing relevant physical quantities.

Once ph has been computed, the exterior wavefield u+ can be obtained via relation
(68), that is

u+(x) =

∫
Γ

G(x,y)p(y)dΓ(y) (113)

which is discretized by

u+
h (xh) =

∫
Γh

G(xh,yh)ph(yh)dΓh(yh) =

Nh∑
j=1

∫
Kj

G(xh,yh)pjdKj(yh)

≈
Nh∑
j=1

(
2∑
`=1

w`G(xh,y
j
h,`))pj

(114)

Another interesting quantity is the normal derivative trace of u+ which is trivially
obtained by the relation

p = [∂nu]Γ = −∂nw = −∂nu+ − ∂nuinc

and so
∂nu

+ = −p− ∂nuinc, on Γ.

Finally, a last quantity of interest is the so-called Radar (or Sonar, echowidth) Cross
Section. This quantity describes the gain of the incident plane wave created by the
presence of the scatterer and is defined, for the two-dimensional case, by lim

r→+∞
2πr
|u+(x)|2
|uinc(x)|2 = 2π|a0(θ)|2

RCS(θ) := 10 log10(2π|a0(θ)|2)(dB) (decibels).
(115)

It can be proved that, in the far-field, the scattered field behaves like

u+(x) ≈r→+∞
eιkr√
r
a0(θ) + o(

1√
r

) (116)

in the polar coordinates system. The scattering amplitude a0 is therefore the quantity
to determine. However, in the far-field, we have

a0(θ) = eιπ/4
1√
8πk

∫
Γ

p(y)e−ιkθ·ydΓ(y) (117)

with θ = (cos θ, sin θ). This means that knowing an evaluation of p allows through
(117) to obtain an numerical estimation of a0.
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4.2 The example of the Neumann problem by using the EFIE

As for the Dirichlet problem, we follow the usual approach for numerically solving
our problem based on weak formulation with boundary element methods.

Variational formulation and boundary element approximation.

Let us consider the Neumann problem solved by the EFIE (78){
Find φ ∈ H1/2(Γ) such that
Sφ = −∂nuinc, in H−1/2(Γ).

(118)

Let us assume that we have a test-function φ′ ∈ H1/2(Γ). Then, we have to solve the
following weak formulation{

Find φ ∈ H1/2(Γ) such that ∀φ′ ∈ H1/2(Γ)
< Sφ, φ′ >H−1/2(Γ),H1/2(Γ)= − < ∂nu

inc, φ′ >H−1/2(Γ),H1/2(Γ) .
(119)

We make the assumption, for regularity reasons, that ∂nuinc ∈ H1/2(Γ). Again, by
identification of the dual product and the hermitian product and since H1/2(Γ) is a
subset of L2(Γ), our problem is now

Find φ ∈ H1/2(Γ) such that ∀φ′ ∈ H1/2(Γ)∫
Γ

∫
Γ

∂2G

∂n(x)∂n(y)
(x,y)φ(y)φ′(x)dΓ(y)dΓ(x)

= −
∫

Γ

∂nu
inc(x)φ′(x)dΓ(x)

(120)

We have seen that S is a hypersingular integral operator. By using a new weak form
of this operator based on an integration by parts, we show that we can have a weaker
singularity which is easier to compute. To this end, let us consider the following result.

Proposition 5. Let φ be a density defined over the surface Γ. The double-layer poten-
tial is defined by

Dφ(x) :=

∫
Γ

∂n(y)G(x,y)φ(y)dΓ(y), x /∈ Γ.

Then, the trace of the gradient of D satisfies the relation

∇xDϕ(x) = ±1

2
∇Γφ(x) + k2

∫
Γ

G(x,y)φ(y)n(y)dΓ(y)

−
∫

Γ

∇xG(x,y)× [∇Γφ(y)× n(y)]dΓ(y)
(121)

for x ∈ Γ.
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Hereabove, ∇Γ designates the surface gradient (of a scalar surface field). In the
two-dimensional case, we can prove that: ∇Γ = ∂s, where s is the curvilinear abscissa
along Γ. The operator ∇x is the gradient with respect to the x variable and a × b is
the usual vector product of two complex valued vector fields a and b in Rd.

