
Introduction to Scilab for numerical simulations
CIMPA-UNESCO-MESR-MICINN-VENEZUELA 2012

Bruno Pinçon

INRIA (Corida team) and Institut Elie Cartan
Nancy University

with a little help from Jean-Paul, Séraphin, and Youcef.

April 2012

1/95

Outline

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

2/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

3/95

What is scilab ?

In few words, a free (CECILL) software which:

handles vectors and matrices very easily ;

has many mathematical/numerical functions ready to use:
linear algebra (both full and sparse), solving ODE,
optimization, etc...

comes with an easy programming language ;

has a large set of graphical features.

Scilab history:

started in 1982 at INRIA;

organized as a consortium since 2003 until June 2012;

developped by a private corporation: Scilab Enterprises (but
scilab should remain free software).

4/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

5/95

The scilab environment #1

enter any lines of scilab code in the command window
⇐⇒ write those lines in a file with the help of the
SciNotes editor and then load this file in scilab.

To load a script file in scilab:

directly from SciNotes using an item menu or the B icon;

enter “exec name of the file” in the command window.

6/95

The scilab environment #2

Scilab comes with a complete (but improvable) help:

browse the help system from the menu ?

or enter help keyword in the command window.

Exercise 1

1 Enter the following lines in the command window:

x = linspace(-%pi,%pi,11); // mesh of [-pi,pi] using 11 pts.

y = cos(x)./(1+x.^2); // (%pi is a scilab constant)

clf() // clear the (current) graphic window

plot(x,y,’b’)

2 Now write them in a file (e.g. exercise1.sce) with
SciNotes and try different methods to load it.

3 Modify your script by playing with the interval length and/or
the discretisation parameter and/or the color of the plot line
(’b’, ’g’, ’r’, ’k’, ’c’, ’m’ stand respectively for blue,
green, red, black, cyan, magenta).

7/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

8/95

Various ways to define vectors and matrices I

Define a matrix from its coefficients
The basic objects in scilab are vectors and matrices.

scalars are just 1x1 matrices

vectors are matrices with one row or one column.

To define a matrix from its coefficients:

A = [1, 2, 3; 4, 5, 6] // the character ; introduce the next row

x = [0 ; 1; 0] // a column vector

y = [exp(%pi), sin(%e)] // a row vector

Remarks:

row coefficients are separated by comma or blank;

if we end such code line with a semicolon scilab will not
display the object;

coefficients can be got from an expression;

9/95

Various ways to define vectors and matrices II

previous entered lines can be re-entered by playing with the ↑
and ↓ keyboard keys.

Define a matrix from others matrices
Same syntax works if scalars are replaced by already defined
matrices or vectors:

comma (or blank), means right concatenation and should
involve matrices with the same number of rows

semicolon, means down concatenation should involve
matrices with the same number of columns.

Try this:

B = [A ; y , 1]

C = [B, x] // C can be built directly using [[A ; y, 1],x]

10/95

Various ways to define vectors and matrices III

Some matrix/vector constructors and operators

1 linspace(a,b,n) creates a uniform mesh of [a, b] with n
points

2 zeros(m,n) and ones(m,n) build m× n matrices of 0 and 1.

3 eye(m,n) builds the m× n identity like matrix.

4 If x is a vector A=diag(x,k) builds a diagonal like matrix by
filling the k-th diagonal with the vector x.

(1,1)

(2,1)

(3,1)

(4,1)

(1,2)

(2,2)

(3,2)

(4,2)

(1,3)

(2,3)

(3,3)

(4,3)

(1,4)

(2,4)

(3,4)

(4,4)

(1,5)

(2,5)

(3,5)

(4,5)

k=2
k=1

k=0

k=−1

k=−2

lower

upper
k=3

11/95

Various ways to define vectors and matrices IV

5 if A is a matrix but not a vector diag(A,k) extracts the
diagonal number k as a column vector.

6 A*B is the matrix product of the matrices A and B (or
product between a scalar and a vector or matrix).

7 A’ performs the transposition of matrix A.

8 If A is a square invertible matrix you can solve the linear
system Ax = b using x = A\b (a PA = LU factorization of
the matrix, followed by an estimation of its condition number,
and finally by solving the 2 triangular systems, are done in a
transparent manner).

12/95

exercise 2: write a scilab script file exercise2.sce which:

1 give a value to the variable n then define the n× n matrix :

A =



2 −1 0 · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2


2 Define a vector b ∈ Rn using rand(n,1), compute the

solution of Ax = b. Compute the relative residual
‖Ax− b‖/‖b‖ using the function norm.

3 compute E = 1
2x
>Ax− b>x Define another vector y ∈ Rn

using rand, compute F = 1
2y
>Ay − b>y and verify that

E < F .

4 build the following matrix: B =

(
A In
In A

)
13/95

exercise 2: solution

n = 7;

v = -ones(1,n-1);

A = diag(v,-1) + 2*eye(n,n) + diag(v,1)

// another solution

// A = diag(v,-1) + diag(2*ones(1,n)) + diag(v,1)

b = rand(n,1);

x = A\b

res = norm(A*x-b)/norm(b)

E = 0.5*x’*A*x - b’*x

y = rand(n,1);

F = 0.5*y’*A*y - b’*y

E < F

B = [A , eye(n,n) ;...

eye(n,n), A]

14/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

15/95

Assignments and extractions I

The basic assign scilab syntax takes the form:

var name = expression

where the variable var name is created (or completly redefined if it
already exists)
Rmk: if you don’t provide the left part, i.e. with just:

expression

the result of expression is assigned to a default variable named ans.

It is possible to change only a subpart of a given matrix. Be aware
that like in usual linear algebra text math, indexing in scilab begin
at 1 and not 0:

the first element of a vector x is x(1) not x(0)

nor x[1] i.e. parenthesis are used and not brackets !

16/95

Assignments and extractions II

Try:

A = rand(3,4) // create a matrix

A(2,2) = -1 // change coef (2,2) of A

c = A(2,3) // extract coef (2,3) of A and assign it to variable c

A(2,:) // extract row 2 of A (it is assigned to ans)

A(2,:) = ones(1,4) // change row 2 of A

A(:;3) = 0 // change column 3 of A

B = A([1,3],[1 2]) // extract submat (1,3)x(1,2) and assign it to B

A([1,3],[1 2]) = [-10,-20;-30,-40] // change the same sub-matrix

The more complete assign/extraction syntaxes are:
A(row_ind,col_ind)= RHS // assign

var = A(row_ind,col_ind) // extract (and assign to var)

where you specify for each dimension a vector of indices. Useful
shortcut: the colon : stands for the complete row or column range.

