The functor of units of Burnside rings

Serge Bouc

CNRS-Université de Picardie

Hokkaido University-24/06/08
1 Burnside rings
Overview

1. Burnside rings

2. Units
Overview

1. Burnside rings

2. Units

3. p-groups: combinatorial answer
Overview

1. Burnside rings

2. Units

3. p-groups: combinatorial answer

4. p-groups: algebraic answer
Overview

1. Burnside rings

2. Units

3. p-groups: combinatorial answer

4. p-groups: algebraic answer

5. Method: biset-functors
The Burnside ring of a finite group

Definition

The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets.
Definition

The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets. It is a **ring** for the product induced by cartesian product of G-sets.
The Burnside ring of a finite group

Definition

The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets. It is a **ring** for the product induced by cartesian product of G-sets.

- In other words $B(G) = \mathbb{Z}\{\text{finite } G\text{-sets}\}$
The Burnside ring of a finite group

Definition

The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets. It is a **ring** for the product induced by cartesian product of G-sets.

In other words $B(G) = \mathbb{Z}^{\text{[finite } G\text{-sets]}} / \langle [X \sqcup Y] - [X] - [Y] \rangle$, where \mathbb{Z} is the set of integers, \sqcup denotes disjoint union, and $[X]$ denotes the equivalence class of X under the relation of isomorphic G-sets.
The Burnside ring of a finite group

Definition

The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets. It is a **ring** for the product induced by cartesian product of G-sets.

- In other words $B(G) = \mathbb{Z}\{[\text{finite } G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle$, and $[X][Y] = [X \times Y]$.
Definition

The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets. It is a ring for the product induced by cartesian product of G-sets.

- In other words, $B(G) = \mathbb{Z}\{[\text{finite } G\text{-sets}]\}/<[X \sqcup Y] - [X] - [Y]>$, and $[X][Y] = [X \times Y]$.
- As an abelian group, it has a basis $\{[G/H] \mid H \in [s_G]\}$,
The Burnside ring of a finite group

Definition

The Burnside group $B(G)$ of a finite group G is the Grothendieck group of the category of finite G-sets. It is a ring for the product induced by cartesian product of G-sets.

- In other words $B(G) = \mathbb{Z}\{[\text{finite } G\text{-sets}]\} \big/ \langle [X \sqcup Y] - [X] - [Y] \rangle$, and $[X][Y] = [X \times Y]$.
- As an abelian group, it has a basis $\{[G/H] \mid H \in [s_G]\}$, where $[s_G] = \{H \leq G, \text{ mod. } G\}$.
If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \to \mathbb{Z}$.
If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \rightarrow \mathbb{Z}$, and the product map $\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$ is injective (Burnside (1911)).
If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \to \mathbb{Z}$, and the product map $\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$ is injective (Burnside (1911)).

Dress (1969) has determined the prime spectrum of $B(G)$,
If \(H \leq G \), the map \(\phi_H : [X] \mapsto |X^H| \) yields a ring homomorphism \(B(G) \to \mathbb{Z} \), and the product map \(\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \to \prod_{H \in [s_G]} \mathbb{Z} \) is injective (Burnside (1911)).

Dress (1969) has determined the prime spectrum of \(B(G) \), and characterized the (finite) cokernel of \(\Phi \).
If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \to \mathbb{Z}$, and the product map $\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$ is injective (Burnside (1911)).

Dress (1969) has determined the prime spectrum of $B(G)$, and characterized the (finite) cokernel of Φ.

It follows that $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra.
If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \to \mathbb{Z}$, and the product map $\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$ is injective (Burnside (1911)).

Dress (1969) has determined the prime spectrum of $B(G)$, and characterized the (finite) cokernel of Φ.

It follows that $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. The formulae for primitive idempotents of $\mathbb{Q}B(G)$ have been stated independently by Gluck and Yoshida (1983).
Ring structure

- If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \to \mathbb{Z}$, and the product map $\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$ is injective (Burnside (1911)).

- Dress (1969) has determined the prime spectrum of $B(G)$, and characterized the (finite) cokernel of Φ.

- It follows that $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. The formulae for primitive idempotents of $\mathbb{Q}B(G)$ have been stated independently by Gluck and 吉田 (1983):
• If $H \leq G$, the map $\phi_H : [X] \mapsto |X^H|$ yields a ring homomorphism $B(G) \to \mathbb{Z}$, and the product map $\Phi : \prod_{H \in [s_G]} \phi_H : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$ is injective (Burnside (1911)).

• Dress (1969) has determined the prime spectrum of $B(G)$, and characterized the (finite) cokernel of Φ.

• It follows that $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. The formulae for primitive idempotents of $\mathbb{Q}B(G)$ have been stated independently by Gluck and 吉田 (1983):

$$\forall H \in [s_G], \quad e^G_H = \frac{1}{|N_G(H)|} \sum_{K \leq H} |K| \mu(K, H)[G/K].$$
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$.

Since $B^\times(G) \hookrightarrow \prod_{H \in [sG]} \mathbb{Z} \times = \prod_{H \in [sG]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group. In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)): the statement

If G has odd order, then $B^\times(G) = \{\pm 1\}$

is equivalent to the odd order theorem (Feit-Thompson (1963)). For an arbitrary finite group, not so much is known on this problem. The work of many people (T. Tom Dieck, T. Matsuda, T. Matsuda - T. Miyata, T. Yoshida, E. Yalçın, . . .) recently led to the solution for finite p-groups (more generally for finite nilpotent groups).
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group. In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)): The statement if G has odd order, then $B^\times(G) = \{\pm 1\}$ is equivalent to the odd order theorem (Feit-Thompson (1963)). For an arbitrary finite group, not so much is known on this problem. The work of many people (T. Tom Dieck, T. Matsuda, T. Matsuda - T. Miyata, T. Yoshida, E. Yalçın, . . .) recently led to the solution for finite p-groups (more generally for finite nilpotent groups).
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

In particular, finding the rank of $B^\times(G)$ should be an easy problem.
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)):
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)) : the statement

If G has odd order, then $B^\times(G) = \{\pm 1\}$
Units

- Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

- In particular, finding the rank of $B^\times(G)$ should be an easy problem. **It is a very hard problem**, as shown by the following observation (Tom Dieck (1979)) : the statement

 \[
 \text{If } G \text{ has odd order, then } B^\times(G) = \{\pm 1\}
 \]

 is equivalent to the odd order theorem (Feit-Thompson (1963)).
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)) : the statement

If G has odd order, then $B^\times(G) = \{\pm 1\}$

is equivalent to the odd order theorem (Feit-Thompson (1963)).

For an arbitrary finite group, not so much is known on this problem.
Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)): the statement

If G has odd order, then $B^\times(G) = \{\pm 1\}$

is equivalent to the odd order theorem (Feit-Thompson (1963)).

For an arbitrary finite group, not so much is known on this problem. The work of many people (T. Tom Dieck, T. Matsuda, T. Matsuda - T. Miyata, T. Yoshida, E. Yalçın, ...) recently led to the solution for finite p-groups.
Units

- Let $B^\times(G)$ denote the group of multiplicative units (i.e. invertible elements) of $B(G)$. Since $B^\times(G) \hookrightarrow \prod_{H \in [s_G]} \mathbb{Z}^\times = \prod_{H \in [s_G]} \{\pm 1\}$, it follows that $B^\times(G)$ is an elementary abelian 2-group.

- In particular, finding the rank of $B^\times(G)$ should be an easy problem. It is a very hard problem, as shown by the following observation (Tom Dieck (1979)) : the statement

 \[
 \text{If } G \text{ has odd order, then } B^\times(G) = \{\pm 1\}
 \]

 is equivalent to the odd order theorem (Feit-Thompson (1963)).

- For an arbitrary finite group, not so much is known on this problem. The work of many people (T. Tom Dieck, T. Matsuda, T. Matsuda - T. Miyata, T. Yoshida, E. Yalçın, . . .) recently led to the solution for finite p-groups (more generally for finite nilpotent groups).
The case of p-groups: combinatorial answer

Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has normal rank 1 if all the abelian normal subgroups of G are cyclic. The finite p-groups of normal rank 1 are the cyclic groups $C_p^n (n \geq 0)$, the generalized quaternion 2-groups $Q_2^n (n \geq 3)$, the dihedral 2-groups $D_2^n (n \geq 4)$, and the semi-dihedral groups $SD_2^n (n \geq 4)$.
The case of \(p \)-groups: combinatorial answer

Notation

Let \(p \) be a prime number, and \(P \) be a finite \(p \)-group.

If \(S \leq P \), denote by \(Z_P(S) \) the subgroup of \(N_P(S) \) defined by

\[
Z_P(S) = Z(N_P(S)/S).
\]

Definition

A finite group \(G \) has normal rank 1 if all the abelian normal subgroups of \(G \) are cyclic.

