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CHAPTER 1

Introduction to Data Assimilation

Data assimilation is the “art” of compromise... and has been defined in different
ways by different researchers : “interpolating fields for subsequent use as initial data
in a model integration” (Bennett, 2002); “statistical combination of observations
and short-range forecasts” (Kalnay, 2003); “using all the available information, to
define as accurate as possible the state” (Talagrand, 1997). From a statistical per-
spective DA can be see as fusing data (observations) with prior knowledge (e.g.,
physical laws; model output) to get an estimate of the (distribution of) the true
state of the physical system. This requires a statistical model for the observations
(data model; direct or indirect) and a (prior) statistical model for the system (pro-
cess model) which can be either a deterministic model (with additive errors) or a
long term history of observations (e.g., climatology).

1.1. Acknowledgements

These course notes have used, quite liberally, the excellent notes of my good
colleagues:

• Eric Blayo, Emmanuel Cosme and Maëlle Nodet (U. of Grenoble, France).
• Alexandre Fournier (U. Paris VI, France).
• Marc Bocquet (ENPC, France).

However, I take full responsibility for the actual contents.

1.2. History

Data assimilation was introduced by the meteorologist Lewis Fry Richardson in
1922. He proposed to use a big hall full of humans working as computers, each one
performing elmentary computations... Starting in the 1950’s, numerical forecasts
with computers became feasible. The first weather forecasts derived this way used
barotropic (that means, single-vertical-level) models, and could successfully predict
the large-scale movement of midlatitude Rossby waves, that is, the pattern of at-
mospheric lows and highs. In the 1960’s, the chaotic nature of the atmosphere was
first observed and mathematically described by Edward Lorenz, founding the field
of chaos theory. These advances have led to the current use of ensemble forecasting
in most major forecasting centers, to take into account uncertainty arising from the
chaotic nature of the atmosphere. The variational approaches were introduced in
the 1980’s and the 4D-Var method, that is still used today, was introduced in the
early 2000’s.
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1.4. DATA ASSIMILATION METHODS 5

Climate models have been developed that feature a resolution comparable to
older weather prediction models. These climate models are used to investigate
long-term climate shifts, such as what effects might be caused by human emission
of greenhouse gases.

1.3. Standard notation

A standard set of notation has been proposed by Ide et al. in [9]. A discrete
model for the evolution of a physical (atmospheric, oceanic, etc.) system from time
tk to time tk+1 is described by an equation

(1.3.1) xf(tk+1) =M
[
xf(tk),

]

where x is the model’s state vector if dimension n, and M is the corresponding
dynamics operator, usually obtained by finite difference or finite element discretiza-
tion. The error covariance matrix associated with x is given by P since the true
state will differ from the simulated state (1.3.1) by random or systematic errors.

Observations, or measurements, at time tk are defined by

yo
k = Hk

[
xt(tk)

]
+ εk,

where H is an observation operator and ε is a noise process. The observation
vector yo

k = yo(tk) has dimension pk. A major problem of data assimilation is that
usually pk � n. The noise process ε is assumed to have zero mean and covarinace
matrix R. It is made up of instrument errors and representation errors (due to the
discretization).

Subscripts are used to denote the discrete time index, the corresponding spatial
indices or the vector with respect to which an error covarinace matrix is defined.
Superscripts refer to the nature of the vectors/matrices in the data assimilation
process : “a” for analysis, “b” for background (or ’initial guess’), “f” for forecast, “o”
for observation and “t” for the (unknown) true state.

1.4. Data assimilation methods

There are two major classes of methods:
(1) Statistical methods where we compute the best linear unbiased estimate

(BLUE) by algebraic computations using the Kalman filter.
(2) Variational methods where we explicitly minimize a cost function using

optimization methods.
They provide the same result in the linear case, which is the only context where
their optimality can be rigourously proved. They both have difficulties in dealing
with non-linearities and large problems. In addition, the error statistics that are
required by both, are in general poorly known.



CHAPTER 2

Statistical estimation and Sequential DA

2.1. Statistical estimation theory

Practical inverse problems and data assimilation problems involve measured
data. These data are inexact and are mixed with random noise. Statistical models
can provide rigorous, effective means for dealing with this measurement error.

2.1.1. Preliminary definitions and notation. In statistical modeling, the
concepts of sample space, probability and random variable play key roles. A sample
space S is the set of all possible outcomes of a random, unpredictable experiment.
Probability provides a means for quantifying how likely it is for an outcome to take
place. Random variables assign numerical values to outcomes in the sample space.
Once this has been done, we can systematically work with notions such as average
value, or mean, or variability.

It is customary in mathematical statistics to use capital letters to denote ran-
dom variables (r.v.) and correpsponding lowercase letters to denote values taken
by the r.v. in its range. If X : S → R is a r.v., then for any x ∈ R, by {X ≤ x} we
mean {s ∈ S | X(s) ≤ x} .

Definition 1. A probability space (S,B,P) consists of a set S called the
sample space, a collection B of (Borel) subsets of S and a probability function
P : B → R+ for which

• P(∅) = 0,
• P(S) = 1 and
• P (

⋃
i Si) =

∑
i P (Si) for any disjoint, countable collection of sets Si ∈ B.

A random variable X is a measurable function X : S → R. Associated with the
r.v. X is its distribution function,

FX(x) = P {X ≤ x} , x ∈ R.

The distribution function is non-decreasing, right continuous and satisfies

lim
x→−∞ FX(x) = 0, lim

x→+∞ FX(x) = 1.
Definition 2. A random variable X is called discrete if there exist countable

sets {xi} ⊂ R and {pi} ⊂ R+ for which

pi = P {X = xi} > 0

for each i, and ∑
i

pi = 1.
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In this case, the probability density function for X is the real-valued function with
discrete support

pX(x) =

{
pi if x = xi, i = 1, 2, . . .

0 otherwise.
The xi’s are the points of discontinuity of the distribution function,

FX(x) =
∑

{i|xi≤x}
pX(xi).

Definition 3. A random variable X is called continuous if its distribution
function FX is absolutely continuous. In this case,

FX(x) =

∫x
−∞ pX(u) du

and the derivative,

pX(x) =
dFX

dx
is called the probability density function for X.

Definition 4. The mean, or expected value, of a r.v. X is given by the
Riemann-Stieltjes integral

E(X) =

∫∞
−∞ x dFX(x).

If X is a continuous random variable, then

dFX(x) = pX(x) dx

and in the discrete case,

dFX(x) = pX(xi)δ(x− xi).

In the latter case,
E(X) =

∑
i

xipX(xi).

The expectation operator, E, is a linear operator.

Definition 5. The variance of a r.v. X is given by

σ2 = E
[
(X− µ)2

]
= E(X2) − (E(X))

2
,

where
µ = E(X).

Definition 6. Two random variables, X and Y, are jointly distributed if they
are both defined on the same probability space (S,B,P) .
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Definition 7. A random vector, X = (X1, X2, . . . , Xn) , is a mapping from
S into Rn for which all the components Xi are jointly distributed. The joint
distribution function of X is given by

FX(x) = P {X1 ≤ x1, . . . , Xn ≤ xn} , x = (x1, . . . , xn) ∈ Rn.

The components Xi are independent if the joint distribution function is the product
of the distribution functions of the components,

FX(x) =
n∏
i=1

FXi
(xi).

Definition 8. A random vector X is continuous with joint probability den-
sity function pX if

FX(x) =
∫x1
−∞ · · ·

∫x1
−∞ pX(u) du1 . . .dun.

Definition 9. The mean, or expected value, of a random vectorX = (X1, X2, . . . , Xn) ,

is the n-vector E(X) with components

[E(X)]i = E(Xi), i = 1, . . . , n.

The covariance of X is the n× n matrix cov(X) with components

[cov(X)]ij = E [(Xi − µi)(Xj − µj)] = σij, 1 ≤ i, j ≤ n,

where
µi = E(Xi).

2.1.2. Gaussian distributions. A continuous random vector,X has a Gauss-
ian distribution if its joint probability density function has the form

pX(x;µ, Σ) =
1√

(2π)n det(Σ)
exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
,

where x, µ ∈ Rn, Σ is an n × n symmetric positive definite matrix. The mean is
given by

E(X) = µ

and the covariance matrix
cov(X) = Σ.

These two parameters completely characterize the distribution and we indicate this
situation by

X ∼ N (µ, Σ).

Note, that in the scalar case, we have the familiar “bell curve”

p(x;µ, σ) =
1√
2πσ2

e−(x−µ)2/(2σ2).
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2.1.3. Maximum likelihood estimation (MLE). Suppose a random vec-
tor X has a joint probability density function pX(x;θ), where θ is an unknown
parameter vector that we would like to estimate. Suppose also, that we have a
data vector d = (d1, . . . , dn), a given realization of X (an outcome of a random
experiment).