17/95

Assignments and extractions III

Another very useful vector constructor In the command
window try the following expressions:

I = 1:5

J = 1:2:6 // try also J = 1:2:7 which give the same vector

K = 10:-1:5

II = 1:0 // this create an empty matrix

The syntax is init val:inc:lim and this builds a row vector with
init val as the first coefficient, the others components being
obtained from the previous one by adding it inc until lim is not
overtaken. Remarks:

if inc is not given it is assumed to be 1;

when inc is positive and init_val > lim or when inc is
negative and init_val < lim the resulting vector is an
empty matrix.

This kind of vector will be useful for extraction and/or assignment
of matrices and for loop control.

18/95

exercise 3

1 Copy-paste your previous script exercise2.sce in a new file
exercise3.sce and use a small value for n (e.g. n = 5)
(Rmk: we need only the part of the code which defines A and
B: you can remove unuseful lines of code).

2 Continue the script by creating the following new matrices:
1 C such that Ci,j = Ai,n+1−j i.e. by reversing the column

order of A;
2 D such that Ci,j = A2i−1,j i.e. taking one row over two of

matrix A;
3 E the matrix formed by the B submatrix of rows and columns
n− 2, n− 1, n, n+ 1, n+ 2, n+ 3.

19/95

exercise 3: solution

n = 5;

v = -ones(1,n-1);

A = diag(v,-1) + 2*eye(n,n) + diag(v,1)

B = [A , eye(n,n) ;...

eye(n,n), A]

C = A(:,n:-1:1)

D = A(1:2:n,:)

E = B(n-2:n+3,n-2:n+3)

20/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

21/95

The component-wise algebra and the plot function I

3 useful operators .*, ./ and .^ :

1 x and y matrices with the same dimensions:

z=x.*y is the component-wise product, i.e. zi,j = xi,jyi,j
z=x./y is the component-wise division, i.e. zi,j = xi,j/yi,j .
Useful shortcut: if s is a scalar, z=s./y gives zi,j = s/yi,j but
z=1./y doesn’t work as expected ! (use z=1 ./y).

2 x matrix and p scalar:

z=x.^p is the component-wise power: zi,j = xpi,j .
and =p.^x, gives zi,j = pxi,j .

The plot function can be used to draw one or several curves:

plot(x1,y1[,style1],x2,y2[,style2],)

with style is an optional string to define color, line type, or
symbol. strings in scilab are delimited by simple or double quote.

22/95

The component-wise algebra and the plot function II

x = linspace(0,2*%pi,31);

y1 = sin(x); y2 = cos(x);

scf(0); // select graphic window 0 to be the default graphic window

clf(); // clear the graphic window

plot(x,y1,"b-",x,y2,"r--"); // only lines

scf(1); // select graphic window 1 to be the default graphic window

clf(); // clear the graphic window

subplot(2,1,1); // split the graphic window and use subpart 1

plot(x,y1,"ro",x,y2,"bx"); // only symbols

subplot(2,1,2); // split the graphic window and use subpart 2

plot(x,y1,"r--o",x,y2,"g-x"); // both lines and symbols

colors

k black c cyan
b blue m magenta
r red y yellow
g green w white

line types

- solid
-- dashed
: dotted
-. dashdot

symbols

+ + d ♦
x × v O
o © s �
* ∗ ^ 4

23/95

The component-wise algebra and the plot function III

playing with several graphic windows
scf(num) select window num as current graphic window

show window() raise current graphic window

clf() clear current graphic window

xdel(num) delete the graphic window num

Graphic annotations:

a title with title(string title).

x and y labels with xlabel(string xlabel) and
ylabel(string ylabel)

a legend for the curves with legend(curve1 leg,

curve2 leg)

latex math notation is available by enclosing the string
between $

24/95

exercise 4 I

1 In graphic window 0, draw f(x) = 1
1+x2 in blue on [−4, 4] and

g(x) = cos(πx)e−|x| in red on [−5, 5]. Hint: the absolute
value function is abs. Example of use of latex for the legend:

legend(’$\frac{1}{1+x^2}$’, ’$\cos(\pi x) e^{-|x|}$’);

hleg = gce(); hleg.font_size=4;

2 In graphic window 1, draw x2 + y2 = 1 and
(x/2)2 + (y/0.9)2 = 1. Add a legend. For an isometric scale
play with graphic handles like this:

haxes = gca(); // get identifier of current axes system

haxes.isoview = "on"; // was "off" by default

25/95

exercise 4: solution I

// curves 1 and 2 in graphic window 0

x1 = linspace(-4,4,101);

y1 = 1 ./(1+x1.^2);

x2 = linspace(-5,5,101);

y2 = cos(%pi*x2).*exp(-abs(x2));

scf(0);

clf();

plot(x1,y1,’b’,x2,y2,’r’);

legend(’$\frac{1}{1+x^2}$’, ’$\cos(\pi x) e^{-|x|}$’);

hleg = gce(); hleg.font_size=4;

title("some curves","FontSize",5);

26/95

exercise 4: solution II

// circle and ellipse in graphic window 1

theta = linspace(0,2*%pi,200);

x3 = cos(theta);

y3 = sin(theta);

x4 = 2*cos(theta);

y4 = 0.9*sin(theta);

scf(1);

clf();

plot(x3,y3,’b’,x4,y4,’r’)

legend(’circle’, ’ellipse’)

hleg = gce(); hleg.font_size=3;

haxes = gca();

haxes.isoview = "on";

27/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

28/95

Programming tools I

functions
In scilab a function definition takes the form:

function [y1,y2,...,yn] = function_name(x1,x2,..xm)

// the body of the function define the output arguments y1,...,yn

// in function of the input arguments x1,...,xm

.............

endfunction

Such a definition can be written in a script (before the part of the
script which uses it) or better in another file (with a name
traditionaly ending with .sci). You can write any number of
functions in a file. In this case you have to load the file in scilab
before we can use them.

