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1Institut de Mathématiques de Toulouse & CNRS

CIMPA Caracas

Sylvain Ervedoza April 2012 Basic Control Theory Linear Finite Dimensional Systems



Intro Ex HUM Control Map Kalman Data Assimilation

Outline

1 Introduction

2 Two simple examples

3 The Hilbert Uniqueness Method
Structure of the set of controls
The Gramian operator
A variational approach
Link between the Gramian approach and the variational
approach
Conclusion

4 Comments on the control map

5 Kalman rank condition

6 A data assimilation problem

Sylvain Ervedoza April 2012 Basic Control Theory Linear Finite Dimensional Systems



Intro Ex HUM Control Map Kalman Data Assimilation

Outline

1 Introduction

2 Two simple examples

3 The Hilbert Uniqueness Method
Structure of the set of controls
The Gramian operator
A variational approach
Link between the Gramian approach and the variational
approach
Conclusion

4 Comments on the control map

5 Kalman rank condition

6 A data assimilation problem

Sylvain Ervedoza April 2012 Basic Control Theory Linear Finite Dimensional Systems



Intro Ex HUM Control Map Kalman Data Assimilation

We consider the system

x ′ = Ax + Bu, t ∈ R, x(0) = x0. (1.1)

Proposition

If the finite-dimensional system (1.1) is approximately controllable
a time T > 0 then it is exactly controllable at time T .

Proposition

If system (1.1) is controllable at 0 in time T > 0, it is exactly
controllable at time T > 0.
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All the notions of control introduced in the previous chapter are
equivalent when considering a finite-dimensional system of the
form (1.1). Hence, in the following, we will focus on one particular
controllability property, the other ones following by the above
considerations.
Of course, the weaker the control property is, the easier it is to
proved. We will therefore often focus on the approximate
controllability or the null-controllability.
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Example 1 The diagonal case

A =

(
1 0
0 2

)
, B =

(
0
1

)
.

The corresponding equation is{
x ′1 = x1

x ′2 = 2x2 + u(t).

The control does not act on the first equation. The system is
therefore not controllable. For instance, if x1(0) = 0, whatever the
control function is, we will always have x1(t) = 0 for all t ∈ R and
we cannot achieve the state

xT =

(
1
0

)
,
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Example 2 The case of the pendulum z ′′ + α2z ′ + β2z = u(t),
β > 0 is the frequency of the oscillator, α is a damping term.
After having set x1 = z et x2 = z ′, this equation is equivalent to
(1.1) with

A =

(
0 1
−β2 −α2

)
, B =

(
0
1

)
.

We can therefore restrict ourselves to the study of the
null-controllability. For (z(0), z ′(0)) = (z0, z1) given we set
z(t) = (z0 + tz1)φ(t/T ) where φ : [0, 1]→ R is a smooth function
satisfying φ(0) = 1, φ′(0) = 1 and φ(1) = φ′(1) = 0. One easily
check that z satisfies (z(0), z ′(0)) = (z0, z1) and
(z(T ), z ′(T )) = (0, 0). We then set u(t) = z ′′ + α2z ′ + β2z .
The pendulum is therefore exactly controllable at any time T > 0.
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We fix T > 0 and x0 ∈ RN .
Our goal is to steer the solution x of

x ′ = Ax + Bu, t ∈ [0,T ], x(0) = x0.

to 0:
x [x0, u](T ) = 0
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The main idea is to introduce the adjoint equation:

z ′ = −A∗z , t ∈ [0,T ], z(T ) = zT (3.1)

and remark the following equivalences:

x [x0, u](T ) = 0⇔ ∀zT ∈ RN , 〈x [x0, u](T ), zT 〉RN = 0

⇔ ∀zT ∈ RN ,

∫ T

0
〈u(t),B∗z(t)〉Rp dt + 〈x0, z(0)〉RN = 0, (3.2)

where z denotes the solution of (3.1) with initial data zT .