Definition 10. A maximum likelihood estimator for θ given d, is a parameter
vector θ̂ that maximizes the likelihood function,

L(θ) = pX(x;θ),

which is the joint p.d.f. considered as a function of θ. The MLE is also a maximizer
of the log-likelihood function,

l(θ) = log pX(x;θ).

2.1.4. Bayesian estimation. We first discuss conditional probability and
conditional expectation. Let X = (X1, X2, . . . , Xn) , and Y = (Y1, Y2, . . . , Yn) be
jointly distributed discrete random vectors. Then (X,Y) is also a discrete random
vector.

Definition 11. The joint probability density function for (X,Y) is given by

p(X,Y)(x,y) = P {X = x, Y = y} , (x,y) ∈ Rn × Rn.

The marginal probability density function of X is then defined as

(2.1.1) pX(x) =
∑

P{Y=y}>0

p(X,Y)(x,y), x ∈ Rn.

The conditional probability density function for Y given X = x is then defined
as

(2.1.2) p(Y|X)(y | x) =
p(X,Y)(x,y)
pX(x)

where the denominator is nonzero.

Remark 12. IfX andY are independent random vectors, then the conditional
density function of Y given X = x does not depend on x and it satisfies

(2.1.3) p(Y|X)(y | x) = pY(y).

Definition 13. Let φ : Rn → Rk be a measurable mapping. The conditional
expectation of φ(Y) given X = x is

(2.1.4) E (φ(Y) | X = x) =
∑

P{Y=y}>0

φ(y)p(Y|X)(y | x), x ∈ Rn.
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Remark 14. For continuous random vectors X and Y, we can define the
analogous concepts by replacing the summations in (2.1.1)-(2.1.4) with appropriate
integrals.

pX(x) =
∫∞
−∞ p(X,Y)(x,y) dFY(y),

E (φ(Y) | X = x) =
∫∞
−∞φ(y)p(Y|X)(y | x) dFY(y).

We are now ready to state Bayes’ Law that relates the conditional random
vector X|Y=y to the inverse conditional random vector, Y|X=x .

Theorem 15. Let X and Y be jointly distributed random vectors. Then

(2.1.5) p(X|Y)(x | y) =
p(Y|X)(y | x)pX(x)

pY(y)
.

Definition 16. In the context of Bayes’ Law (2.1.5), suppose thatX represents
the variable of interest and that Y represents an observable (measured) quantity
that depends on X. Then:

• pX(x) is called the a priori probability density function, or the prior,
• p(Y|X)(y | x) is called the a posteriori probability density function,
• the denominator, pY(y), can be considered as a normalization factor.

2.1.5. Linear least squares estimation (LLSE): Best linear unbiased
estimation (BLUE), Minimum variance linear estimation (MVLE). Let
X = (X1, X2, . . . , Xn) and Z = (Z1, Z2, . . . , Zn) be jointly distributed, real-valued
random vectors with finite expected squared components,

E(X2i ) <∞, i = 1, . . . , n, E(Z2j ) <∞, j = 1, . . . ,m.

Definition 17. The cross-correlation matrix forX and Z is the n×m matrix
ΓXZ = E(XZT ) with entries

[ΓXZ]ij = E(XiZj), i = 1, . . . , n, j = 1, . . . ,m.

The autocorrelation matrix for X is ΓXX = E(XXT ) with entries

[ΓXX]ij = E(XiXj), 1 ≤ i, j ≤ n.

Remark 18. Note that ΓZX = ΓTXZ and that ΓXX is symmetric and positive
semi-definite. Also, if E(X) = 0, then the auto-correlation reduces to the covariance,
ΓXX = cov(X).

We can relate the trace of the autocorrelation matrix to the second moment of
the random vector X.

Proposition 19. If a random vector X has finite expected squared compo-
nents, then

E
(
‖X‖2

)
= trace(ΓXX).
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For the BLUE, we consider a linear model,

Z = Kx+N,

where K is an m × n matrix, x ∈ Rn is deterministic and N is a random (noise)
n-vector with

E(N) = 0, CN = cov(N)

and CNis a known, non-singular, n× n covariance matrix.

Definition 20. The best linear unbiased estimator for x from Z is the vector
X̂BLUE that minimizes the quadratic cost function

J(X̂) = E
(∥∥X̂− x

∥∥2
)

subject to the constraints of linearity

X̂ = BZ, B ∈ Rn×m,

and unbiasedness
E(X̂) = x.

In the case of a full rank matrix K, the Gauss-Markov Theorem gives us an
explicit form for the BLUE.

Theorem 21. If K has full rank, then the best linear unbiased estimator is
given by

X̂BLUE = B̂Z,
where

B̂ =
(
KTC−1

N K
)−1

KTC−1
N .

Remark 22. If the noise covariance matrix CN = σ2I (white, uncorrelated
noise) and K has full rank, then

X̂BLUE =
(
KTK

)−1
KTZ = K†Z.

This corresponds, in the deterministic case, to the least squares problem

min
x
‖Kx− z‖ .

Due to the dependence of the BLUE on the inverse of the noise covariance
matrix, it is unsuitable for the solution of noisy, ill-conditioned linear systems. To
remedy this situation, we assume that x is a realization of a random vector X and
we formulate a linear least-squares analogue of Bayesian estimation.

Definition 23. Suppose that X and Z are jointly distributed, random vectors
with finite expected squares. The minimum variance linear estimator of X from
Z is given by

X̂MVLE = B̂Z,
where

B̂ = arg min
B∈Rn×m

E
(
‖BZ−X‖2

)
.
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Proposition 24. If ΓZZ is non-singular, then the MVLE of X from Z is
given by

X̂MVLE =
(
ΓXZΓ

−1
ZZ
)
Z.

2.1.6. Summary. The two important formulas from this section, that should
be particularly recalled, are the following.

(1) Bayes’ theorem:

(2.1.6) p(x | y) =
p(y | x)p(x)

p(y)
.

(2) The marginalization rule:

(2.1.7) p(y) =
∫
p(x,y) dx =

∫
p(y | x)p(x) dx,

where

• p(y | x) is the measurement model (or likelihood),
• p(x) is the prior distribution,
• p(y) is the marginal distribution (or evidence.)

2.2. Sequential Data Assimilation and Kalman filters

Within the significant toolbox of mathematical tools that can be used for statis-
tical estimation from noisy sensor measurements, one of the most well-known and
often-used tools is the Kalman filter. The Kalman filter is named after Rudolph E.
Kalman, who in 1960 published his famous paper describing a recursive solution to
the discrete-data linear filtering problem (Kalman 1960). A very “friendly” intro-
duction to the general idea of the Kalman filter is offered in Chapter 1 of (Maybeck
1979)—which we have included in this course pack.

We now consider a dynamical system that evolves in time and we seek to esti-
mate a series of true states, xtk (a sequence of random vectors) where discrete time
is indexed by the letter k. These times are those when the observations or measure-
ments are taken see Figure 2.2.1. The assimilation starts with an unconstrained
model trajectory from t0, t1, . . . , tk−1, tk, . . . , tn and aims to provide an optimal fit
to the available observations/measurements given their uncertainties (error bars).
In current weather forecasts, tk − tk−1 = 6 hours.

2.2.1. Bayesian modeling. Let us recall the principles of Bayesian mod-
eling from the previous section on statistical estimation and write them in the
terminology of the assimilation problem. We have a vector X of (unknown) unob-
served quantities of interest (temperature, presssure, wind, etc.) and a vector Y of
(known) observed data (at various locations, and at various times). The full, joint
probability model can always be factored into components:

p(x,y) = p(y | x)p(x)

= p(x | y)p(y)

and thus
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‘

Figure 2.2.1. Sequential assimilation.(Credit: A. Fournier)

p(x | y) =
p(y | x)p(x)

p(y)
provided that p(y) 6= 0.

The Kalman filter can be rigourously derived from this Bayesian perspective.

2.2.2. Stochastic model of the system. We seek to estimate the state
x ∈ Rn of a discrete-time dynamic process that is governed by the linear stochastic
difference equation

xk+1 =Mk+1 [xk] +wk
with a measurement/observation y ∈ Rm

yk = Hk [xk] + vk.
The random vectors, wk and vk, represent the process/modeling and measure-
ment/observation errors respectively. They are assumed to be independent, white
and with Gaussian/normal probability distributions

wk ∼ N (0,Q)

vk ∼ N (0, R),

where Q and R are the covariance matrices (supposed known).