29/95

Programming tools II

An example (write it with SciNotes in a file e.g. quad.sci):

function [x1,x2] = solve_quad(a,b,c)

// solve a x^2 + b x + c = 0

delta = b^2 - 4*a*c

x1 = (-b + sqrt(delta))/(2*a);

x2 = (-b - sqrt(delta))/(2*a);

endfunction

Now load the file (with one of methods seen previously) and try in
the command window:

[r1,r2] = solve_quad(1,0,1) // scilab use complex arithmetic as well !

[r1,r2] = solve_quad(0,1,1) // not a quadratic equation

[r1,r2] = solve_quad(0,1,1) // not a quadratic equation

solve_quad(1,0,-1) // ans stores the first result

// but second root is lost !

[r1,r2] = solve_quad(1,0,-1) // now get the 2 roots

30/95

Programming tools III

if tests
They permit to execute different blocks of code depending on
boolean expressions:

if bool_expression then

// block executed when bool_expression is TRUE

.....

else

// block executed when bool_expression is FALSE

.....

end

Example:

x = rand()

if x < 0.5 then

y = -1;

else

y = 1;

end

31/95

Programming tools IV

for loop
One general form is:

for i = row_vector

// body of the loop

.....

end

the number of iterations equal the number of components of
the row vector

at iteration k the loop variable i is equal to row_vector(k).

Very often the row vector is of the form first val:inc:lim.

Try:

n = 5; fact_n = 1;

for i = 1:n, fact_n = i*fact_n, end

32/95

Programming tools V

It is possible to exit prematurely a for loop using the break

statement:

for i = 1:n

.....

if special_condition_test then, break, end // may be add a message!

....

end

while loop
A while loop allows to repeat a block of code while a boolean
expression is true:

while bool_expression

// block

....

end

33/95

Programming tools VI

Try:

x = 1;

while x < 1000, x = 2*x, end

It is also possible to exit prematurely a while loop with the break

statement.

34/95

Problem 1 I

Find a function u : [0, 1]→ R, solution of:{
−u′′(x) + c(x)u(x) = f(x), x ∈ (0, 1)
u(0) = ul, u(1) = ur

where ul, ur and the functions f and c are given. The problem can
be solved approximately by a finite difference method:

n being given, discretize the interval [0, 1] by a regular mesh
using n intervals: xi = ih, i = 0, . . . , n with h = 1/n;

“solve” the equation only on the internal mesh points:

−u′′(xi) + c(xi)u(xi) = f(xi), i = 1, . . . , n− 1

35/95

Problem 1 II

use the following development for the second derivative:

u′′(xi) =
u(xi−1)− 2u(xi) + u(xi+1)

h2
+O(h2)

(valid if u is smooth enough), so that the previous equation
reads:

−u(xi−1)+2u(xi)−u(xi+1)
h2 +O(h2) + c(xi)u(xi) = f(xi)

i = 1, . . . , n− 1

finally neglect the O(h2) term: noting Ui ' u(xi) we get the
equations:

−Ui−1 + (2 + h2c(xi))Ui − Ui+1

h2
= f(xi), i = 1, . . . , n− 1

36/95

Problem 1 III

This is a linear system AU = F with n− 1 equations and
n− 1 unknowns (as U0 = ul and Un = ur are given).
Denoting Ci = c(xi) and Fi = f(xi), A and F read:

A =



2 + h2C1 −1 0 · · · 0

−1
. . . 2 + h2C2

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 + h2Cn−2 −1
0 · · · 0 −1 2 + h2Cn−1


and:

F = [h2F1 + ul, h
2F2, . . . , h

2Fn−2, h
2Fn−1 + ur]

>

U = [U1, U2, . . . , Un−1]
>

37/95

Problem 1 IV

We will use the following datas:

c(x) = 2π4x2,
f(x) = 6π2x(sin(y) + y cos(y)), with y = (πx)2,
ul = 0,
ur = cos(π2)

which correspond to the exact solution u(x) = x cos(y) (with
y = (πx)2).

To solve the approximate problem with scilab you can organize the
code in 2 files, one, e.g. problem1.sci (use the provided
skeleton) to write the various needed scilab functions, and another,
e.g. problem1.sce, to write the top level script.

38/95

Problem 1 V

1 Write the 3 functions corresponding to c, f and the exact
solution (name them c_func1, f_func1 and u_exact1 for
instance). Code them using .* and .^ operators.

2 Write a function with header
function [A,F,h,x] = set_bvp(n,ul,ur,c,f) which,
from the input parameters:

number of intervals n,
the left and right boundary conditions ul and ur
and the two functions c and f .

builds the matrix A, the right hand side F and also outputs
the mesh size h = 1/n and the mesh points xi, i = 0, . . . , n.
Rmk: a scilab function is also a kind of scilab variable and
can be passed as an argument to another function. When you
will call set bvp in the top level script, you will have to put
the real function names, here c func1 and f func1

corresponding to our specific problem.

39/95

Problem 1 VI

Hint: to build the main part of the right hand side F easily,
you will need to transpose the mesh points got with
linspace:

h = 1/n;

x = linspace(0,1,n+1)’;

xi = x(2:n); // internal mesh points

F = h^2*f(xi); // main part of F

3 Finally write the top level script, which should give a value to
n, set the boundary conditions, call your set_bvp scilab
function, solve the linear system, and plot the approximate
and the exact solutions. Try several values for n (e.g.
n = 10, 20, 40, 80).