We use now Proposition 5 to rewrite the formulation (120). Let us consider∇xD(x)·
n(x) on Γ

∇xD(x) · n(x) = k2

∫
Γ

G(x,y)φ(y)n(y) · n(x)dΓ(y)

−
∫

Γ

∇xG(x,y)× [∇Γφ(y)× n(y)] · n(x)dΓ(y)
(122)

for x ∈ Γ. Indeed, since ∇Γφ is in the tangent plane to Γ at the evaluation point x,
we have

∇Γφ(x) · n(x) = 0,∀x ∈ Γ.

We also have the relation∫
Γ

∇xG(x,y)× [∇Γφ(y)× n(y)] · n(x)dΓ(y)

= −
∫

Γ

∇xG(x,y)× n(x) · [∇Γφ(y)× n(y)]dΓ(y)
(123)

since we have the following vector algebra relation: (a × b) · c = −(a × c) · b, for
vectors a, b and c in Cd. Combining this equation with (120) and considering the
integration product with a test-function φ′ in H1/2(Γ) gives∫

Γ

∫
Γ

∇xG(x,y)× n(x) · [∇Γφ(y)× n(y)]φ′(x)dΓ(y)dΓ(x)

+k2

∫
Γ

∫
Γ

G(x,y)φ(y)φ′(x)n(y) · n(x)dΓ(y)dΓ(x)

= −
∫

Γ

∂nu
inc(x)φ′(x)dΓ(x).

(124)

To simplify, let us assume now that we are in the two-dimensional case. Then, we
have: a× b := a1b2 − b1a2 and

∇Γφ(y)× n(y) = ∂x1φ(y)n2(y)− ∂x2φ(y)n1(y)
= −∇Γφ(y) · τ (y) = −∂s(y)φ(y).

(125)

Hence, Eq. (123) writes∫
Γ

∫
Γ

∂s(x)G(x,y)(∂s(y)φ(y))φ′(x)dΓ(y)dΓ(x)

= −
∫

Γ

∫
Γ

G(x,y)∂s(y)φ(y)∂s(x)φ
′(x)dΓ(y)dΓ(x)

(126)

and Eq. (124) gives∫
Γ

∫
Γ

G(x,y)(∂s(y)φ(y)∂s(x)φ
′(x)− k2φ(y)φ′(x)n(y) · n(x))dΓ(y)dΓ(x)

=

∫
Γ

∂nu
inc(x)φ′(x)dΓ(x)

(127)

35



for any test-function φ′ in H1/2(Γ). In the three-dimensional case, one would obtain
(after a suitable integration by part) the following formulation

Find φ ∈ H1/2(Γ) such that ∀φ′ ∈ H1/2(Γ)∫
Γ

∫
Γ

G(x,y) {[∇Γφ(y)× n(y)] · [∇Γφ
′(x)× n(x)]

−k2(φn)(y) · (φ′n)(x)
}
dΓ(y)dΓ(x)

=

∫
Γ

∂nu
inc(x)φ′(x)dΓ(x)

(128)

Concerning the numerical approximation, the surface Γ is approximated like before
by a collection of segments: Γh = ∪Nh

j=1Kj . The main difference is that, this time,
derivatives ∂sφ arise in the formulations. Therefore, a boundary element method based
on piecewise linear elements must be used. For that reason, we introduce the following
finite element space

Vh :=
{
φ′h ∈ C0(Γh);φ

′
K := φ′h|K ∈ P1,∀K ∈ Th

}
. (129)

The degrees of freedom are the values of the surface field φh at the nodes
{
aKj
}Nh

j=1
of

the mesh Γh.
Let us introduce the usual way of defining a mesh with its connectivity tables:

(n,T,e). We define

• n: the size of this two-dimensional array is the number of nodes of the triangu-
lation times the dimension d plus 1. For ` = 1, ..., ]nodes, and j = 1, we have
the global label of the node: n(`, 1) = `, and (n(`, j))j=2,...,d+1 represents the
node aKh,` = (aKh,`,1, ..., a

K
h,`,d).

