Non-additive exact functors and tensor induction for
Mackey functors

Serge Bouc

ABSTRACT. First I will introduce a generalization of the notion of (right)-exact
functor between abelian categories to the case of non-additive functors. The
main result of this section is an extension theorem: any functor defined on a
suitable subcategory can be extended uniquely to a right exact functor defined
on the whole category.

Next I use those results to define various functors of generalized tensor
induction, associated to finite bisets, between categories attached to finite
groups. This includes a definition of tensor induction for Mackey functors, for
cohomological Mackey functors, for p-permutation modules and algebras. This
also gives a single formalism of bisets for restriction, inflation, and ordinary
tensor induction for modules.
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! The theory of Mackey functors for a finite group G over a ring R provides
a single framework for the various representation theories of G and its subgroups.
So it looks like an extension of the notion of RG-module. The usual notions of
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induction, restriction, inflation, ... for modules, have their analogues for Mackey
functors. I will describe here a missing item in that list: tensor induction.

The first part of this paper is actually more general, and not specific to Mackey
functors. It introduces an extension of the notion of right exact functor between
abelian categories to non-additive functors: the usual definition of right exactness
actually implies additivity, so it has to be modified in order to be extended. The
main theorem of this general setting concerns the extension of a (non necessarily
additive) functor from a suitable sub-category P of an abelian category A to an
abelian category B, to a right exact functor from A to B.

Next I apply those results to various constructions of tensor induction. In
all those cases, I will consider two finite groups G and H, a finite set U with
a H x G°P-action (or H-set-G, or biset), and I will define a (generalized) tensor
induction associated to U, which will be a functor between categories C(G) and
C(H) naturally attached to G and H.

In the first case, the category C(G) is the category of Mackey functors for G. 1
will apply the extension theorem to the subcategory of “permutation functors”, and
this leads to a generalized tensor induction functor Ty from Mackey functors for
G to Mackey functors for H, associated to a finite biset U/. This tensor induction
behaves well with respect to composition of functors, tensor product of Mackey
functors, and disjoint unions of bisets 2. There is also a kind of binomial formula
for the tensor induction of a direct sum.

Next I consider the relations between tensor induction and other functors be-
tween categories of Mackey functors, such as induction, restriction, inflation, ... 1
also define a reasonable notion of direct product of Mackey functors, and study its
relations with tensor induction. Finally, I extend those notions to the case of Green
functors.

The second case deals with the category C(G) of cohomological Mackey func-
tors for G over a commutative ring R, and uses the subcategory of “permutation
cohomological Mackey functors”. There is a generalized tensor induction functor
associated to finite biset U, whenever U is “free enough” with respect to R. This
cohomological tensor induction is closely related to the tensor induction for Mackey
functors.

It leads to the definition of a generalized tensor induction for p-permutation
modules and p-permutation algebras: this was the very starting point of that work,
in a conversation with Jacques Thévenaz, who asked me about the possibility of
such a generalized construction, giving a suitable functorial structure for the Dade
group. In our joint recent preprint [BT98], we give an independent exposition of
this generalized tensor induction for permutations algebras for p-groups, and use it
to solve some open questions about the Dade group.

The third case is the case of the category C(G) of RG modules, using the subcat-
egory of free RG-modules. This leads to a generalized tensor induction associated
to a finite right-free biset U. The case U = H, when G is a subgroup of H, is the
usual tensor induction from RG-modules to RH-modules. There is no essentially
new construction here, since the other cases correspond to restriction and inflation
of modules.

2The construction of a tensor induction for Mackey functors with those properties was a

question of T. Yoshida at the Seattle AMS conference (Problem 37 in [ACPW98])
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It should be noted however that even in those well known cases, the formalism
of bisets gives a single natural framework involving restriction, inflation and tensor
induction. The classical properties of those construction, such as Mackey formula,
transitivity of tensor induction, or composition of inflation and tensor induction,
are various aspects of a single simple composition formula. Similarly, the formula
giving the tensor induction of a direct sum, which is generally incomplete (and
evaluated only “up to terms induced from proper subgroups”), is nothing but a
generalization of the binomial formula, and can be written explicitly.

2. Non additive exact functors

2.1. Notations. If M, N and P are objects of an abelian category .4, and
f:M@®N — Pisamorphism, I will denote f by (foin, foin), where iy and iy
are the canonical injections from M and N to M & N. Similarly,ifg: P - M & N
is a morphism, I will denote it by (i“};’gg), where spr and sy are the canonical
surjections from M @& N to M and N. With those notations, the usual rules of
matrix multiplication apply.

The identity morphism of M will generally be denoted by 1, and by Idas if

some precision is needed. The zero morphisms will be denoted by 0.