The finite \(p \)-groups of normal rank 1 are the cyclic groups \(C_p^n \) (\(n \geq 0 \)), the generalized quaternion 2-groups \(Q_2^n \) (\(n \geq 3 \)), the dihedral 2-groups \(D_2^n \) (\(n \geq 4 \)), and the semi-dihedral groups \(S_D_2^n \) (\(n \geq 4 \)).
Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has normal rank 1 if all the abelian normal subgroups of G are cyclic.

The finite p-groups of normal rank 1 are the cyclic groups C_p^n ($n \geq 0$), the generalized quaternion 2-groups Q_2^n ($n \geq 3$), the dihedral 2-groups D_2^n ($n \geq 4$), and the semi-dihedral groups SD_2^n ($n \geq 4$).
The case of p-groups: combinatorial answer

Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has **normal rank 1** if all the abelian normal subgroups of G are cyclic.
The case of p-groups: combinatorial answer

Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has **normal rank 1** if all the abelian normal subgroups of G are cyclic.

The finite p-groups of normal rank 1 are the cyclic groups C_{p^n} ($n \geq 0$),
The case of p-groups: combinatorial answer

Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has **normal rank 1** if all the abelian normal subgroups of G are cyclic.

The finite p-groups of normal rank 1 are the cyclic groups C_{p^n} ($n \geq 0$), the generalized quaternion 2-groups Q_{2^n} ($n \geq 3$),
The case of p-groups: combinatorial answer

Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has **normal rank 1** if all the abelian normal subgroups of G are cyclic.

The finite p-groups of normal rank 1 are the cyclic groups C_{p^n} ($n \geq 0$), the generalized quaternion 2-groups Q_{2^n} ($n \geq 3$), the dihedral 2-groups D_{2^n} ($n \geq 4$),
The case of p-groups: combinatorial answer

Notation

Let p be a prime number, and P be a finite p-group. If $S \leq P$, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

A finite group G has **normal rank 1** if all the abelian normal subgroups of G are cyclic.

The finite p-groups of normal rank 1 are the cyclic groups C_{p^n} ($n \geq 0$), the generalized quaternion 2-groups Q_{2^n} ($n \geq 3$), the dihedral 2-groups D_{2^n} ($n \geq 4$), and the semi-dihedral groups SD_{2^n} ($n \geq 4$).
Genetic subgroups

From now on P denotes a finite p-group,
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.

Definition

A subgroup $S \leq P$ is called **genetic** if the following two conditions are fulfilled:

1. The group $N_P(S)$ has normal rank 1.
2. If $x \in G$ is such that $Sx \cap Z_P(S) \leq S$, then $Sx = S$.

Example: If $S \triangleleft P$, then S is a genetic subgroup of P if and only if P/S has normal rank 1.

Definition

Define a relation $\hat{\mathcal{P}}$ on the set of subgroups of P by $S \hat{\mathcal{P}} T \iff \exists x \in P, Sx \cap Z_P(T) \leq T$ and $T \cap Z_P(Sx) \leq Sx$.

Serge Bouc (CNRS-Université de Picardie) The functor of units of Burnside rings Hokkaido University-24/06/08 7 / 20
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.

Definition

A subgroup $S \leq P$ is called **genetic** if the following two conditions are fulfilled:

1. The group $N_P(S)/S$ has normal rank 1.

Example: If $S \trianglelefteq P$, then S is a genetic subgroup of P if and only if P/S has normal rank 1.
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.

Definition

A subgroup $S \leq P$ is called *genetic* if the following two conditions are fulfilled:

1. The group $N_P(S)/S$ has normal rank 1.
2. If $x \in G$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.

Definition

A subgroup $S \leq P$ is called **genetic** if the following two conditions are fulfilled:

1. The group $N_P(S)/S$ has normal rank 1.
2. If $x \in G$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Example: If $S \triangleleft P$, then S is a genetic subgroup of P if and only if P/S has normal rank 1.
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.

Definition

A subgroup $S \leq P$ is called **genetic** if the following two conditions are fulfilled:

1. The group $N_P(S)/S$ has normal rank 1.
2. If $x \in G$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Example: If $S \trianglelefteq P$, then S is a genetic subgroup of P if and only if P/S has normal rank 1.

Definition

Define a relation $\hat{\leq}_P$ on the set of subgroups of P by

$S \hat{\leq}_P T$.
Genetic subgroups

From now on P denotes a finite p-group, though definitions and results extend to all nilpotent finite groups.

Definition

A subgroup $S \leq P$ is called **genetic** if the following two conditions are fulfilled:

1. The group $N_P(S)/S$ has normal rank 1.
2. If $x \in G$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Example: If $S \leq P$, then S is a genetic subgroup of P if and only if P/S has normal rank 1.

Definition

Define a relation \equiv_P on the set of subgroups of P by

$S \equiv_P T \iff \exists x \in P, \ S^x \cap Z_P(T) \leq T \text{ and } T \cap Z_P(S^x) \leq S^x$.
Theorem (B. (2005))

1. The relation \equiv_P is an equivalence relation on the set of genetic subgroups of P.

Definition

A genetic basis of P is a set of representatives of genetic subgroups of P for the relation \equiv_P.

The type of a genetic subgroup S of P is the isomorphism class of $N_P(S)/S$.

The type of a genetic subgroup of P is one of C_p^n ($n \geq 0$), Q_2^n ($n \geq 3$), D_2^n ($n \geq 4$), or SD_2^n ($n \geq 4$).
Genetic bases

Theorem (B. (2005))

1. The relation $\mathrel{\preceq}_P$ is an equivalence relation on the set of genetic subgroups of P.

2. If S and T are genetic subgroups of P and if $S \preceq_P T$, then $N_P(S)/S \cong N_P(T)/T$.
Theorem (B. (2005))

1. The relation \(\preceq_P \) is an equivalence relation on the set of genetic subgroups of \(P \).

2. If \(S \) and \(T \) are genetic subgroups of \(P \) and if \(S \preceq_P T \), then \(N_P(S)/S \cong N_P(T)/T \).

Definition

A genetic basis of \(P \) is a set of representatives of genetic subgroups of \(P \) for the relation \(\preceq_P \).
Theorem (B. (2005))

1. The relation \(\triangleleft_P \) is an equivalence relation on the set of genetic subgroups of \(P \).

2. If \(S \) and \(T \) are genetic subgroups of \(P \) and if \(S \triangleleft_P T \), then \(N_P(S)/S \cong N_P(T)/T \).

Definition

A genetic basis of \(P \) is a set of representatives of genetic subgroups of \(P \) for the relation \(\triangleleft_P \).

The type of a genetic subgroup \(S \) of \(P \) is the isomorphism class of \(N_P(S)/S \).
Theorem (B. (2005))

1. The relation \(\triangleleft_P \) is an equivalence relation on the set of genetic subgroups of \(P \).

2. If \(S \) and \(T \) are genetic subgroups of \(P \) and if \(S \triangleleft_P T \), then \(N_P(S)/S \cong N_P(T)/T \).

Definition

A genetic basis of \(P \) is a set of representatives of genetic subgroups of \(P \) for the relation \(\triangleleft_P \).

The type of a genetic subgroup \(S \) of \(P \) is the isomorphism class of \(N_P(S)/S \).

The type of a genetic subgroup of \(P \) is one of \(C_{p^n} \) \((n \geq 0)\), \(Q_{2^n} \) \((n \geq 3)\), \(D_{2^n} \) \((n \geq 4)\), or \(SD_{2^n} \) \((n \geq 4)\).
An example
An example

![Diagram of a mathematical structure with vertices labeled D8]
An example
An example

\[
\begin{array}{c}
\text{type } C_1 \\ - \rightarrow \\
\bullet \\
\rightarrow \\
\text{type } C_2 \\ - \rightarrow \\
\circ \\
\rightarrow \\
\text{type } C_2 \\ - \rightarrow \\
\circ \\
\rightarrow \\
\end{array}
\]

\[D_8\]
An example

\[
\begin{array}{c}
\text{type } C_1 \rightarrow
\end{array}
\]

\[
\begin{array}{c}
\text{type } C_2 \rightarrow
\end{array}
\]

\[
\begin{array}{c}
\text{type } C_2 \rightarrow
\end{array}
\]

\[
\begin{array}{c}
\text{type } D_8
\end{array}
\]
An example
An example
An example

The functor of units of Burnside rings
An example
An example
An example of genetic basis
An example of genetic basis
An example of genetic basis

- Type C_1 →
- Type C_2 → D_8
Combinatorial answer

Theorem

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Then $B^\times(P) \cong (\mathbb{Z}/2\mathbb{Z})^{u_P}$,
Theorem

Let P be a finite p-group, and G be a genetic basis of P. Then $B^\times(P) \cong (\mathbb{Z}/2\mathbb{Z})^{u_P}$, where u_P is the number of elements of G whose type is trivial, C_2, or D_{2^n}.