40/95

Problem 1: solution (functions file)

function y = u_exact(x)

y = x.*cos((%pi*x).^2);

endfunction

function y = c_func(x)

y = 2*%pi^4*x.^2;

endfunction

function y = f_func(x)

pix2 = (%pi*x).^2

y = 6*%pi^2*x.*(sin(pix2)+pix2.*cos(pix2));

endfunction

function [A,F,h,x] = set_bvp(n,ul,ur,c,f)

x = linspace(0,1,n+1)’;

xx = x(2:n); // internal points

h = 1/n;

sd = -ones(n-2,1);

d = 2*ones(n-1,1) + h^2*c(xx);

A = diag(sd,-1) + diag(d) + diag(sd,1);

F = h^2 * f(xx);

F(1) = F(1) + ul; F(n-1) = F(n-1)+ ur;

endfunction

41/95

Problem 1: solution (top level script)

n = 20;

ul = u_exact(0);

ur = u_exact(1);

[A,F,h,x] = set_bvp(n,ul,ur,c_func,f_func);

U = A\F; // solve linear system

UU = [ul;U;ur];

uu = u_exact(x);

// plot

clf();

plot(xx,uu,’b’,xx,UU,’r’);

legend(’exact sol’,’approx sol’);

42/95

Problem 1 bis I

The error between the exact solution and the approximate verifies:

E(h) := max
1≤i≤n−1

|Ui − u(xi)| ≤ Ch2

and in most cases E(h) ∼ Ch2. Write another script file to
compute (and recover) the convergence rate numerically. To this
aim define a vector of “n” for instance:

n = [10, 20, 40, 80, 160, 320, 640];

then compute for each value nk (so for each mesh X (k), and
hk = 1/nk):

the vector U (k) (the approximate solution)

the associated error E(hk) = max1≤i≤nk−1 |U
(k)
i − u(x

(k)
i)|

43/95

Problem 1 bis II

then plot the errors E(hk) as function of the mesh sizes hk in
loglog scale. When E(h) ∼ Ch2, for h small enough we have
E(h) ' Ch2 and: log(E(h)) ' log(C) + 2 log(h) so a line (with
slope 2) should appear. Hints:

when vector n is defined, K = size(n,"*") gives its number
of components;

initialize the vectors which will contain mesh sizes hk and
errors E(hk) using zeros.

use a for loop

norm(x , "inf") compute infinite norm

to get a log-log plot with scilab, you have to play with the
axes handle this way:

plot(h,E,’bo’);

haxes = gca();

haxes.log_flags="ll"; // by default it is "nn"

44/95

Problem 1 bis: solution

ul = u_exact(0); ur = u_exact(1);

n = [10, 20, 40, 80, 160, 320, 640];

K = size(n,"*");

E = zeros(1,K); hh = zeros(1,K);

for k = 1:K

[A,F,h,x] = set_bvp(n(k),ul,ur,c_func,f_func);

U = A\F;

uu = u_exact(x(2:n(k)));

E(k) = norm(U - uu,"inf");

hh(k) = h;

end

clf()

plot(hh,E,’b-o’);

haxes = gca(); haxes.log_flags="ll";

E./hh.^2

diff(log(E))./diff(log(hh))

45/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

46/95

Solving an ordinary differential equation I

Scilab has a powerful primitive to solve ode:{
u′ = f(t, u)
u(t0) = u0

where: u(t) ∈ Rn, f : R× Rn → Rn, and u0 ∈ Rn is the inital
condition and we look for the solution u(t) on some interval [t0, T].
Solving an ode is quite easy with scilab:

1 write the function f as a scilab function;

2 select the time steps tk you want to get the (approximate)
solution vectors u(tk),

3 define the vector of initial condition

4 then call u=ode(u0, t0, t, rhs_function)

47/95

Solving an ordinary differential equation II

Here is a complete example to solve the Van der Pol equation:

y′′ = c(1− y2)y′ − y, y(0) = y0, y
′(0) = y1

which is a second order differential equation. First we reformulate
it as a first order differential system, denoting u1(t) = y(t) et
u2(t) = y′(t) we get:

d

dt

[
u1(t)
u2(t)

]
=

[
u2(t)
c(1− u21(t))u2(t)− u1(t)

]
First step is to write the rhs function as a scilab function:

function [f] = VanDerPol(t,u)

// right hand side fct for Van der Pol equation (we use c = 0.4)

f = [u(2) ;

0.4*(1 - u(1)^2)*u(2) - u(1)]

endfunction

48/95

Solving an ordinary differential equation III

Then a small script take the form (try it):

T = 30 ; // we compute solution from 0 to 30

t = linspace(0,T,500); // time instants at which we want the solution

u0 = [-2.5 ; 2.5]; // initial condition vector

u = ode(u0, 0, t, VanDerPol); // ode call

clf();

plot(u(1,:),u(2,:),’b’) // plot the solution in the phase space

haxes = gca(); haxes.isoview = "on"; // set iso scale

The ode primitive has many options, in particular it is possible to
use different integration methods and to precise the error tolerance
for each time step, etc. . .

49/95

Exercise 5 I

Here, as well as the ode function, we will see the xclick function
which allows to get the current mouse position. We will use it
to choose any new starting point we want, by clicking a choosen
position in the phase plane. Just after the click we will solve the
Van Der Pol equation from the new initial condition and display
the associated trajectory in the phase plane.
[c i,c x,c y]=xclick(); returns the three following informations:

the button number c_i which have been used: 0 for left, 1 for
middle and 2 for right button;

c_x and c_y which are the mouse coordinates in the current
scale.

Your task is to understand the following script and to complete it
(exercise5.sce).

50/95

Exercise 5 II

// set scale of the plot

xmin = -6; xmax = +6; ymin = -4; ymax = 4;

clf();

show_window();

haxes = gca();

haxes.data_bounds = [xmin,ymin;xmax,ymax];

haxes.isoview = "on";

title(["Van Der Pol: left click to select u0";

" right click to quit";

"click should be somewhat longer enough"]);

plot(xmin,ymin); // a plot to set tics easily

// define the instant times

T = 30;

t = linspace(0,T,500);

colors = ["k", "b", "r", "g", "c", "m", "y"];

current_color_num = 1;

while %t

[c_i,c_x,c_y]=xclick();

51/95

Exercise 5 III

if c_i == 0 then // left bouton has been clicked

u0 = [c_x;c_y]; // the new initial condition

// draw a symbol (for instance a square)

plot(c_x,c_y,"s"+colors(current_color_num))

// then solve using ode

.... // to complete

// then plot the new trajectory

.... // to complete

// update current_color_num

.... // to complete

elseif c_i == 2 then // right mouse button has been clicked

// => exit the while loop

break

end

end

52/95

Exercise 5: solution

// then solve using ode

u = ode(u0, 0, t, VanDerPol);

// then plot the new trajectory

plot(u(1,:),u(2,:),colors(current_color_num));

// update current_color_num

current_color_num = modulo(current_color_num,7)+1;

53/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

54/95

More about graphics I

The graphic object system

Legend

Compound

Polyline

Polyline

(string)Text
Polyline

(string)Text

Surface

(coordinates sys.)

