Integer-valued polynomial in valued fields with an application to discrete dynamical systems

Jean-Luc Chabert

Abstract. Integer-valued polynomials on subsets of discrete valuation domains are well studied. We undertake here a systematical study of integer-valued polynomials on subsets S of valued fields and of several connected notions: the polynomial closure of S, the Bhargava's factorial ideals of S and the v-orderings of S. A sequence of numbers is naturally associated to the subset S and a good description can be done in the case where S is regular (a generalization of the regular compact subsets of S. Amice in local fields). Such a case arises naturally when we consider orbits under the action of an isometry.

Keywords. Integer-valued polynomial, generalized factorials, valued field, valuative capacity, discrete dynamical system.

AMS classification. 13F20, 13B65, 37B99.

1 Introduction

Integer-valued polynomials in a number field K is a natural notion introduced by Pólya [29] and Ostrowski [30]: they are polynomials f with coefficients in K such that $f(\mathcal{O}_K) \subseteq \mathcal{O}_K$ (where \mathcal{O}_K denotes the ring of integers of K). The notion has been generalized, first in [7] by considering any integral domain D and the D-algebra

$$Int(D) = \{ f \in K[X] \mid f(D) \subseteq D \}$$

$$(1.1)$$

(where K denotes the quotient field of D), and then, in [23] by considering any subset S of the integral domain D and the corresponding D-algebra

$$Int(S,D) = \{ f \in K[X] \mid f(S) \subseteq D \}, \tag{1.2}$$

that is called the ring of integer-valued polynomials on S with respect to D.

When D is Noetherian, the notion behaves well by localization: for every maximal ideal \mathfrak{m} of D, one has the equality [8, I.2.7]:

$$Int(S, D)_{\mathfrak{m}} = Int(S, D_{\mathfrak{m}}). \tag{1.3}$$

So that, when $D = \mathcal{O}_K$ is the ring of integers of a number field K, the study may be restricted to the case where S is a subset of the ring V of a discrete valuation v (with finite

residue field). We then may use the notion of v-ordering introduced by Bhargava ([2] and [3]) that allows an algorithmic construction of bases of the V-module $\mathrm{Int}(S,V)$. Finally, the case of subsets of discrete valuation domains is well studied, although it remains some difficult questions. For instance, what happens when we replace the indeterminate X by several indeterminates? (see Mulay [28] and Evrard [18]).

When the field K is no more a number field, but an infinite algebraic extension of \mathbb{Q} , the ring of integers \mathcal{O}_K is no more a Dedekind domain, but a Prüfer domain. Then, we are not sure that things still work well under localization. We can find (see [11] or [8, VI.4.13]) characterizations of the equality

$$\left(\operatorname{Int}(\mathcal{O}_K)\right)_{\mathfrak{m}} = \operatorname{Int}((\mathcal{O}_K)_{\mathfrak{m}}). \tag{1.4}$$

Without any condition on K, we only have the containment:

$$(\operatorname{Int}(\mathcal{O}_K))_{\mathfrak{m}} \subseteq \operatorname{Int}((\mathcal{O}_K)_{\mathfrak{m}}), \tag{1.5}$$

and more generally, for every subset S of K, we have [8, I.2.4]:

$$(\operatorname{Int}(S, \mathcal{O}_K))_{\mathfrak{m}} \subseteq \operatorname{Int}(S, (\mathcal{O}_K)_{\mathfrak{m}}). \tag{1.6}$$

In any case, it may be worth of interest to study the ring $\mathrm{Int}(S,V)$ formed by the integer-valued polynomials on a subset S of a (not necessarily discrete) rank-one valuation domain V.

In fact, it is known that many of the results concerning discrete valuation domains may be extended to rank-one valuation domains provided that the completion \widehat{S} of S is assumed to be compact (see [9]) because, in that case we still have a p-adic Stone-Weierstrass theorem [10]. But, here, we wish to remove all restrictions on the subset S (while keeping the assumption that the valuation is rank one).

Classical definitions

Before beginning this study, let us first recall two general notions linked to integer-valued polynomials: the polynomial closure of a subset and the factorial ideals associated to a subset. For every integral domain D with quotient field K and every subset S of D, we may associate to the subset S, and to the corresponding D-algebra

$$Int(S,D) = \{ f \in K[X] \mid f(S) \subseteq D \}$$

$$(1.7)$$

of integer-valued polynomials on S with respect to D, the following notions:

Definition 1.1. (McQuillan [27])

(i) A subset T of K is said to be polynomially equivalent to S if

$$Int(T, D) = Int(S, D). \tag{1.8}$$

(ii) The polynomial closure \overline{S} of S is the largest subset of K which is polynomially equivalent to S, equivalently,

$$\overline{S} = \{ t \in K \mid f(t) \in D \quad \forall f \in \text{Int}(S, D) \}. \tag{1.9}$$

(iii) The subset S is said to be polynomially closed if

$$\overline{S} = S \tag{1.10}$$

So that, to study the ring $\operatorname{Int}(S,D)$ we may replace S by its polynomial closure \overline{S} or, when we do not know it, by any subset T which is polynomially equivalent to S. We now generalize to every subset S of an integral domain D the notion of factorial ideal introduced by Bhargava [4] for subsets of Dedekind domains.

Definition 1.2. ([4] and [9]) For every $n \in \mathbb{N}$, the *n-th factorial ideal* of the subset S with respect to the domain D is the inverse $n!_S^D$ (or simply $n!_S$) of the D-module generated by the leading coefficients of the polynomials of $\operatorname{Int}(S,D)$ of degree n, where the inverse of a sub-D-module N of K is $N^{-1} = \{x \in K \mid xN \subseteq D\}$.

Note that, in particular, $K^{-1} = (0)$ and $(0)^{-1} = K$. Bhargava [4] showed that these factorial ideals may have fine properties extending those of the classical factorials. For instance, when D is a Dedekind domain,

$$\forall n, m \in \mathbb{N} \quad n!_S^D \times m!_S^D \text{ divides } (n+m)!_S^D. \tag{1.11}$$

We fix now the hypotheses and notation for the whole paper.

2 Hypotheses, notation and v-orderings

2.1 Let K be a valued field,

that is, a field endowed with a rank-one valuation v. Then, the values group $\Gamma = v(K^*)$ is a subgroup of the additive group \mathbb{R} . We denote by V the corresponding valuation domain, by \mathfrak{m} the maximal ideal and by k the residue field V/\mathfrak{m} .

As usual, we define an absolute value on K by letting:

$$\forall x \in K^* \quad |x| = e^{-v(x)}. \tag{2.1}$$

For $x \in K$ and $\gamma \in \mathbb{R}$, we denote by $B(x, \gamma)$ the ball of center x and radius $e^{-\gamma}$, that is:

$$B(x,\gamma) = \{ y \in K \mid v(x-y) \ge \gamma \}. \tag{2.2}$$

Remark 2.1. With respect to the polynomial closure, we may notice the following:

(i) Since every polynomial $f \in K[X]$ is a continuous function on K, the polynomial closure \overline{S} of any subset S of K obviously contains the topological closure \widetilde{S} of S in K:

$$\widetilde{S} \subseteq \overline{S}.$$
 (2.3)

- (ii) There are subsets S such that $\widetilde{S} \neq \overline{S}$ (Remarks 4.6, 6.4.ii and 11.4.2).
- (iii) In general, polynomially closed subsets are stable under intersection [8, IV.1.5], but not under finite union [8, IV.4.Exercise 2]. Nevertheless, we will see that, in a valued field K, a ball is polynomially closed and a finite union of balls is still polynomially closed (Proposition 8.2). (All the balls that we will consider are closed balls of the form $B(x, \gamma)$ unless the contrary is explicitly stated.)

2.2 Now we fix a subset S of K.

Since we are in a valued field K, the factorial ideals $n!_S$ of S are characterized by their valuations. Thus, we introduce the following arithmetical function:

Definition 2.2. [9] The *characteristic function* of S is the function w_S defined by:

$$\forall n \in \mathbb{N} \quad w_S(n) = v(n!_S) \tag{2.4}$$

with the convention that $v((0)) = +\infty$ and $v(K) = -\infty$.

Obviously, $0!_S = V$, and then, $w_S(0) = 0$. In the case of valued fields, factorial ideals have still fine properties. For instance, (1.11) becomes:

$$\forall n, m \in \mathbb{N} \quad w_S(n+m) \ge w_S(n) + w_S(m). \tag{2.5}$$

The following proposition is an obvious consequence of the previous inclusion (2.3):

Proposition 2.3. Denoting by \widetilde{S} the topological closure of S in K, we have:

$$\operatorname{Int}(\widetilde{S}, V) = \operatorname{Int}(S, V)$$
 and hence, for every $n \geq 0$, $n!_{\widetilde{S}} = n!_{S}$.

Denoting by \widehat{V} and \widehat{S} the completions of V and S with respect to the topology induced by v, we have:

$$\operatorname{Int}(\widehat{S},\widehat{V}) = \operatorname{Int}(S,\widehat{V}) = \operatorname{Int}(S,V)\widehat{V}$$
 and, for every $n \geq 0$, $n!_{\widehat{S}} = n!_{S}\widehat{V}$.

Equivalently,

$$\forall n \in \mathbb{N} \quad w_S(n) = w_{\widetilde{S}}(n) = w_{\widehat{S}}(n). \tag{2.6}$$

We will see that most often this characteristic function w_S may be computed by means of the following notion of generalized v-ordering which extends the notion of v-ordering due to Bhargava [2].

2.3 v-orderings

Definition 2.4. [9] Let $N \in \mathbb{N} \cup \{+\infty\}$. A sequence $\{a_n\}_{n=0}^N$ of elements of S is called a *v-ordering* of S if, for $1 \le n \le N$, one has:

$$v\left(\prod_{k=0}^{n-1} (a_n - a_k)\right) = \inf_{x \in S} v\left(\prod_{k=0}^{n-1} (x - a_k)\right).$$
 (2.7)

The proof of [20, Proposition 4] may be extended to these generalized v-orderings, so that we have another characterization of the v-orderings of S:

Proposition 2.5. The sequence $\{a_n\}_{n=0}^N$ of elements of S is a v-ordering of S if and only if:

$$\forall n \ge 1 \ \forall x_0, \dots, x_n \in S \quad \prod_{0 \le i < j \le n} (x_j - x_i) \text{ is divisible by } \prod_{0 \le i < j \le n} (a_j - a_i).$$
 (2.8)

Although these notions of integer-valued polynomial, factorial ideal, polynomial closure and v-ordering have already been partially studied, we wish to undertake here a systematical study of them. The following proposition shows strong links between them.

Proposition 2.6 ([2] and [9]). Let $N \in \mathbb{N} \cup \{+\infty\}$ and let $\{a_n\}_{n=0}^N$ be a sequence of distinct elements of S. We associate to this sequence of elements a sequence $\{f_n\}_{n=0}^N$ of polynomials:

$$f_0(X) = 1$$
 and, for $1 \le n \le N$, $f_n(X) = \prod_{k=0}^{n-1} \frac{X - a_k}{a_n - a_k}$. (2.9)

The following assertions are equivalent:

- (i) The sequence $\{a_n\}_{n=0}^N$ is a v-ordering of S.
- (ii) The sequence $\{a_n\}_{n=0}^N$ is a v-ordering of \overline{S} .
- (iii) For each $n \leq N$, f_n belongs to Int(S, V).
- (iv) The sequence $\{f_n\}_{n=0}^N$ is a basis of the V-module

$$Int_N(S, V) = \{ f \in Int(S, V) \mid \deg(f) \le N \}.$$
 (2.10)

(v) For $1 \le n \le N$, one has:

$$n!_S = \prod_{k=0}^{n-1} (a_n - a_k)V$$
, that is, $w_S(n) = v\left(\prod_{k=0}^{n-1} (a_n - a_k)\right)$. (2.11)

This proposition shows in particular that, for $0 \le n \le N$, the real numbers $v\left(\prod_{k=0}^{n-1}(a_n-a_k)\right)$ do not depend on the v-ordering $\{a_n\}_{n=0}^N$. But, as shown in the following remark, there does not always exist v-orderings for a given subset S although there always exist integer-valued polynomials on S and factorials associated to S.

- **Remark 2.7.** (i) There does not always exist v-orderings when the valuation is not discrete. For instance, assume that the valuation v is not discrete and the subset S is equal to the maximal ideal \mathfrak{m} of V. Then, S does not admit any v-ordering since, for every $s,t\in\mathfrak{m},v(s-t)>0$ while $\inf_{t\in\mathfrak{m}}v(t-s)=0$.
- (ii) As a v-ordering of S is also a v-ordering of the polynomial closure \overline{S} of S, the relevant question is more likely the existence of a v-ordering in \overline{S} . For instance, in the previous example, with v non discrete and $S=\mathfrak{m}$ (the maximal ideal of V), there is no v-ordering in \mathfrak{m} . Yet $\overline{S}=V$, since $\mathrm{Int}(\mathfrak{m},V)=\mathrm{Int}(V,V)=V[X]$ (see [9, Remark 8] or Theorem 4.3 below). This larger subset \overline{S} may admit v-orderings. Indeed, a sequence $\{a_n\}$ of elements of the non-discrete rank-one valuation domain V is a v-ordering of V if and only if the a_n 's are in distinct classes modulo \mathfrak{m} , and such a sequence exists if and only if the residue field $k=V/\mathfrak{m}$ is infinite.