Examples:

If P is abelian, then $u_P = 1 + |\{S < P | |P:S|=2\}|$ (Matsuda (1982)).
Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Then $B^\times (P) \cong (\mathbb{Z}/2\mathbb{Z})^{u_P}$, where u_P is the number of elements of \mathcal{G} whose type is trivial, C_2, or D_{2^n}.

Examples:

- If P is abelian, then $u_P = 1 + |\{S < P \mid |P : S| = 2\}|$ (Matsuda (1982)).
Theorem

Let P be a finite p-group, and G be a genetic basis of P. Then $B^\times(P) \cong (\mathbb{Z}/2\mathbb{Z})^{u_P}$, where u_P is the number of elements of G whose type is trivial, C_2, or D_{2^n}.

Examples:

- If P is abelian, then $u_P = 1 + |\{S < P \mid |P : S| = 2\}|$ (Matsuda (1982)).
- $B^\times(D_8) \cong (\mathbb{Z}/2\mathbb{Z})^5$.
Operations on $B^\times(G)$

Let $H \leq G$. Then restriction $B^\times(G) \to B^\times(H)$ induces a group homomorphism $\text{Res}_{G,H} : B^\times(G) \to B^\times(H)$.

Let $H \leq G$. Then tensor induction $B^\times(H) \to B^\times(G)$ induces a group homomorphism $\text{Ten}_{G,H} : B^\times(H) \to B^\times(G)$.

Let $N \trianglelefteq G$. Then inflation from $B^\times(G/N)$ to $B^\times(G)$ induces a group homomorphism $\text{Inf}_{G,G/N} : B^\times(G/N) \to B^\times(G)$.

Let $N \trianglelefteq G$. Then taking fixed points by N induces a group homomorphism called deflation $\text{Def}_{G,G/N} : B^\times(G) \to B^\times(G/N)$.

Let $f : G \to G'$ be a group isomorphism. Then f induces a group isomorphism $\text{Iso}(f) : B^\times(G) \to B^\times(G')$.

Serge Bouc (CNRS-Université de Picardie)

The functor of units of Burnside rings

Hokkaido University-24/06/08 11 / 20
Operations on $B^\times(G)$

- Let $H \leq G$.
Operations on $B^\times (G)$

- Let $H \leq G$. Then restriction $B(G) \rightarrow B(H)$
Operations on $B^\times(G)$

• Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $\text{Res}_H^G : B^\times(G) \to B^\times(H)$.
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $Res^G_H : B^\times(G) \to B^\times(H)$.
- Let $H \leq G$.
- Let $N \unlhd G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $Inf_{G/G/N} : B^\times(G/N) \to B^\times(G)$.
- Let $N \unlhd G$. Then taking fixed points by N induces a group homomorphism called deflation $Def_{G/G/N} : B^\times(G) \to B^\times(G/N)$.
- Let $f : G \to G'$ be a group isomorphism. Then f induces a group isomorphism $Iso(f) : B^\times(G) \to B^\times(G')$.
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $\text{Res}_H^G : B^\times(G) \to B^\times(H)$.
- Let $H \leq G$. Then tensor induction $B(H) \to B(G)$
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $\text{Res}_H^G : B^\times(G) \to B^\times(H)$.
- Let $H \leq G$. Then tensor induction $B(H) \to B(G)$ induces a group homomorphism $\text{Ten}_H^G : B^\times(H) \to B^\times(G)$.
Let $H \leq G$. Then restriction $B(G) \rightarrow B(H)$ induces a group homomorphism $Res^G_H : B^\times(G) \rightarrow B^\times(H)$.

Let $H \leq G$. Then tensor induction $B(H) \rightarrow B(G)$ induces a group homomorphism $Ten^G_H : B^\times(H) \rightarrow B^\times(G)$.

Let $N \trianglelefteq G$.

Serge Bouc (CNRS-Université de Picardie) The functor of units of Burnside rings Hokkaido University-24/06/08 11 / 20
Let $H \leq G$. Then restriction $B(G) \rightarrow B(H)$ induces a group homomorphism $\text{Res}_H^G : B^\times(G) \rightarrow B^\times(H)$.

Let $H \leq G$. Then tensor induction $B(H) \rightarrow B(G)$ induces a group homomorphism $\text{Ten}_H^G : B^\times(H) \rightarrow B^\times(G)$.

Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \rightarrow B(H)$ induces a group homomorphism $Res^G_H : B^\times(G) \rightarrow B^\times(H)$.

- Let $H \leq G$. Then tensor induction $B(H) \rightarrow B(G)$ induces a group homomorphism $Ten^G_H : B^\times(H) \rightarrow B^\times(G)$.

- Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $Inf^G_{G/N} : B^\times(G/N) \rightarrow B^\times(G)$.

- Let $f : G \rightarrow G'$ be a group isomorphism. Then f induces a group isomorphism $Iso(f) : B^\times(G) \rightarrow B^\times(G')$.

Serge Bouc (CNRS-Université de Picardie)
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \rightarrow B(H)$ induces a group homomorphism $\text{Res}_H^G : B^\times(G) \rightarrow B^\times(H)$.
- Let $H \leq G$. Then tensor induction $B(H) \rightarrow B(G)$ induces a group homomorphism $\text{Ten}_H^G : B^\times(H) \rightarrow B^\times(G)$.
- Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $\text{Inf}_{G/N}^G : B^\times(G/N) \rightarrow B^\times(G)$.
- Let $N \trianglelefteq G$.

Serge Bouc (CNRS-Université de Picardie)
Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $Res^G_H : B^\times(G) \to B^\times(H)$.

Let $H \leq G$. Then tensor induction $B(H) \to B(G)$ induces a group homomorphism $Ten^G_H : B^\times(H) \to B^\times(G)$.

Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $Inf^G_{G/N} : B^\times(G/N) \to B^\times(G)$.

Let $N \trianglelefteq G$. Then taking fixed points by N induces a group homomorphism called deflation $Def^G_{G/N} : B^\times(G) \to B^\times(G/N)$.
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $\text{Res}_H^G : B^\times(G) \to B^\times(H)$.
- Let $H \leq G$. Then tensor induction $B(H) \to B(G)$ induces a group homomorphism $\text{Ten}_H^G : B^\times(H) \to B^\times(G)$.
- Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $\text{Inf}_{G/N}^G : B^\times(G/N) \to B^\times(G)$.
- Let $N \trianglelefteq G$. Then taking fixed points by N induces a group homomorphism called deflation $\text{Def}_{G/N}^G : B^\times(G) \to B^\times(G/N)$.

Let $f : G \to G'$ be a group isomorphism. Then f induces a group isomorphism $\text{Iso}(f) : B^\times(G) \to B^\times(G')$.

Serge Bouc (CNRS-Université de Picardie)
The functor of units of Burnside rings
Hokkaido University-24/06/08
11 / 20
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \to B(H)$ induces a group homomorphism $Res_H^G : B^\times(G) \to B^\times(H)$.

- Let $H \leq G$. Then tensor induction $B(H) \to B(G)$ induces a group homomorphism $Ten_H^G : B^\times(H) \to B^\times(G)$.

- Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $Inf_{G/N}^G : B^\times(G/N) \to B^\times(G)$.

- Let $N \trianglelefteq G$. Then taking fixed points by N induces a group homomorphism called deflation $Def_{G/N}^G : B^\times(G) \to B^\times(G/N)$.

- Let $f : G \to G'$ be a group isomorphism.
Operations on $B^\times(G)$

- Let $H \leq G$. Then restriction $B(G) \rightarrow B(H)$ induces a group homomorphism $Res^G_H : B^\times(G) \rightarrow B^\times(H)$.
- Let $H \leq G$. Then tensor induction $B(H) \rightarrow B(G)$ induces a group homomorphism $Ten^G_H : B^\times(H) \rightarrow B^\times(G)$.
- Let $N \trianglelefteq G$. Then inflation from $B(G/N)$ to $B(G)$ induces a group homomorphism $Inf^G_{G/N} : B^\times(G/N) \rightarrow B^\times(G)$.
- Let $N \trianglelefteq G$. Then taking fixed points by N induces a group homomorphism called deflation $Def^G_{G/N} : B^\times(G) \rightarrow B^\times(G/N)$.
- Let $f : G \rightarrow G'$ be a group isomorphism. Then f induces a group isomorphism $Iso(f) : B^\times(G) \rightarrow B^\times(G')$.

Serge Bouc (CNRS-Université de Picardie)

The functor of units of Burnside rings

Hokkaido University-24/06/08
Faithful elements

Definition

Let G be a finite group.
Faithful elements

Definition

Let G be a finite group. The set of **faithful elements** of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by

$$
\partial B^\times(G) = \cap \{ N \triangleleft G \mid \ker \text{Def}_G \}
$$

Theorem (Yalçın (2005), B. (2007))

Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_{2n}$. In these cases $\partial B^\times(P) = \{ 1, \nu_P \}$.

$$
\nu_P = \begin{cases}
-\frac{P}{P} & \text{if } P \cong C_1 \\
\frac{P}{P} - \frac{P}{I} - \frac{P}{J} & \text{if } P \cong C_2 \\
\frac{P}{P} + \frac{P}{I} - \frac{P}{J} & \text{if } P \cong D_{2n},
\end{cases}
$$

where $|I| = |J| = 2$, $Z(P) \neq I \neq J = Z(P)$.