(coordinates sys.)

(window)
Axes

Axes

Figure

“Figure” level is top level of a graphic hierarchy; the handle of
a figure is retrieved with: hf = gcf();

55/95

More about graphics II

“Axes” level: “coordinates + subpart of a graphic window”;
the handle of the current “Axes” is got with: ha = gca();

ha = gca();

ha.data_bounds = [xmin,ymin;xmax,ymax]; // set the visu rectangle

ha.isoview = "on"|"off"; // set/unset isoscale

ha.log_flags="nn"|"nl"|"ln"|"ll"; // set logscale or not

Last level is composed by basic graphic entities such
“Polyline”, “Surface”, “Text”, “Legend”, etc... or by
“Compound”, which encapsulates several basic graphic
entities (and other “Compounds”). For instance plot gathers
the curves (i.e. “Polylines”) in a “Compound” object. To get
the handle of any basic graphic object: he = gce() just after
the drawing function.

56/95

More about graphics III

An example:

clf();

x = linspace(0,2*%pi,81);

y1 = cos(x);

y2 = sin(x);

plot(x,y1,"b",x,y2,"r"); // plot cos in blue and sine in red

he = gce(); // the handle of the compound created by plot

hsin = he.children(1); // handle of the second curve (inverse order !)

// a few properties of a polyline object

hsin.thickness = 4; // the sine in red with a thicker line

hsin.foreground = 6; // we change color (colors indices on a colormap)

//

hcos = he.children(2); // handle onto the cos curve (inverse order !)

hcos.line_style = 2; // we get now a dashed line

57/95

More about graphics IV

How make a simple animation with scilab

The double buffering technique consists in “computing”
first the picture to be displayed in memory (pixmap) then
send it to the screen.

In scilab it works like this:

f = gcf(); // get the handle of the current graphic window

f.pixmap = "on"; // set the graphic window in double buffer mode

for i=1:nb_pictures // a loop on all the pictures (the movie)

clf() // clear previous graphic objects

.......

....... // build the i th picture in the pixmap

.......

show_pixmap() // send the pixmap to the screen

end

f.pixmap = "off"; // reset the graphic window in the usual mode

58/95

More about graphics V

Or better like this:

clf();

show_window() // raise the current graphic window

f = gcf(); // handle of the current graphic window

........... // build first plot (in usual mode)

e1 = // handle of the moving basic graphic entities

e2 = // (here e1 et e2)

xclick() // an xclick to launch the animation

// (put a warning using the title of the plot)

f.pixmap = "on"; // set the graphic window in double buffer

for i=2:nb_pictures

e1.data = // modify datas of graphic object e1

e2.data = // modify datas of graphic object e2

show_pixmap() // send to the screen

end

f.pixmap = "off"; // reset the graphic window in usual mode

59/95

Problem 2: the wave equation I

The 1d space wave equation with initial and boundary conditions:
utt = cuxx, x ∈ (0, 1), t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, 1),
u(0, t) = ul, u(1, t) = ur, t > 0.

solved (approximatively) from t = 0 until t = T > 0 using another
simple finite difference based on:

utt(xi, tj) =
u(xi, tj−1)− 2u(xi, tj) + u(xi, tj+1)

∆t2
+O(∆t2)

uxx(xi, tj) =
u(xi−1, tj)− 2u(xi, tj) + u(xi+1, tj)

∆x2
+O(∆x2)

We discretize:

[0, 1] into n intervals, set ∆x = 1/n, xi = i∆x, i = 0, . . . n;

60/95

Problem 2: the wave equation II

[0, T] into m intervals, set ∆t = T/m,
tj = j∆t, j = 0, . . . ,m.

If we write the equation in (xi, tj) and drop the O(∆t2) and
O(∆x2) we get:

Ui,j−1 − 2Ui,j + Ui,j+1

∆t2
= c

Ui−1,j − 2Ui,j + Ui+1,j

∆x2
, i = 1, . . . , n−1, j ≥ 1

where Ui,j is thought to be an approximation of u(xi, tj). If we
denote α = c(∆t/∆x)2 the last expression reads:

Ui,j+1 = (αUi−1,j + 2(1− α)Ui,j + αUi+1,j)−Ui,j−1, i = 1, . . . , n−1, j ≥ 1

So the scheme works if we know the time level j and j − 1. At
starting time we have Ui,0 = u0(xi), and the level 1 is defined by
the approximation:

Ui,1 = u0(xi) + ∆tu1(xi), i = 1, . . . , n− 1
61/95

Problem 2: the wave equation III

It can be proved that this explicit scheme is second order
accurate both in time and space under the stability condition:

∆t ≤ ∆x√
c

If we denote U (j) = [U0,j , U1,j , . . . , Un,j]
>, the scheme can be

written:

U (j+1) = AU (j) +BU (j−1), j = 2, . . . ,m− 1

with matrices (n+ 1)× (n+ 1):

A =



1 0 · · · · · · · · · 0
α 2(1− α) α 0 · · · 0

0 α 2(1− α) α
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 α 2(1− α) α
0 · · · · · · 0 0 1


62/95

Problem 2: the wave equation IV

and:

B =



0 0 · · · · · · · · · 0
0 −1 0 · · · · · · 0

0 0 −1 0
. . .

...
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 −1 0
0 · · · · · · 0 0 0


and with:

U (0) = [u0(0), u0(x1), . . . , u0(xn−1), u0(1)]>

U (1) = U (0) + ∆t[u1(0), u1(x1), . . . , u1(xn−1), u1(1))]>

For our simulation we will use the following datas: ul = 0, ur = 0,
u0(x) = e−(12∗(x−0.5))

2
and u1(x) = 0 (0 < x < 1) and a velocity

of c = 1.

63/95

Problem 2: the wave equation V

The scilab programming task can be organized with two files:

One file, problem2.sci with the two following functions:

function [u0,u1] = condinit(x)

// initial conditions (this function is complete)

u0 = exp(-(12*(x-0.5)).^2);

u1 = zeros(x); // build a zero matrix of same size than x

endfunction

function [A,B] = mat_wave(n,dt,c)

// compute the two matrices A and B

dx = 1/n;

alpha = c*(dt/dx)^2;

// to complete

..............