2.2.3. Sequential assimilation scheme. The typical assimilation scheme is
made up of two major steps: a prediction/forecast step and a correction/analysis
step. At time tk we have the result of a previous forecast, xf

k, (the analogue of the
baclground state xbk) and the result of an ensemble of observations in yk. Based
on these two vectors, we perform an analysis that produces xa

k. We then use the
evolution model to obtain a prediction of the state at time tk+1. The result of the
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Figure 2.2.2. Sequential assimilation scheme for the Kalman fil-
ter. (Credit: M. Bocquet)

forecast is denoted xf
k+1, and becomes the bakground (or initial guess) for the next

time-step. This process is summarized in Figure 2.2.2.
We can now define forecast (a priori) and analysis (a posteriori) estimate

errors as

ef
k = xf

k − xt
k

ea
k = xa

k − xt
k

with their respective error covariance matrices

Pf
k = cov(ef

k) = E
[
ef
k(e

f
k)
T
]

Pa
k = cov(ea

k) = E
[
ea
k(e

a
k)
T
]
.(2.2.1)

The goal of the Kalman filter is to compute an optimal a posteriori estimate xa
k

that is a linear combination of an a priori estimate xf
k and a weighted difference

between the actual measurement yk and the measurement prediction Hk
[
xf
k

]
. This

is none other than the BLUE that we have seen above. The filter is thus of the
form

(2.2.2) xa
k = xf

k + Kk
(
yk −Hkxf

k

)
.

The difference
(
yk −Hkxf

k

)
is called the innovation and reflects the discrepancy

between the the actual and the predicted measurements at time tk. Note that for
generality, the matrices are shown with a time-dependence. Often this is not the
case, and the subscripts k can then be dropped. The Kalman gain matrix, K,
is chosen to minimize the a posteriori error covariance equation (2.2.1). This is
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straightforward to compute: substitute (2.2.2) into the definition of ea
k, then substi-

tute in the error covariance equation (2.2.1) performing the indicated expectations,
take the derivative of the trace of the result with respect to K, set the result equal
to zero, and finally solve for the optimal gain K. The resulting K that minimizes
equation (2.2.1) is given by (there are various possible forms...)

Kk = Pf
kH

T
(
HPf

kH
T + R

)−1
.

Looking at this equation, we see that as the measurement error covariaace R ap-
proaches zero, the gain K weights the innovation more heavily, since

lim
R→0Kk = H−1.

On the other hand, as the a priori error estimate covariance Pf
k approaches zero,

the gain K weights the innovation less heavily, and

lim
Pf
k
→0Kk = 0.

Another way of thinking about the weighting of K is that as the measurement error
covariance R approaches zero, the actual measurement yk is “trusted” more and
more, while the predicted measurement Hkxf

k is trusted less and less. On the other
hand, as the a priori error estimate covariance Pf

k approaches zero, the actual
mesurement yk is trusted less and less, while the predicted measurement Hkxf

k is
trusted more and more - see the computational example below.

2.2.3.1. Predictor/forecast step. We start from a previous analyzed state, xa
k,

or from the initial state if k = 0, characterized by the Gaussian p.d.f. p(xa
k | yo

1:k) of
mean xa

k and covariance matrix Pak . An estimate of xt
k+1 is given by the dynamical

model which defines the forecast:

xf
k+1 = Mk+1 [xa

k](2.2.3)

Pf
k+1 = Mk+1P

a
kM

T
k+1 +Qk+1.(2.2.4)

2.2.3.2. Corrector/analysis step. At time tk+1,the pdf p(xf
k+1 | y

o
1:k) is known

thanks to the mean xf
k+1 and covariance matrix Pfk+1 as well as the assumption of a

Gaussian distribution. The analysis step then consistes of correcting this pdf using
the observation available at time tk+1 in order to compute p(xa

k+1 | yo
1:k+1).This

comes from the BLUE in the dyanmical context:

Kk+1 = Pf
k+1H

T
(
HPf

k+1H
T + Rk+1

)−1
,(2.2.5)

xa
k+1 = xf

k+1 + Kk+1
(
yk+1 −Hxf

k+1

)
,(2.2.6)

Pa
k+1 = (I− Kk+1H)P

f
k+1.(2.2.7)

The predictor-corrector loop is illustrated in Figure 2.2.3.

2.2.4. Note on relation between Bayes and BLUE. If we know that the
a priori and the observation data are both Gaussian, Bayes’ rule can be applied
to compute the a posteriori pdf. The a posteriori pdf is then Gaussian, and
its parameters are given by the BLUE equations. Hence with Gaussian pdf’s and
a linear observation operator, there is no need to use Bayes’ rule. The BLUE
equations can be used instead to compute the parameters of the resulting pdf.
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Time Update (“Predict”)

(1) Project the state ahead

xf
k+1 = Mxa

k

(2) Project the error covariance ahead

P f
k+1 = MP a

kM
T +Q

Measurement Update (“Correct”)

(1) Compute the Kalman gain

Kk+1 = P f
k+1H

T (HP f
k+1H

T +R)−1

(2) Update estimate with measurement

xa
k+1 = xf

k+1 +Kk+1(yk+1 −Hxf
k+1)

(3) Update the error covariance

P a
k+1 = (I −Kk+1H)P f

k+1

Initialization

Initial estimates for xa
k and P a

k

Figure 2.2.3. Kalman filter loop.

Since the BLUE provides the same result as Bayes’ rule, it is the best estimator of
all.

In addition (see the next Chapter) one can recognize the 3D-Var cost function.
By minimizing this cost function, 3D-Var finds the MAP estimate of the Gaussian
pdf, which is equivalent to the MV estimate found by the BLUE.

2.2.5. Implementation of the Kalman filter. We describe three important
implementation issues and discuss ways to overcome the difficulties that they give
rise to.

(1) Definition of covariance matrices and filter divergence. If the a
priori statistical information is not well specified, the filter might under-
estimate the variances of the state errors, ea

k. Too much confidence is put
on the state estimation and too little confidence is put on the information
contained in the observations. The effect of the analysis is minimized, and
the gain becomes too small. In the most extreme case, observations are
simply rejected. This is a filter divergence. Very often filter divergence
is easy to diagnose: state error variances are small, and the time sequence
of innovations is biased. The main rule to follow, to avoid this, is not to
underestimate model errors. If possible, it is better to use an adaptive
scheme to tune them on-the-fly.

(2) Size and optimal interpolation. The straightforward application of
the Kalman filter implies the “propagation” of an n × n sized covariance
matrix at each time step. This can result in a very large size problem
(computations and storage). If the computational cost of propagating
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Pa
k+1 is an issue, we can use a frozen covariance matrix,

Pa
k = Pb, k = 1, . . . , n.

This defines a class of methods known as optimal interpolation (OI). Un-
der this simplifying hypothesis, the two-step assimilation cycle defined
above becomes,
(a) Forecast:

xf
k+1 = Mk+1 [xa

k]

Pf
k+1 = Pb.

(b) Analysis:

Kk+1 = PbHT
(
HPbHT + Rk+1

)−1
,

xa
k+1 = xf

k+1 + Kk+1
(
yk+1 −Hxf

k+1

)
,

Pa
k+1 = Pb.

There are at least two ways to compute the static covariance matrix
Pb. The first is an analytical formulation,

Pb = D1/2CD1/2,

whereDis a diagonal matrix of variances and C is a correlation matrix
that can be defined, for example, as

Cij =

(
1+ ah+

1

3
a2h2

)
e−ah,

where a is a tunable parameter and h is the grid size. The second
approach uses an ensemble of Ne snapshots of the state vector taken
from a model free run, out of which we compute the first and second
statistical moments as follows

xb =
1

Ne

Ne∑
l=1

xl,

Pb =
1

Ne − 1

Ne∑
l=1

(
xl − xb) (xl − xb)T .

The static approach is more suited to successive assimilation cycles
that are separated by a long enough time delay so that the corre-
sponding dynamical states are sufficiently decorrelated.

(3) Evolution of the state error covariance matrix. In principle, equa-
tion (2.9) generates a symmetric matrix. In practice, this may not be the
case and numerical truncation errors may lead to an asymmetric covari-
ance matrix and a subsequent collapse of the filter. A remedy is to add
an extra step to enforce symmetry, such as

Pf
k+1 =

1

2

(
Pf
k+1 + (Pf

k+1)
T
)
,

or a square root decomposition.
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2.2.6. Nonlinearities and extensions of the Kalman filter.

• extended Kalman filter
• ensemble Kalman filter
• others: unscented Kalman filter, particle methods

In real life problems, we are most often confronted with either a nonlinear process
and/or a nonlinear measurement operator. To deal with these nonlinearities, one
approach is to linearize about the current mean and covariance, which is called the
extended Kalman filter (EKF).

As previously mentioned, the Kalman filter is only optimal in the case of Gauss-
ian statistics and linear operators, in which case the first two moments (the mean
and the covariances) suffice to describe the pdf entering the estimation problem.
Practitioners report that the linearized extension to nonlinear problems, the EKF,
only works for moderate deviations from linearity and Gaussianity. The ensemble
Kalman filter (Evensen, 1994, 2009) is a method which has been designed to deal
with strong nonlinearities and non-Gaussian statistics, whereby the pdf is described
by an ensemble of Ne time-dependent states, xk,e.