Corollary 2.8. If the sequence $\{a_n\}_{n\in\mathbb{N}}$ is an infinite v-ordering of S, then the subset $T=\{a_n\mid n\in\mathbb{N}\}$ is polynomially equivalent to S.

2.4 Notation

For $\gamma \in \mathbb{R}$ and $a, b \in K$, we say that:

a and b are equivalent modulo γ if $v(a-b) \geq \gamma$.

Then, for our fixed subset S and for every $\gamma \in \mathbb{R}$, we denote by: $-S(a, \gamma)$ the equivalence class modulo γ of the element $a \in S$, that is,

$$S(a,\gamma) = S \cap B(a,\gamma), \tag{2.12}$$

- $-S \mod \gamma$ the set formed by the equivalence classes modulo γ of the elements of S,
- $-S_{\gamma}$ any set of representatives of $S \mod \gamma$,
- $-q_{\gamma}$ the cardinality (finite or infinite) of $S \mod \gamma$:

$$q_{\gamma} = q_{\gamma}(S) = Card(S \bmod \gamma) = Card(S_{\gamma}).$$
 (2.13)

Since q_{γ} may be finite or infinite, it is natural to introduce the following number:

$$\gamma_{\infty} = \gamma_{\infty}(S) = \sup\{\gamma \mid q_{\gamma} \text{ finite}\}. \tag{2.14}$$

Noticing that in the definition of a v-ordering what is important is not the valuation of the elements of S but the valuation of the differences of elements of S, we are led to consider another natural number:

$$\gamma_0 = \gamma_0(S) = \inf\{v(x - y) \mid x, y \in S, x \neq y\}. \tag{2.15}$$

Clearly,

$$-\infty \le \gamma_0(S) \le \gamma_\infty(S) \le +\infty. \tag{2.16}$$

We will see that the fact that one of these three inequalities becomes an equality corresponds to three particular cases:

 $\gamma_0 = -\infty$ if and only if S is a non-fractional subset (see Section 3).

 $\gamma_0 = \gamma_\infty$ if and only if $\mathrm{Int}(S,V)$ is isomorphic to a generalized polynomial ring (see Section 4).

 $\gamma_{\infty} = +\infty$ if and only if the completion \widehat{S} of S is compact, which corresponds to the well studied case (see Section 6).

2.5 The results

After the study of these three particular cases, it remains to study the case where γ_{∞} is finite, and then, we have to distinguish two cases: $q_{\gamma_{\infty}}$ is finite and $q_{\gamma_{\infty}}$ is infinite. For instance, in Section 5, when S is a fractional subset, we associate to S a natural sequence of critical valuations $\{\gamma_k\}_{k\in\mathbb{N}}$, this sequence is finite in the first case and infinite in the second case. In Section 7, we prove an inequality concerning the characteristic function w_S :

$$\forall n \in \mathbb{N} \qquad \frac{w_S(n)}{n} \le \gamma_{\infty}.$$

In Sections 8 and 9, we establish some containments concerning the polynomial closure: in Section 8, when $q_{\gamma_{\infty}}$ is finite, we show that $\overline{S} \subseteq S + B(0,\gamma_{\infty})$ and, in Section 9, we show that the polynomial closure contains not only the topological closure but also the pseudo-closure, which is a subset that we naturally associate to the pseudo-convergent sequences introduced by Ostrowski [30]. Then, in Section 10, we characterize the case where $S + B(0,\gamma_{\infty}) \subseteq \overline{S}$: we prove that this containment holds in particular when S is a regular subset, which is a generalization of the notion of regular compact subset introduced in 1964 by Y. Amice [1]. As an application, we show in Section 11 that, when S is any orbit under the action of an isometry, then S is a regular subset and this regular subset is either discrete or precompact. Finally, we end this paper by giving in Section 12 explicit examples. In a forthcoming paper [14], we will study such regular subsets and show that in this case the v-orderings have very strong properties.

3 The non-fractional case $(\gamma_0 = -\infty)$

The following lemma is obvious.

Lemma 3.1. Let $a \in K^*$ and $b \in K$. Consider $T = aS + b = \{as + b \mid s \in S\}$. Then, the automorphism:

$$f(X) \in K[X] \mapsto f\left(\frac{X-b}{a}\right) \in K[X]$$

induces an isomorphism between the rings Int(S, V) and Int(T, V). Obviously,

$$n!_T = a^n n!_S$$
, equivalently, $w_T(n) = nv(a) + w_S(n)$. (3.1)

Moreover, for every $N \in \mathbb{N} \cup \{+\infty\}$, the sequence $\{a_n\}_{n=0}^N$ is a v-ordering of S if and only if the sequence $\{aa_n + b\}_{n=0}^N$ is a v-ordering of T.

Consequently, for our study, we may replace the set S by aS + b for any $a \in K^*$ and $b \in K$. We are then led to consider whether S is a fractional subset of K or not. Recall that:

Definition 3.2. The subset S of K is said to be a *fractional subset* of K if there exists some $d \in K^*$ such that $dS \subseteq V$.

Theorem 3.3. *The following assertions are equivalent:*

- (i) S is not a fractional subset,
- (ii) $\gamma_0 = -\infty$,
- (iii) $\gamma_{\infty} = -\infty$.
- (iv) Int(S, V) = V,
- (v) $n!_S = K \text{ for } n > 1$,

- (vi) $w_S(n) = -\infty$ for n > 1.
- (vii) The polynomial closure \overline{S} of S is equal to K.

Proof. Obviously, on the one hand, assertions (i), (ii), and (iii) are equivalent and, on the other hand, assertions (iv), (v) and (vi) are equivalent. The equivalence between (i) and (iv) is known ([27] or [8, Corollary I.1.10]). The equivalence between (iv) and (vii) is obvious.

Remark 3.4. Clearly, a non-fractional subset does not admit any *v*-ordering.

From now on, we will assume that S is a fractional subset. Then, Lemma 3.1 allows us to replace S by the subset $dS = \{ds \mid s \in S\}$ where d denotes any element of K such that $v(d) \geq -\gamma_0$, so that, we may assume that $S \subseteq V$. Moreover, replacing S by the subset $S - s_0 = \{s - s_0 \mid s \in S\}$ for some $s_0 \in S$, we may also assume that $0 \in S$.

4 The polynomial ring case $(-\infty < \gamma_0 = \gamma_\infty < +\infty)$

Notation. For $\gamma \in \mathbb{R}$ and $x \in K$, let

$$V[(X-x)/\gamma] = \left\{ \sum_{k=0}^{n} a_k (X-x)^k \in K[X] \mid v(a_k) \ge -k\gamma \right\}. \tag{4.1}$$

Obviously, if there exists $t \in K$ such that $v(t) = \gamma$, then the ring $V[(X - x)/\gamma]$ is a classical polynomial ring:

$$V[(X-x)/\gamma] = V\left[\frac{X-x}{t}\right]. \tag{4.2}$$

Lemma 4.1. With the previous notation, for every $a \in S$ and $\gamma \in \mathbb{R}$, one has:

$$V[(X-a)/\gamma] \subseteq \operatorname{Int}(B(a,\gamma),V) \subseteq \operatorname{Int}(S(a,\gamma),V). \tag{4.3}$$

Proof. Let $f \in V[(X - a)/\gamma]$ and write

$$f(X) = \sum c_n (X - a)^n$$
 where $v(c_n) \ge -n\gamma$.

For every $b \in B(a, \gamma)$, one has:

$$f(b) = \sum c_n (b-a)^n$$
 with $v(c_n (b-a)^n) \ge 0$,

thus
$$f(b) \in V$$
.

To characterize the ring $\mathrm{Int}(S,V)$ we need a technical lemma that will be useful for other cases. Here, we denote by $\widehat{\Gamma}$ the completion of Γ in \mathbb{R} , that is, $\widehat{\Gamma}=\Gamma$ if v is discrete, and $\widehat{\Gamma}=\mathbb{R}$ if v is not discrete.

Lemma 4.2. Assume that $\gamma \in \widehat{\Gamma}$, $\delta \in \mathbb{R}$ and $a \in S$ are such that $\gamma < \delta$ and $S(a, \gamma) \mod \delta$ is infinite. Then, for every $f \in \text{Int}(S, V)$, one has:

$$f \in V[(X-a)/\rho]$$
 where $\rho = \gamma + \frac{n(n+1)}{2}(\delta - \gamma)$ and $n = \deg(f)$. (4.4)

Proof. We do not know whether $\gamma \in \Gamma$ but, for each integer s, there exists $z_s \in K$ with $\gamma - \frac{1}{s} \leq v(z_s) \leq \gamma$. Fix an integer s and let T be the following subset of V:

$$T = \left\{ \frac{x - a}{z_s} \mid x \in S(a, \gamma) \right\}.$$

Let $g \in \operatorname{Int}(T,V)$ be of degree n. As $S(a,\gamma) \mod \delta$ is infinite, letting $\varepsilon_s = \delta - \gamma + \frac{1}{s}$, one can find t_0,t_1,\ldots,t_n in T such that, for $i \neq j$, $v(t_i-t_j) < \varepsilon_s$. It then follows from Cramer's rule (see for instance [8, Proposition I.3.1]) that the valuation of each coefficient of g is greater or equal to

$$-v\left(\prod_{0\leq i< j\leq n}(t_j-t_i)\right) > -\frac{n(n+1)}{2}\varepsilon_s.$$

Consequently, if $f(X) = \sum_{m=0}^{n} b_m (X-a)^m$ belongs to Int(S,V), and hence, to $\text{Int}(S(a,\gamma),V)$, one has:

$$\forall m \geq 1 \quad v(b_m) > -m\gamma - \frac{n(n+1)}{2}\varepsilon_s.$$

Since s may tend to $+\infty$, we obtain the inequality:

$$\forall m \ge 1 \quad v(b_m) \ge -m\gamma - \frac{n(n+1)}{2}(\delta - \gamma) \ge -m\left(\gamma + \frac{n(n+1)}{2}(\delta - \gamma)\right).$$

Theorem 4.3. If $\gamma_0 = \gamma_\infty > -\infty$, then

$$Int(S, V) = V[X/\gamma_0] \quad \text{and} \quad \overline{S} = B(0, \gamma_0). \tag{4.5}$$

In particular,

$$w_S(n) = n\gamma_0. (4.6)$$

Proof. We may apply the previous lemma. Clearly, $\gamma_0 \in \widehat{\Gamma}$ and $S = S(0, \gamma_0)$. By definition of γ_∞ , for every $\delta > \gamma_\infty = \gamma_0$, q_δ is infinite, that is, $S(0, \gamma_0) \mod \delta$ is infinite. So that, if $f \in \operatorname{Int}(S, V)$, then $f \in V[X/\rho]$ where ρ may tend to γ_0 when δ tends to γ_0 . Finally, $f \in V[X/\gamma_0]$ and $\operatorname{Int}(S, V) = V[X/\gamma_0]$.

Then, it follows from Lemma 4.1 that $B(0, \gamma_0) \subseteq \overline{S}$. We may conclude because $S = S(0, \gamma_0) \subseteq B(0, \gamma_0)$ and $B(0, \gamma_0)$ is polynomially closed (see the following lemma).

Lemma 4.4. For every $x \in K$ and every $\gamma \in \mathbb{R}$, the ball $B(x, \gamma)$ is polynomially closed.

Proof. If γ belongs to Γ , there exists $t \in K$ such that $v(t) = \gamma$, then the polynomial $f(X) = \frac{1}{t}(X - x)$ belongs to $\operatorname{Int}(B(x, \gamma), V)$ and, for every $y \in K$, $f(y) \in V$ implies $v(y - x) \ge \gamma$, that is, $y \in B(x, \gamma)$.

If the valuation v is discrete, there exists $\delta \in \Gamma$ such that $B(x,\gamma)$ is equal to $B(x,\delta)$, which is polynomially closed. If the valuation v is not discrete, there exists an increasing sequence $\{\delta_n\}_{n\in\mathbb{N}}$ such that $\delta_n\in\Gamma$ for every n and $\lim_n \delta_n=\gamma$. Consequently, $B(x,\gamma)=\cap_{n\in\mathbb{N}}B(x,\delta_n)$. By the first argument, the balls $B(x,\delta_n)$ are polynomially closed and we know that an intersection of polynomially closed subsets is a polynomially closed subset (see [8, IV.1.5]).