Serge Bouc (CNRS-Université de Picardie)
Faithful elements

Definition

Let G be a finite group. The set of faithful elements of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by

$$\partial B^\times(G) = \bigcap_{1 \neq N \leq G} \ker Def^G_{G/N}.$$
Definition

Let G be a finite group. The set of **faithful elements** of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by $\partial B^\times(G) = \bigcap_{1 \neq N \leq G} \text{Ker} \ Def^G_{G/N}$.

Theorem (Yalçın (2005), B. (2007))

Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_{2^n}$.
Definition

Let G be a finite group. The set of faithful elements of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by

$$\partial B^\times(G) = \bigcap_{1 \neq N \leq G} \text{Ker Def}^G_{G/N}.$$

Theorem (Yalçın (2005), B. (2007))

Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_{2^n}$. In these cases $\partial B^\times(P) = \{1, \nu_P\}$.

ν_P is defined as follows:

- If $P \cong C_1$, then $\nu_P = [P/P]$.
- If $P \cong C_2$, then $\nu_P = [P/P] - [P/I] - [P/J]$.
- If $P \cong D_{2^n}$, then $\nu_P = [P/P] + [P/I] - [P/J]$, where $|I| = |J| = 2$.

$Z(P) \neq I \neq P \neq J \neq Z(P)$.
Definition

Let G be a finite group. The set of faithful elements of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by $\partial B^\times(G) = \bigcap_{1 \neq N \leq G} \operatorname{Ker} \operatorname{Def}^G_{G/N}$.

Theorem (Yalçın (2005), B. (2007))

Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_{2^n}$. In these cases $\partial B^\times(P) = \{1, \nu_P\}$.

$$
\nu_P = \begin{cases}
- [P/P] & \text{if } P \cong C_1 \\
\end{cases}
$$
Faithful elements

Definition

Let G be a finite group. The set of **faithful elements** of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by $\partial B^\times(G) = \bigcap_{1 \neq N \leq G} \text{Ker } \text{Def}_G^{G/N}$.

Theorem (Yalçın (2005), B. (2007))

Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_2^n$. In these cases $\partial B^\times(P) = \{1, \nu_P\}$.

\[
\nu_P = \begin{cases}
- [P/P] & \text{if } P \cong C_1 \\
[P/P] - [P/1] & \text{if } P \cong C_2
\end{cases}
\]
Definition

Let G be a finite group. The set of faithful elements of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by

$$\partial B^\times(G) = \bigcap_{1 \neq N \leq G} \text{Ker} \text{Def}_G^G G.$$

Theorem (Yalçın (2005), B. (2007))

Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_{2^n}$. In these cases $\partial B^\times(P) = \{1, \nu_P\}$.

$$\nu_P = \begin{cases}
- [P/P] & \text{if } P \cong C_1 \\
[P/P] - [P/1] & \text{if } P \cong C_2 \\
[P/P] + [P/1] - [P/I] - [P/J] & \text{if } P \cong D_{2^n},
\end{cases}$$
Faithful elements

Definition
Let G be a finite group. The set of faithful elements of $B^\times(G)$ is the subgroup of $B^\times(G)$ defined by
\[\partial B^\times(G) = \bigcap_{1 \neq N \trianglelefteq G} \ker \text{Def}^G_{G/N}. \]

Theorem (Yalçın (2005), B. (2007))
Let P be a p-group of normal rank 1. Then $\partial B^\times(P)$ is trivial, except if $P \cong C_1, C_2, D_{2^n}$. In these cases $\partial B^\times(P) = \{1, \nu_P\}$.

\[\nu_P = \begin{cases}
- [P/P] & \text{if } P \cong C_1 \\
[P/P] - [P/1] & \text{if } P \cong C_2 \\
[P/P] + [P/1] - [P/I] - [P/J] & \text{if } P \cong D_{2^n}, \\
\text{where } |I| = |J| = 2, & Z(P) \neq I \neq P \text{ and } J \neq Z(P) \end{cases} \]
Theorem (B. (2007))

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P.
Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Let $\mathcal{U} = \{ S \in \mathcal{G} \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set $\{ \text{Ten}_{P \times P}(S) \}_{S \in \mathcal{U}}$ is an F_2-basis of $B \times (P \times P)$. In other words the map $\oplus_{S \in \mathcal{G}} \partial B \times (P \times P) \to B \times (P \times P)$ is an isomorphism.

Example: For $P = D_8$, the group $B \times (P \times P)$ has an F_2-basis

$$\begin{cases} \mathbb{F}_2[\mathbb{F}_2/P] \mathbb{F}_2[\mathbb{F}_2/P] \mathbb{F}_2[\mathbb{F}_2/Q] \mathbb{F}_2[\mathbb{F}_2/I] \mathbb{F}_2[\mathbb{F}_2/J] \end{cases}$$

Serge Bouc (CNRS-Université de Picardie)
Let P be a finite p-group, and G be a genetic basis of P. Let $U = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set
Theorem (B. (2007))

Let P be a finite p-group, and G be a genetic basis of P. Let $\mathcal{U} = \{S \in G \mid \text{type}(S) \in \{C_1, C_2, D_{2^n}\}_{n\geq 4}\}$. Then the set

$$\{ \frac{\partial B \times (P)}{\inf N \times (S) / S} \mid S \in \mathcal{U} \}$$

is an F_2-basis of $B \times (P)$.

In other words, the map

$$\oplus_{S \in G} \frac{\partial B \times (P)}{\inf N \times (S) / S} : B \times (P) \rightarrow B \times (P)$$

is an isomorphism.

Example:
For $P = D_8$, the group $B \times (P)$ has an F_2-basis

$$\begin{cases}
\frac{P}{P} \\
\frac{P}{Q} - \frac{P}{Q} \\
\frac{P}{Q} - \frac{P}{Q} - \frac{Q}{P} \\
\forall Q, |P:Q| = 2
\end{cases}$$

(choose $I, J, |I| = |J| = 2$, $I < J$)

Serge Bouc (CNRS-Université de Picardie)

The functor of units of Burnside rings

Hokkaido University-24/06/08
Let P be a finite p-group, and G be a genetic basis of P. Let $U = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \nu_{NP}(S)/S \mid S \in U \}$$

is an F_2-basis of $B \times (P)$. In other words the map

$$\oplus S \in G \partial B \times (NP(S)/S) \to B \times (P)$$

is an isomorphism.
Let P be a finite p-group, and G be a genetic basis of P. Let $\mathcal{U} = \{ S \in G \mid \text{type}(S) \in \{C_1, C_2, D_{2^n}\}_{n \geq 4}\}$. Then the set

$$\{ \text{Inf}_{N_P(S)/S}^N U_{N_P(S)/S} \mid S \in \mathcal{U} \}$$
Theorem (B. (2007))

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Let $\mathcal{U} = \{ S \in \mathcal{G} \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}^P_{NP(S)} \text{Inf}^{NP(S)}_{NP(S)/S} \cup_{NP(S)/S} \mid S \in \mathcal{U} \}$$
Let P be a finite p-group, and G be a genetic basis of P. Let $\mathcal{U} = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}_{NP(S)}^P \text{Inf}_{NP(S)}^{NP(S)} \cup_{NP(S)} S \mid S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.
Theorem (B. (2007))

Let P be a finite p-group, and G be a genetic basis of P. Let
$U = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}_{NP(S)}^P \text{Inf}_{NP(S)/S}^N \text{Inf}_{NP(S)/S}^U \mid S \in U \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus_{S \in G} \partial B^\times(NP(S)/S) \rightarrow B^\times(P)$$

is an isomorphism.
Theorem (B. (2007))

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Let $\mathcal{U} = \{ S \in \mathcal{G} \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}^P_{N_P(S)} \text{Inf}^{N_P(S)}_{N_P(S)/S} \cup \text{Inf}^{N_P(S)}_{N_P(S)/S} \mid S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus \text{Ten}^P_{N_P(S)/S} \text{Inf}^{N_P(S)}_{N_P(S)/S} : \bigoplus_{S \in \mathcal{G}} \partial B^\times(N_P(S)/S) \to B^\times(P)$$

is an isomorphism.
Theorem (B. (2007))

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Let $\mathcal{U} = \{ S \in \mathcal{G} \ | \ \text{type}(S) \in \{ C_1, C_2, D_2^n \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}^P_{NP(S)} \text{Inf}^{NP(S)}_{NP(S)/S} \cup NP(S)/S \ | \ S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus_{S \in \mathcal{G}} \text{Ten}^P_{NP(S)} \text{Inf}^{NP(S)}_{NP(S)/S} \partial B^\times(NP(S)/S) : \bigoplus_{S \in \mathcal{G}} \partial B^\times(NP(S)/S) \rightarrow B^\times(P)$$

is an isomorphism.