2.2. Definition. First I observe that the classical definition of an exact func-
tor actually implies additivity:

LEMMA 2.1. Let A and B be abelian categories, and F' be a functor from A to
B, which is not supposed to be additive. Suppose that for any exact sequence in A

MENS L0
the associated sequence
FM) ™ r(y ™Y Py =0
1s exact in B. Then F is additive.

ProoF. Note that I don’t suppose that the second exact sequence is the image
by F of the first one. In other words, I don’t suppose that F'(0) = 0. But it is
a consequence of the exactness of the second sequence: indeed, as F'(¢) o F(¢) =
F(¢ o ¢) = F(0) has to be zero, and as the identity of the zero object factors
through any (zero) morphism, the identity of F'(0) has to be zero. Hence F' maps
the zero object to the zero object.

Let M and N be objects of A. Applying the hypothesis to the sequence

O

M———M®N N =0
shows that the sequence
7 1
0 F(0,1)
FM)y—>FM@N)——5F(N)—=0
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is exact. But the morphism F(é) is a split monomorphism, and F(0,1) is a split
epimorphism. This proves that there are inverse isomorphisms

iMN = <§E(1):(1)D :F(M®N)— F(M)& F(N)

)

jMN:Q(DJ(g)wU@@FwyamM@N)

Now if f,g : M — N are morphismsin A, their sum f+g is obtained by composition

W), 05

1,1
M e ) Iy ey LDy
Taking images by F' gives the commutative diagram
1
() "(14) r(,1)
FM) —%> FMo&M) —5% FIN®N) —5 F(N)

[ el ]

F(M) —2 5 P aF(M) —F s FN)@F(N) —=— F(N)

where the bottom row is obtained through the previous isomorphisms. Thus
. 1 F(1,0) 1 F(1) 1
A= F = F = =
’“M°<J <mm@ Q) @u> !

and similarly ¥ = (1,1). Moreover

o= (e (4 9) e()-+(0)
It follows that
o= (am) ) ()= (58 70)=("Y #ia)

Now the composition Yo po A is equal to F'(f)+ F(g). It is also equal to F(f+g),
so F' is additive. O

I will modify the definition of right exactness to extend it to non-additive functors.
First I need the following notation:

NotaTioN 2.2. If ¢ : M — N is a morphism in A, I can build the morphisms
(¢,1) and (0,1) from M @ N to N. So I have morphisms F(¢,1) and F(0,1) in B
from F(M & N) to F'(N). I denote by AF(yp) their difference

AF(p)=F(p,1)= F(0,1): F(M & N) = F(N)
If ¢ : N — L is a morphism in 4 such that ¢ o ¢ = 0, then of course
F(g) o AF(g) = F(¥o (e, 1) = F(40(0,1)) =0
since Yo (p,1) = (Yo, ¢¥) = (0,¢) = ¢ o (0,1). This leads to the following

definition:
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DEFINITION 2.3. Let F' : A — B be a (non-necessarily additive) functor be-
tween abelian categories. I will say that F is right exact, if for any exact sequence

(2.1) MENS L0
the associated sequence
AF( r
(2.2) rore N) 2 povy 28, by g
s exact.

In particular, a right exact functor maps epimorphims to epimorphisms.

REMARK 2.4. If I is additive, then AF(p) = F(y,0), so the previous sequence
factors as

F(1,0) Fly) F(y)

F(M& N)——=> F(M)

» F(N) s F(L) =0

The left morphism is a split epimorphism. So F' is right exact for the modified
definition if and only if the sequence

Fly) F(y)

FM)—=—=F(N)—>F(L) =0

is exact, that is if and only if F' is right exact in the usual sense. So the new
definition is equivalent to the usual one for additive functors.

REMARK 2.5. Let P be any object of B. Define F/(M) = P for any object M
of A, and F(¢) = Idp for any map ¢ in A. Then F is a (trivial) example of a right
exact functor, which is not additive if P is non-zero.

REMARK 2.6. A functor F' is exact if and only if the sequence (2.2) is exact
for any short exact sequence

(2.3) 0MANS L0

Indeed this is obviously a necessary condition. Conversely, if the sequence (2.2) is
exact for any short exact sequence (2.3), then in particular, the functor F' maps
epimorphisms to epimorphisms. Now if

MENSL 50
is an exact sequence, denoting by M the cokernel of ¢, then ¢’ factors through
M as ¢' = 100, where ¢ is a monomorphism and ¢ is an epimorphism. Now the

map g (1) ) is an epimorphism from M’ @ N to M & N, and so is F ( g (1) )
Moreover

AF(L)OF<8 ?)IF((L,U(E ?))-F((O,l)(‘g ?)):

.= F(¢1)=F(0,1) = AF(¢')
Soif @ : F(N) — P is any map in B, then § o AF(¢) is zero if and only if # o AF(¢’)

is, since F' < g (1) ) is an epimorphism. Thus AF(:) and AF(¢’) have the same

image, and the sequence

AF(¢) Fy)

F(M'& N) F(N) F(L) =0
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1s also exact.