Theorem 4.3 says that, if $\gamma_0 = \gamma_\infty > -\infty$, then \overline{S} is a ball. Conversely:

Proposition 4.5. Assume that $S = B(x, \gamma)$. Then,

- (i) $\overline{S} = S$.
- (ii) $\gamma_0 = \min\{\delta \in \Gamma \mid \delta \geq \gamma\}$ (in fact, $\gamma_0 = \gamma$ if v is not discrete).
- (iii) If v is discrete and V/\mathfrak{m} is finite with cardinality q, then

$$\gamma_{\infty} = +\infty$$
 and $w_S(n) = n\gamma_0 + w_V(n) = n\gamma_0 + \sum_{k>1} \left[\frac{n}{q^k}\right].$

(iv) If either v is not discrete or V/\mathfrak{m} is infinite, then

$$\gamma_{\infty} = \gamma_0$$
 , $\operatorname{Int}(S, V) = V[(X - x)/\gamma_0]$ and $w_S(n) = n\gamma_0$.

(v) S admits infinite v-orderings if and only if:

either v is discrete,

or $\gamma \in \Gamma$ and V/\mathfrak{m} is infinite.

Proof. Using Lemma 3.1, when $\gamma \in \Gamma$, one can replace $S = B(x, \gamma)$ by V = B(0, 0).

- (i) is Lemma 4.4.
- (ii) is obvious.
- (iii) follows from [8, Theorem II.2.7].
- (iv): the hypothesis implies $\gamma_{\infty} = \gamma_0$, and then, (iv) follows from Theorem 4.3.
- (v) The existence of v-orderings is obvious in both cases. Conversely, assume that v is not discrete. If $\gamma \notin \Gamma$ then, for all $x,y \in S$, one has $v(x-y) > \gamma$ while $\inf_{x,y \in S} = \gamma$ so that, there is no element in S for the second term of a v-ordering. If $\gamma \in \Gamma$, we replace S by V. Then, it follows from (iv) that $w_V(n) = 0$. But, if $Card(V/\mathfrak{m}) = q$ then, for all $x_0, \ldots, x_q \in V$, $v(\prod_{0 \le i < j \le q} (x_j x_i)) > 0$, so that, there is no element in V for the q+1-th term of a v-ordering.

Remark 4.6. The polynomial closure of an open ball is the corresponding closed ball. Suppose that $S = \{y \in K \mid v(y-x) > \gamma\}$ where $\gamma \in \Gamma$. Then S is topologically closed but not polynomially closed:

$$\widetilde{S} = S = \{ y \in K \mid v(y - x) > \gamma \} \neq \overline{S} = B(x, \gamma) = \{ y \in K \mid v(y - x) \ge \gamma \}.$$

5 The critical valuations of a fractional subset $(\gamma_0 < \gamma_\infty)$

Now, we may assume that $\gamma_0 < \gamma_\infty$, which is equivalent to say that S is a fractional subset and \overline{S} is not a ball. Moreover, there exist s_0 and $s_1 \in S$ such that $v(s_0 - s_1) = \gamma_0$ because $S \mod \gamma_0$ is finite. Then, if we replace S by $T = \left\{\frac{s-s_1}{s_0-s_1} \mid s \in S\right\}$, 0 and 1 belong to T and $\gamma_0(T) = 0$. So that:

From now on, we assume that

$$S \subseteq V \ , \ 0, 1 \in S \ , \ \gamma_0 = 0 \ , \ q_0 = 1 \ \text{ and } \ 0 < \gamma_\infty \le +\infty.$$
 (5.1)

Moreover, we may choose $S_0 = \{0\}$.

We are interested in the study of the function

$$\gamma \in \mathbb{R} \mapsto q_{\gamma} \in \mathbb{N} \cup \{+\infty\}. \tag{5.2}$$

This is an increasing function and, by definition of γ_{∞} , $q_{\gamma} = +\infty$ for $\gamma > \gamma_{\infty}$. Moreover, for every $\gamma < \gamma_{\infty}$, q_{γ} is finite, thus $\sup\{v(a-b) \mid a,b \in S_{\gamma}, a \neq b\}$ is a maximum, and hence, is $<\gamma$. Consequently, there exists $\varepsilon > 0$ such that $q_{\delta} = q_{\gamma}$ for $\gamma - \varepsilon \leq \delta \leq \gamma$. The function $\gamma \mapsto q_{\gamma}$ is piecewise constant and left continuous. So that, we have the following proposition:

Proposition 5.1. For every γ such that q_{γ} is finite, let

$$\tilde{\gamma} = \sup \{ \delta \mid q_{\delta} = q_{\gamma} \}. \tag{5.3}$$

These supremum are maximum and the $\tilde{\gamma}$'s may be written as elements of a strictly increasing sequence:

$$\{\gamma_k\}_{0 \le k \le l} \ or \ \{\gamma_k\}_{k > 0}.$$

The sequence $\{\gamma_k\}$ is finite if and only if q_{γ_∞} is finite, and then $\gamma_l = \gamma_\infty$. The sequence $\{\gamma_k\}$ is infinite if and only if q_{γ_∞} is infinite, and then:

$$\lim_{k \to +\infty} \gamma_k = \gamma_{\infty}. \tag{5.4}$$

In other words, the γ_k 's are characterized by:

$$\gamma_0 = 0$$
 and, for $k \ge 1 : \gamma_{k-1} < \gamma \le \gamma_k \Leftrightarrow q_\gamma = q_{\gamma_k}$. (5.5)

Note that, when q_{γ_∞} is infinite and γ_∞ is finite, then necessarily the valuation v is not discrete.

Definition 5.2. The sequence $\{\gamma_k\}$, finite or infinite introduced in Proposition 5.1, is called the *sequence of critical valuations* of S.

Remark 5.3. It follows from Proposition 5.1 that it is possible to choose the elements of the S_{γ} 's, the sets of representatives of S modulo γ , for $\gamma < \gamma_{\infty}$, in such a way that:

$$\gamma < \delta \implies S_{\gamma} \subseteq S_{\delta}. \tag{5.6}$$

Indeed, for each $k \ge 0$, we just have to choose the elements of $S_{\gamma_{k+1}}$ in such a way that $S_{\gamma_k} \subset S_{\gamma_{k+1}}$. We always assume that this condition is satisfied and also that $S_0 = \{0\}$. With such a choice, when $\gamma_{\infty} = \lim_{k \to \infty} \gamma_k$, we may also assume:

$$\cup_{\gamma < \gamma_{\infty}} S_{\gamma} = \cup_{k > 0} S_{\gamma_k} \subseteq S_{\gamma_{\infty}}. \tag{5.7}$$

This last containment may be strict (see Example 5.4.i below).

Example 5.4.

(i) If $K = \mathbb{Q}_p$ and $S = V = \mathbb{Z}_p$, then $\gamma_k = k$, $q_{\gamma_k} = p^k$, $S_{\gamma_k} = \{a \in \mathbb{N} \mid 0 \le a < p^k\}$ and $\bigcup_{k \ge 0} S_{\gamma_k} = \mathbb{N}$ while $\gamma_\infty = +\infty$ and $S_{\gamma_\infty} = \mathbb{Z}_p = S$.

(ii) If $K = \mathbb{C}_p$ is the completion of an algebraic closure of \mathbb{Q}_p and if

$$S = \left\{ \sum_{k=0}^{n} \varepsilon_k p^{1-\frac{1}{k+1}} \mid n \in \mathbb{N}, \varepsilon_k \in \{0, 1\} \right\},\,$$

then $\gamma_k=1-\frac{1}{k+1}$, $q_{\gamma_k}=2^k$, $\gamma_\infty=1$ and $\cup_{k\geq 0}S_{\gamma_k}=S_{\gamma_\infty}=S$.

(iii) Consider the previous example and let

$$T = S \cup \{S + p^2\}.$$

Then,

$$\gamma_k(T) = \gamma_k(S)$$
, $\gamma_{\infty}(T) = 1$ and $\cup_{k>0} T_{\gamma_k} = T_{\gamma_{\infty}} \neq T$.

6 The precompact case $(\gamma_{\infty} = +\infty)$

The fact that $\gamma_{\infty} = +\infty$ is clearly equivalent to the fact that S is precompact, that is, the completion \widehat{S} of S is compact (see for instance [10, Lemma 3.1]). We have to distinguish two cases whether S is finite or not.

6.1 S finite

This case is well described by McQuillan [26] for subsets of any integral domain (see also [8, Exercises IV.1, V.2, VI.20, VIII.25 and VIII.28] and [17]). For finite subsets of a valued field K, one can say a bit more. Obviously, there are v-orderings since at each step we just have to choose between a finite number of elements and, clearly, the first assertion of the following proposition is true.

Proposition 6.1. Assume that S is finite with cardinality N.

- (i) There exist infinite v-orderings $\{a_n\}_{n\in\mathbb{N}}$ of S. Moreover, if $\{a_n\}_{n\in\mathbb{N}}$ is a v-ordering of S, the a_n 's for n=0 and $n\geq N$ may be arbitrarily choosen, but necessarily, $\{a_n\mid 0\leq n< N\}=S$.
- (ii) $\overline{S} = S = \widetilde{S}$.

(iii)
$$w_S(n) = +\infty \Leftrightarrow n \geq N$$
.

(iv) Let

$$f_n(X) = \prod_{k=0}^{n-1} \frac{X - a_k}{a_n - a_k} \text{ for } 0 \le n < N \text{ and } \varphi(X) = \prod_{n=0}^{N-1} (X - a_n) = \prod_{s \in S} (X - s).$$

Then.

$$\operatorname{Int}(S,V) = \bigoplus_{n=0}^{N-1} V f_n(X) \oplus K[X] \varphi(X). \tag{6.1}$$

Proof. Assertion (i) is obvious and assertion (ii) is also well known. Assertion (iii) results from assertion (i). Let us prove assertion (iv). Proposition 2.6 implies:

$$Int_{N-1}(S,V) = \sum_{n=0}^{N-1} V f_n(X).$$
(6.2)

Now, let $f \in \text{Int}(S, V)$ and write $f = \varphi g + h$ where $g, h \in K[X]$ and $\deg(h) < N$. Then, $h = f - \varphi g \in \text{Int}_{N-1}(S, V)$.

Remark 6.2. The number of sequences such that $\{a_n\}_{n=0}^{N-1}$ is a v-ordering of S is at least N, since a_0 may be arbitrarily choosen in S, and at most N!. Note that the upper bound N! is reached for instance when the elements of S are non-congruent modulo M. On the contrary, the lower bound N is never reached for N > 2.

6.2 S infinite

This is also a well studied case.

Proposition 6.3 ([9]). Assume that S is infinite and \widehat{S} is compact. Then,

- (i) There always exist infinite v-orderings in S.
- (ii) The polynomial closure \overline{S} of S is equal to its topological closure \widetilde{S} in K.

Proof. The first assertion is [9, Lemma 17], and the second assertion is [9, Theorem 10]. \Box

Remark 6.4. (i) Note that $\gamma_{\infty}<+\infty$ implies that either the valuation v is not discrete or the residue field $k=V/\mathfrak{m}$ is infinite (else \widehat{V} would be compact and \widehat{S} as well).

- (ii) When $\gamma_{\infty}<+\infty$, we may have $\widetilde{S}\neq\overline{S}$. For instance, let $t\neq 0$ be such that v(t)>0 and let $S=\{t^{-k}\mid k\in\mathbb{N}\}$. Then, S is not a fractional subset, and hence its polynomial closure \overline{S} is equal to K, while its topological closure \widetilde{S} is equal to S. We will see more interesting cases with Remark 11.4.2.
- (iii) In the precompact case $(\gamma_{\infty}=+\infty)$, one has the equality $S=S_{\gamma_{\infty}}$. This last equality, that may be thought as a generalization of the precompact case, means when $\gamma_{\infty}<+\infty$ that every class modulo γ_{∞} contains only one element: $\forall a\in S,\ S(a,\gamma_{\infty})=\{a\}$ (S is uniformly discrete), and hence, $\widetilde{S}=S$. In particular, since

 $0 \in S$, for every nonzero element $a \in S$, $v(a) < \gamma_{\infty}$. Note also that, when $\gamma_{\infty} < +\infty$, $S = S_{\gamma_{\infty}}$ is equivalent to $S = \bigcup_k S_{\gamma_k}$ because $q_{\gamma_{\infty}}$ is infinite, and hence $\gamma_{\infty} = \lim_k \gamma_k$.

With respect to Proposition 6.3, note that the first assertion still holds: if $S = S_{\gamma_{\infty}}$, then S admits infinite v-orderings [12, Proposition 2.3]. On the other hand, the second assertion cannot be extended since we may have $S = S_{\gamma_{\infty}}$ and $\widetilde{S} \neq \overline{S}$ (see Section 12).