// once A and B are formed:

A = sparse(A); B = sparse(B);

endfunction

64/95

Problem 2: the wave equation VI

Another file, problem2.sce, which will be our top level script.
After some initializations, it computes and stores all the
solution in the array U of size (n+ 1)× (m+ 1) (your task)
then does the animation. Here is a nearly complete script.

ul = 0; ur = 0; // boundary conditions

c = 1; // velocity

T = 4; // final integration time

n = 50; // space discretization

x = linspace(0,1,n+1)’; // space mesh

dx = 1/n; // space step size

dt = dx/sqrt(c); // we use the max possible time step

[u0,u1] = condinit(x);

[A,B] = mat_wave(n,dt,c);

// reserve memory

m = floor(T/dt);

65/95

Problem 2: the wave equation VII

U = zeros(n+1,m+1);

// set the two first time level

U(:,1) = u0;

U(:,2) = u0+dt*u1;

// compute other time level with the recurrence relation

for j=3:m+1

........ // to complete

end

// animation

f = gcf(); // get "Figure" handle

clf(); // clean the window

show_window(); // raise it

drawlater(); //

plot(x,U(:,1),"b");

title("Click to start the animation");

e = gce(); e = e.children(1); // get the handle of the curve

e.thickness = 3; // modify its thickness

66/95

Problem 2: the wave equation VIII

a = gca(); // get the Axes handle

a.data_bounds = [0,-1;1,1]; // set the visualisation rectangle for all the simulation

drawnow(); // draw the first picture

xclick(); // wait for user click to start the animation

f.pixmap = "on";

for j=2:m

e.data = [x,U(:,j)]; // modify data of graphic object e

show_pixmap() // send pixmap to screen

end

f.pixmap = "off";

When it will work, change the n parameter to see that the scheme
becomes more accurate as n becomes bigger (try n = 100 then
n = 200, for this last version we see no visible difference between
the first and last picture of the movie). You can also try a value of
∆t slightly upper the stability limit to see that the numerical
solution becomes quickly completly false.

67/95

Problem 2: solution

function [A,B] = mat_wave(n,dt,c)

dx = 1/n;

alpha = c*(dt/dx)^2;

D = [1,2*(1-alpha)*ones(1,n-1),1];

subD = [alpha*ones(1,n-1),0];

uppD = [0,alpha*ones(1,n-1)];

A = diag(D)+diag(subD,-1)+diag(uppD,1)

B = -diag([0,ones(1,n-1),0])

A = sparse(A);

B = sparse(B);

endfunction

// compute

for j=3:m+1

U(:,j) = A*U(:,j-1) + B*U(:,j-2);

end

68/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

69/95

Sparse matrices in scilab I

Howto build sparse matrices

initialize a matrix with spzeros then build it by assigning
coefficients or small (full or sparse) submatrices:

A = spzeros(4,4) // create a sparse 6x6 matrix

A(1,1) = 3

A(2,2)= -1

A(3:4,3:4) = [2,-1;-1,2] // assign a submatrix (with a full one)

full(A) // convert to full matrix (for display)

we can build the matrix as a full and use A = sparse(A). . .

a better way is to use the sparse function from the list of non
zeros coefficients which are provided to the function by 2
arrays (plus the dimensions):

A = sparse(ij, val, matrix_dims)

with:

ij a nb elems× 2 array
val nb elems× 1 array

70/95

Sparse matrices in scilab II

each row of ij gives a row and column indices of a coefficient,
its value being given by the corresponding row of the val.
Here is the same example than our first:

ij = [1,1; 2,2; 3,3; 3,4; 4,3; 4,4];

val = [3;-1;2;-1;-1;2];

B = sparse(ij,val,[4,4])

full(B) // for display purpose

The sparse function has a curious but useful feature: in case
you define several same (i, j) couples of row, column indices,
then the corresponding values are added. This is useful for
building fastly matrices arising in the finite element method.

As it can be cumbersome to define sparse matrix here is a function
to build easily some sparse matrices by filling given diagonals:

71/95

Sparse matrices in scilab III

function A = my_spdiags(dims,varargin)

// usage: (each val_diags could be a scalar)

// A = my_spdiags([m,n], num_diag1, val_diag1, num_diag2, val_diag2,...)

m = dims(1); n = dims(2);

M = length(varargin)

if modulo(M,2) ~= 0 then, error("bad entries..."), end

nd = M/2; // number of provided diagonals

ij = []; val = []; // init ij and val arrays

for i = 1:2:M-1 // loop onto the provided diagonals

k = varargin(i); // diagonal number

values = varargin(i+1); // corresponding values

if k < -(m-1) | k > (n-1) then

error(msprintf("argument %d is not a good diag number",i+1))

end

if k >= 0 then

nbelem = min(m,n-k); i = (1:nbelem)’; j = i+k;

else

nbelem = min(m+k,n); j = (1:nbelem)’; i = j-k;

end

72/95

Sparse matrices in scilab IV

nv = length(values)

if nv==1 then

values = values*ones(nbelem,1);

elseif nv == nbelem then

values = values(:)

else

error(msprintf("argument %d has not the good size",i+2));

end

ij = [ij;[i,j]]; val = [val;values];

end

A = sparse(ij,val,dims)

endfunction

For instance 1d laplacian matrix (problem 1) is got using:

A = my_spdiags([5,5], -1,-1, 0,2, 1,-1)

full(A) // for purpose display

73/95

Sparse matrices in scilab V

Solving sparse linear systems
The backslash operator is also available for sparse matrix, i.e.
x = A\b; works if A is a square invertible sparse matrix. But it
relies on a old sparse code outperformed by more modern ones.
But two good sparse solvers are available within scilab. Here is
how they work:

x = umfpack(A,"\",b); // replace A\b

LUptr = umf_lufact(A); // create an LU factorization

x = umf_lusolve(LUptr, b); // solve Ax=b with the factorization

x = umf_lusolve(LUptr, b, A); // the same with iterative refinement

umf_ludel(LUptr); // destroy the factorization

Cptr = taucs_chfact(A); // create a Cholesky factorization

x = taucs_chsolve(Cptr, b); // solve Ax=b with the factorization

x = taucs_chsolve(Cptr, b, A);// the same with iterative refinement

taucs_chdel(Cptr); // destroy the factorization

74/95

Problem 3 I

To test the various scilab solvers, we are going to solve the
Poisson equation on the unit square:{