What happens if the models are nonlinear and the pdf’s are non Gaussian? The
Kalman filter and its extensions are no longer optimal and, more importantly, can
easily fail the estimation process. Another approach must be used. A promising
candidate is the particle filter. The particle filter works sequentially in the spirit
of the Kalman filter, but unlike the latter, it handles an ensemble of states (the
particles) whose distribution approximates the pdf of the true state. Bayes’ rule
(2.1.6) and the marginalization formula (2.1.7) are explicitly used in the estimation
process. The linear and Gaussian hypotheses can then be ruled out, in theory. In
practice though, the particle filter cannot yet be applied to very high dimensional
systems (this is often referred to as “the curse of dimensionality”).

For further deatils of these extensions, the reader should consult the references.

2.2.7. Example: estimation of a random constant. In this simple ex-
ample let us attempt to estimate a scalar random constant, a voltage for example.
Let’s assume that we have the ability to take measurements of the constant, but
that the measurements are corrupted by a 0.1 volt RMS white measurement noise
(e.g. our analog to digital converter is not very accurate). In this example, our
process is governed by the state equation,

xk =Mxk−1 +wk = xk−1 +wk

and the measurement equation,

yk = Hxk + vk = xk + vk.

The state does not change from step to step soM = I. Our noisy measurement is
of the state directly so H = 1.

The time-update (forecast) equations are,

xfk+1 = xak ,

Pfk+1 = Pak +Q
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and the measurement update (analysis) equations are

Kk+1 = Pfk+1(P
f
k+1 + R)

−1,

xak+1 = xfk+1 + Kk+1(yk+1 − x
f
k+1),

Pak+1 = (1− Kk+1)P
f
k+1.

2.2.7.1. Initialization. Presuming a very small process variance, we let Q =

1.e − 5. (We could certainly let Q = 0 but assuming a small but non-zero value
gives us more flexibility in “tuning” the filter as we will demonstrate below.) Let’s
assume that from experience we know that the true value of the random constant
has a standard Gaussian probability distribution, so we will “seed” our filter with
the guess that the constant is 0. In other words, before starting we let x0 = 0.
Similarly we need to choose an initial value for Pak , call it P0. If we were absolutely
certain that our initial state estimate was correct, we would let P0 = 0 . However
given the uncertainty in our initial estimate x0, choosing P0 = 0 would cause the
filter to initially and always believe that xak = 0. As it turns out, the alternative
choice is not critical. We could choose almost any P0 6= 0 and the filter would
eventually converge. We’ll start our filter with P0 = 1.

2.2.7.2. Simulations. To begin with, we randomly chose a scalar constant y =

−0.37727. We then simulated 100 distinct measurements that had error normally
distributed around zero with a standard deviation of 0.1 (remember we presumed
that the measurements are corrupted by a 0.1 volt RMS white measurement noise).

In the first simulation we fixed the measurement variance at R = (0.1)2 = 0.01.
Because this is the “true” measurement error variance, we would expect the “best”
performance in terms of balancing responsiveness and estimate variance. This will
become more evident in the second and third simulations. Figure 2.2.4 depicts the
results of this first simulation. The true value of the random constant x = −0.37727

is given by the solid green line, the noisy measurements by the red dots and the
filter estimate by the remaining blue curve.

In Figure 2.2.5 and Figure 2.2.6 below we can see what happens when R is
increased or decreased by a factor of 100 respectively. In Figure 2.2.5 the filter
was told that the measurement variance was 100 times greater (i.e. R = 1) so it
was “slower” to believe the measurements. In Figure 2.2.6 the filter was told that
the measurement variance was 100 times smaller (i.e. R = 0.0001 ) so it was very
“quick” to believe the noisy measurements. While the estimation of a constant
is relatively straight-forward, it clearly demonstrates the workings of the Kalman
filter. In Figure 2.2.5 in particular the Kalman “filtering” is evident as the estimate
appears considerably smoother than the noisy measurements.

Here is the MALAB code used to perform the simulations.

% SCALAR EXAMPLE (estimate a constant):
%
% Define the system as a constant of -0.37727 volts:
clear s
s.x = -0.37727;
s.A = 1;
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Figure 2.2.4. Estimating a constant - simulation with R = 0.01.
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Figure 2.2.5. Estimating a constant - simulation with R = 1.

% Define a process noise (stdev):
s.Q = 0.00001; % variance, hence stdev^2
% Define the voltmeter to measure the voltage itself:
s.H = 1;
% Define a measurement error (stdev):
s.R = 0.1^2; % variance, hence stdev^2
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Figure 2.2.6. Estimating a constant - simulation with R =

0.0001.

RR = 0.01;
% Do not define any system input (control) functions:
s.B = 0; s.u = 0;
% Specify an initial state:
s.x = -0.37727;
s.P = 1;
% Generate random voltages and watch the filter operate.
tru=[]; % true voltage
for t=1:100

tru(end+1) = -0.37727;
s(end).z = tru(end) + RR*randn; % create a measurement
s(end+1)=kalmanf(s(end)); % perform a Kalman filter iteration

end
figure, hold on, grid on
% plot measurement data:
hz=plot([s(1:end-1).z],’r.’);
% plot a-posteriori state estimates:
hk=plot([s(2:end).x],’b-’); ht=plot(tru,’g-’);
legend([hz hk ht],’observations’,’Kalman output’,’true voltage’,0)
title(’Estimating a constant’)
hold off



CHAPTER 3

Optimal control and variational data assimilation

3.1. Introduction

Unlike sequential assimilation (which emanates from estimation theory), vari-
ational assimilation is based on optimal control theory. The analyzed state is not
defined as the one that maximizes a certain pdf, but as the one that minimizes
a cost functional. The minimization requires numerical optimization techniques.
These techniques all rely on the gradient of the cost function and this gradient
will be obtained here with the aid of adjoint methods.

3.2. Optimization

3.2.1. Definitions and notation. Let V be a vector space and U a non-
empty subset of V. Let J : V → R. We want to solve the following problem.

Problem 25. Find u ∈ U such that

J(u) = min
v∈U

J(v).

Notation:
• J is called the “criterion”, “functional”, “cost function”;
• U is the space of admissible solutions, or the “control space”;
• if U = V the problem is unconstrained, if U 6= V then the problem is
constrained.

3.2.1.1. Basic definitions. We will use Hilbert spaces throughout, with the
standard L2 scalar product and norm. Now let f : E → R, where E is not
necessarily of finnite dimension. We then have the following defintions of extremal
points of f.

Definition 26. We say that x∗ is a global minimum of f if

f(x∗) ≤ f(x), ∀x ∈ E.

Definition 27. We say that x∗ is a local minimum of f if there exists a
neighbourhood V of x∗ such that

f(x∗) ≤ f(x), ∀x ∈ V.

Definition 28. The set F is convex if

∀x1, x2 ∈ F, ∀α ∈ [0, 1] : αx1 + (1− α)x2 ∈ F.

22
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Definition 29. The function f is convex if E is convex and if

∀x1, x2 ∈ F, ∀α ∈ [0, 1] : f (αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

We say that f is strictly convex if

∀x1, x2 ∈ F, ∀α ∈ [0, 1] : f (αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2).

3.2.1.2. Directional and Gâteaux derivatives. Directional derivatives are gen-
eralizations of partial derivatives and measure the rate of change of a function in
an arbitrary direction (the partial derivative is always in one of the coordinate di-
rections). The Gâteaux derivative generalizes the directional derivative to infinite
dimensional spaces. These generalized derivatives are very important for optimiza-
tion and data assimilation problems.

Definition 30. Let f : E→ R. Then the Gâteaux derivative or directional
derivative of f at the point x in the direction d ∈ E is the limit

lim
α→0

f(x+ αd) − f(x)

α
=

d
dα

f(x+ αd)|α=0

if it exists. This directional derivative will denoted as ∂f
∂d

(x) or f ′d(x) or ∇f · d or
f̂(x)[d], or df(x, d).

Example 31. An important example concerns the Gâteaux derivative of a cost
function. Suppose that X ∈ L2(Ω) where Ω ⊂ Rn is a bounded, measurable set.
The functional J : X→ R given by

J(u) =

∫
Ω

F (u(x))dx

where F is a real-valued function with F ′ = f and u is defined onΩ, has the Gâteaux
derivative

Ĵ(u)[ψ] = (f(u), ψ) ,

where (·, ·) is the L2 inner product, since

J(u+ αψ) − J(u)

α
=

1

α

(∫
Ω

F(u+ αψ)dx−
∫
Ω

F(u)dx
)

=
1

α

(∫
Ω

∫1
0

d
ds
F(u+ sαψ)dsdx

)

=

∫
Ω

∫1
0

f(u+ sαψ)dsdx

and letting α→ 0, gives

Ĵ(u)[ψ] =

∫
Ω

f(u(x))ψ(x)dx.