(iv) Another argument that leads to say that $S = S_{\gamma_{\infty}}$ generalizes the precompact case is the notion of pseudo-convergence introduced by Ostrowki [31, p. 368] and used by Kaplansky [25] in the study of immediate extensions of valued fields. A sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of K is said to be pseudo-convergent if:

$$\forall i, j, k \quad [i < j < k \Rightarrow v(x_j - x_i) < v(x_k - x_j)]. \tag{6.3}$$

One may prove that, if $S_{\gamma_{\infty}} = S$, then from every infinite sequence of elements of S one can extract a pseudo-convergent subsequence (see [13, § 1.12]).

7 On the characteristic function

In this section we assume that $\gamma_{\infty} < +\infty$.

Theorem 7.1. For every subset S, one has:

$$\forall n \in \mathbb{N} \quad w_S(n) \le n\gamma_{\infty}. \tag{7.1}$$

Note that, when $\gamma_{\infty}=+\infty$, the previous theorem does not give any information on the function w_S , and that, when $\gamma_{\infty}=-\infty$, that is, when S is not a fractional subset, these inequalities are still true: they mean $w_S(0)=0$ and, for $n\geq 1$, $w_S(n)=-\infty$, that is, $\mathrm{Int}(S,V)=V$.

Proof. Assume that $\gamma \in \Gamma$ and $\delta \in \mathbb{R}$ are such that $\gamma < \delta$, q_{γ} is finite and q_{δ} is infinite. Then, there necessarily exits an $a \in S$ such that $S(a,\gamma) \mod \delta$ is infinite. It follows from Lemma 4.2 that, for every n, the valuation of the leading coefficient of a polynomial $f \in \operatorname{Int}(S,V)$ of degree n is $\geq -n(\gamma - \frac{n(n+1)}{2}(\delta - \gamma))$. Consequently,

$$w_S(n) \le n\gamma + \frac{n^2(n+1)}{2}(\delta - \gamma)$$

Assume first that the sequence of critical valuations is finite. Then $q_{\gamma_{\infty}}$ is finite and, for every $\delta > \gamma_{\infty}$, q_{δ} is infinite. Then, the previous inequality, with $\gamma = \gamma_{\infty}$ and $\delta > \gamma_{\infty}$, becomes:

$$\forall n \in \mathbb{N} \quad w_S(n) \le n\gamma_\infty + \frac{n^2(n+1)}{2}(\delta - \gamma_\infty).$$

These inequalities for all $\delta > \gamma_{\infty}$ imply that $w_S(n) \leq n\gamma_{\infty}$.

Assume now that the sequence of critical valuations is infinite and that γ_{∞} is finite. Then $q_{\gamma_{\infty}}$ is infinite and, for every $k \in \mathbb{N}$, q_{γ_k} is finite. It follows from the previous inequality, with $\gamma = \gamma_k$ and $\delta = \gamma_{\infty}$, that

$$\forall n \in \mathbb{N} \quad w_S(n) \le n\gamma_k + \frac{n^2(n+1)}{2}(\gamma_\infty - \gamma_k).$$

Since $\lim_{k\to\infty} \gamma_k = \gamma_\infty$, we may conclude that $w_S(n) \leq n\gamma_\infty$.

Recall that, by analogy with the Archimedean case (see for instance [22]), one defines the valuative capacity of S in the following way:

Definition 7.2. [12, §4] The *valuative capacity* of S with respect to v is the limit δ_S (finite or infinite) of the increasing sequence

$$\delta_S(n) = \frac{2}{n(n+1)} \inf_{x_0, \dots, x_n \in S} v \left(\prod_{0 \le i < j \le n} (x_j - x_i) \right). \tag{7.2}$$

The link between the sequences $\{\delta_S(n)\}_{n\in\mathbb{N}}$ and $\{w_S(n)\}_{n\in\mathbb{N}}$ is given by the following formulas [12, Theorems 3.13 and 4.2]:

$$\sum_{k=1}^{n} w_S(n) = \frac{1}{2} n(n+1) \delta_S(n)$$
 (7.3)

and

$$\lim_{n \to \infty} \frac{w_S(n)}{n} = \sup_{n > 1} \frac{w_S(n)}{n} = \delta_S.$$
 (7.4)

Consequently, we always have the inequality:

$$\delta_S \le \gamma_{\infty}(S). \tag{7.5}$$

8 On the polynomial closure (when $q_{\gamma_{\infty}} < +\infty$)

Proposition 8.1. For every $\gamma < \gamma_{\infty}$, one has the containment:

$$\overline{S} \subseteq S + B(0, \gamma). \tag{8.1}$$

Morever, if $q_{\gamma_{\infty}}$ is finite, one has also:

$$\overline{S} \subseteq S + B(0, \gamma_{\infty}). \tag{8.2}$$

This is an easy consequence of the fact that a finite union of balls is polynomially closed (Proposition 8.2 below) since

$$S = \bigcup_{a \in S_{\gamma}} S(a, \gamma) \subseteq \bigcup_{a \in S_{\gamma}} B(a, \gamma) = S + B(0, \gamma).$$
(8.3)

Proposition 8.2. Every finite union of balls is polynomially closed.

This proposition is itself an easy consequence of the following lemma:

Lemma 8.3. Let a, t_1, \ldots, t_r be elements of K and let $\gamma, \gamma_1, \ldots, \gamma_r$ be positive real numbers such that the balls $B(a, \gamma), B(t_1, \gamma_1), \ldots, B(t_r, \gamma_r)$ are disjoint. Then, for every $\varepsilon > 0$, there exists $f \in K[X]$ such that:

$$\forall x \in \bigcup_{k=1}^{r} B(t_k, \gamma_k) \quad v(f(x)) \ge \varepsilon \quad and \quad \forall x \in B(a, \gamma) \quad v(f(x)) = 0.$$
 (8.4)

Proof. We may assume that a and the t_k 's are in V and that

$$\gamma > v(t_1 - a) \ge v(t_2 - a) \ge \dots \ge v(t_r - a).$$
 (8.5)

Obviously, we have:

$$\forall k \quad v(a-t_k) < \gamma_k.$$

Now consider

$$f(x) = \prod_{i=1}^{r} \left(\frac{x - t_i}{a - t_i}\right)^{m_i}$$

where the m_i 's are integers that we are going to choose.

For $1 \le k \le r$ and $x \in B(t_k, \gamma_k)$, one has:

$$v\left(\frac{x-t_k}{a-t_k}\right) \ge \gamma_k - v(a-t_k) = \varepsilon_k > 0$$

and, for $j \in \{k, \dots, r\}$, one has:

$$v\left(\frac{x-t_j}{a-t_j}\right) = v\left(\frac{t_k-t_j}{a-t_j}\right) \ge 0.$$

Thus, for every $x \in B(t_k, \gamma_k)$,

$$v(f(x)) = \sum_{i=1}^r m_i v\left(\frac{x-t_i}{a-t_i}\right) \ge \sum_{i=1}^k m_i v\left(\frac{x-t_i}{a-t_i}\right) \ge m_k \varepsilon_k - \sum_{i=1}^{k-1} m_i v(a-t_i).$$

We may choose successively the integers $m_1, \ldots, m_k, \ldots, m_r$ such that

$$\forall k \in \{1, \dots, r\} \quad m_k \varepsilon_k \ge \varepsilon + \sum_{i=1}^{k-1} m_i v(a - t_i).$$

With such a choice of the m_i 's, for every $x \in \bigcup_{k=1}^r B(t_k, \gamma)$, one has $v(f(x)) \geq \varepsilon$. Of course, f(a) = 1. Moreover, if $x \in B(a, \gamma)$, then $v(x - t_k) = v(a - t_k)$ for every $k \in \{1, \ldots, r\}$, and hence, v(f(x)) = 0.

Proof. of Proposition 8.2 Assume that $S = \sqcup_{k=1}^r B(t_k, \gamma_k)$ where \sqcup denotes a disjoint union. Let $a \in K \setminus S$ and $\delta \in \Gamma_+$. Then, by Lemma 8.3, there exists $f \in K[X]$ such that v(f(a)) = 0 and, for every $x \in S$, $v(f(x)) \geq \delta$. Let $d \in V$ be such that $v(d) = \delta$. Then, the polynomial $\frac{1}{d}f(X)$ shows that $a \notin S$.

Theorem 8.4. For every $\gamma < \gamma_{\infty}$, one has:

$$\overline{S} = \cup_{a \in S_{\gamma}} \left(\overline{S \cap B(a, \gamma)} \right). \tag{8.6}$$

In other words:

$$\overline{\bigcup_{a \in S_{\gamma}} S(a, \gamma)} = \bigcup_{a \in S_{\gamma}} \overline{S(a, \gamma)}.$$
(8.7)

Proof. Obviously, $\bigcup_{a \in S_{\gamma}} \overline{S(a,\gamma)} \subseteq \overline{S}$. Let us prove the reverse inclusion. Let b be an element of \overline{S} . Then, by Proposition 8.2, b belongs to $\bigcup_{a \in S_{\gamma}} B(a,\gamma)$ and there exits a_0 such that $b \in B(a_0,\gamma)$. Assume that $b \notin \overline{S(a_0,\gamma)}$, then there exists $g \in K[X]$ such that $g(S(a_0,\gamma)) \subseteq V$ and v(g(b)) < 0. Since the values of a polynomial on a fractional subset is a fractional subset, we may consider $-\varepsilon = \min\{v(g(x)) \mid x \in S\}$. It follows from Lemma 8.3 that there exists $f \in K[X]$ such that

$$\forall x \in \bigcup_{a \in S_{\gamma}, a \neq a_0} B(a, \gamma) \ v(f(x)) \ge \varepsilon \quad \text{and} \quad \forall x \in B(a_0, \gamma) \ v(f(x)) = 0.$$

Then, for $x \in \bigcup_{a \in S_{\gamma}, a \neq a_0} B(a, \gamma)$, one has $v(f(x)g(x)) \geq 0$ and, for $x \in S(a_0, \gamma)$, one has $v(f(x)g(x)) = v(g(x)) \geq 0$, while v(f(b)g(b)) = v(g(b)) < 0. Consequently, $fg \in \operatorname{Int}(S, V)$ and $f(b)g(b) \notin V$, that is $b \notin \overline{S}$. This is a contradiction. Thus, $\overline{S} \cap B(a_0, \gamma) = \overline{S(a_0, \gamma)}$.

If $q_{\gamma_{\infty}}<+\infty$, the previous proof still holds with $\gamma=\gamma_{\infty}$.

Corollary 8.5. If $q_{\gamma_{\infty}}$ is finite, then $\overline{S} = \bigcup_{a \in S_{\gamma_{\infty}}} \overline{S(a, \gamma_{\infty})}$.

Now, we consider what happens with respect to v-orderings. We first recall:

Lemma 8.6 ([6], Lemma 3.4). If $\{a_n\}_{n=0}^N$ is a v-ordering of S then, for every ball B, the (possibly empty) subsequence formed by the a_n 's that belong to B is a v-ordering of $S \cap B$.

Proposition 8.7. Let γ be such that $\gamma < \gamma_{\infty}$. Then, S admits an infinite v-ordering if and only if, for every $b \in S_{\gamma}$, $S(b, \gamma)$ admits an infinite v-ordering.

Proof. Assume that S admits an infinite v-ordering $\{a_n\}_{n\in\mathbb{N}}$. By Lemma 8.6, for every $b\in S_\gamma$, the subsequence formed by the a_n 's that are in $B(b,\gamma)$ is a v-ordering of $S(b,\gamma)$. Let $T=\{a_n\mid n\in\mathbb{N}\}$ and, for every $b\in S_\gamma$, consider $T(b,\gamma)=T\cap B(b,\gamma)$. If $T(b,\gamma)$ is infinite, then $S(b,\gamma)$ admits an infinite v-ordering. Thus, assume that, for some $b\in S_\gamma$, $T(b,\gamma)$ is finite. By Corollary 2.8, $\overline{T}=\overline{S}$ and, by Theorem 8.4, $\overline{T(b,\gamma)}=\overline{S(b,\gamma)}$. Since $T(b,\gamma)$ is assumed to be finite, one has $\overline{T(b,\gamma)}=T(b,\gamma)$ (Proposition 6.1.ii). Consequently, $S(b,\gamma)$ is also finite, and hence, admits an infinite v-ordering (Proposition 6.1.i).

Conversely, assume that, for every $b \in S_{\gamma}$, $S(b,\gamma)$ admits an infinite v-ordering. We prove the existence of an infinite v-ordering of S by induction on n. Assume that a_0,\ldots,a_{n-1} is a v-ordering of S. The question is: does there exist an element $a_n \in S$ which allows to reach the following infimum

$$\inf_{x \in S} v \left(\prod_{k=0}^{n-1} (x - a_k) \right) = \inf_{b \in S_{\gamma}} \inf_{x \in S(b, \gamma)} v \left(\prod_{k=0}^{n-1} (x - a_k) \right) ?$$

It is then enough to prove that, for every $b \in S_{\gamma}$, the following infimum is a minimum:

$$\inf_{x \in S(b,\gamma)} v \left(\prod_{k=0}^{n-1} (x - a_k) \right)$$

$$= v \left(\prod_{a_k \notin S(b,\gamma)} (b - a_k) \right) + \inf_{x \in S(b,\gamma)} v \left(\prod_{a_k \in S(b,\gamma)} (x - a_k) \right).$$

This last infimum is a minimum since the a_k 's that belong to $S(b, \gamma)$ form a v-ordering of $S(b, \gamma)$ and, by hypothesis, $S(b, \gamma)$ admits infinite v-orderings.