−∆u(x, y) = f(x, y) (x, y) ∈ Ω =]0, 1[×]0, 1[
u(x, y) = 0 (x, y) ∈ ∂Ω

by a finite difference method always based on:

∂2u

∂x2
(x, y) =

u(x− h, y)− 2u(x, y) + u(x+ h, y)

h2
+O(h2)

∂2u

∂y2
(x, y) =

u(x, y − h)− 2u(x, y) + u(x, y + h)

h2
+O(h2)

with h the space step (we use the same h both in “x” and “y”).
So:

−∆u(x, y) = −u(x−h,y)−u(x,y−h)+4u(x,y)−u(x+h,y)−u(x,y+h)
h2

+O(h2)
75/95

Problem 3 II

Given a number of intervals n:

we define h = 1/n and a grid of points:
(xi, yj) = (ih, jh), (i, j) ∈ J0, nK× J0, nK.

and write the equation at each internal point of the grid, i.e.
at (xi, yj) with (i, j) ∈ J1, n− 1K× J1, n− 1K:

−∆u(xi, yj) = f(xi, yj) ⇐⇒
−ui−1,j−ui,j−1+4ui,j−ui+1,j−ui,j+1

h2 +O(h2) = fi,j

(we denote ui,j = u(xi, yj) and fi,j = f(xi, yj)).

as usual we drop the O(h2) term, this leads to the following
(n− 1)2 equations :

−Ui−1,j − Ui,j−1 + 4Ui,j − Ui+1,j − Ui,j+1

h2
= fi,j (i, j) ∈ J1, n−1K×J1, n−1K

where the quantities Ui,j are thought to be approximations of
the ui,j .

76/95

Problem 3 III

Due to the Dirichlet boundary condition the Ui,j are known when
i = 0 or j = 0 so that we have (n− 1)2 unknowns and (n− 1)2

equations, i.e. this is a linear system of the form AU = F with the
vector U gathering all the unknowns Ui,j , i.e. for
(i, j) ∈ J1, n− 1K× J1, n− 1K. When the function f is smooth
enough one can prove that:

max
i,j
|Ui,j − ui,j | = O(h2).

Moreover the matrix A is symetric positive definite.

77/95

Problem 3 IV

To obtain a precise matrix we have to choose an ordering for
unknowns and equations, we will choose:

k = i+ (n− 1)(j − 1), (i, j) ∈ J1, n− 1K× J1, n− 1K

illustrated by this figure:

0 1 2 n
i

0

1

2

n

j

•1 •2 •n− 1
•n •n+ 1 •

2(n− 1)

•
(n− 1)2

78/95

Problem 3 V

With this order the matrix A has the following structure:

A =
1

h2



B −I 0 0

−I B −I 0 . . . 0

0 −I B −I . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 −I B −I
0 0 −I B


, B =



4 −1 0 . . . 0

−1 4 −1 0
...

0
. . .

. . .
. . . 0

...
. . . −1 4 −1

0 . . . 0 −1 4


with (n− 1)× (n− 1) blocks, each of dims (n− 1)× (n− 1). A

closer look shows that the matrix h2A is formed with 5 diagonals:

the main diagonal filled with 4,

the diagonals numbers −n+ 1 and n− 1 filled with −1,

79/95

Problem 3 VI

and the diagonals −1 and 1 being filled with the vector:

[−1,−1, . . . ,−1︸ ︷︷ ︸
n−2

, 0,−1,−1, . . . ,−1︸ ︷︷ ︸
n−2

, . . . , 0,−1,−1, . . . ,−1︸ ︷︷ ︸
n−2

]

i.e. the n− 1 blocks [−1,−1, . . . ,−1︸ ︷︷ ︸
n−2

] are interleaved by a 0.

This matrix will be easy to build with the my_spdiags function
(once the previous vector built). As function f try:

f(x, y) = 32(x(1− x) + y(1− y))

In this case the exact solution is:

u(x, y) = 16x(1− x)y(1− y)

This problem is particular because the finite difference method is
exact (up to floating point errors. . .).

80/95

Problem 3 VII

The scilab coding part could be done again using 2 files:

1 problem3.sci with the functions for the exact solution, the
f function, the matrix A and a function to get the internal
mesh points in the good order ; in this file your task is to
complete the function which build the matrix A.

2 a top level script (problem3.sce) to complete:

n = 20;

h = 1/n;

[X,Y] = internal_points(n);

F = h^2*test1_lap2d(X,Y);

A = mat_laplacian2d(n);

Ue = test1_solexact(X,Y);

// solve the linear system (try /, umfpack and taucs)

// to be completed here

...........

// compare approx and exact sols

err = norm(U-Ue,"inf")

81/95

Problem 3 VIII

To compare the 3 solvers you can measure the time they spent
in computation, using tic() and toc() functions like this:

tic(); U = A\F; t_bs = toc(); // computing time for \

Try from n = 20 until n = 300 for instance. Possible others
solvers: conjugate gradient (see help pcg), gmres (see help

gmres) but for pde’s in 2 space dimensions, direct
(modern) sparse solvers are really efficient.

82/95

Problem3 : solution I

function A = mat_laplacian2d(n)

v = -ones(1,n-2);

w = v;

for k = 1:n-2, w = [w,0,v]; end

m = (n-1)^2;

A = my_spdiags([m,m], 0,4, -1,w, 1,w, n-1,-1, -n+1,-1);

endfunction

// solve the linear system (try /, umfpack and taucs)

tic(); U1 = A\F; t_bs = toc()

tic(); U2 = umfpack(A,"\",F); t_um = toc()

tic(); Cptr=taucs_chfact(A); U3 = taucs_chsolve(Cptr,F,A);

taucs_chdel(Cptr); t_tcs = toc()

// compare approx and exact sols

err1 = norm(U1-Ue,"inf")

err2 = norm(U2-Ue,"inf")

err3 = norm(U3-Ue,"inf")

83/95

1 What is scilab

2 The scilab environment

3 Various ways to define vectors and matrices

4 Assignments and extractions

5 Component-wise algebra and plot function

6 Programming tools

7 Solving an ordinary differential equation

8 More about graphics - animations with scilab

9 Sparse matrices in scilab

10 Other graphics (contour2d, plot3d, etc. . .)

84/95

Other graphics (contour2d, plot3d, etc. . .) I

Contour lines
To draw contour lines of a function defined on a rectangle, one
could use the contour2d function whom basic usage is:

contour2d(x,y,Z,selected_levels)

x and y, 2 vectors (x1 < x2 < . . . xnx and (y1 < y2 < . . . yny)
defining a 2d grid where the “z” values are available ;

Z should be a matrix of size nx× ny with Zi,j the function
value at (xi, yj).

selected levels could be either an integer scalar or a
vector of given levels values.