As an application of this result, consider the observation functional

Jobs(K) =
1

2

∫
Ω

(
u− uobs)2
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where u depends indirectly on the parameters K. We compute the Gâteaux deriv-
ative

Ĵ(K)[k] = lim
α→0

J(K+ αk) − J(K)

α

=

∫
Ω

(
u− uobs) û,

where
û = lim

α→0
uK+αk − uK

α
.

Note that in practice, the computation of the directional derivative can be done by
finite increments. We thus calculate

T(α) =
f(x+ αd) − f(x)

α

for smaller and smaller values of α until we obtain numerical convergence.

In mathematics, the Fréchet derivative is a derivative defined on Banach
spaces. It is commonly used to formalize the concept of the functional deriva-
tive used widely in the calculus of variations. Intuitively, it generalizes the idea of
linear approximation from functions of one variable to functions on Banach spaces.
The Fréchet derivative should be contrasted to the more general Gâteaux derivative
which is a generalization of the classical directional derivative, as we saw above.
The Fréchet derivative has applications throughout mathematical analysis, and in
particular to the calculus of variations and much of nonlinear analysis and nonlin-
ear functional analysis. It has applications to nonlinear problems throughout the
sciences.

Definition 32. Let E be a Hilbert space. We say that f is Fréchet differentiable
at x if there exists a p ∈ E such that

f(x+ h) = f(x) + (p, h) + o(h), ∀h∈E.
We then say that p is the derivative, the differential, or the gradient of f at x
and we denote it as f ′(x) or ∇f(x). Note that in higher dimensions, the gradient
becomes the Jacobian matrix.

3.2.2. Unconstrained optimization.
3.2.2.1. Existence in finite dimension. Let f : E→ R with E ⊂ Rn a closed,

non-empty set and suppose that f is continuous.

Theorem 33. Suppose that lim‖x‖→∞ f(x) = +∞, then there exists at least
one minimum of f in E. If E is a convex set of Rn and if f is strictly con-
vex on E then there exists at most one minimum of f in E. If in addition,
lim‖x‖→∞ f(x) = +∞, then ere exists a unique minimum of f in E.

3.2.2.2. Existence in infinite dimension.

Theorem 34. Let f : E→ R with E a closed, non-empty, convex part of a
Hilbert space. Suppose that f is convex, continuous and that lim‖x‖→∞ f(x) =
+∞. Then here exists at least one minimum of f in E.
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3.2.2.3. Optimality conditions. The first condition is a necessary condition
for optimality, also known as the Euler equation.

Theorem 35. Let f : E → R with E a convex part of a Hilbert space.
Suppose that x∗ is an interior point of E and that there exists a bounded
subset Ω such that x∗ ∈ Ω ⊂ E. If f is differentiable at x∗, then the fact that
x∗ is a local minimum of f implies that ∇f(x∗) = 0.

If we add the convexity condition, we obtain a necesssary and sufficient condi-
tion.

Theorem 36. Let f : E → R with E a convex part of a Hilbert space.
Suppose that x∗ is an interior point of E and that there exists a bounded
subset Ω such that x∗ ∈ Ω ⊂ E. If f is convex on E and differentiable at x∗,
then x∗ is a local minimum of f if and only if ∇f(x∗) = 0.

3.2.3. Minimization of a quadratic functional in finite dimension. We
begin by defining a generalization of the inverse for rectanglar matrices, that for
invertible matrices reduces to the standard inverse.

Definition 37. Let M be an m × n matrix. The pseudo-inverse (Moore-
Penrose inverse) of M is a matrix denoted M† that satisfies
(3.2.1)

MM†M =M, M†MM† =M†,
(
MM†

)T
=MM†,

(
M†M

)T
=M†M.

Theorem 38. Let M be an m× n matrix. If M is of rank n, then

M† =
(
MTM

)−1
MT .

Proof. It suffices to verify the relations (3.2.1). �

Now let us consider the minimization of a quadratic functional.

Theorem 39. Consider the following quadratic functional

J(x) =
1

2
‖Mx− b‖2

for x ∈ Rn where M is an m× n matrix of rank n and b ∈ Rm. The solution
of the minimization problem 25 is given by

x∗ =M†b.

Proof. We expand the norm:

‖Mx− b‖2 = (Mx− b)
T
(Mx− b)

= xTMTMx− bTMx− xTMTb+ bTb

= xTMTMx− 2bTMx+ bTb.
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Now compute the directional derivative by a finite increment,

J(x+ αδx) − J(x) =
1

2

[
(x+ αδx)TMTM(x+ αδx) − 2bTM(x+ αδx) + bTb

−xTMTMx+ 2bTMx− bTb
]

=
α

2

(
δxTMTMx+ xTMTMδx− 2bTMδx

)
+O(α2)

= α
(
xTMTMδx− bTMδx

)
+O(α2).

Thus,

lim
α→0

J(x+ αδx) − J(x)

α
=
(
xTMTM− bTM

)
δx =

(
MTMx−MTb, δx

)

and the gradient is, by definition,

∇J(x) =MTMx−MTb.

Finally, setting the gradient equal to zero, we obtain

∇J(x) = 0 ⇐⇒ x =
(
MTM

)−1
MTb =M†b.

�

3.2.3.1. Relation with variational data assimilation. We apply the above
results to the minimization of the weighted functional

J1(x) =
1

2
‖Mx− b‖2N =

1

2
(Mx− b)

T
N (Mx− b) ,

for x ∈ Rn, where M is an m× n matrix of rank n, b ∈ Rm and N is a symmetric
positive-definite matrix. Then it is quite easy to see that the minimum of J1 is
attained for

x∗ =
(
MTNM

)−1
MTNb.

We have just solved the following data assimilation problem.

Problem 40. Let H be a linear observation operator, of rank n. We want to
find x∗ such that

Jo(x∗) = min
x
Jo(x) = min

x
‖Hx− y‖2 .

Note that the rank hypothesis on H implies that n ≤ m and we have more
observations (y) than unknowns to estimate (x). Now, with the previous notation,

Jo(x) =
1

2
(Hx− y)

T
R−1 (Hx− y)

and
x∗ =

(
HTR−1H

)−1
HTR−1y,

where R is the observation error covariance matrix.
In the same way, we can consider a cost function with a background term (see

below),

J(x) = Jb(x) + Jo(x)

=
1

2

(
x− xb)T B−1

(
x− xb)+ 1

2
(Hx− y)

T
R−1 (Hx− y) .,

where B is the background error covariance matrix.
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For this case we just have to set

M =

(
I

H

)
, Y =

(
xb

y

)
, N =

(
B−1 0

0 R−1

)

and we calculate
MTNM = B−1 +HTR−1H,

MTNY = B−1xb +HTR−1Y.

It is then easy to see that the optimum is attained for

x∗ = xb +
(
B−1 +HTR−1H

)−1
HTR−1(y−Hxb).

The matrix
(
B−1 +HTR−1H

)−1
HTR−1 is called the gain matrix and the vector

(y−Hxb) the innovation (we recognize the form of an optimal linear filter...). The
gain matrix is often rewritten in the form

BHT
(
R+HBHT

)−1

according to the Sherman-Morrison-Woodbury formula.
In practice, due to the very large dimensions of the problem, m and n, it is

often impossible to explicitly obtain the gain matrix. The computation of x∗ is
then performed by optimization algorithms (or by reduced-order methods).

3.2.4. Constrained optimization.
3.2.4.1. Minimization with equality constraints. Let f : Rn → R be a

differentiable function and let K, the set of constraints, be

K = {x ∈ Rn | h1(x) = 0, . . . , hp(x) = 0} ,

where the functions hi : Rn → R are at least of class C1. We seek x∗ ∈ K such
that

f(x∗) = min
x∈K

f(x).

Theorem 41. If x∗ ∈ K is a local minimum of f in K, and if the vec-
tors ∇hi(x∗), i = 1, . . . , p are linearly independent, then there exists λ∗ =

(λ∗1, . . . , λ
∗
p) ∈ Rp such that

∇f(x∗) +
p∑
i=1

λ∗i∇hi(x∗) = 0.

We introduce the Lagrangian L defined by

L(x, λ) = f(x) +
p∑
i=1

λihi(x).

Then solving ∇f(x) = 0 in K is exactly equivalent to solving ∇L = 0 (finding a
saddle point). This means that we solve the two following equations:

∇xL = ∇f+
p∑
i=1

λi∇hi = 0,

∇λL = (h1, h2, . . . , hp)
T
= 0.
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The second line is the constraint equations, and hence x ∈ K, and the first line then
gives the necessary condition of the theorem.

3.2.5. Optimization algorithms: gradient methods. We consider the fol-
lowing optimization problem.

Problem 42. Find the minimum x∗ of a cost function J, such that

J(x∗) = min
x∈Rn

J(x)

We will call descent method, any algorithm of the type

xk+1 = xk + αkdk, such that J(xk+1) < J(xk),

where dk ∈ Rn is the descent direction at iteration k and αk ∈ R is the step-size
at iteration k. The descent methods differ in their choices of αk et dk.