• T is a two-dimensional array which gives the triangle list with their vertices:
T(l, :) is the `-th triangle of the triangulation, 1 ≤ ` ≤ Nh, and T(`, 1) its global
number, T(`, 2 : d+ 2) the global label of its (d+ 1) vertices.

• e: is an array that provides some informations related to the edges of the trian-
gulation but that we do not use here.

Let us consider two segments K and L of Th and let us compute their contribution
during the assembly process. We have to calculate the contribution∫

K

∫
L

G(x,y)(∂s(y)φ(y)∂s(x)φ
′(x)

− k2φ(y)φ′(x)n(y) · n(x))dL(y)dK(x)
(130)

in the global linear system for two linear test-functions φ|K and φ′|L, respectively. They
can be written

φ|K = (1− sK
|K|)φ(a1

K) +
sK
|K|φ(a2

K), 1 ≤ sK ≤ |K|,

φ′|L = (1− sL
|L|)φ

′(a1
L) +

sL
|L|φ

′(a2
L), 1 ≤ sL ≤ |L|.

(131)
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Therefore, we have
φ|K(ajK) = φ(ajK), j = 1, 2,

and 
∂sφ|K =

1

|K|(φ(a2
K)− φ(a1

K)),

∂sφ
′
|L =

1

|L|(φ
′(a2

L)− φ′(a1
L)).

(132)

Furthermore, we approximate φ|L and φ′|K by their respective averages
φ|K =

φ(a1
K) + φ(a2

K)

2

φ′|L =
φ′(a1

L) + φ′(a2
L)

2

(133)

Moreover, n(x)|K = nK and n(y)|L = nL are constant on each element. Finally,
(130) is approximated by

[φ′(a1
L);φ′(a2

L)]BKL[φ(a1
K);φ(a2

K)]T (134)

where

BKL = AKL

{
1

|K||L|

(
1 −1
−1 1

)
− k2

4
nK · nL

(
1 1
1 1

)}
(135)

Here, AKL is given by

AKL :=

∫
K

∫
L

G(xh,yh)dL(yh)dK(xh) (136)

and can be computed like for the Dirichlet problem by a semi analytical quadrature
formula.

Let us consider now the right hand side. We use the following approximation∫
L

∂nu
inc(x)|Lφ

′(x)dL(x) ≈ [φ′(a1
L);φ′(a2

L)]
|L|
2
∂nL

uinc(x)|L

= [φ′(a1
L);φ′(a2

L)] · [ |L|
2
∂nL

uinc(x)|L;
|L|
2
∂nL

uinc(x)|L]

(137)

Linear system solution.

Finally, the assembly process which consists in summing all the elementary in-
tegrals over the triangulation provides the global linear system to solve. This sys-
tem is complex-valued of size Nh × Nh, symmetrical and non definite positive. It
writes down: Aφ = b and is created by the assembly procedure below for the two-
dimensional Neumann problem
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Assembly procedure

for m = 1, ..., Nh do
[m1,m2] = T(m, 2 : 3)
a1
K = n(m1, 2 : 3)

a2
K = n(m2, 2 : 3)

for ` = 1, ..., Nh do
[`1, `2] = T(`, 2 : 3)
a1
L = n(`1, 2 : 3)

a2
L = n(`2, 2 : 3)

AKL := integrate(K,L,G)
compute BKL (2× 2 elementary matrix)
for p = 1, 2 do

for q = 1, 2 do
A(T(`, p+ 1),T(m, q + 1))

= A(T(`, p+ 1),T(m, q + 1)) + AKL ∗ BKL(p, q)
end for

end for
b(T(`, p+ 1)) = b(T(`, p+ 1)) +

|L|
2
∂nu

inc(x)|L

end for
end for

Computing relevant physical quantities.