Sylvain Ervedoza April 2012 Basic Control Theory Linear Finite Dimensional Systems



Intro Ex HUM Control Map Kalman Data Assimilation Structure Gramian A variational approach Link Conclusion

A negative result:

Theorem

If there exists z̄T ∈ RN\{0} such that the solution z̄ of the adjoint
equation (3.1) satisfies B∗z̄(t) = 0 for all t ∈ (0,T ), then there
exists an initial data x0 ∈ RN that cannot be steered to 0. In
particular, this is the case for x0 = z̄(0).
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Let us define the set of all null-controls associated to x0:

U(x0,T ) = {u ∈ L2(0,T ;Rp),

s.t. u is a null-control associated to x0}.
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Theorem

Let x0 ∈ RN and T > 0. The set U(x0,T ) is empty or affine with
underlying vector space

U(0,T ) = {B∗z , s.t. z solution of (3.1) }⊥L2(0,T ;Rp)

In particular, the set U(x0,T ) satisfies one of the two conditions:

U(x0,T ) is empty.

there exists ZT ∈ Rp such that

U(x0,T ) = B∗Z + {B∗z , s.t. z solution of (3.1) }⊥L2(0,T ;Rp) ,

where Z is the solution of (3.1) with data ZT . In particular, in
this case, u(t) = B∗Z (t) is the null-control for x0 of minimal
L2(0,T ;Rp)-norm and there is only one control u ∈ U(x0,T )
that can be written as u(t) = B∗z(t) for z solution of (3.1).
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Proof. Assume U(x0,T ) 6= ∅.
First, due to the linearity of system (1.1), it is rather easy to check
that, if ū ∈ U(x0,T ), then

U(x0,T ) = ū + U(0,T ). (3.3)

Indeed, if u ∈ U(x0,T ), the linearity of the system implies that
u − ū ∈ U(0,T ). Similarly, if u ∈ U(0,T ), then ū + u ∈ U(x0,T ).
Besides, the set U(0,T ) obviously is a vector space due to the
linear structure of system (1.1) which proves the affine structure of
U(x0,T ) with underlying vector space U(0,T ).
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We then have to characterize the set U(0,T ). Using the
characterization (3.2),

u ∈ U(0,T )⇔ ∀zT ∈ Rp,

∫ T

0
〈u(t),B∗z〉Rp = 0.

Of course, this is completely equivalent to say that

U(0,T ) = {B∗z , s.t. z solution of (3.1) }⊥L2(0,T ;Rp)

But

L2(0,T ;Rp) = {B∗z , s.t. z solution of (3.1) }

⊕ {B∗z , s.t. z solution of (3.1) }⊥L2(0,T ;Rp) ,

and thus, ū in (3.3) can be expanded as B∗Z + ũ, with Z solution
of (3.1) with some initial data ZT ∈ Rp and ũ ∈ U(0,T ).
Since ũ ∈ U(0,T ), we have obtained

U(x0,T ) = B∗Z + {B∗z , s.t. z solution of (3.1) }⊥L2(0,T ;Rp) ,
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• Minimal L2(0,T ;Rp)-norm: B∗Z is obviously orthogonal to

{B∗z , s.t. z solution of (3.1) }⊥L2(0,T ;Rp) , B∗Z is the control of
minimal L2(0,T ;Rp)-norm.

• Uniqueness: Uniqueness of controls u of the form B∗z follows
from the structure of U(x0,T ).
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According to the structure of the control set, one can reduce our
analysis to the possibility of controlling (1.1) with controls of the
form B∗Z for some Z solution of (3.1).

According to (3.2), we are thus looking for a trajectory Z of (3.1)
such that

∀zT ∈ RN ,

∫ T

0
〈B∗Z ,B∗z〉Rp dt + 〈x0, z(0)〉RN = 0, (3.4)

where z is the solution of (3.1) with data zT .
There are several ways to solve the problem (3.4) that are of
course completely equivalent.
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Express all the quantities in (3.4) as functions of ZT , zT and x0.