By defintion of the gradient we can expand the objective function,

J(xk + h) = J(xk) + (∇J(xk), h) + o(h).

Since J is positive, the principal decrease will be reached when h = −α∇J(xk),
which is the same as setting

dk = −∇J(xk).

This is the direction of steepest descent.
3.2.5.1. Conjiugate gradient method. For the special case where

J(x) =
1

2
(Ax, x) − (b, x) =

1

2
xTAx− bTx

with A symmetric and positive definite, we can define the conjugate gradient
algorithm as follows:

The algorithm can be summarized as follows:

dk = ∇J(xk) + dk−1
‖∇J(xk)‖2

‖∇J(xk−1)‖2

αk = −
(∇J(xk), dk)
(Adk, dk)

,

where ∇J(xk) = Axk − b is the “residual”. This algorithm converges in at most n
iterations, but it’s cost is O(n2) which can be prohibitive for large, full matrices.
However, for sparse matrices it is often used since only the matix-vector products
Adk and Axk need to be stored and the cost reduces to O(m) only, where m is the
number of non-zero entries in A.

Here is a pseudo-code implementaion of the conjugate gradient method.
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k = 0, r0 = Ax0 − b, d0 = −r0
while rk 6= 0
αk =

rTkrk
dT

k
Adk

xk+1 = xk + αkdk
rk+1 = rk + αkAdk (rk+1 = Axk+1 − b )

βk+1 =
rTk+1rk+1

rT
k
rk

dk+1 = −rk+1 + βk+1dk
k = k+ 1

end

3.2.5.2. Newton methods. The basic idea is to use the aproximation of the
derivative by a tangent. If we want to solve f(x) = 0, we can suppose that xk is
known and we define the next point, xk+1, as the intersection of the tangent to the
curve f at xk with the x-axis,

f(xk) − 0

xk − xk+1
= f ′(xk) =⇒ xk+1 = xk −

f(xk)

f ′(xk)
.

Generalizing to dimension n, we obtain

x(k+1) = x(k) −
[
f ′(x(k))

]−1
f(x(k)),

where f ′(x(k)) is the Jacobian matrix
[
∂fi

∂xj
(x(k))

]
.

At each iteration we thus have to compute the Jacobian and to solve a linear system
[
f ′(x(k))

]
δx(k) = −f(x(k)).

Let us now apply Newton’s method to the Euler equation ∇J(x) = 0.We obtain

xk+1 = xk −
[
∇2J(xk)

]−1∇J(xk),

where ∇2J(xk) is the Hessian matrix of J. The advantage of this method is that
the convergence is now quadratic, but the major disadvantage is the expense of
computing the Hessian at each iteration and solving the resulting linear system.
To remedy this, quasi-Newton methods are systematically used. These methods
are based on suitable approximations of the inverse of the Hessian.

Example 43. Use Newton’s method to minimize the function

f(x) = 0.5x21 + 2.5x
2
2.

We easily compute the gradient and the Hessian of f(x):

∇f(x) =
[
x1
5x2

]
, ∇2f(x) = Hf(x) =

[
1 0

0 5

]
.
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Taking an initial vector, x0 = [5 1]
T
, we find ∇f(x0) = [5 5]

T
, and the linear

system for the Newton iteration is
[
1 0

0 5

]
d0 =

[
−5

−5

]

and thus

x1 = x0 + d0 =

[
5

1

]
+

[
−5

−1

]
=

[
0

0

]
.

As expected, we have found the exact solution to this quadratic problem.

3.2.5.3. Quasi-Newton methods. The two most widely used methods are the
Davidon-Fletcher-Powell (DFP), or variable metric method, and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method. [10].

3.3. Adjoint methods

3.3.1. Introduction. All the optimization methods seen above require the
computation of the gradient ∇J. If the dependence of J on the control variables is
complex or indirect, this computation can be very difficult. We saw above that the
minimization of

Jo(x) =

∫T
0

‖H (x(t)) − yo(t)‖2 dt

involves the inversion of a very large linear system. Numerically, we can always
manage by computing finite increments, but this would have to be done in all the
possible perturbation directions. We thus need to find a less expensive way to
compute the gradient.

3.3.2. A simple ODE example. Let us consider an inverse problem based
on the ordinary differential equation (of convection-diffusion type)

(3.3.1)

{
− bu ′′(x) + cu ′(x) = f(x) 0 < x < 1

u(0) = 0, u(1) = 0,

where f is a given function in L2(0, 1), and b and c are unknwon parameters that
we seek to identify using observations of u(x) on [0, 1]. The cost function is then

J(b, c) =

∫1
0

(
u(x) − uobs(x)

)2
dx.

Let us calculate its gradient. This can be done in two ways: using the Lagrangian
or using the tangent linear model. We will start with the second approach. Per-
turbing the cost function gives

J(b+ αδb, c+ αδc) − J(b, c) =

∫1
0

(
ũ− uobs)2 −

(
u− uobs)2 dx,

where ũ = ub+αδb,c+αδc and u = ub,c. Expanding and rearranging, we obtain

J(b+ αδb, c+ αδc) − J(b, c) =

∫1
0

(
ũ+ u− 2uobs) (ũ− u)dx.
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Now we divide by α and pass to the limit α→ 0, to obtain the directional derivative

(3.3.2) Ĵ [b, c] (δb, δc) = 2

∫1
0

(
u− uobs) ûdx,

where

û = lim
α→0

ũ− u

α
.

Let us now use this definition to find the equation satisfied by û. We have{
− (b+ αδb)ũ ′′ + (c+ αδc)ũ ′ = f,

ũ(0) = 0, ũ(1) = 0,

and {
− bu ′′ + cu ′ = f,

u(0) = 0, u(1) = 0.

Then, subtracting the two equations and passing to the limit, we obtain,{
− bû ′′ − (δb)u ′′ + cû ′ + (δc)u ′ = 0

û(0) = 0, û(1) = 0.

Finally, we can define the tangent linear model

(3.3.3)

{
− bû ′′ + cû ′ = (δb)u ′′ − (δc)u ′

û(0) = 0, û(1) = 0.

We want to be able to reformulate the directional derivative (3.3.2), in order to
obtain an expression for the gradient. So we multiply the tangent linear model
(3.3.3) by a variable p and we integrate twice by parts:

−b

∫1
0

û ′′p+ c
∫1
0

û ′p =

∫1
0

((δb)u ′′ − (δc)u ′)p,

which gives ∫1
0

û ′′p = [û ′p]
1

0 −

∫1
0

û ′p ′

= [û ′p− ûp ′]
1

0 +

∫1
0

ûp ′′

= û ′(1)p(1) − û ′(0)p(0) +
∫1
0

ûp ′′

and ∫1
0

û ′p = [ûp]
1
0 −

∫1
0

ûp ′

= −

∫1
0

ûp ′.

Putting these results together, we get

−b

(
û ′(1)p(1) − û ′(0)p(0) +

∫1
0

ûp ′′
)

+ c

(
−

∫1
0

ûp ′
)

=

∫1
0

((δb)u ′′ − (δc)u ′)p
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or

(3.3.4)
∫1
0

(−bp ′′ − cp ′) û = bû ′(1)p(1) − bû ′(0)p(0) +
∫1
0

((δb)u ′′ − (δc)u ′)p.

Now we impose that p must satisfy the adjoint model

(3.3.5)

{
− bp ′′ − cp ′ = 2(u− uobs),

p(0) = 0, p(1) = 0.

Integrating (3.3.5) and using the expression (3.3.4), we obtain

2

∫1
0

(u− uobs)û =

∫1
0

(−bp ′′ − cp ′) û = (δb)

(∫1
0

pu ′′
)

+ (δc)

(
−

∫1
0

pu ′
)
.

We recognize the L2 inner product, which enables us to finally write an explicit
expression for the gradient based on (3.3.2),

∇J(b, c) =
(∫1
0

pu ′′,−
∫1
0

pu ′
)
,

or

∇bJ(b, c) =

∫1
0

pu ′′

∇cJ(b, c) = −

∫1
0

pu ′.

Thus, for the additional cost of solving the adjoint model (3.3.5), we can compute
the gradient of the cost function with respect to either one, or both, of the unknown
parameters.

3.3.3. Initial condition control. For data assimilation problems in meteo-
rology and oceanography, the objective is to reconstruct the initial conditions of
the model. We redo the above gradient calculations in this context. Let us consider
the following system of (possibly nonlinear) ordinary differential equations,

(3.3.6)


dX
dt

=M(X) in Ω× [0, T ] ,

X(t = 0) = U,

with the cost function

J(U) =
1

2

∫T
0

‖HX− Yo‖2 dt.