Finally, the different physical quantities can be computed by using the integral
equation representation based on the double-layer potential

u+(x) = Dφ(x), x ∈ Ω+. (138)

The surface trace of the field is obtained through the density and the far field pattern
by the relation

a0(θ) = e−ιπ/4
k√
8π

∫
Γ

φ(y)e−ιkθ·yθ · n(y)dΓ(y) (139)

4.3 Extension to other kinds of integral equations

Essentially, for the other formulations, that is the CFIE and Brakhage-Werner equa-
tions, we have to be able to approximate the trace of the double-layer potential

Dφ(x) :=

∫
Γ

∂n(y)G(x,y)φ(y)dΓ(y) (140)
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for x ∈ Γ since it can be proven that D = N T . By using (106) we have for two
segments ∫

Kj

∂nKj
(yh)G(xh,yh)dKj(yh) =

−
∫
Kj

1

2π
∂nKj

(yh) ln
1

||xh − yh||
dKj(yh)

+

∫
Kj

L(xh,yh)
yh − xh
||yh − xh||

· nKj
(yh)dKj(yh)

(141)

where L is a smooth function to integrate. Concerning the integration of the new
singularity, we have that

−
∫
Kj

1

2π
∂nKj

(yh) ln
1

||xh − yh||
dKj(yh) = − Ω

2π
,

where Ω is the solid angle previously defined.

5 Examples of numerical simulations based on integral
equations

We provide a few numerical examples for two- and three-dimensional computations.
The two-dimensional simulations have been obtained with a Matlab code based on
the methods presented in the paper. The three-dimensional simulations are provided
by Marion Darbas (Amiens University, France), Eric Darrigrand and Yvon Lafranche
(Rennes University, France) by using the freely available solver Melina++19. An-
other open source boundary element solver solver is developed by Stephen Kirkup20.
Meshing generation in two-dimensions is home made but the three-dimensional meshes
use Gmsh21 which is also a freely distributed powerful mesh generator created by
Christophe Geuzaine (Liège University, Belgium) and Jean-François Remacle (Lou-
vain University, Belgium).

5.1 Two-dimensional scattering

On the first picture of Fig. 13, we consider an exterior Dirichlet problem where the
obstacle is the square cylinder centered at the origin and with a side length equals to
2. The incident wave is characterized by a frequency k = 14 and a null-incidence.
On the second picture of Fig. 13, we consider an incident field whose wave number is
k = 20 and with a 45 deg. angle of attack for the Neumann problem. The obstacle is a
conesphere with a tip in the (Ox1)-direction. The integral equation solution is labelled
by BIEM and obtained by the EFIE formulation (the other curve corresponds to an

19Melina
20S. Kirkup’s boundary element solver
21Gmsh
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asymptotic numerical solution called OSRC that we do not develop here). On these
two figures, we can see where most of the scattering arises, according to the frequency
and shape of the scatterer (you can do draw the obstacle and try to understand the main
scattering radiation).
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Figure 13: Computation of the bistatic RCS: Case 1: a plane wave of characteristics
k = 14 and θinc = 0 deg. illuminates the unit square cylinder for a Dirichlet bound-
ary condition, Case 2: a plane wave of characteristics k = 20 and θinc = 45 deg.
illuminates a conesphere for a Neumann boundary condition.

5.2 Three-dimensional scattering

We did not develop the numerical method for the three-dimensional case. In some
way, the method is close to the two-dimensional case but at the same time much more
technical concerning the way of creating of surface mesh, integrating the singularities
and doing the assembly process. Furthermore, the full complex valued linear system
to solve is pretty big and requires the help of adapted numerical methods based on
Multilevel Fast Multipole Methods (FMM) and Krylov solvers. This is the case of
the following computations which present RCS calculations that use a generalization
of the CFIE based on asymptotic methods (the η parameter in the formulations is re-
placed by a suitable operator) solved by the GMRES and FMM. The method is there-
fore called CFIE+OSRC+FMM. If the CFIE is solved by a Gauss elimination method,
then it is called CFIE. CFIE+ FMM refers to the Krylov solution of the CFIE with
the standard parameter η given previously. All our examples concern the Neumann
problem solved by a linear boundary element method.