Example: For $P = D_8$, the group $B^\times(P)$ has an \mathbb{F}_2-basis
Theorem (B. (2007))

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Let $\mathcal{U} = \{ S \in \mathcal{G} \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}_{NP(S)}^P N_{NP(S)}^{NP(S)} \text{Inf}_{NP(S)/S} N_{NP(S)/S} \cup N_{NP(S)/S} / S \mid S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus_{S \in \mathcal{G}} \text{Ten}_{NP(S)/S}^P N_{NP(S)/S}^{NP(S)} \text{Inf}_{NP(S)/S} N_{NP(S)/S} : \bigoplus_{S \in \mathcal{G}} \partial B^\times(NP(S)/S) \to B^\times(P)$$

is an isomorphism.

Example: For $P = D_8$, the group $B^\times(P)$ has an \mathbb{F}_2-basis

$$\left\{ -[P/P] \right\}$$
Theorem (B. (2007))

Let P be a finite p-group, and G be a genetic basis of P. Let

$\mathcal{U} = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}^P_{NP(S)}\text{Inf}^N_{NP(S)/S}u_{NP(S)/S} \mid S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus_{S \in G} \text{Ten}^P_{NP(S)/S}\text{Inf}^N_{NP(S)/S} : \bigoplus_{S \in G} \partial B^\times(NP(S)/S) \to B^\times(P)$$

is an isomorphism.

Example: For $P = D_8$, the group $B^\times(P)$ has an \mathbb{F}_2-basis

$$\{ [P/P], [P/P] - [P/Q] \}$$
Algebraic answer

Theorem (B. (2007))

Let P be a finite p-group, and \mathcal{G} be a genetic basis of P. Let
$\mathcal{U} = \{ S \in \mathcal{G} \mid \text{type}(S) \in \{ C_1, C_2, D_{2^n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}^P_{N_P(S)} \text{Inf}^{N_P(S)}_{N_P(S)/S} \cup N_P(S)/s \mid S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus \text{Ten}^P_{N_P(S)}/s \text{Inf}^{N_P(S)}_{N_P(S)/s} : \bigoplus_{S \in \mathcal{G}} \partial B^\times(N_P(S)/S) \to B^\times(P)$$

is an isomorphism.

Example: For $P = D_8$, the group $B^\times(P)$ has an \mathbb{F}_2-basis

$$\begin{cases}
- [P/P] \\
[P/P] - [P/Q] \\
\forall Q, |P : Q| = 2
\end{cases}$$
Theorem (B. (2007))

Let P be a finite p-group, and G be a genetic basis of P. Let $\mathcal{U} = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}_{NP}(S) \text{Inf}_{NP}(S) / S \cup NP(S) / S \mid S \in \mathcal{U} \}$$

is an \mathbb{F}_2-basis of $B^\times (P)$.

In other words the map

$$\bigoplus \text{Ten}_{NP}(S) \text{Inf}_{NP}(S) / S : \bigoplus_{S \in G} \partial B^\times (NP(S) / S) \to B^\times (P)$$

is an isomorphism.

Example: For $P = D_8$, the group $B^\times (P)$ has an \mathbb{F}_2-basis

$$\begin{cases}
- [P/P] \\
[P/P] - [P/Q] \\
[P/P] + [P/1] - [P/I] - [P/J]
\end{cases} \quad \forall Q, \ |P : Q| = 2$$
Theorem (B. (2007))

Let P be a finite p-group, and G be a genetic basis of P. Let $U = \{ S \in G \mid \text{type}(S) \in \{ C_1, C_2, D_{2n} \}_{n \geq 4} \}$. Then the set

$$\{ \text{Ten}_{P}^{N_{P}(S)} \text{Inf}_{N_{P}(S)/S}^{N_{P}(S)} \cup N_{P}(S)/S \mid S \in U \}$$

is an \mathbb{F}_2-basis of $B^\times(P)$.

In other words the map

$$\bigoplus \text{Ten}_{P}^{N_{P}(S)} \text{Inf}_{N_{P}(S)/S}^{N_{P}(S)} : \bigoplus_{S \in G} \partial B^\times(N_{P}(S)/S) \to B^\times(P)$$

is an isomorphism.

Example: For $P = D_8$, the group $B^\times(P)$ has an \mathbb{F}_2-basis

$$\begin{cases}
- [P/P] \\
[P/P] - [P/Q] \\
[P/P] + [P/1] - [P/I] - [P/J]
\end{cases} \quad \forall Q, \ |P : Q| = 2$$

(choose $I, J, |I| = |J| = 2, \langle I, J \rangle = P$)
The five types of operations
R: G \rightarrow H,
T: G \rightarrow H,
I: G \rightarrow G / N,
D: G \rightarrow G / N,
I: (f) on B × can be unified using bisets:

Definition
Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute, i.e.

$\forall h \in H, \forall u \in U, \forall g \in G, (h \cdot u) \cdot g = h \cdot (u \cdot g)$.

[Equivalently, an (H, G)-biset is an (H × G^{op})-set.]

If G, H, and K are groups, if U is an (H, G)-biset and V a (K, H)-biset, the composition $V \circ U$ is the (K, G)-biset $V \times H U = (V \times U) / \langle (vh, u) \sim (v, hu) \rangle$.

If G is a group, the identity biset Id_G is the (G, G)-biset G with left and right action by multiplication.
The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:
The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups.
The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute.
The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$(h \cdot u) \cdot g = h \cdot (u \cdot g).$$
Bisets

The five types of operations Res^G_H, Ten^G_H, $Inf^G_{G/N}$, $Def^G_{G/N}$, $Iso(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$\forall h \in H, \forall u \in U, \forall g \in G, (h \cdot u) \cdot g = h \cdot (u \cdot g)$.
Bisets

The five types of operations \(\text{Res}_H^G, \text{Ten}_H^G, \text{Inf}_{G/N}^G, \text{Def}_{G/N}^G, \text{Iso}(f)\) on \(B^\times\) can be unified using bisets:

Definition

Let \(G\) and \(H\) be (finite) groups. An \((H, G)\)-biset \(U\) is a (finite) set with a left \(H\)-action and a right \(G\)-action, which commute i.e.

\[(h \cdot u) \cdot g = h \cdot (u \cdot g).\]

[Equivalently, an \((H, G)\)-biset is an \((H \times G^{\text{op}})\)-set.]
Bisets

The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$(h \cdot u) \cdot g = h \cdot (u \cdot g).$$

- If G, H, and K are groups, if U is an (H, G)-biset and V a (K, H)-biset,
The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$(h \cdot u) \cdot g = h \cdot (u \cdot g).$$

- If G, H, and K are groups, if U is an (H, G)-biset and V a (K, H)-biset, the composition $V \circ U$ is the (K, G)-biset $V \times_H U = (V \times U)$.

Serge Bouc (CNRS-Université de Picardie)

The functor of units of Burnside rings

Hokkaido University-24/06/08 14 / 20
Bisets

The five types of operations Res_H^G, Ten_H^G, $\text{Inf}_{G/N}^G$, $\text{Def}_{G/N}^G$, $\text{Iso}(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.
\[(h \cdot u) \cdot g = h \cdot (u \cdot g).\]

- If G, H, and K are groups, if U is an (H, G)-biset and V a (K, H)-biset, the composition $V \circ U$ is the (K, G)-biset $V \times_H U = (V \times U)/\langle (vh, u) \sim (v, hu) \rangle$.

The five types of operations Res_H^G, Ten_H^G, $Inf_{G/N}^G$, $Def_{G/N}^G$, $Iso(f)$ on B^\times can be unified using bisets:

Definition

Let G and H be (finite) groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$(h \cdot u) \cdot g = h \cdot (u \cdot g).$$

- If G, H, and K are groups, if U is an (H, G)-biset and V a (K, H)-biset, the composition $V \circ U$ is the (K, G)-biset $V \times_H U = (V \times U)/\langle (vh, u) \sim (v, hu) \rangle$.
- If G is a group, the identity biset Id_G is the (G, G)-biset G with left and right action by multiplication.
If U is an $\mathcal{(H,G)}$-biset and X is a G-set, then $\text{Hom}_G(U^\text{op}, X)$ is an \mathcal{H}-set. This extends to a group homomorphism $B \times (U) : B \times (G) \to B \times (H)$. This endows B with a structure of biset functor.

Definition A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an $\mathcal{(H,G)}$-biset, then $F(U) : F(G) \to F(H)$ is a group homomorphism.
3. If U and U' are isomorphic $\mathcal{(H,G)}$-bisets, then $F(U) = F(U')$.
4. If U and U' are $\mathcal{(H,G)}$-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an $\mathcal{(H,G)}$-biset and V is a $\mathcal{(K,H)}$-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $F(\text{Id}_G) = \text{Id}_{F(G)}$.