To compute the directional derivative, we perturb U in the direction u and denote
by X̃ the correponding trajectory, satisfying

(3.3.7)


dX̃
dt

=M(X̃) in Ω× [0, T ] ,

X̃(t = 0) = U+ αu.
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We then have

J(U+ αu) − J(U) =
1

2

∫T
0

∥∥HX̃− Yo∥∥2 − ‖HX− Yo‖2 dt

=
1

2

∫T
0

(
HX̃− Y,HX̃−HX+HX− Y

)
− (HX− Y,HX− Y)

=
1

2

∫T
0

(
HX̃− Y,H(X̃− X)

)
− (HX̃− Y − (HX− Y), HX− Y)

=
1

2

∫T
0

(
HX̃− Y,H(X̃− X)

)
+ (H(X̃− X), HX− Y).

We set

X = lim
α→0

X̃− X

α

and we compute

Ĵ [U] (u) = lim
α→0

J(U+ αu) − J(U)

α

=
1

2

∫T
0

(
HX− Y,HX̂

)
+ (HX̂,HX− Y)

=

∫T
0

(HX̂,HX− Y)

=

∫T
0

(X̂, HT (HX− Y)).

By subtracting the equations (3.3.7) and (3.3.6) satisfied by X̃ and X we obtain,
d(X̃− X)

dt
=M(X̃) −MX =

[
∂M

∂X

]
(X̃− X) +

1

2
(X̃− X)T

[
∂2M

∂X2

]
(X̃− X) + . . . ,

(X̃− X)(t = 0) = αu.

Now we divide by α and pass to the limit α→ 0, to obtain

(3.3.8)


dX̂
dt

=

[
∂M

∂X

]
X̂,

X̂(t = 0) = u.

These equations are the tangent linear model (TLM).
We will now proceed to compute the adjoint model. As in the ODE example,

we multiply the TLM (3.3.8) by P and integrate by parts on [0, T ] . We find,∫T
0

(
dX̂
dt
, P

)
= −

∫T
0

(
X̂,

dP
dt

)
+
[
(X̂, P)

]T
0

= −

∫T
0

(
X̂,

dP
dt

)
+
(
X̂(T), P(T)

)
−
(
X̂(0), P(0)

)

= −

∫T
0

(
X̂,

dP
dt

)
+
(
X̂(T), P(T)

)
− (u, P(0))
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and ∫T
0

([
∂M

∂X

]
X̂, P

)
=

∫T
0

(
X̂,

[
∂M

∂X

]T
P

)
.

Thus, substituting in equation (3.3.8), we get∫T
0

(
dX̂
dt

−

[
∂M

∂X

]
X̂, P

)
= 0 =

∫T
0

(
X̂,−

dP
dt

−

[
∂M

∂X

]T
P

)
+
(
X̂(T), P(T)

)
−(u, P(0)) .

Identifying with the directional derivative

(3.3.9) Ĵ [U] (u) =

∫T
0

(X̂, HT (HX− Y)),

we obtain the equations of the adjoint model

(3.3.10)


dP
dt

+

[
∂M

∂X

]T
P = HT (HX− Y),

P(t = T) = 0,

which is a backward model, integrated from t = T to t = 0.
We can now find the expression for the gradient. Using the adjoint model

(3.3.10) in (3.3.9), we find

Ĵ [U] (u) =

∫T
0

(X̂, HT (HX− Y))

=

∫T
0

(
X̂,

dP
dt

+

[
∂M

∂X

]T
P

)

= (−u, P(0)) .

But
Ĵ [U] (u) = (∇JU, u)

and thus
∇JU = −P(0).

Once again, with a single integration of the adjoint model, we obtain a particularly
simple expression for the gradient of the cost function with respect to the control
parameter.

3.3.4. Application: Burgers’ equation. We consider a realistic application
based on Burgers’ equation with control of the initial condition and the boundary
conditions. The viscous Burgers’ equation in the interval x ∈ [0, L] is defined as

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f,

u(0, t) = ψ1(t), u(L, t) = ψ2(t),

u(x, 0) = u0(x).

The control vector is
(u0, ψ1, ψ2)
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and the cost function is given by

J(u0, ψ1, ψ2) =
1

2

∫T
0

∫L
0

(
u− uobs)2 .

We know that the derivative of J in the direction (hu, h1, h2) is given (as above)
by

Ĵ [u0, ψ1, ψ2] (hu, h1, h2) =

∫T
0

∫L
0

(
u− uobs) û,

where û is defined as

û = lim
α→0

ũ− u

α

= lim
α→0

u(u0 + αhu, ψ1 + αh1, ψ2 + αh2) − u(u0,ψ1,ψ2)
α

and it is the solution of the tangent linear model,

∂û

∂t
+
∂(uû)

∂x
− ν

∂2û

∂x2
= 0,

û(0, t) = h1(t), û(L, t) = h2(t),

û(x, 0) = hu(x).

We can now compute the equation of the adjoint model. As usual, we multiply the
TLM by p and integrate by parts on [0, T ] .

∫T
0

(
∂û

∂t
, p

)
=

∫T
0

∫L
0

∂û

∂t
p

=

∫L
0

[ûp]
T
0 −

∫L
0

∫T
0

∂p

∂t
û

=

∫L
0

(û(T)p(x, T) − hup(x, 0)) −

∫L
0

∫T
0

∂p

∂t
û

∫T
0

(
∂(uû)

∂x
, p

)
=

∫T
0

∫L
0

∂(uû)

∂x
p

=

∫T
0

[uûp]
L
0 −

∫T
0

∫L
0

uû
∂p

∂x

=

∫T
0

(ψ2h2p(L, t) −ψ1h1p(0, t)) −

∫T
0

∫L
0

uû
∂p

∂x
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0

(
∂2û

∂x2
, p

)
=

∫T
0

∫L
0

∂2û

∂x2
p

=

∫T
0

[
p
∂û

∂x

]L

0

−

∫T
0

∫L
0

∂û

∂x

∂p

∂x

=

∫T
0

[
p
∂û

∂x
− û

∂p

∂x

]L

0

+

∫T
0

∫L
0

û
∂2p

∂x2

=

∫T
0

(
p(L, t)

∂û

∂x
(L, t) − h2

∂p

∂x
(L, t) − p(0, t)

∂û

∂x
(0, t) + h1

∂p

∂x
(0, t)

)

+

∫T
0

∫L
0

û
∂2p

∂x2
.

The natural boundary conditions for p are thus

p(x, T) = 0, p(0, t) = p(L, t) = 0

and this gives

0 =

∫T
0

∫L
0

(
∂û

∂t
+
∂(uû)

∂x
− ν

∂2û

∂x2

)
p

=

∫T
0

∫L
0

û

(
−
∂p

∂t
− u

∂p

∂x
− ν

∂2p

∂x2

)

+

∫L
0

−hup(x, 0) +

∫T
0

νh2
∂p

∂x
(L, t) − νh1

∂p

∂x
(0, t).

In other words,∫T
0

∫L
0

û

(
−
∂p

∂t
− u

∂p

∂x
− ν

∂2p

∂x2

)
= −

∫L
0

hup(x, 0) +

∫T
0

νh2
∂p

∂x
(L, t) − νh1

∂p

∂x
(0, t).

We thus set the adjoint model as

∂p

∂t
+ u

∂p

∂x
− ν

∂2p

∂x2
= u− uobs,

p(0, t) = 0, p(L, t) = 0,

p(x, T) = 0.

Now we can rewrite the gradient of J in the form,

Ĵ [u0, ψ1, ψ2] (hu, h1, h2) = −

∫L
0

hup(x, t = 0)+

∫T
0

νh2
∂p

∂x
(x = L, t)−νh1

∂p

∂x
(x = 0, t)

which yields,

∇u0
J = −p(x, t = 0)

∇ψ1
J = −ν

∂p

∂x
(x = 0, t)

∇ψ2
J = ν

∂p

∂x
(x = L, t).

3.3.5. Practical implementation of the adjoint method. See the en-
closed course notes of A. Vidard, where the following topics are treated.

3.3.5.1. Continuous and discrete adjoints.
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3.3.5.2. Adjoint for data assimilation.
3.3.5.3. Validation of an adjoint code.

3.4. Variational DA

3.4.1. Introduction. We have seen above that he BLUE requires the com-
putation of the gain matrix,

K = BHT (HBHT + R)−1.

in order to obtain an analyzed state

xa = xb + K(y−H(xb))

that minimizes the cost function,

J(x) =
1

2

(
x− xb)T B−1

(
x− xb)+ 1

2
(Hx− y)

T
R−1 (Hx− y) .

But the matrices involved in this calculation are often neither storable in memory,
nor manipulable because of their very large dimensions. The basic idea of varia-
tional methods is to overcome these difficulties by attempting to directly minimize
the cost function J. This is achieved by a combination of a descent algorithm in
the direction of the gradient, with an adjoint method for the computation of the
gradient.

In the case where there is no time dependence, the approach is named 3D-Var,
whereas for time-dependent problems we use the 4D-Var approach. Since we have
already prepared most of the theory in the above chapters, the presentation here
will be quite brief.