∀zT ,

∫ T

0
〈B∗e−(t−T )A∗

ZT ,B
∗e−(t−T )A∗

zT 〉Rp dt+〈x0, e
TA∗

zT 〉RN = 0,

and thus as

∀zT , 〈
(∫ T

0
e−(t−T )ABB∗e−(t−T )A∗

dt

)
ZT , zT 〉RN +〈eTAx0, zT 〉RN = 0,

Therefore B∗Z is a control function for x0 if and only if

ΛTZT + eTAx0 = 0, where ΛT =

∫ T

0
e−(t−T )ABB∗e−(t−T )A∗

dt.

(3.5)
The operator ΛT is the so-called Gramian operator.
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Recall

ΛT =

∫ T

0
e−(t−T )ABB∗e−(t−T )A∗

dt.

Theorem

Let T > 0 and x0 ∈ RN . If ΛT is invertible, then system (1.1) is
null-controllable.
Besides, if ΛT is not invertible, there are some initial data that are
not null-controllable.
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Proof.

• If ΛT is invertible, one can solve the equation (3.5). By
construction, u(t) = B∗Z , where Z is the solution of (3.1) with
data ZT , belongs to U(x0,T ).

• If ΛT is not invertible, then there exists z̄T ∈ RN such that
ΛT z̄T = 0. Hence:

0 = 〈ΛT z̄T , z̄T 〉RN =

∫ T

0
‖B∗z̄(t)‖2

Rp dt. (3.6)

Hence there are some initial data that are not null-controllable.
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Remark that (3.4) corresponds to the Euler-Lagrange equation
associated to the minimization of the functional

J(zT ) =
1

2

∫ T

0
‖B∗z(t)‖2

Rp dt + 〈z(0), x0〉RN , (3.7)

defined for zT ∈ RN , z being the solution of (1.1).

Theorem

Assume that there exists a constant Cobs > 0 such that the
so-called observability property holds: for all data zT ∈ RN and z
the corresponding solution of (3.1),

‖z(0)‖2
RN ≤ C 2

obs

∫ T

0
‖B∗z(t)‖2

Rp dt. (3.8)

Then the functional J in (3.7) admits a unique minimizer ZT ∈ RN

and the function u(t) = B∗Z (t) is the null-control of minimal
L2(0,T ;Rp)-norm for x0.

Sylvain Ervedoza April 2012 Basic Control Theory Linear Finite Dimensional Systems



Intro Ex HUM Control Map Kalman Data Assimilation Structure Gramian A variational approach Link Conclusion

Of course, the two approaches are completely equivalent since the
goal is to compute the solution ZT of (3.4), though the
assumptions might seem different. Of course, they are not, since
easy computations show that

〈ΛT zT , zT 〉RN =

∫ T

0
‖B∗z(t)‖2

Rp dt.

Therefore, since ΛT is self-adjoint and non-negative, the
invertibility of ΛT is completely equivalent to the observability
property (3.8).

Beware !! this is true only because we are in a finite dimensional
setting and thus the norm of zT and z(0) = exp(TA∗)zT are
equivalent norms. Otherwise, one should made precise in which
space ΛT should be invertible.
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We have obtained the following results:

1 If there exists z̄T ∈ RN\{0} such that B∗z̄ ≡ 0 on [0,T ],
then x0 = z̄(0) is not null-controllable.

2 If for all zT ∈ RN\{0}, ‖B∗z‖L2(0,T ;Rp) 6= 0, then system
(1.1) is null-controllable at time T > 0.

Of course, since we are in finite-dimension, we have the
equivalence between the observability property (3.8) and the
condition of item 2.
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We have thus prove the following:

Theorem

System (1.1) is null-controllable at time T > 0 if and only if the
adjoint system (3.1) is exactly observable at time T > 0, i.e. if
there exists Cobs such that the observability inequality (3.8) hold
for all the trajectories of the adjoint system (3.1).