Serge Bouc (CNRS-Université de Picardie)

The functor of units of Burnside rings

Hokkaido University-24/06/08
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set.
If U is an (H,G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$.

Definition A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H,G)-biset, then $F(U) : F(G) \to F(H)$ is a group homomorphism.
3. If U and U' are isomorphic (H,G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H,G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H,G)-biset and V is a (K,H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $F(\text{Id}_G) = \text{Id}_{F(G)}$.

Serge Bouc (CNRS-Université de Picardie)
Biset functors

If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^\text{op}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A **biset functor** F consists of the following data:
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A **biset functor** F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A **biset functor** F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$ is a group homomorphism.
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A **biset functor** F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$ is a group homomorphism.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.

Serge Bouc (CNRS-Université de Picardie) The functor of units of Burnside rings Hokkaido University-24/06/08 15 / 20
Biset functors

If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \rightarrow B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \rightarrow F(H)$ is a group homomorphism.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^\text{op}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A **biset functor** F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$ is a group homomorphism.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
If U is an (H, G)-biset and X is a G-set, then $\text{Hom}_G(U^{\text{op}}, X)$ is an H-set. This extends to a group homomorphism $B^\times(U) : B^\times(G) \to B^\times(H)$. This endows B^\times with a structure of biset functor.

Definition

A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$ is a group homomorphism.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $F(\text{Id}_G) = \text{Id}_{F(G)}$.
Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

The biset category

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_C(G, H) = \mathcal{B}(H, G)$, the Burnside group of finite (H, G)-bisets.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The *biset category* C for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_C(G, H) = B(H, G)$, the Burnside group of finite (H, G)-bisets.
- The composition of morphisms $G \rightarrow H \rightarrow K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

A *p-biset functor* is a biset functor which is “defined only on p-groups”, i.e. an additive functor from the full subcategory C_p of C consisting of p-groups, to the category of abelian groups.
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The **biset category** C for finite groups is defined as follows:

- The objects are finite groups.

A p-biset functor is an additive functor defined only on p-groups, i.e. an additive functor from the full subcategory C_p of C consisting of p-groups to the category of abelian groups.
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The **biset category** C for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_C(G, H) = B(H, G)$,
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The biset category \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_\mathcal{C}(G, H) = B(H, G)$, the Burnside group of finite (H, G)-biset.

A p-biset functor is a biset functor which is “defined only on p-groups”, i.e. an additive functor from the full subcategory \mathcal{C}_p of \mathcal{C} consisting of p-groups, to the category of abelian groups.
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The biset category C for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_C(G, H) = B(H, G)$, the Burnside group of finite (H, G)-bisets.
- The composition of morphisms $G \rightarrow H \rightarrow K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The biset category \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_\mathcal{C}(G, H) = B(H, G)$, the Burnside group of finite (H, G)-bisets.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The biset category \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_\mathcal{C}(G, H) = B(H, G)$, the Burnside group of finite (H, G)-bisets.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

A p-biset functor is a biset functor which is “defined only on p-groups”,
The biset category

Equivalently, a biset functor is an additive functor from the biset category to abelian groups:

Definition

The biset category \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\Hom_{\mathcal{C}}(G, H) = B(H, G)$, the Burnside group of finite (H, G)-bisets.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

A p-biset functor is a biset functor which is “defined only on p-groups”, i.e. an additive functor from the full subcategory \mathcal{C}_p of \mathcal{C} consisting of p-groups, to the category of abelian groups.
Let F be a biset functor, and G be a finite group.
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res^G_H
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G,
- If $N \trianglelefteq G$, let $\text{inf}_G G/N$ denote the $(G, G/N)$-biset G/N,
- If $N \trianglelefteq G$, let $\text{def}_G G/N$ denote the $(G/N, G)$-biset G/N,
- If $f : G \to G'$ is a group isomorphism, let $\text{iso}(f)$ denote the (G', G)-biset G',
- If $f : G \to G'$ is a group isomorphism, let $\text{Iso}(f)$ denote the (G', G)-biset G'.

Serge Bouc (CNRS-Université de Picardie)
The functor of units of Burnside rings
Hokkaido University-24/06/08
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $\text{Res}_H^G = F(\text{res}_H^G) : F(G) \to F(H)$.
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $\text{Res}_H^G = F(\text{res}_H^G) : F(G) \to F(H)$.
- If $H \leq G$, let ind_H^G
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res^G_H denote the (H, G)-biset G, and set
 $$Res^G_H = F(res^G_H) : F(G) \to F(H).$$
- If $H \leq G$, let ind^G_H denote the (G, H)-biset G, and set
 $$Ind^G_H = F(ind^G_H) : F(H) \to F(G).$$

If $N \trianglelefteq G$, let inf^G_G/G denote the $(G, G/N)$-biset G/N, and set
$$Inf^G_G/G = F(inf^G_G/G) : F(G/N) \to F(G).$$

If $N \trianglelefteq G$, let def^G_G/G denote the $(G/N, G)$-biset G/N, and set
$$Def^G_G/G = F(def^G_G/G) : F(G) \to F(G/N).$$

If $f : G \to G'$ is a group isomorphism, let $iso^G_{G'}$ denote the (G', G)-biset G', and set
$$Iso^G_{G'} = F(iso^G_{G'}) : F(G) \to F(G').$$
Let F be a biset functor, and G be a finite group.

- If $H \trianglelefteq G$, let res_H^G denote the (H, G)-biset G, and set $\text{Res}_H^G = F(\text{res}_H^G) : F(G) \rightarrow F(H)$.

- If $H \trianglelefteq G$, let ind_H^G denote the (G, H)-biset G, and set $\text{Ind}_H^G = F(\text{ind}_H^G) : F(H) \rightarrow F(G)$.
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $Res_H^G = F(res_H^G) : F(G) \to F(H)$.
- If $H \leq G$, let ind_H^G denote the (G, H)-biset G, and set $Ind_H^G = F(ind_H^G) : F(H) \to F(G)$.
- If $N \trianglelefteq G$, let $inf_{G/N}^G$ denote the $(G, G/N)$-biset G/N, and set $Inf_{G/N}^G = F(inf_{G/N}^G) : F(G/N) \to F(G)$.
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res^G_H denote the (H, G)-biset G, and set $\text{Res}^G_H = F(\text{res}^G_H) : F(G) \to F(H)$.
- If $H \leq G$, let ind^G_H denote the (G, H)-biset G, and set $\text{Ind}^G_H = F(\text{ind}^G_H) : F(H) \to F(G)$.
- If $N \trianglelefteq G$, let $\text{inf}^G_{G/N}$ denote the $(G, G/N)$-biset G/N, and set $\text{Inf}^G_{G/N} = F(\text{inf}^G_{G/N}) : F(G/N) \to F(G)$.
- If $f : G \to G'$ is a group isomorphism, let $\text{iso}^{G'}(f)$ denote the (G', G)-biset G', and set $\text{Iso}^{G'}(f) = F(\text{iso}^{G'}(f)) : F(G) \to F(G')$.

Serge Bouc (CNRS-Université de Picardie)
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $Res_H^G = F(res_H^G) : F(G) \to F(H)$.
- If $H \leq G$, let ind_H^G denote the (G, H)-biset G, and set $Ind_H^G = F(ind_H^G) : F(H) \to F(G)$.
- If $N \trianglelefteq G$, let $inf_{G/N}^G$ denote the $(G, G/N)$-biset G/N, and set $Inf_{G/N}^G = F(inf_{G/N}^G) : F(G/N) \to F(G)$.

Serge Bouc (CNRS-Université de Picardie)

The functor of units of Burnside rings

Hokkaido University-24/06/08
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $Res_H^G = F(\text{res}_H^G) : F(G) \rightarrow F(H)$.

- If $H \leq G$, let ind_H^G denote the (G, H)-biset G, and set $Ind_H^G = F(\text{ind}_H^G) : F(H) \rightarrow F(G)$.

- If $N \trianglelefteq G$, let $\text{inf}_{G/N}^G$ denote the $(G, G/N)$-biset G/N, and set $Inf_{G/N}^G = F(\text{inf}_{G/N}^G) : F(G/N) \rightarrow F(G)$.