In the first examples presented on Figures 14 we report the RCS in the (x1, x2)-
plane for different increasing wave numbers and adapted triangular surface meshes.
The number of triangles is given at each time and provides informations on the size of
the linear system to solve. Furthermore, the Fourier series expansion, usually called
Mie series solution, is also reported for comparison purpose. We can see that high
accuracy is obtained, small oscillations appear when the high frequency regime is
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a) 2000 triangles b) 11520 triangles

c) 46080 triangles d) 184320 triangles

Figure 14: Scattering by a sphere (null incidence)

reached and small amplitude field oscillations can be observed in the shadow region.
Let us note that for the two last pictures, only the CFIE+OSRC+FMM allows to obtain
the results, the two others being too expensive or converge too slowly.

To have an idea of the CPU time that are necessary even for these performant codes
we report below the results. As you can see large computational times are generally
required even for the sphere. This clearly is harder for large wave numbers since many
degrees of freedom are necessary.

Computation costs

k Total CPU time Total CPU time Total CPU time
CFIE CFIE + SLFMM CFIE + SLFMM + OSRC

4.76 7 min 42” 13 min 2 min 42”
11.85 9 h 43 min 4 h 33 min 32 min 40”
23.7 – 214 h 6 h 20 min
47.4 – – 48 h 49 min
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Furthermore, accuracy on the surface fields is met for different norms.

Relative ‖ · ‖2 and ‖ · ‖∞ errors

CFIE CFIE + FMM CFIE + OSRC + FMM
k

4.76
11.85
23.7
47.4

‖ · ‖2 ‖ · ‖∞
6.3e-3 7.9e-3
2.5e-3 2.9e-3

– –
– –

‖ · ‖2 ‖ · ‖∞
5.5e-3 6.7e-3
3.9e-3 4.9e-3

1.67e-2 2.07e-2
– –

‖ · ‖2 ‖ · ‖∞
6.8e-3 8.2e-3
2.2e-3 2.3e-3

2.02e-2 9.3e-3
2.46e-2 4.21e-2

The second example presented on Figure 15 consists in scattering by the cube with
side lengths 2 and centered at the origin. We present two examples for two frequencies
and adapted meshes.

a) 4128 triangles b) 16930 triangles

Figure 15: Scattering by the cube [−1, 1]3, for θinc = (
√

3/2, 0, 1/2)

Finally, the last example (Figure 16) provides the RCS for scattering by a cube with
a reentrant cavity which therefore is trapping. We can see that the RCS has a very
complex structure which can be only accurately obtained by an accurate and efficient
advanced numerical method like the integral equation formulations. Let us remark
here that the mesh has been obtained by the freely available online mesh generator
Gmsh which allows powerful features concerning two- and three-dimensional surface
and volume meshes construction.

6 Conclusion

This course presented the basic notions and first implementations of integral equations
in the time harmonic regime for acoustic scattering. Challenging questions nowadays
are related to the high frequency regime where the wavelength λ is very small com-
pared to the size of the scatterer. Let us mention that these equations are then solved
by Fast Multilevel Multipole Methods which accelerate the matrix-vector products
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Z

XY

a) geometry b) RCS – mesh 6224 triangles

c) RCS – mesh 41840 triangles d) RCS – mesh 170884 triangles

Figure 16: Scattering by a cube with reentrant structure, for θinc = (
√

3/2, 0, 1/2)

and reduced the memory storage, in conjunction with preconditioned Krylov solvers.
Other questions of interest are the case of penetrable bodies, coupling procedures with
finite element methods when the obstacles are inhomogeneous, multiple scattering...
Finally, most of the developments have extensions for vectorial Maxwell’s equations
for Maxwell’s or elasticity equations. This is however very technical and out of the
scope of this introductory course.
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Masson, Paris, 1982.

[26] R. Coifman, V. Rokhlin and S. Wandzura, ”The Fast Multipole Method for the
wave equation: A pedestrian description”, IEEE Trans. on Ant. and Prop., 35(3),
(1993), pp.7-12.

[27] D. L. Colton and R. Kress, ”Integral equation methods in scattering theory”, Pure
and Applied Mathematics, John Wiley and Sons Inc., 1983.

[28] M. Costabel, Integral equation methods in scattering theory, SIAM J. Math.
Anal. 19, (1988), pp.613-626.
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formulations intégrales des problèmes de diffraction d’ondes,, PhD Thesis,
Toulouse, 2004.
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