REMARK 2.7. Suppose that the sequence
MENS L0

is exact and split, in the following sense: there exist a morphism o : N — M and
a morphism 3 : L — N such that

Yvof=1 poa+fory=1

(note that this will be the case in particular if it is exact, and if M, N and L are
projective in A). Then the sequence

P e Ny 2L

F(N)
is also exact and split: indeed, set

A=—F (‘10‘) . F(N) = F(M & N)

B=F(B):F(L)— F(N)
Then it is clear that F(¢)o B = F(¢ o 3) = F(1) = 1, and that

AF(p)oA+BoF() = — (F(% 1)— F(0, 1)) oF (Ty) FF(Boy) = ...

= —F(—poa+ 1)+ F(1)+ F(Boy)=F(1) =1

So the condition of the definition of a right exact functor is void on the split exact
sequences. In particular, if every exact sequence in A is split, then every functor
from A to an abelian category is right exact.

REMARK 2.8. Let p= F(0,1): F(M & N) — F(N), and i = F(J) : F(N) —

F(M@&N). Then iop = F < 8 (1) ) is an idempotent endomorphism of F(M & N).

Moreover

Flp, 1)(1—F< 8 (1) )) = F(p,1) - F(0,1) = AF ()

So the functor F is right exact if and only if for any short exact sequence (2.1), the
sequence

Fle.1) F(N) W), F(L) = 0

w-r( g hrorew)

1s exact.
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2.3. Basic properties.
2.3.1. Composition. The class of right exact functors is closed by composition:

ProposiTION 2.9. Let ' : A — B and G : B — C be right exact functors
between abelian categories. Then G o F' is right ezact.

ProOF. Let M % N % L — 0 be an exact sequence in 4. Since F' is right
exact, the sequence

rore vy 22 gy L9, oy o

is exact. And since (G is right exact, the sequence

G(F(M& N)y& F(N)) ACATN ¢ o pny 2 W o piy 50
is exact. Moreover
AG(AF(p)) = G(F(go, 1) — F(0,1), 1) — G(0,1)

On the other hand, the functor G o F is right exact if and only if the sequence

24  Gora M2 o LM G by 50
is exact. Let
D = AG(AF(g)) = G(F(cp, 1) - F(0,1), 1) — G(0,1)

D' =A(GoF)(¢)=GoF(p,1)—Go F(0,1)
I will show that Im D = Im D’.
Let o be the morphism from F(M & N) to F(M & N) @ F(N) defined by

BOLCRY)

F(0,1)
and let A = G(a). Let 3 be the morphism from F(M & N)&® F(N) to (M & N)

defined by
0 0 0
ﬁ:(l_F<o 1>F<1>)

and let B = G(f). Then D' o B = G(v) — G(v'), where
v=F(p,1)of v = F(0,1)of3
Note that v’ is obtained from v by replacing ¢ by 0. But

v= (F(go, 1)(1 - F< 8 (1) )),F(go, 1)F<(1))) = (F(go, 1) - F(o,1),1)

So v/ = (0,1), and
D'oB= G(F(cp, 1) - F(0,1), 1) ~G(0,1)=D
Moreover B o A = G(s), with

=3 )AL=

— O
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0 0 0 0
mrn (50 )er ()02

So Bo A =1, and in particular B is an epimorphism. So if § : Go F(N) — P is
any map in B, then

foD=0=0oD oB=0=0oD =0

So D and D' have the same image, and the sequence (2.4) is exact. This completes
the proof of the proposition. O

2.3.2. Products and sums. If A and A’ are abelian categories, then their prod-
uct A4 x A’ is also abelian. If f : M — N and f’ : M’ — N’ are maps in A and
A’, T will denote by [M, M’'] and [N, N'] the associated couples in A x A’, and
[f, f]:[M,M'] - [N, N'] the associated morphism. The image of [M, M'] under
a functor F' will be denoted by F[M, M'] instead of F'([M, M']).

ProrosiTioN 2.10. Let F : A — B and F' : A" — B’ be right exact functors
between abelian categories. Then
FxF :AxA - BxB
s right exact.

Proor. This is obvious, since a product of exact sequences is exact. O

COROLLARY 2.11. Let F, F' : A — B be right exact functors between abelian
categories. Then F' & F' is right eract.