- If $N \trianglelefteq G$, let $\text{def}_{G/N}^G$ denote the $(G/N, G)$-biset G/N, and set $Def_{G/N}^G = F(\text{def}_{G/N}^G) : F(G) \rightarrow F(G/N)$.
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $\text{Res}_H^G = F(\text{res}_H^G) : F(G) \to F(H)$.
- If $H \leq G$, let ind_H^G denote the (G, H)-biset G, and set $\text{Ind}_H^G = F(\text{ind}_H^G) : F(H) \to F(G)$.
- If $N \trianglelefteq G$, let $\text{inf}_{G/N}^G$ denote the $(G, G/N)$-biset G/N, and set $\text{Inf}_{G/N}^G = F(\text{inf}_{G/N}^G) : F(G/N) \to F(G)$.
- If $N \trianglelefteq G$, let $\text{def}_{G/N}^G$ denote the $(G/N, G)$-biset G/N,
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res^G_H denote the (H, G)-biset G, and set $Res^G_H = F(res^G_H) : F(G) \to F(H)$.
- If $H \leq G$, let ind^G_H denote the (G, H)-biset G, and set $Ind^G_H = F(ind^G_H) : F(H) \to F(G)$.
- If $N \trianglelefteq G$, let $inf^G_{G/N}$ denote the $(G, G/N)$-biset G/N, and set $Inf^G_{G/N} = F(inf^G_{G/N}) : F(G/N) \to F(G)$.
- If $N \trianglelefteq G$, let $def^G_{G/N}$ denote the $(G/N, G)$-biset G/N, and set $Def^G_{G/N} = F(def^G_{G/N}) : F(G) \to F(G/N)$.
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set
 \[\text{Res}_H^G = F(\text{res}_H^G) : F(G) \to F(H). \]

- If $H \leq G$, let ind_H^G denote the (G, H)-biset G, and set
 \[\text{Ind}_H^G = F(\text{ind}_H^G) : F(H) \to F(G). \]

- If $N \trianglelefteq G$, let $\text{inf}_{G/N}^G$ denote the $(G, G/N)$-biset G/N, and set
 \[\text{Inf}_{G/N}^G = F(\text{inf}_{G/N}^G) : F(G/N) \to F(G). \]

- If $N \trianglelefteq G$, let $\text{def}_{G/N}^G$ denote the $(G/N, G)$-biset G/N, and set
 \[\text{Def}_{G/N}^G = F(\text{def}_{G/N}^G) : F(G) \to F(G/N). \]

- If $f : G \to G'$ is a group isomorphism, let $\text{iso}(f)$
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res^G_H denote the (H, G)-biset G, and set $Res^G_H = F(res^G_H) : F(G) \to F(H)$.
- If $H \leq G$, let ind^G_H denote the (G, H)-biset G, and set $Ind^G_H = F(ind^G_H) : F(H) \to F(G)$.
- If $N \trianglelefteq G$, let $inf^G_{G/N}$ denote the $(G, G/N)$-biset G/N, and set $Inf^G_{G/N} = F(inf^G_{G/N}) : F(G/N) \to F(G)$.
- If $N \trianglelefteq G$, let $def^G_{G/N}$ denote the $(G/N, G)$-biset G/N, and set $Def^G_{G/N} = F(def^G_{G/N}) : F(G) \to F(G/N)$.
- If $f : G \to G'$ is a group isomorphism, let $iso(f)$ denote the (G', G)-biset G',
Let F be a biset functor, and G be a finite group.

- If $H \leq G$, let res_H^G denote the (H, G)-biset G, and set $\text{Res}_H^G = F(\text{res}_H^G) : F(G) \to F(H)$.

- If $H \leq G$, let ind_H^G denote the (G, H)-biset G, and set $\text{Ind}_H^G = F(\text{ind}_H^G) : F(H) \to F(G)$.

- If $N \triangleleft G$, let $\text{inf}_{G/N}^G$ denote the $(G, G/N)$-biset G/N, and set $\text{Inf}_{G/N}^G = F(\text{inf}_{G/N}^G) : F(G/N) \to F(G)$.

- If $N \triangleleft G$, let $\text{def}_{G/N}^G$ denote the $(G/N, G)$-biset G/N, and set $\text{Def}_{G/N}^G = F(\text{def}_{G/N}^G) : F(G) \to F(G/N)$.

- If $f : G \to G'$ is a group isomorphism, let $\text{iso}(f)$ denote the (G', G)-biset G', and set $\text{Iso}(f) = F(\text{iso}(f)) : F(G) \to F(G')$.
Let F be a biset functor, and G be a finite group.
Let F be a biset functor, and G be a finite group. The set of faithful elements of $F(G)$ is defined by $\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}^G_{G/N}$.

Example: The functor of rational representations R^G_Q is defined by $G \mapsto R^G_Q(G)$, and the map $R^G_Q(U)$ is induced by $Q \otimes U$. The set $\partial R^G_Q(G)$ consists of linear combinations of faithful irreducible rational representations of G. The p-biset functor R^G_Q is rational (based on Roquette (1958)).
Faithful elements

Let F be a biset functor, and G be a finite group. The set of **faithful elements** of $F(G)$ is defined by

$$\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}^G_{G/N}.$$

Definition

A p-biset functor is called **rational**.
Rational p-biset functors

Let F be a biset functor, and G be a finite group. The set of faithful elements of $F(G)$ is defined by $\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}_{G/N}^G$.

Definition

A p-biset functor is called rational if for any p-group P and any genetic basis G of P, the map $\bigoplus_{S \in G} \text{Ind}_{P/N}^P(S) \rightarrow \bigoplus_{S \in G} \partial F(P)_{N/P(S)}$ is an isomorphism.

Example: The functor of rational representations RQ is defined by $G \mapsto RQ(G)$, and the map $RQ(U) \rightarrow RQ(G)$ is induced by $Q \otimes Q - U$. The set $\partial RQ(G)$ consists of linear combinations of faithful irreducible rational representations of G.

The p-biset functor RQ is rational (based on Roquette (1958)).
Rational p-biset functors

Let F be a biset functor, and G be a finite group. The set of **faithful elements** of $F(G)$ is defined by $\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}^G_G/N$.

Definition

A p-biset functor is called **rational** if for any p-group P and any genetic basis G of P, the map

$$\bigoplus_{S \in G} \partial F(N_P(S)/S) \to F(P)$$

is an isomorphism.
Let F be a biset functor, and G be a finite group. The set of \textit{faithful elements} of $F(G)$ is defined by $\partial F(G) = \cap_{1 \neq N \trianglelefteq G} \text{Def}^G_{G/N}$.

\textbf{Definition}

A p-biset functor is called \textit{rational} if for any p-group P and any genetic basis \mathcal{G} of P, the map

$$\bigoplus \text{Ind}_{N_P(S)/S}^P \text{Inf}_{N_P(P)/S}^{N_P(S)} : \bigoplus_{S \in \mathcal{G}} \partial F(N_P(S)/S) \rightarrow F(P)$$

is an isomorphism.
Rational p-biset functors

Let F be a biset functor, and G be a finite group. The set of faithful elements of $F(G)$ is defined by $\partial F(G) = \bigcap_{1 \neq N \leq G} \text{Def}^G_{G/N}$.

Definition

A p-biset functor is called **rational** if for any p-group P and any genetic basis \mathcal{G} of P, the map

$$\bigoplus \text{Ind}^P_{NP(S)/S} \text{Inf}^N_{NP(S)/S} : \bigoplus_{S \in \mathcal{G}} \partial F(NP(S)/S) \rightarrow F(P)$$

is an isomorphism.

Example: The functor of rational representations R_Q
Let F be a biset functor, and G be a finite group. The set of **faithful elements** of $F(G)$ is defined by

$$\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}^G_{G/N}.$$

Definition

A p-biset functor is called **rational** if for any p-group P and any genetic basis \mathcal{G} of P, the map

$$\bigoplus \text{Ind}^P_{N_P(S)/S} \text{Inf}^{N_P(S)}_{N_P(S)/S} : \bigoplus_{S \in \mathcal{G}} \partial F(N_P(S)/S) \to F(P)$$

is an isomorphism.

Example : The functor of rational representations $R_\mathbb{Q}$ is defined by $G \mapsto R_\mathbb{Q}(G)$,
Rational p-biset functors

Let F be a biset functor, and G be a finite group. The set of faithful elements of $F(G)$ is defined by $\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}^G_{G/N}$.

Definition

A p-biset functor is called **rational** if for any p-group P and any genetic basis \mathcal{G} of P, the map

$$\bigoplus \text{Ind}_{NP(S)/S}^P \text{Inf}_{NP(S)/S}^P : \bigoplus_{S \in \mathcal{G}} \partial F(NP(S)/S) \to F(P)$$

is an isomorphism.

Example : The functor of rational representations $R_\mathbb{Q}$ is defined by $G \mapsto R_\mathbb{Q}(G)$, and the map $R_\mathbb{Q}(U)$ is induced by $\mathbb{Q}U \otimes \mathbb{Q}G$.

Rational p-biset functors

Let F be a biset functor, and G be a finite group. The set of faithful elements of $F(G)$ is defined by $\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}_G^G / N$.

Definition

A p-biset functor is called **rational** if for any p-group P and any genetic basis \mathcal{G} of P, the map

$$\bigoplus \text{Ind}^P_{N_P(S)/S} \text{Inf}^{N_P(S)}_{N_P(S)/S} : \bigoplus_{S \in \mathcal{G}} \partial F(N_P(S)/S) \rightarrow F(P)$$

is an isomorphism.