9 On the polynomial closure (when $\gamma_{\infty} < +\infty$)

When $\gamma_{\infty}=+\infty$, that is, when \widehat{S} is compact, one has $\overline{S}=\widetilde{S}$ (Propositions 6.1 and 6.3). So that, we may assume that $\gamma_{\infty}<+\infty$, and hence, that either v is not discrete or $k=V/\mathfrak{m}$ is infinite.

We will generalize the fact that the topological closure \widetilde{S} of S in K is contained in the polynomial closure \overline{S} of S by considering the notion of pseudo-convergent sequence previously mentioned (see (6.3)).

Definition 9.1. (i) A sequence $\{x_n\}_{n\geq 0}$ of elements of K is *pseudo-convergent* if

$$\forall i, j, k \ [i < j < k \Rightarrow v(x_j - x_i) < v(x_k - x_j)].$$
 (9.1)

(ii) An element x of K is a pseudo-limit of a sequence $\{x_n\}_{n>0}$ if

$$\forall i, j \quad [i < j \Rightarrow v(x - x_i) < v(x - x_j)]. \tag{9.2}$$

(iii) The *pseudo-closure* of S in K is the union $\widetilde{\widetilde{S}}$ of S and of the set formed by the pseudo-limits in K of pseudo-convergent sequences of elements of S.

Suppose that x is a pseudo-limit of a sequence $\{x_n\}_{n\geq 0}$ and let

$$\delta = \lim_{n \to +\infty} v(x - x_n).$$

If $\delta = +\infty$, then the sequence $\{x_n\}$ is convergent with x as classical limit-point. In fact, clearly, one has: $\widetilde{S} \subseteq \widetilde{\widetilde{S}}$. If $\delta < +\infty$, then the sequence $\{x_n\}$ is pseudo-convergent since, for i < j < k, one has:

$$v(x_j - x_i) = v(x - x_i) < v(x - x_j) = v(x_k - x_j).$$

Note also that, in this case, every y such that $v(x-y) \ge \delta$ is also a pseudo-limit of the sequence $\{x_n\}$.

Theorem 9.2. The polynomial closure \overline{S} of S satisfies the following containments:

$$\widetilde{\widetilde{S}} \subseteq \overline{S} \subseteq \cap_{k>0} (S + B(0, \gamma_k)) \tag{9.3}$$

where $\widetilde{\widetilde{S}}$ denotes the pseudo-closure of S. Moreover, one has the following equalities:

$$\bigcap_{k>0} \left(S + B(0, \gamma_k) \right) = \left(S + B(0, \gamma_\infty) \right) \cup \widetilde{\widetilde{S}} = \widetilde{\widetilde{S}} + B(0, \gamma_\infty) \tag{9.4}$$

Proof. Let $x \in \widetilde{\widetilde{S}}$. Of course, if $x \in \widetilde{S}$, then $x \in \overline{S}$. Assume that $x \in \widetilde{\widetilde{S}} \setminus \widetilde{S}$, and then, that x is a pseudo-limit of a sequence $\{x_n\}_{n \geq 0}$ of elements of S. For every $n \geq 0$, let $\delta_n = v(x-x_n)$ and let $\delta = \lim_{n \to +\infty} \delta_n < +\infty$. Then, $S(x_n, \delta_n)$ contains all the x_m 's for $m \geq n$, so that, $S(x_n, \delta_n) \mod \delta$ is infinite.

Consider now a polynomial $f(X) = \sum_{j=0}^{d} c_j X^j \in \text{Int}(S,V)$ of degree d. It follows from Lemma 4.2 that $f \in V[(X-x_n)/\rho_n]$ where $\rho_n = \delta_n + \frac{d(d+1)}{2}(\delta - \delta_n)$, that is, $v(c_j) \geq -j\rho_n$ for every j. Consequently,

$$v(c_j(x-x_n)^j) \ge j(\delta_n - \rho_n) = -j\frac{d(d+1)}{2}(\delta - \delta_n),$$

and

$$v(f(x)) \ge -\frac{d^2(d+1)}{2}(\delta - \delta_n).$$

Since, $\lim \delta_n = \delta$, one may conclude that $v(f(x)) \geq 0$ and $x \in \overline{S}$. This is the first containment. The second containment is a straightforward consequence of Containment (8.1).

Since $S \subseteq \widetilde{\widetilde{S}}$, it is obvious that $(S+B(0,\gamma_{\infty})) \cup \widetilde{\widetilde{S}} \subseteq \widetilde{\widetilde{S}} + B(0,\gamma_{\infty})$, and it follows from (9.3) that $\widetilde{\widetilde{S}} + B(0,\gamma_{\infty}) \subseteq \cap_{k \geq 0} (S+B(0,\gamma_k))$. It remains to prove that $\cap_{k \geq 0} (S+B(0,\gamma_k)) \subseteq (S+B(0,\gamma_{\infty})) \cup \widetilde{\widetilde{S}}$.

If $q_{\gamma_{\infty}}$ is finite, this is obvious. So that, we may assume that $\gamma_{\infty} = \lim_{k \to +\infty} \gamma_k$. Let x be an element of $\bigcap_k (S+B(0,\gamma_k))$ which is not in $S+B(0,\gamma_{\infty})$. Let $k_1 \geq 0$ and $x_1 \in S_{\gamma_{k_1}}$ be such that $v(x-x_1) \geq \gamma_{k_1}$. Then, $v(x-x_1) < \gamma_{\infty}$ since $x \not\in S+B(0,\gamma_{\infty})$. There exists $k_2 > k_1$ such that $v(x-x_1) < \gamma_{k_2}$. Let $x_2 \in S_{\gamma_{k_2}}$ be such that $v(x-x_2) \geq \gamma_{k_2}$. We then have:

$$\gamma_{k_1} \le v(x - x_1) < \gamma_{k_2} \le v(x - x_2) < \gamma_{\infty}.$$

So that, we may contruct two sequences $\{k_n\}_{n\geq 1}$ and $\{x_n\}_{n\geq 1}$ such that

$$\gamma_{k_n} \le v(x - x_n) < \gamma_{k_{n+1}}.$$

Consequently, $\lim_n \gamma_{k_n} = \gamma_{\infty}$ and x is a pseudo-limit of the sequence $\{x_n\}$.

Remark 9.3. (i) When $\gamma_{\infty} = +\infty$, all the following subsets are equal:

$$\widetilde{S} = \widetilde{\widetilde{S}} = \overline{S} = \bigcap_{k \ge 0} (S + B(0, \gamma_k)).$$

(ii) When $q_{\gamma_{\infty}}$ is finite, we have the equality:

$$\cap_{k>0} (S + B(0, \gamma_k)) = S + B(0, \gamma_\infty).$$

When $q_{\gamma_{\infty}}$ is infinite, we just have a containment:

$$S + B(0, \gamma_{\infty}) \subseteq \cap_{k \ge 0} (S + B(0, \gamma_k)),$$

and this containment may be strict. If $\gamma_{\infty}=+\infty$, then $S+B(0,\gamma_{\infty})=S$ and the equality means that $S=\widetilde{S}$. If $\gamma_{\infty}<+\infty$, we have the following counterexample. Assume that $v(K^*)=\mathbb{Q}$ and that the characteristic of K is odd. Consider the subset $S=\{0,1\}\cup\{2+u_n\}_{n\geq 2}$ where $v(u_n)=1-\frac{1}{n}$. Then, $\gamma_0=0,\gamma_n=1-\frac{1}{n},\gamma_{\infty}=1$. Let x=2+t with $v(t)\geq 1$. Then, x belongs to $\cap_k(S+B(0,\gamma_k))$ but does not belong to $S+B(0,\gamma_{\infty})$. This fact still holds even if S is a very regular subset (see Remark 12.3.ii).

(iii) When $\gamma_{\infty}<+\infty$, the containments in (9.3) may be strict. Let $\gamma,\delta\in\Gamma$ and $b\in V$ be such that $\gamma<\gamma_{\infty}<\delta$ and $B(b,\gamma)\cap S=\emptyset$. Assume that k=V/m is infinite and let $\{t_n\}_{n\geq 0}$ be a sequence of elements of $B(b,\delta)$ such that $v(t_n-t_m)=\delta$ for $n\neq m$. Then, let $T=\{t_n\mid n>0\}$ and $U=S\cup T$. We have: $\gamma_{\infty}(U)=\gamma_{\infty}(S),U\subseteq (S+B(0,\gamma))\cup B(b,\delta)$ and, by Theorem 8.4, $\overline{U}=\sqcup_{a\in U_{\gamma}}\overline{U(a,\gamma)}=\sqcup_{a\in S_{\gamma}}\overline{S(a,\gamma)}\sqcup B(b,\delta)$. So that, on the one hand, $U+B(0,\gamma_{\infty})\not\subseteq\overline{U}$, and it follows from Proposition 10.1 below that $\overline{U}\neq\cap_k(U+B(0,\gamma_k))$. On the other hand, by Proposition 4.5, $B(b,\delta)\subseteq\overline{U}$, $t_0\in\overline{U}$ but $t_0\notin\widetilde{U}$, and hence, $\overline{U}\neq\widetilde{U}$.

Let us now look at containments concerning the polynomial rings. Recall Lemma 4.1 that says that:

$$\forall a \in S \ \forall \gamma \in \mathbb{R} \ V[(X - a)/\gamma] \subseteq Int(S(a, \gamma), V). \tag{9.5}$$

Consequently,

$$\cap_{a \in S_{\gamma}} V[(X - a)/\gamma] \subseteq Int(S, V). \tag{9.6}$$

This leads us to recall and slightly generalize a notion introduced in [32]:

Definition 9.4. For every $\gamma \in \mathbb{R}$, the *Bhargava ring* with respect to S and γ is the following domain:

$$\operatorname{Int}_{\gamma}(S, V) = \bigcap_{a \in S} V[(X - a)/\gamma] = \bigcap_{a \in S_{\gamma}} V[(X - a)/\gamma]. \tag{9.7}$$

In the case where $\gamma \in \Gamma$, then $\gamma = v(t)$ for some $t \in K$ and then:

$$\operatorname{Int}_{\gamma}(S, V) = \{ f \in K[X] \mid \forall s \in S \ f(tX + s) \in V[X] \}. \tag{9.8}$$

Yeramian [32] defines only $\operatorname{Int}_{\gamma}(S,V)$ when S=V and $\gamma=v(t)$ and denotes it by $\mathbf{B}_t(V)$. As previously noticed:

$$\forall \gamma \in \mathbb{R} \quad V[X] \quad \subseteq \quad \operatorname{Int}_{\gamma}(S, V) \quad \subseteq \quad \operatorname{Int}(S, V). \tag{9.9}$$

Obviously,

$$\gamma < \delta \quad \Rightarrow \quad \operatorname{Int}_{\gamma}(S, V) \subseteq \operatorname{Int}_{\delta}(S, V), \tag{9.10}$$

and if $\gamma_{\infty} = \lim_{k} \gamma_{k} < +\infty$, then

$$\cup_{k} \operatorname{Int}_{\gamma_{k}}(S, V) \subseteq \operatorname{Int}_{\gamma_{\infty}}(S, V). \tag{9.11}$$

We may also note that:

Proposition 9.5. *If* $\gamma_{\infty} < +\infty$, *then:*

$$\forall \gamma \in \mathbb{R} \quad \operatorname{Int}_{\gamma}(S, V) = \operatorname{Int}(S_{\gamma} + B(0, \gamma), V). \tag{9.12}$$

Proof. Since $\gamma_{\infty} < +\infty$, either v is not discrete or $k = V/\mathfrak{m}$ is infinite. Then, Proposition 4.5 says that:

$$\forall a \in K \ \forall \gamma \in \mathbb{R} \quad \text{Int}(B(a,\gamma), V) = V[(X-a)/\gamma]. \tag{9.13}$$

Thus, the containment $\overline{S} \subseteq \cap_{k>0} (S + B(0, \gamma_k))$ corresponds to the containment

$$\cup_{k>0} \operatorname{Int}_{\gamma_k}(S, V) \subseteq \operatorname{Int}(S, V). \tag{9.14}$$

10 When $\overline{S} = \bigcap_k (S + B(0, \gamma_k))$

In this section we still assume that $\gamma_{\infty} < +\infty$. We know that

$$\overline{S} \subseteq \cap_{k>0} (S + B(0, \gamma_k)). \tag{10.1}$$

When do we have an equality?