3.4.2. 3D-Var. The cost function for 3D-Var is

J(x) =
1

2

(
x− xb)T B−1

(
x− xb)+ 1

2
(y−H(x))

T
R−1 (y−H(x)) .

We recall that R and B are the observation and background error covariance matrices
respectively. When the observation operator H is linear, the gradient of J is given
by

∇J = B−1
(
x− xb)−HTR−1 (y−Hx) .

The iterative 3D-Var algorithm uses as stopping criteria the fact that ∇J is small
or that the maximum number of iterations is reached.

k = 0, x = x0
while ‖∇J‖ > ε or k ≤ kmax

compute J
compute ∇J
gradient descent and update of xk+1
k = k+ 1

end
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A few remarks are necessary. Firstly, the matrix B cannot, in general, be explicitly
stored and it must be modeled somehow. However, only matrix-vector products
involving B−1 are encountered. This permits complex modeling using an operator
form. To achieve this, we define a complex function that receives φ as input and
returns B−1φ as output. A second remark concerns the possibility of using this
algorithm for time dependent problems that are of very large dimension. In this
case, x represents the initial state and the observations yo are reported to the
initial instant. This greatly simplifies the gradient computation since there is no
integration of the adjoint, nor integration of the model M.

Example 44. We seek two temperatures, x1 and x2, in Caracas and Bar-
quisimeto. The climatologist gives us an initial guess (based on climate records)
xb = (10 5)T with background error covariance matrix

B =

(
1 0.25

0.25 1

)
.

We observe yo = 4 in Barquisimeto, which implies that H = (0 1), with an obser-
vation error variance R = (0.25) . We can now write the cost function

J(x) =
(
x1 − 10 x2 − 5

)( 1 0.25

0.25 1

)−1(
x1 − 10

x2 − 5

)
+ R−1(x2 − 4)

2

=
(
x1 − 10 x2 − 5

) 16
15

(
1 −0.25

−0.25 1

)(
x1 − 10

x2 − 5

)
+ 4(x2 − 4)

2

=
16

15

(
(x1 − 10)

2 + (x2 − 5)
2 − 0.5(x1 − 10)(x2 − 5)

)
+ 4(x2 − 4)

2

=
16

15

(
x21 − 17.5x1 + 100+ x

2
2 − 5x2 − 0.5x1x2

)
+ 4(x22 − 8x+ 16)

and its gradient

∇J(x) = 16

15

(
2x1 − 0.5x2 − 17.5

2x2 − 5− 0.5x1 +
15
4
(2x2 − 8)

)
=
1

15

(
32x1 − 8x2 − 280

−8x1 + 152x2 − 560

)
.

The minimum is obtained for ∇J(x) = 0, which gives

x1 = 9.8, x2 = 4.2.

3.4.3. 4D-Var. The 4D-Var generalizes the 3D-Var to the case where the
observations are obtained at different times - see Figure 3.4.1.

3.4.3.1. Cost function and gradient. The cost function is still expressed in
terms of the initial state x, but it now includes the model because the observation
yo
i at time i is compared to Hi(xi), where xi is the state at time i initialized by
x. The cost function is once again the sum of the baclground and the observation
errors,

J(x) = Jb(x) + Jo(x),

where the background term is the same as above,

Jb(x) =
1

2

(
x− xb)T B−1

(
x− xb) .



3.4. VARIATIONAL DA 39
Le 4D-Var

3DVAR

Time

X

Assimilation window

Previous forecast

Corrected forecast

obs

obs

obs
obs

obs

Xa

Jo

Jo

Jo

Jo

Jo

Xb

Jb

Figure 3.4.1. 3D- and 4D-Var (Credit: A. Vidard).

The background xb, as with x, is taken as a vector at the initial time, i = 0. The
observation term is more complicated. We define

Jo(x) =
1

2

n∑
i=0

(yo
i −Hi(xi))

T
R−1i (yo

i −Hi(xi)) ,

where the state at time i is obtained by an iterated composition of the model
matrix,

xi = M0→i(x)
= Mi−1,iMi−2,i−1 . . .M1,2M0,1x

= MiMi−1 . . .M2M1x.

This gives the final form of the observation term,

Jo(x) =
1

2

n∑
i=0

(yo
i −HiMiMi−1 . . .M2M1x)

T
R−1i (yo

i −MiMi−1 . . .M2M1x) .

Now we can compute the gradient,

∇J(x) = B−1
(
x− xb)−

n∑
i=0

MT
1M

T
2 . . .M

T
i−1M

T
i H

T
i R

−1
i (yo

i −MiMi−1 . . .M2M1x) .

If we denote the innovation vector

di = y
o
i −HiMiMi−1 . . .M2M1x,
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then we have

−∇Jo(x) =

n∑
i=0

MT
1M

T
2 . . .M

T
i−1M

T
i H

T
i R

−1
i di

= HT0R
−1
0 d0 +M

T
1H

T
1R

−1
1 d1 +M

T
1M

T
2H

T
2R

−1
2 d2 + · · ·+

MT
1 . . .M

T
n−1M

T
nH

T
nR

−1
n dn

= HT0R
−1
0 d0 +M

T
1

[
HT1R

−1
1 d1 +M

T
2

[
HT2R

−1
2 d2 + · · ·+MT

nH
T
nR

−1
n dn

]]
.

This factorization enables us to compute Jo followed by ∇Jo with one integration
of the direct model followed by one integration of the adjoint model.

3.4.3.2. Algorithm.

n = 0, x = x0
while ‖∇J‖ > ε or n ≤ nmax

(1) compute J with the direct model M and H
(2) compute ∇J with the adjoint model MT and HT in reverse mode
gradient descent and update of xn+1
n = n+ 1

end

In step (1), we use the equations

di = y
o
i −HiMiMi−1 . . .M2M1x

and

J(x) =
1

2

(
x− xb)T B−1

(
x− xb)+

n∑
i=0

dTi R
−1
i di.

In step (2), we use

∇J(x) = B−1
(
x− xb)−

[
HT0R

−1
0 d0 +M

T
1

[
HT1R

−1
1 d1 +M

T
2

[
HT2R

−1
2 d2 + · · ·+MT

nH
T
nR

−1
n dn

]]]
.

3.4.4. Extensions and complements.
3.4.4.1. Parameter estimation. If we want to optimise a set of parmeters,

α = (α1, α2, . . . , αp

we only have to include the control variables as terms in the cost function,

J(x, α) = Jb1(x) + J
b
2(α) + J

o(x, α).

The observation term includes a dependence on α and it is often necessary to add
a regularization term for α, such as

Jb2(α) =
∥∥α− αb∥∥2 , or Jb2(α) =

(
α− αb)B−1

α

(
α− αb) ,

or
Jb2(α) = ‖∇α− β‖2 .

3.4.4.2. Nonlinearities. When the nonlinearities in the model and/or the ob-
servation operator are weak, we can extend the 3D- and 4D-Var algorithms to take
their effects into account. One can define then the incremental 4D-Var algorithm.
[9].
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3.4.4.3. Effect of a single observation. Suppose that we have a single onser-
vation, at one point corresponding to the k-th element of the state vector. The
observation operator is then

H = ( 0 . . . 0 1 0 . . . 0 ).

The gradient of J is

∇J = B−1
(
x− xb)+HTR−1 (Hx− yo) .

It is equal to zero at the minimum xa, so that
(
xa − xb) = BHTR−1 (yo −Hxa) .

But R = σ2, Hxa = xa
k and BHT is the k-th column of B. So we see that

xa − xb =
yo − xa

k

σ2




B1,k
B2,k
...

Bn,k


 .

The increment is proportional to a column of B. The choice of B is thus crucial
and will determine how this observation provides information about what happens
around the k-th variable.

In the 4D-Var case, the increment at time i will be proportional to a single
column of MBMT which describes the error covariances of the background at the
time of the observation i.

3.4.4.4. Preconditioning. We recall that the condition number of a matrix
A is the product ‖A‖

∥∥A−1
∥∥ . In general, variational data assimilation problems

are badly conditioned. The rate of convergence of the minimization algorothms
depends on the conditioning of the Hessian of the cost function: the closer it is to
1, the better the convergence is. For 4D-Var the Hessian is equal to B−1+HTR−1H

and its condition number is usually very high.
Preconditioning is a technique for improving the condition number and thus

acelerating the convergence of the optimization. We make a change of variable

δx = x− xb

such that
w = L−1δx, B−1 = LLT

where L is a given, simple matrix. This is commonly used in meteorology and
oceanography. The modified cost function is

J̃(w) =
1

2
wTw+

1

2
(HLw− d)TR−1(HLw− d)

and its Hessian is equal to

J̃ ′′ = I+ LTHTR−1HL.

It is in general much better conditioned ans the resulting improvement in conver-
gence can be spectacular.
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3.5. Advanced techniques

These will be the object of an advanced course...

3.5.1. Sensitivity analysis.

3.5.2. Reduced-order methods.

3.5.3. Error covariance modeling.
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