Example: The functor of rational representations $R_\mathbb{Q}$ is defined by $G \mapsto R_\mathbb{Q}(G)$, and the map $R_\mathbb{Q}(U)$ is induced by $\mathbb{Q}U \otimes_{\mathbb{Q}G} -$.

The set $\partial R_\mathbb{Q}(G)$ consists of linear combinations of faithful irreducible rational representations of G.
Rational p-biset functors

Let F be a biset functor, and G be a finite group. The set of faithful elements of $F(G)$ is defined by

$$\partial F(G) = \bigcap_{1 \neq N \trianglelefteq G} \text{Def}^G_{G/N}.$$

Definition

A p-biset functor is called **rational** if for any p-group P and any genetic basis G of P, the map

$$\bigoplus \text{Ind}_{N_P(S)/S}^{P} \text{Inf}_{N_P(S)/S}^{N_P(S)} : \bigoplus_{S \in G} \partial F(N_P(S)/S) \rightarrow F(P)$$

is an isomorphism.

Example : The functor of rational representations $R_{\mathbb{Q}}$ is defined by $G \mapsto R_{\mathbb{Q}}(G)$, and the map $R_{\mathbb{Q}}(U)$ is induced by $\mathbb{Q}U \otimes_{\mathbb{Q}G} -$. The set $\partial R_{\mathbb{Q}}(G)$ consists of linear combinations of **faithful irreducible** rational representations of G. The p-biset functor $R_{\mathbb{Q}}$ is rational (based on Roquette (1958)).
Biset functors form an abelian category \mathcal{F},
Using biset functors

Biset functors form an abelian category \mathcal{F}, and p-biset functors form an abelian category \mathcal{F}_p.

Theorem (B. (2005))
Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, stable by duality.

Theorem (B. (2007))
1. The map Φ induces an injective morphism of biset functors $\epsilon : \mathcal{B} \times \rightarrow \mathcal{F}_{2\mathcal{B}}$.
2. The image by ϵ of the p-biset functor $\mathcal{B} \times$ is contained in the p-biset functor $\mathcal{F}_{2\mathcal{B}}^\ast \mathcal{Q}$.
3. Hence $\mathcal{B} \times$ is a rational p-biset functor.
Biset functors form an abelian category \mathcal{F}, and p-biset functors form an abelian category \mathcal{F}_p.

Theorem (B. (2005))

Rational p-biset functors form a Serre subcategory of \mathcal{F}_p.
Biset functors form an abelian category \mathcal{F}, and p-biset functors form an abelian category \mathcal{F}_p.

Theorem (B. (2005))

Rational p-biset functors form a *Serre subcategory* of \mathcal{F}_p, stable by duality.
Biset functors form an abelian category \mathcal{F}, and p-biset functors form an abelian category \mathcal{F}_p.

Theorem (B. (2005))

Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, stable by duality.

Theorem (B. (2007))

1. The map Φ induces an injective morphism of biset functors $\epsilon : B^\times \to \mathbb{F}_2 B^*$.
Using biset functors

Biset functors form an abelian category \mathcal{F}, and p-biset functors form an abelian category \mathcal{F}_p.

Theorem (B. (2005))

Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, stable by duality.

Theorem (B. (2007))

1. The map Φ induces an injective morphism of biset functors $\epsilon : B^\times \rightarrow \mathbb{F}_2 B^*$.
2. The image by ϵ of the p-biset functor B^\times is contained in the p-biset functor $\mathbb{F}_2 R_Q^*$.
Biset functors form an abelian category \mathcal{F}, and p-biset functors form an abelian category \mathcal{F}_p.

Theorem (B. (2005))

Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, stable by duality.

Theorem (B. (2007))

1. The map Φ induces an injective morphism of biset functors $\epsilon : B^\times \rightarrow \mathbb{F}_2 B^*$.
2. The image by ϵ of the p-biset functor B^\times is contained in the p-biset functor $\mathbb{F}_2 R^*_Q$.
3. Hence B^\times is a rational p-biset functor.
Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z} \text{Out}(H)$-module (notation $(H, V) \mapsto S^H(V)$).

Theorem (B. (2007))
The functor $B \times$ is a uniserial object of the category \mathcal{F}_p of p-biset functors. More precisely:

If $p > 2$, then $B \times$ is a simple object of \mathcal{F}_p, isomorphic to S^1, F^2.

If $p = 2$, then the full lattice of proper subobjects $\{0\} = F_0 \subset F_1 \subset \ldots \subset F_n \subset \ldots$ of $B \times$ is such that $F_1/F_0 \cong S^1$, F_2/F_1, and $F_i/F_{i-1} \cong S^{D_2^i + 2}$, F_2, for $i \geq 2$.

Serge Bouc (CNRS-Université de Picardie)
Recall that simple biset functors are indexed by pairs \((H, V)\), where \(H\) is a finite group and \(V\) is a simple \(\mathbb{Z}Out(H)\)-module.
Recall that simple \textit{p}-biset functors are indexed by pairs \((H, V)\), where \(H\) is a finite \textit{p}-group and \(V\) is a simple \(\mathbb{Z}Out(H)\)-module.
Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z}Out(H)$-module (notation $(H, V) \mapsto S_{H,V}$).

Theorem (B. (2007))

The functor $B \times$ is a uniserial object of the category F_p of p-biset functors. More precisely:

- If $p > 2$, then $B \times$ is a simple object of F_p, isomorphic to S_{1,F_2}.
- If $p = 2$, then the full lattice of proper subobjects $\{\{0\}=F_0 \subset F_1 \subset \ldots \subset F_n \subset \ldots\}$ of $B \times$ is such that $F_1/F_0 \cong S_{1,F_2}$, and $F_i/F_{i-1} \cong S_{D_{2i}^+}, F_2$, for $i \geq 2$.

Serge Bouc (CNRS-Université de Picardie)
Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z} \text{Out}(H)$-module (notation $(H, V) \mapsto S_{H,V}$).

Theorem (B. (2007))

The functor B^\times is a uniserial object of the category \mathcal{F}_p of p-biset functors. More precisely:

- If $p > 2$, then B^\times is a simple object of \mathcal{F}_p, isomorphic to $S_{1,1}$, F_2, and F_i isomorphic to S_{2i+2}, F_2, for $i \geq 2$.

- If $p = 2$, then the full lattice of proper subobjects $\{0\} = F_0 \subset F_1 \subset \ldots \subset F_n \subset \ldots$ of B^\times is such that $F_1/F_0 \cong S_{1,1}$, $F_2/F_0 \cong S_{2,2}$, and $F_i/F_{i-1} \cong S_{2i+2}, F_2$, for $i \geq 2$.

Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z}Out(H)$-module (notation $(H, V) \mapsto S_{H,V}$).

Theorem (B. (2007))

The functor B^\times is a uniserial object of the category \mathcal{F}_p of p-biset functors. More precisely:

- If $p > 2$, then B^\times is a simple object of \mathcal{F}_p, isomorphic to S_{1,\mathbb{F}_2}.

Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z}Out(H)$-module (notation $(H, V) \mapsto S_{H,V}$).

Theorem (B. (2007))

The functor B^\times is a uniserial object of the category \mathcal{F}_p of p-biset functors. More precisely:

- If $p > 2$, then B^\times is a simple object of \mathcal{F}_p, isomorphic to S_{1,\mathbb{F}_2}.
- If $p = 2$, then the full lattice of proper subobjects $\{0\} = F_0 \subset F_1 \subset \ldots \subset F_n \subset \ldots$ of B^\times
Functorial structure

Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z}Out(H)$-module (notation $(H, V) \mapsto S_{H,V}$).

Theorem (B. (2007))

The functor B^\times is a uniserial object of the category \mathcal{F}_p of p-biset functors. More precisely:

- If $p > 2$, then B^\times is a simple object of \mathcal{F}_p, isomorphic to S_{1,\mathbb{F}_2}.
- If $p = 2$, then the full lattice of proper subobjects
 \[\{0\} = F_0 \subset F_1 \subset \ldots \subset F_n \subset \ldots \] of B^\times is such that $F_1/F_0 \cong S_{1,\mathbb{F}_2}$,
Recall that simple p-biset functors are indexed by pairs (H, V), where H is a finite p-group and V is a simple $\mathbb{Z}Out(H)$-module (notation $(H, V) \mapsto S_{H,V}$).

Theorem (B. (2007))

The functor B^\times is a uniserial object of the category \mathcal{F}_p of p-biset functors. More precisely:

- If $p > 2$, then B^\times is a simple object of \mathcal{F}_p, isomorphic to S_{1,\mathbb{F}_2}.
- If $p = 2$, then the full lattice of proper subobjects
 \[\{0\} = F_0 \subset F_1 \subset \ldots \subset F_n \subset \ldots \text{ of } B^\times \text{ is such that } F_1/F_0 \cong S_{1,\mathbb{F}_2}, \]
 \[\text{and } F_i/F_{i-1} \cong S_{D_{2i+2},\mathbb{F}_2}, \text{ for } i \geq 2. \]