Proposition 10.1. The following assertions are equivalent:

- (i) $\overline{S} = \bigcap_{k>0} (S + B(0, \gamma_k)).$
- (ii) $S + B(0, \gamma_{\infty}) \subseteq \overline{S}$.
- (iii) $\operatorname{Int}(S, V) = \operatorname{Int}_{\gamma_{\infty}}(S, V)$.

Proof. (i) \rightarrow (ii) since $S + B(0, \gamma_{\infty}) \subseteq \cap_k (S + B(0, \gamma_k))$. (ii) \rightarrow (i): if $S + B(0, \gamma_{\infty}) \subseteq \overline{S}$, it follows from Theorem 9.2 that $\cap_k (S + B(0, \gamma_k)) \subseteq \overline{S}$.

(ii) \leftrightarrow (iii): by Proposition 9.5, we have:

$$\operatorname{Int}_{\gamma_\infty}(S,V)=\operatorname{Int}(S+B(0,\gamma_\infty),V)$$

and, clearly, we have:

$$\operatorname{Int}(S + B(0, \gamma_{\infty}), V) \subseteq \operatorname{Int}(S, V) = \operatorname{Int}(\overline{S}, V).$$

Thus, the containment $S+B(0,\gamma_{\infty})\subseteq \overline{S}$ is equivalent the equality $\operatorname{Int}_{\gamma_{\infty}}(S,V)=\operatorname{Int}(S,V)$.

Now, we have to distinguish whether $q_{\gamma_{\infty}}$ is finite or not.

10.1 When $q_{\gamma_{\infty}}$ is finite

Recall that, when $q_{\gamma_{\infty}}$ is finite, one has: $\cap_k (S + B(0, \gamma_k)) = S + B(0, \gamma_{\infty})$. We begin with a lemma:

Lemma 10.2. Assume that the sequence $\{\gamma_k\}$ of critical valuations of S is finite. If $a \in S$ is such that, for every $\delta > \gamma_{\infty}$, $S(a, \gamma_{\infty}) \mod \delta$ is infinite, then

$$Int(S, V) \subseteq V[(X - a)/\gamma_{\infty}] \quad and \quad B(a, \gamma_{\infty}) \subseteq \overline{S}. \tag{10.2}$$

Proof. We apply Lemma 4.2 with $\gamma = \gamma_{\infty}$ and, when δ tends to γ_{∞} , ρ tends to γ_{∞} . \square

This leads us to the following characterization:

Theorem 10.3. Assume that $q_{\gamma_{\infty}}$ is finite. Then, the following three assertions are equivalent:

$$\forall a \in S \ \forall \delta > \gamma_{\infty} \ S(a, \gamma_{\infty}) \ mod \ \delta \ is \ infinite.$$
 (10.3)

$$\overline{S} = S + B(0, \gamma_{\infty}). \tag{10.4}$$

$$Int(S, V) = Int_{\gamma_{\infty}}(S, V). \tag{10.5}$$

Proof. When assertion (10.3) holds, it follows from Lemma 10.2 that $B(a, \gamma_{\infty}) \subseteq \overline{S}$ for every $a \in S$, and hence, that $S + B(0, \gamma_{\infty}) \subseteq \overline{S}$. Since $\overline{S} \subseteq \cap_k (S + B(0, \gamma_k)) = S + B(0, \gamma_{\infty})$, we have (10.4).

Now assume that (10.3) does not hold. Then there exist $a \in S$ and $\delta > \gamma_{\infty}$ such that $S(\underline{a},\gamma_{\infty}) \mod \delta$ is finite. Let $b_1,\ldots,b_s \in S$ be such that $S(a,\gamma_{\infty}) \subseteq \cup_{i=1}^s B(b_i,\delta)$. Then, $\overline{S(a,\gamma_{\infty})} \subseteq \cup_{i=1}^s B(b_i,\delta)$. But $\cup_{i=1}^s B(b_i,\delta)$ cannot be equal to $B(a,\gamma_{\infty})$ since either v is not discrete, or V/\mathfrak{m} is infinite (because γ_{∞} is finite). Consequently, we have $\overline{S} \cap B(a,\gamma_{\infty}) = \overline{S(a,\gamma_{\infty})} \neq B(a,\gamma_{\infty})$. Thus, assertion (10.4) does not hold.

The equivalence between (10.4) and (10.5) follows from Proposition 10.1.

Remark 10.4. (i) In the case described by Theorem 10.3, \overline{S} is a finite union of balls and, as already said, either the valuation v is not discrete, or the residue field V/\mathfrak{m} is infinite. It follows from Propositions 8.7 and 4.5 that the subset \overline{S} admits an infinite v-ordering if and only if $\gamma_{\infty} \in \Gamma$ and the residue field V/\mathfrak{m} is infinite.

(ii) Recall that if S is a finite union of balls, that is, if S is of the form:

$$S = T + B(0, \gamma)$$
 where $Card(T) = r$, (10.6)

the study of the characteristic function w_S is done in [6] in the case where the valuation v is discrete. In another paper [15], we will show that we have results that are both similar and different when v is not discrete, in particular the valuative capacity of S is given by the following proposition.

Proposition 10.5. *Let* S *be a finite union of balls:*

$$S = \bigcup_{i=1}^{r} B(t_i, \gamma) \quad \text{where, for } i \neq j, \ v(t_i - t_j) < \gamma. \tag{10.7}$$

Assume that either v is not discrete or the residue field of V is infinite. Consider the following matrix:

$$B = (\beta_{i,j}) \in \mathcal{M}_r(\mathbb{R})$$
 with $\beta_{i,i} = \gamma$ and $\beta_{i,j} = v(t_j - t_i)$ for $1 \le i \ne j \le r$. (10.8)

Denote by B_i the matrix deduced from B by replacing every element of the i-th column by 1. Then,

$$\delta_S = \lim_{n \to +\infty} \frac{w_S(n)}{n} = \frac{\det(B)}{\sum_{1 \le i \le r} \det(B_i)}.$$
 (10.9)

Let us now consider the case where $q_{\gamma_{\infty}}$ is infinite.

10.2 When $q_{\gamma_{\infty}}$ is infinite

The analog of Lemma 10.2 is:

Lemma 10.6. Assume that the sequence $\{\gamma_k\}$ of critical valuations of S is infinite. If there exists $a \in S$ such that, for every $\gamma < \gamma_{\infty}$, $S(a, \gamma) \mod \gamma_{\infty}$ is infinite, then

$$Int(S, V) \subseteq V[(X - a)/\gamma_{\infty}] \quad and \quad B(a, \gamma_{\infty}) \subseteq \overline{S}. \tag{10.10}$$

Proof. We apply Lemma 4.2 with $\gamma = \gamma_k$ and $\delta = \gamma_\infty$ and, when k tends to $+\infty$, ρ tends to γ_∞ .

This lemma leads to the following equivalences:

Theorem 10.7. Assume that γ_{∞} is finite and that $q_{\gamma_{\infty}}$ is infinite. Then, the following four assertions are equivalent:

$$\overline{S} = \bigcap_{k \ge 0} \left(S + B(0, \gamma_k) \right) \tag{10.11}$$

$$S + B(0, \gamma_{\infty}) \subseteq \overline{S} \tag{10.12}$$

$$Int(S, V) = Int_{\gamma_{\infty}}(S, V) \tag{10.13}$$

$$\forall a \in S \ \forall \gamma < \gamma_{\infty} \left\{ \left[S(a, \gamma_{\infty}) = S(a, \gamma) \right] \Rightarrow \left[\overline{S(a, \gamma_{\infty})} = B(a, \gamma_{\infty}) \right] \right\}. \tag{10.14}$$

These equivalent assertions also hold when the following condition is satisfied:

$$\forall a \in S \ \forall \gamma < \gamma_{\infty} \ S(a, \gamma) \ mod \ \gamma_{\infty} \ is \ infinite. \tag{10.15}$$

Proof. The equivalences $(10.11) \leftrightarrow (10.12) \leftrightarrow (10.13)$ are nothing else than Proposition 10.1. Let us prove that $(10.12) \to (10.14)$. Assume that $a \in S$ and $\gamma < \gamma_{\infty}$ are such that $S(a, \gamma_{\infty}) = S(a, \gamma)$ and that $S(a, \gamma_{\infty}) \subseteq \overline{S}$. Then, by Corollary 8.7:

$$\overline{S(a,\gamma_{\infty})} = \overline{S(a,\gamma)} = \overline{S} \cap B(a,\gamma) = B(a,\gamma).$$

Conversely, assume that (10.14) holds and let $a \in S$. Then, by Lemma 10.6, either $B(a, \gamma_{\infty}) \subseteq \overline{S}$, or there exists $\gamma < \gamma_{\infty}$ such that $S(a, \gamma) \mod \gamma_{\infty}$ is finite. Assume

that $S(a,\gamma) \mod \gamma_{\infty}$ is finite. Then, $S(a,\gamma)$ is a finite union of balls $\cup_{j} S(b_{j},\gamma_{\infty})$. Let $\underline{\delta = \min_{j \neq j'} v(b_{j} - b_{j'})}$. Then, $S(a,\delta) = S(a,\gamma_{\infty})$. The hypothesis (10.14) implies $\overline{S(a,\gamma_{\infty})} = B(a,\gamma_{\infty})$, that is assertion (10.12).

Finally, Lemma 10.6 shows that $(10.15) \to (10.13)$. Note that assertion (10.15) means that, for every $a \in S$ and every $\gamma < \gamma_{\infty}$, the sequence formed by the cardinalities of $S(a,\gamma) \mod \gamma_k$ is not a stationary sequence. The following example shows that condition (10.15) is not necessary in order to have (10.12).

Example 10.8. Let S be a subset satisfying condition (10.15), then it satisfies (10.12). Let $b \in K$ and $\delta < \gamma_{\infty}$ be such that $B(b, \delta) \cap S = \emptyset$ and let $T = S \cup B(b, \gamma_{\infty})$. Then, obviously, $\gamma_{\infty}(T) = \gamma_{\infty}(S)$ and $\overline{T} = \overline{S} \cup B(b, \gamma_{\infty})$. Consequently,

$$T+B(0,\gamma_{\infty})=(S\cup\{b\})+B(0,\gamma_{\infty})=(S+B(0,\gamma_{\infty}))\cup B(b,\gamma_{\infty})\subseteq \overline{S}\cup B(b,\gamma_{\infty})=\overline{T},$$
 while $Card(T(b,\delta)\ mod\ \gamma_{\infty})=1.$

10.3 S regular

The equivalent assertions of Theorems 10.3 and 10.7 are satisfied in particular by the following generalization of the notion of a regular compact subset introduced by Amice [1] in local fields and extended to precompact subsets of discrete valuation domains in [19]:

Definition 10.9. The fractional subset S of K is said to be a *regular subset* if, for every $\gamma < \delta$ such that q_{γ} is finite, $Card(S(x, \gamma) \mod \delta)$ does not depend on $x \in S$ in the following sense:

- (i) if q_{δ} is finite, then every non-empty ball $S(x,\gamma)$ is the disjoint union of $\frac{q_{\delta}}{q_{\gamma}}$ balls $S(y,\delta)$,
- (ii) if q_{δ} is infinite, then every non-empty ball $S(x,\gamma)$ is the disjoint union of infinitely many balls $S(y,\delta)$.

If $\gamma_{\infty} = \lim_k \gamma_k$, then condition (ii) follows from condition (i). So that, when $q_{\gamma_{\infty}}$ is infinite, S is a regular subset if and only if one has:

$$\forall k \ge 0, \ q_{\gamma_{k+1}} = \alpha_k q_{\gamma_k} \text{ (where } \alpha_k \in \mathbb{N})$$
 (10.16)

and,
$$\forall a \in S, \ Card \ S(a, \gamma_k) \ mod \ \gamma_{k+1} = \alpha_k.$$
 (10.17)

And, when $q_{\gamma_{\infty}}$ is finite, one has to add the condition:

$$\forall a \in S, \ \forall \delta > \gamma_{\infty} \quad S(a, \gamma_{\infty}) \ mod \ \delta \text{ is infinite.}$$
 (10.18)

The next section shows that regular subsets appear naturally in discrete dynamical systems.

11 Orbits under the action of an isometry

Let φ be a map from S to S. Then, the pair (S, φ) may be considered as a discrete dynamical system. For every $x \in S$, we may consider the forward orbit $O_+^{\varphi}(x)$ of x under the action of φ :

$$O_+^{\varphi}(x) = \{ \varphi^n(x) \mid n \in \mathbb{N} \}. \tag{11.1}$$

Proposition 11.1. Let $\varphi: S \to S$ be an isometry. Fix an $x \in S$ and let

$$T = O^{\varphi}_{+}(x) = \{ \varphi^{n}(x) \mid n \in \mathbb{N} \}.$$

Then, for every $\gamma \in \mathbb{R}$, denoting by $q_{\gamma}(T)$ the cardinality of $T \mod \gamma$, we have:

$$\forall n, m \in \mathbb{N} \quad [n \equiv m \pmod{q_{\gamma}(T)} \iff \varphi^{n}(x) \equiv \varphi^{m}(x) \pmod{\gamma}]. \tag{11.2}$$

In particular, if $q_{\gamma}(T)$ is finite, $x, \varphi(x), \ldots, \varphi^{q_{\gamma}(T)-1}$ is a complete system of representatives of $T \mod \gamma$, and, if $q_{\gamma}(T)$ is infinite, the $\varphi^k(x)$'s (for $k \in \mathbb{N}$) are non-congruent modulo γ .