85/95

Other graphics (contour2d, plot3d, etc. . .) II

Try:

// may be you have to put this 2 lines:

// usecanvas(%f);

// system_setproperty(’jogl.gljpanel.nohw’,’’);

x = linspace(0,2*%pi,60);

Z = cos(x’)*cos(x);

clf();

contour2d(x,x,Z,10); // plot 10 levels

On this example we can see the default colormap of scilab:
contour2d use the colors number 1, 2, . . . , 10 to draw the 10
levels. It is possible to change the default colormap at the
“Figure” level. Try this:

f = cgf(); // the handle of the current figure

f.color_map = jetcolormap(10); // jet colormap with 10 colors

86/95

Other graphics (contour2d, plot3d, etc. . .) III

There are several such colormaps in scilab, see help colormap.
Now the same example but with selecting the precise levels to
draw:

zlevels = -0.8:0.2:0.8; // the selected levels

clf();

contour2d(x,x,Z,zlevels);

a = gca(); a.isoview = "on"; // iso scale

Sometime the numbers printed on the figure to give level values
are not too clearly readable. A possibility is to put them in a
legend, see the last example of the contour2d help page.

87/95

Other graphics (contour2d, plot3d, etc. . .) IV

Plotting in 3d
One possibility for 3d plots is to use the plot3d function. Basic
usage is plot3d(x,y,Z) with argument x, y and Z like in
contour2d, try:

clf();

plot3d(x,x,Z)

// plot3d1 colors the faces using level z

clf();

plot3d1(x,x,Z) // not too much colors

f = gcf(); f.color_map = jetcolormap(64); // use more colors

a = gca(); a.isoview="on"; // use iso scale

f.color_map = hotcolormap(64); // try another colormap

// add a title

title("$z = cos(x)cos(y)$","FontSize",5)

88/95

Other graphics (contour2d, plot3d, etc. . .) V

In fact plot3d can plot any surface which have been discretized by
a collection of facets:

plot3d(xf,yf,zf)

with xf, yf, and zf, three arrays of same size nb vertices ×
nb facets. The facet j is described by the j columns of these 3
arrays: it is constituted by the nb vertices points with coordinates:

P j
i = (xfi,j , yfi,j , zfi,j), i = 1, . . . , nb vertices

P j
1

P j
2

P j
3

P j
4

•
•

•
•

~n
“negative” side

“positive” side

89/95

Other graphics (contour2d, plot3d, etc. . .) VI

Note that the “positive” side is not the usual one and this has a
consequence when attributing a color to a facet: only the
“positive” side is filled with the given color (all negative sides have
a same color). Here is a complete example for plotting the unit
tetrahedron:

P1 =

 0
0
0

 , P2 =

 1
0
0

 , P3 =

 0
1
0

 , P4 =

 0
0
1

 ,
// f1 f2 f3 f4

xf = [0 1 0 0;

1 0 0 0;

0 0 0 1];

yf = [0 0 0 0;

0 0 1 0;

1 1 0 0];

zf = [0 0 0 0;

90/95

Other graphics (contour2d, plot3d, etc. . .) VII

0 1 0 1;

0 0 1 0];

clf()

plot3d(xf,yf,zf);

a = gca(); a.isoview="on";

show_window();

To attribute a color for each facet you have to add the color
information like this:

colors = [2, 3, 4, 5];

clf()

plot3d(xf,yf,list(zf,colors));

a = gca(); a.isoview="on";

show_window();

91/95

Other graphics (contour2d, plot3d, etc. . .) VIII

It is possible to have a shaded rendering by attributing a color to
each facet vertex. Here is an example:

clf();

f = gcf();

f.color_map= jetcolormap(128);

colors = [1, 43, 1, 1;

43,128, 85,128;

85, 85,128, 43];

plot3d(xf,yf,list(zf,colors));

a = gca(); a.isoview="on";

title("a shaded tetrahedron","FontSize",4)

show_window();

92/95

How to display usual parametric surfaces I

To display parametric surfaces:

x = x(u, v); y = y(u, v); z = z(u, v); (u, v) ∈ [a, b]× [c, d]

like for instance the Moebius strip:

x = (R+ ρ sin(θ/2)) cos(θ)

y = (R+ ρ sin(θ/2)) sin(θ)

z = ρ cos(θ/2)

with plot3d without computing the facets by ourself (it is
cumbersome) here is a possible method:

93/95

How to display usual parametric surfaces II

1 write the corresponding parametrization using
component-wise operators:

function [x,y,z] = moebius(theta, rho)

R = 1;

x = (R + rho.*sin(theta/2)).*cos(theta);

y = (R + rho.*sin(theta/2)).*sin(theta);

z = rho.*cos(theta/2);

endfunction

2 discretize the parameter rectangular domain:

m = 200;

n = 80;

u = linspace(0,2*%pi,m);

v = linspace(-0.4,0.4,80);

3 build the grid points (ui, vj) using ndgrid and then call nf3d
which computes the facets:

[U,V] = ndgrid(u,v);

[X,Y,Z] = moebius(U,V);

94/95

How to display usual parametric surfaces III

4 then call plot3d:

clf();

plot3d(xf,yf,zf);

a = gca(); a.isoview = "on";

title("Moebius strip", "FontSize", 5)

show_window();

95/95

	What is scilab
	The scilab environment
	Various ways to define vectors and matrices
	Assignments and extractions
	Component-wise algebra and plot function
	Programming tools
	Solving an ordinary differential equation
	More about graphics - animations with scilab
	Sparse matrices in scilab
	Other graphics (contour2d, plot3d, etc…)