This is the so-called Hilbert Uniqueness Method - HUM in short -
introduced by J.-L. Lions.
In general, easier to study the observability inequality (3.8).
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Assume that the observability property (3.8) holds in time T > 0
for the adjoint system (3.1). We can then introduce the control
operator:

UT : x0 ∈ RN 7→ B∗Z ∈ L2(0,T ;Rp), (4.1)

where Z = Z [x0] is the solution of (3.1) with data ZT [x0] given by
HUM.
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Then we have the following Theorem:

Theorem

Assume that the adjoint system (3.1) satisfies the exact
observability property (3.8) at time T > 0 with the constant Cobs .
Then the map UT is linear and its norm is given by

‖UT‖L(RN ;L2(0,T ;Rp)) = Cobs , (4.2)

where Cobs is the best constant in (3.8).
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Recall the characterization of the control given by (3.2). If
x0 ∈ RN , taking z = Z [x0], the solution of (3.1) corresponding to
x0 given by HUM, in (3.2), we necessarily have

‖UT (x0)‖2
L2(0,T ;Rp) =

∫ T

0
‖B∗Z [x0](t)‖2

Rp dt = −〈x0,Z [x0](0)〉RN .

Using the observability property, this implies:

‖UT (x0)‖L2(0,T ;Rp) ≤ Cobs ‖x0‖RN .
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To prove the identity (4.2), let us choose (finite-dimension) z̄T 6= 0
such that

‖z̄(0)‖RN = Cobs ‖B∗z̄‖L2(0,T ;Rp) .

Then set x0 = −z̄(0). Then according to (3.2), the control
function u = UT (x0) should satisfy∫ T

0
〈UT (x0),B∗z̄(t)〉Rp = ‖z̄(0)‖2

RN .

Hence,

‖z̄(0)‖2
RN ≤ ‖UT (x0)‖L2(0,T ;Rp) ‖B

∗z̄‖L2(0,T ;Rp) ,

and therefore,

‖x0‖RN = ‖z̄(0)‖RN ≤
1

Cobs
‖UT (x0)‖L2(0,T ;Rp).

This of course implies (4.2).
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The previous section do very little use of the finite dimensional
setting.
In this section, we shall strongly use it.
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Theorem

System (1.1) is exactly controllable at time T > 0 if and only if

Rank(B |AB |A2B · · · |AN−1B) = N, (5.1)

where N is the dimension of the space of the state x.
In particular, if a finite dimensional system (1.1) is exactly
controllable at some time T > 0, it is exactly controllable for all
time T > 0.

Theorem 9 is known as the Kalman rank condition. It is sometimes
written in its dual form, i.e. replacing condition (5.1) by

Ker


B∗

B∗A∗

...
B∗(A∗)N−1

 = {0}. (5.2)
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System (1.1) is exactly controllable if and only if for all
zT ∈ RN\{0}, ‖B∗z‖L2(0,T ;Rp) 6= 0, z being the solution of (3.1)
with initial data zT .

B∗z(t) ≡ 0 on (0,T ) ⇔ ∀k ∈ N, B∗

((
d

dt

)k

z

)
(T ) == 0

⇔ ∀k ∈ N, B∗(A∗)kzT = 0

(Cayley Hamilton)⇔ ∀k ∈ {0, · · · ,N − 1}, B∗(A∗)kzT = 0

⇔ zT ∈ Ker


B∗

B∗A∗

...
B∗(A∗)N−1

 .

The Kalman rank condition (5.1) is independent of time, hence the
exact controllability property as well.
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We introduce the following linear data assimilation problem
(recovering of the state):

Given a measurement B∗Z for Z solution of Z ′ = −A∗Z , find the
data Z (0).

• Stability is equivalent to exact observability property at time
T > 0.
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A natural idea is to minimize among z0 ∈ RN

J(zT ) =
1

2

∫ T

0
‖B∗z − B∗Z‖2

Rp dt.

This is equivalent to minimize

J(zT ) =
1

2

∫ T

0
‖B∗z‖2

Rp dt + 〈x0, z(0)〉X

where x0 = x(0) is given by the solution of

x ′ = Ax + BB∗Z , x(T ) = 0.

Hence Z is the HUM null-control associated to x0.
 this is the same problem as finding the HUM control.
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