Proof. Let $\gamma \in \mathbb{R}$ be such that $q_{\gamma}(T)$ is finite. Then, there exists $0 \leq s < t$ such that $\varphi^s(x) \equiv \varphi^t(x) \pmod{\gamma}$. Consequently, $\varphi^{t-s}(x) \equiv x \pmod{\gamma}$. Let r > 0 be the smallest integer such that $\varphi^r(x) \equiv x \pmod{\gamma}$. Then, $x, \varphi(x), \ldots, \varphi^{r-1}(x)$ are non-congruent modulo γ . Moreover,

$$\forall h \in \mathbb{N} \quad \varphi^{(h+1)r} = \varphi^{hr}(\varphi^r(x)) \equiv \varphi^{hr}(x) \pmod{\gamma},$$

and hence,

$$\forall h \in \mathbb{N} \quad \varphi^{hr} \equiv x \pmod{\gamma}.$$

Now, for every $n \in \mathbb{N}$, let n_0 be such that

$$n \equiv n_0 \pmod{r}$$
 where $0 \le n_0 < r$,

then

$$\varphi^{n-n_0}(x) \equiv x \pmod{\gamma}, \text{ that is, } \varphi^n(x) \equiv \varphi^{n_0}(x) \pmod{\gamma}.$$

Finally, the sequence $x, \varphi(x), \dots, \varphi^{r-1}(x)$ is a complete system of representatives of $T \mod \gamma$, and $q_{\gamma}(T) = r$.

Now, let $\delta \in \mathbb{R}$ be such that $T \bmod \delta$ is infinite. Assume that, for some s such that $0 \le s < t$, we had $\varphi^s(x) \equiv \varphi^t(x) \pmod \delta$, then the sequence $x, \varphi(x), \ldots, \varphi^{t-s-1}(x)$ would be a complete system of representatives of $T \bmod \delta$. This is a contradiction. \square

Now we generalize a result obtained in discrete valuation domains with finite residue field (cf. [21, Théorème 7.1] or [16, Theorem 3.3]):

Theorem 11.2. Let K be a valued field, S be an infinite fractional subset of K, and $\varphi: S \to S$ be an isometry. For every $x \in S$, the forward orbit

$$O^{\varphi}_+(x) = \{\varphi^n(x) \mid n \in \mathbb{N}\}$$

is a regular subset.

Proof. Fix an $x \in S$ and let $T = O_+^{\varphi}(x)$. Let $\gamma \in \mathbb{R}$ be such that $Card(T \mod \gamma) = q_{\gamma}(T) = r$ is finite and consider some $\delta > \gamma$.

Assume first that $Card(T \ mod \ \delta)$ is infinite. Then, the $\varphi^k(x)$, for $k \in \mathbb{N}$, are non-congruent modulo δ . Consequently, in each class $T(\varphi^i(x), \gamma)$ $(0 \le i < r)$ of $S \ mod \ \gamma$, there are infinitely many elements that are non-congruent modulo δ , namely,

$$T(\varphi^{i}(x), \gamma) = \{ \varphi^{i+kr}(x) \mid k \in \mathbb{N} \}.$$

Assume now that $Card(T \mod \delta) = q_{\delta}(T) = s$ is finite. It follows from Proposition 11.1 that:

$$T = \bigsqcup_{j=0}^{s-1} T(\varphi^j(x), \delta) = \bigsqcup_{j=0}^{r-1} T(\varphi^j(x), \gamma)$$
(11.3)

where \sqcup still denotes a disjoint union. Moreover, for $0 \le i < r$,

$$T(\varphi^{i}(x),\gamma) = \{\varphi^{i+rl}(x) \mid l \in \mathbb{N}\} = \varphi^{i}(\{\varphi^{rl}(x) \mid l \in \mathbb{N}\}) = \varphi^{i}(T(x,\gamma)).$$

Similarly, for $0 \le j < s$,

$$T(\varphi^j(x), \delta) = \varphi^j(T(x, \delta)).$$

Clearly,

$$T(x,\gamma) = \bigsqcup_{0 \le j < s \; ; \; r \mid j} T(\varphi^j(x), \delta).$$

Consequently,

$$T = \bigsqcup_{0 \le i < r} T(\varphi^{i}(x), \gamma) = \bigsqcup_{0 \le i < r} \bigsqcup_{0 \le l < \left[\frac{s}{x}\right]} \varphi^{i+rl}(T(x, \delta).$$

On the other hand,

$$T = \bigsqcup_{0 \le j < s} \varphi^j(T(x, \delta).$$

Since all the unions are disjoint, we necessarily have: $\left[\frac{s}{r}\right] \times r = s$, that is, r divides s and $Card(T(x,\gamma)) \ mod \ \delta = \frac{s}{r}$.

Proposition 11.3. Let T be the forward orbit of an element x of a valued field K under the action of an isometry φ .

- (i) If $\gamma_{\infty}(T) = +\infty$, then T is precompact.
- (ii) If $\gamma_{\infty}(T) < +\infty$, then T is discrete.
- (iii) If $q_{\gamma_{\infty}}(T) = +\infty$, then

$$T = T_{\gamma_{\infty}} = \cup_{\gamma < \gamma_{\infty}} T_{\gamma}.$$

(iv) If
$$q_{\gamma_{\infty}}(T) < +\infty$$
, then

$$T = T_{\gamma_{\infty}} + T(x, \gamma_{\infty})$$

where

$$T_{\gamma_{\infty}} = \{ \varphi^k(x) \mid 0 \le k < q_{\gamma_{\infty}} \} \subseteq \{ y \in K \mid v(x - y) < \gamma_{\infty} \}$$

and

$$T(x, \gamma_{\infty}) = \{ \varphi^{rq_{\gamma_{\infty}}}(x) \mid r \in \mathbb{N} \} \subseteq \{ y \in K \mid v(x - y) = \gamma_{\infty} \}.$$

Proof. It follows from Proposition 11.1 that, for every $\gamma < \gamma_{\infty}$, $\{\varphi^n(x) \mid 0 \le n < q_{\gamma}\}$ is a complete set of representatives of T modulo γ , that we may choose as T_{γ} . Clearly, for $\gamma < \delta < \gamma_{\infty}$, one has $T_{\gamma} \subseteq T_{\delta}$.

Assume that $q_{\gamma_{\infty}} = +\infty$. Then, $\gamma_k(T) \to \gamma_{\infty}(T)$, and hence, $T = \bigcup_{\gamma < \gamma_{\infty}} T_{\gamma}$. In particular, $T_{\gamma_{\infty}} = T$. This is Assertion (iii).

Assume that $q_{\gamma_{\infty}}<+\infty$ (and hence, $\gamma_{\infty}<+\infty$) then, for every $\delta>\gamma_{\infty}$, one has $v(\varphi^n(x)-\varphi^m(x))<\delta$ whatever $n\neq m$, and hence, $v(\varphi^n(x)-\varphi^m(x))\leq\gamma_{\infty}$. Consequently, $T(x,\gamma_{\infty})$ is not only the intersection of T with the ball $B(x,\gamma_{\infty})$, but the intersection with a sphere: $T\cap\{y\in K\mid v(x-y)=\gamma_{\infty}\}$. Thus, $T\subseteq T_{\gamma_{\infty}}+\{y\in K\mid v(y)=\gamma_{\infty}\}$. Clearly, the intersection of T with $B(x,\gamma_{\infty})$ is the forward orbit of x under the action of $y^{q_{\gamma_{\infty}}}:T(x,\gamma_{\infty})=\{y^{rq_{\gamma_{\infty}}}(x)\mid r\in\mathbb{N}\}$. This is Assertion (iv).

Assertion (i) follows from Proposition 6.3. Finally, assume that $\gamma_{\infty}<+\infty$. It follows from Assertions (iii) and (iv) that in both cases $(q_{\gamma_{\infty}}<\text{or}=+\infty)$, for all $x\neq y\in T, v(x-y)\leq \gamma_{\infty}$. Consequently, T is (uniformly) discrete: for each $t\in T$, $T\cap\{x\in K\mid v(x-t)>\gamma_{\infty}\}=\{t\}$. This is Assertion (ii).

Remark 11.4. Let T denote the orbit of an element x of K under the action of an isometry φ .

(1) If $q_{\gamma_{\infty}}(T)$ is finite, then V/\mathfrak{m} is infinite. Indeed, the previous proof shows that, if $q_{\gamma_{\infty}}$ is finite, then

$$q_{\gamma_{\infty}}|n-m \Leftrightarrow v(\varphi^n(x)-\varphi^m(x))=\gamma_{\infty}.$$
 (11.4)

In particular, $\{y \in K \mid v(y) = \gamma_{\infty}\}$ is infinite, which is equivalent to the fact that the residue field V/\mathfrak{m} is infinite.

(2) If $\gamma_{\infty}(T)$ is finite, then T is discrete, and hence, is equal to its topological closure \widetilde{T} in V and also to its completion. If $q_{\gamma_{\infty}}(T)$ is infinite then, by Theorem 10.7, T is polynomially equivalent to $T+B(0,\gamma_{\infty})$. Consequently, $\widetilde{T}\neq \overline{T}$.

Corollary 11.5. Let S be an infinite fractional subset of K and let $\varphi: S \to S$ be an isometry. If the dynamical system (S,φ) is topologically transitive, that is, if there exists $x \in S$ such that $T = O^{\varphi}_{+}(x)$ is dense in S, then S is a regular subset. Moreover, either $\gamma_{\infty} < +\infty$, S is discrete and $S = S_{\gamma_{\infty}} = T$, or $\gamma_{\infty} = +\infty$, S is precompact and $S = S_{\gamma_{\infty}}$.

Proof. By hypothesis, for every $\gamma \in \mathbb{R}$, one has $T \mod \gamma = S \mod \gamma$, and hence, for every γ such that $q_{\gamma}(S) < q_{\gamma_{\infty}}(S)$, $q_{\gamma}(S) = q_{\gamma}(T)$ and $(x, \varphi(x), \dots, \varphi^{q_{\gamma}-1}(x))$ is a complete system of representatives of $S \mod \gamma$, that one may choose for S_{γ} .

The greatest difference between all the cases is probably due to the fact that $q_{\gamma_{\infty}}$ is finite or infinite. The case where $q_{\gamma_{\infty}}$ is finite will be studied in [15]. The regular subsets such that $q_{\gamma_{\infty}}$ is infinite will be considered in a forthcoming paper [14] where we show that their v-orderings have very strong properties that may be used to describe the dynamics. In particular, extending results of [19], we prove the following proposition.

Proposition 11.6 ([14]). Let S be an infinite fractional subset of K such that $S = S_{\gamma_{\infty}}$. The following assertions are equivalent:

- (i) S is a regular subset.
- (ii) There exists a sequence $\{b_n\}_{n\in\mathbb{N}}$ of elements of S such that:

$$\forall \gamma \in \Gamma \quad [v(b_n - b_m) \ge \gamma \iff q_{\gamma} | (n - m)]. \tag{11.5}$$

- (iii) There exists a sequence $\{c_n\}_{n\in\mathbb{N}}$ of elements of S such that, for every $k\in\mathbb{N}$, $\{c_n\}_{n\geq k}$ is a v-ordering of S.
- (iv) The characteristic function w_S of S satisfies the following generalized Legendre formula:

$$w_S(n) = v(n!_S) = n\gamma_0 + \sum_{k=1}^{+\infty} \left[\frac{n}{q_{\gamma_k}(S)} \right] (\gamma_k - \gamma_{k-1}).$$
 (11.6)

12 An example

The following example is a generalization of an example given in [12]. Let k be a field and let Γ be a subgroup of \mathbb{R} . Let $\Gamma_+ = \{ \gamma \in \Gamma \mid \gamma \geq 0 \}$ and consider the integral domain

$$A = k[\Gamma_+] = k[\{X^\gamma \mid \gamma \ge 0\}; X^\gamma X^\delta = X^{\gamma + \delta}]$$
 (12.1)

endowed with the valuation v defined by:

$$\forall k \in \mathbb{N} \ \forall a_k \in k \ \forall \delta_k \in \Gamma_+ \quad v\left(\sum_{k=0}^n a_k X^{\delta_k}\right) = \min\{\delta_k \mid a_k \neq 0\}. \tag{12.2}$$

Fix a strictly increasing sequence $\{r_n\}_{n\in\mathbb{N}}$ of elements of Γ_+ . For every $n\geq 0$, choose a finite subset C_n of k containing 0 with cardinality $\alpha_n>1$. Now consider the following subset of A:

$$T = \{c_0 X^{r_0} + c_1 X^{r_1} + \dots + c_l X^{r_l} \mid l \in \mathbb{N}, c_h \in C_h, 0 \le h \le l\}.$$
 (12.3)

Then,

$$q_{r_h} = q_{r_h}(T) = Card(T \bmod r_h) \quad \text{satisfies} \quad q_0 = 1 \text{ and } q_{r_{h+1}} = \alpha_h q_{r_h}. \quad (12.4)$$

Of course,

$$q_{\gamma} = q_{r_h} \quad \text{for} \quad r_{h-1} < \gamma \le r_h. \tag{12.5}$$

In other words, the sequence of critical valuations of T, that is $\{\gamma_k\}_{k\in\mathbb{N}}$, is the sequence $\{r_k\}_{k\in\mathbb{N}}$. Consequently,

$$\gamma_{\infty}(T) = r_{\infty} = \sup \{ r_n \mid n \in \mathbb{N} \}. \tag{12.6}$$

Thus, T is a discrete subspace if the sequence $\{r_n\}$ is bounded and T is precompact if the sequence is unbounded. In both cases, the subset T admits infinite v-orderings. We describe now such a v-ordering.

For every $n \ge 0$, the elements of C_n are ordered in a finite sequence:

$${c_{n,i}}_{0 \le i < \alpha_n}$$
 with $c_{n,0} = 0$. (12.7)

For every $n \ge 0$, denoting by $n \mod \alpha$ the unique integer m such that $n \equiv m \pmod \alpha$ and $0 \le m < \alpha$, we consider:

$$n_0 = n \mod \alpha_0 \ , \ n_1 = \frac{n - n_0}{\alpha_0} \mod \alpha_1 \ , \ n_2 = \frac{n - n_0 - n_1 \alpha_0}{\alpha_1} \mod \alpha_2 \ , \dots$$
 (12.8)

So that

$$n = n_0 + n_1 \alpha_0 + n_2 \alpha_0 \alpha_1 + \dots + n_l \alpha_0 \alpha_1 \cdots \alpha_{l-1}$$

$$(12.9)$$

or

$$n = n_0 + n_1 q_{r_1} + n_2 q_{r_2} + \dots + n_l q_{r_l}$$
 with $0 \le n_h < \alpha_h$ (12.10)

Then, put

$$a_n = \sum_{h=0}^{l} c_{h,n_h} X^{r_h}.$$
 (12.11)

Proposition 12.1. The sequence $\{a_n\}_{n\in\mathbb{N}}$ defined by (12.10) and (12.11) is a v-ordering of the subset T defined by (12.3). Moreover, it satisfies all the properties introduced in Proposition 11.6, in particular:

$$w_T(n) = v(n!)_T = nr_0 + \sum_{h>1} \left[\frac{n}{q_{r_h}}\right] (r_h - r_{h-1}).$$
 (12.12)

Proof. Denote by $\nu_T(n)$ the greatest integer k such that q_{r_k} divides n. Clearly,

$$\forall n, m \in \mathbb{N} \quad v(a_n - a_m) = r_{\nu_T(n-m)}. \tag{12.13}$$

One easily verifies that for $m \ge n$:

$$v\left(\prod_{k=0}^{n-1}(a_m - a_k)\right) = \sum_{k=0}^{n-1} r_{\nu_T(m-k)} = \sum_{l=1}^m r_{\nu_T(l)} - \sum_{l=1}^{m-n} r_{\nu_T(l)}$$
$$= r_0 n + \sum_{k>0} \left(\left[\frac{m}{q_{r_k}}\right] - \left[\frac{m-n}{q_{r_k}}\right]\right) (r_k - r_{k-1}).$$

In particular,

$$v\left(\prod_{k=0}^{n-1}(a_n - a_k)\right) = r_0 n + \sum_{k>0} \left[\frac{n}{q_{r_k}}\right] (r_k - r_{k-1}).$$

Thus, the sequence $\{a_n\}$ is a *v*-ordering of *T* since

$$\left[\frac{m}{q_{r_k}}\right] - \left[\frac{m-n}{q_{r_k}}\right] \ge \left[\frac{n}{q_{r_k}}\right].$$

Corollary 12.2. The valuative capacity of T is equal to

$$\delta_T = \sum_{k>0} \frac{1}{\alpha_0 \alpha_1 \dots \alpha_{k-1}} r_k \left(1 - \frac{1}{\alpha_k} \right). \tag{12.14}$$

In particular, if $\alpha_k = q$ for every k, then

$$\delta_T = \left(1 - \frac{1}{q}\right) \sum_{k > 0} \frac{r_k}{q^k}.\tag{12.15}$$

Since the condition on the sequence $\{r_k\}_{k\in\mathbb{N}}$ is just to be a strictly increasing sequence, it is easy to choose the r_k 's in order to have δ_T either finite or infinite.

Proof. Recall that the definition of δ_T is given in Section 7. Note first that, if S is a regular subet such that $S = S_{\gamma_{\infty}}$, then the characteristic function w_S satisfies Formula (11.6) (see Proposition 11.6), and hence, the valuative capacity of S is given by:

$$\delta_S = \lim_{n \to +\infty} \frac{w_S(n)}{n} = \gamma_0 + \sum_{k \ge 1} \frac{1}{q_{\gamma_k}} (\gamma_k - \gamma_{k-1}). \tag{12.16}$$

Replacing γ_k by r_k and q_{γ_k} by $\alpha_0\alpha_1\ldots\alpha_{k-1}$, we easily obtain Formula (12.14).

Remark 12.3. The map $\varphi: T \to T$ defined by $\varphi(a_n) = a_{n+1}$ for $n \in \mathbb{N}$ is an isometry on T and $O^{\varphi}_+(0) = T \setminus \{0\}$.

(i) If $r_{\infty} = +\infty$, we consider the subset

$$\widehat{T} = \left\{ \sum_{l=0}^{\infty} d_n X^{r_n} \mid d_n \in C_n \right\}$$
(12.17)

and any subset S such that

$$T \subseteq S \subseteq \widehat{T}.\tag{12.18}$$

Then, S is precompact, $S_{\gamma_{\infty}} = T$ and $\overline{S} = \widehat{T} \cap K$. The subsets S and T are polynomially equivalent and the sequence $\{a_n\}$ is a v-ordering of S.

The previous map φ may be extended by continuity to \widehat{T} and the dynamical system (\widehat{T}, φ) is transitive since $O_+^{\varphi}(0) = T \setminus \{0\}$ is dense in T, and hence, in \widehat{T} .

(ii) If $r_{\infty} < +\infty$, we consider any subset S such that

$$T \subseteq S \subseteq \cap_k (T + B(0, r_k)). \tag{12.19}$$

Then, $S_{\gamma_{\infty}} = T$ and $\overline{S} = \bigcap_k (T + B(0, r_k))$. The subsets S and T are polynomially equivalent and the sequence $\{a_n\}$ is a v-ordering of S.

Note also that in this latter case $(r_{\infty} < \infty)$, \overline{T} may either be equal to $T + B(0, r_{\infty})$ or not. Assume that the characteristic of K is $\neq 2$, $r_{\infty} \in \Gamma$, $C_0 = \{0,1\}$ and $C_n = \{0,1,2\}$ for $n \geq 1$. Then, $2 + X^{r_{\infty}}$ belongs to $\bigcap_{k \geq 0} (T + B(0,r_k))$ while $2 + X^{r_{\infty}}$ does not belong to $T + B(0,r_{\infty})$ (in fact, this is quite the example given in Remark 9.3). On the other hand, if all the C_n 's are equal, then

$$\overline{T} = T + B(0, r_{\infty}) = \bigcap_{k>0} (T + B(0, r_k)).$$

Acknowledgments. I am very grateful to the referee for several remarks and suggestions, and specially, for pointing out the counterexample given in Remark 9.3.ii.

References

- [1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964) 117–180.
- [2] M. Bhargava, *P*-orderings and polynomial functions on arbitrary subsets of Dedekind rings, *J. reine angew. Math.* **490** (1997), 101–127.
- [3] M. Bhargava, Generalized Factorials and Fixed Divisors over Subsets of a Dedekind Domain, J. Number Theory **72** (1998), 67–75.
- [4] M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), 783–799.
- [5] J. Boulanger and J.-L. Chabert, Asymptotic behavior of characteristic sequences of integer-valued polynomials, *J. Number Theory* **80** (2000), 238–259.
- [6] J. Boulanger, J.-L. Chabert, S. Evrard and G. Gerboud, The Characteristic Sequence of Integer-Valued Polynomials on a Subset, in *Advances in Commutative Ring Theory*, Lecture Notes in Pure and Appl. Math. 205 (1999), 161–174, Dekker, New York.
- [7] P.-J. Cahen & J.-L. Chabert, Coefficients et valeurs d'un polynôme, Bull. Sc. Math. 95 (1971), 295–304.
- [8] P.-J. Cahen & J.-L. Chabert, Integer-Valued Polynomials, *Amer. Math. Soc. Surveys and Monographs*, **48**, Providence, 1997.
- [9] P.-J. Cahen & J.-L. Chabert, What's new about integer-valued polynomials on a subset?, in *Non-Noetherian Commutative Ring Theory*, pp. 75–96, Kluwer Academic Publishers, 2000.
- [10] P.-J. Cahen & J.-L. Chabert, On the ultrametric Stone-Weierstrass theorem and Mahler's expansion, *Journal de Théorie des Nombres de Bordeaux*, 14 (2002), 43–57.
- [11] J.-L. Chabert, Integer-Valued Polynomials, Prüfer Domains and Localization, Proc. Amer. Math. Soc. 118 (1993), 1061–1073.

- [12] J.-L. Chabert, Generalized factorial ideals, Arab. J. Sci. Eng. Sect. C 26 (2001), 51-68.
- [13] J.-L. Chabert, Autour de l'algèbre des polynômes à valeurs entières dans un corps de nombres ou un corps de fonctions, www.lamfa.u-picardie.fr/chabert/DEA06.PDF
- [14] J.-L. Chabert, v-orderings of regular subsets of a valued field, preprint.
- [15] J.-L. Chabert, Valuative capacity of a finite union of balls in a valued field, work in progress.
- [16] J.-L. Chabert, Y. Fares, and A.-H. Fan, Minimal dynamical systems on a discrete valuation domain, preprint.
- [17] S. T. Chapman, K. A. Loper and W. W. Smith, Strongly two-generated ideals in rings of integer-valued polynomials determined by finite sets, C. R. Math. Acad. Sci. Soc. R. Can., 26 (2004), 33–38.
- [18] S. Evrard, Integer-Valued Polynomials in Several Indeterminates, to appear in *Commutative Algebra and Applications*, de Gruyter, 2009.
- [19] S. Evrard and Y. Fares, *p*-adic subsets whose factorials satisfy a generalized Legendre formula, *Bull. London Math. Soc.*, **40** (2008), 37–50.
- [20] Y. Fares, Factorial preservation, Arch. Math., 83 (2004), 497–506.
- [21] Y. Fares, Polynômes à valeurs entières et conservation des factorielles, Ph.D. Thesis, Université de Picardie, Amiens, July 2006.
- [22] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizieten, *Math. Zeitsch.* **17** (1923), 228–249.
- [23] H. Gunji and D. L. McQuillan, Polynomials with integral values, *Proc. Roy. Irish. Acad.* Sect. A **78** (1978), 1–7.
- [24] I. Kaplansky, The Weierstrass theorem in fields with valuations, *Proc. Amer. Math. Soc.*, **1** (1950), 356–357.
- [25] I. Kaplansky, Maximal fields with valuations, *Duke Math* 9 (1942), 303–321.
- [26] D. L. McQuillan, Rings of integer-valued polynomials determined by finite sets, *Proc. Roy. Irish Acad.* Sect. A 85 (1985), 177–184.
- [27] D. L. McQuillan, On a Theorem of R. Gilmer, J. Number Theory 39 (1991), 245–250.
- [28] S.B. Mulay, Integer Valued Polynomials in Several Variables, Comm. Algebra 27, (1999), 2409–2423.
- [29] G. Pólya, Ueber ganzwertige Polynome in algebraischen Zahlkörpern, *J. reine angew. Math.* **149** (1919), 97–116.
- [30] A. Ostrowski, Ueber ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919), 117–124.
- [31] A. Ostrowski, Untersuchen zur aritmetischen Theorie der Körper, Math. Zeitschrift 39 (1935), 269–404.
- [32] J. Yeramian, Anneaux de Bhargava, Comm. Algebra, 32 (2004), 3043–3069.

Author information

Jean-Luc Chabert, Department of Mathematics, Picardy University, Amiens, France. E-mail: jean-luc.chabert@u-picardie.fr