ProoF. The functor F @ F' factors as

!
A3 axAx g gEp

where A is the diagonal functor, mapping the object M to [M, M] and the morphism

f to [f, f], and X is the direct sum functor mapping the object [P, Q] to P & @,

and the morphism [f, g] to f @ g. Those two functors are obviously additive and

exact, so the corollary follows from proposition 2.9. O

2.3.3. Pairings. If A, A’, and B are abelian categories, a pairing F' : Ax. A’ — B
is just a biadditive functor: for any object M of A, the functor F[M,—]: A" = B
is additive, and for any object M’ of A’, the functor F[—, M'] : A — B is additive.
Note that F itself is not additive in general.

ProrosiTioN 2.12. Let A, A’, and B be abelian categories, and F : A x A" —
B be a pairing. The following are equivalent:

1. The functor F s right exact.
2. For any objects M of A and M' of A, the (additive) functors F[M,—] and
F[—, M'] are right ezxact.

3. For any exact sequences
MAENS L0 MEN S LS50

the sequence

Flp, 1], F[1, ¢’ ,
F[M,N’]@F[N,M']< el 30]) F[N,N’]MF[L,L’]—)O

18 exact.
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PrOOF. Suppose that F is right exact. Fix an object M’ of A’. Now the
functor F[—, M'] : M — F[M, M'] factors as

F[—,M’]:FO(ICZAXCM/)OA

where A is the diagonal functor A — A x A as above, and ¢y is the constant
functor, equal to M’ everywhere. So F[—, M'] is composed of three right exact
functors, hence it is right exact by proposition 2.9. A similar argument shows that
F[M,—] is right exact for any object M of A, so 1) implies 2) (note that this does
not depend on the fact that F' is a pairing).

Now if 2) holds, and if

MENS L0 MENS L S0
are exact sequences, I have the following commutative diagram

F[M,M'] — F[M,N] — F[M,L'] —0

\J b \J
FIN, M| % FIN,N] 3 FINI'] —0
% Ja d
F[L,M'] 5 F[L,N] 5 F[L L] =0
\ 3 \
0 0 0

where a = F[¢,1],...h = F[p, 1]. The rows and columns of this diagram are exact.
To prove that 3) holds, I must show that the sequence

h
F[M,N" & F[N, M| %F[N, N1-L225 FIL, L] =0

is exact. But ¢ o a is the product of two epimorphisms, so it is an epimorphism.
And if  : F[N,N'] — P is any map in B such that 6 o (h,g) = 0, then 6 o h = 0
and o g = 0. As the middle column is exact, the map 6 factors as # = 6’ o a. Now

0=0og=0oaog=0ocof

As f is an epimorphism, this gives #’ o e = 0, and as the bottom row is exact, the
map 6’ factors as 8 = 0” oc. So § = 0” ocoa, and the image of (h, g) is the kernel
of coa. So 2) implies 3).

Now suppose 3) holds. Let

MENS L0 MENS L 50
be exact sequences in A and A’. The sequence

Flp, 1], F[1, /
U:F[M,N’]@F[N,M']( el Soq),F[N,N’]FW—’luF[L,L’]%O

is exact, and to prove 1), I must show that the sequence

AF[p, ¢ Fl, ¢

V=FM&N,M &N'] F[N, N'] F[L,L'] =0

is exact. I will set D = (F[go, 1], F[1, go’]).
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Let i : [M,N'] - [M & N, M’ & N'] be the map in A x A" defined by i =
[(})), (g)] Similarly, let j : [N, M'] = [M @& N, M’ & N'] be the map defined by
j= [(‘j), (3)}. Let A: U — V defined by A = (F(i),F(j)).

Define moreover k : [M & N,M' @& N'] — [M,N'] by k = [(1,0),(90’,1) and
[ [M&N M &N]—[N,M]byl= {(o, 1), (1,0)}. Let B : V — U defined by

B = (I;(([;))) Now

DoB= (F[(,o, 1],F[1,30’]) o (i;((];))) _—

= F([cp, 1] [(1,0),(¢,1)D+F([1,¢] [(0,1),(1,0)}) _
= F([e,0), (¢ 1) + F (100, 1), (¢, 0)])

Since F' is biadditive, this is also equal to
(I(e.0), (¢, 0)]) + F(I(¢, 0), (0, ]) + F ([0, 1), (¢,0)))
On the other hand, the map D' = AF[p, ¢'] is equal to
AF[p,¢] = F (e, 1), (¢, )] - P[(0,1),(0,1)] = ...

o= F (1,0, (¢, 01) + F (I, 0), (0,1)7) + 7 (100, 1), ¢/, 0)])
Thus D o B = D'. Moreover

sea= () o)<
But foi— {(1,0), (¢, 1)} KO)

So F(kot) = 1. Similarly

koj=[(1,0), (¢ 1)] [(2)

1
(5)] =01
So F(koj) =0, since F is biadditive. Moreover

loi= {(0:1)’(1’0)”@)’ Cl)
toj=[(0.1),(1,0) [@ <(1)

1 0
BoA_<0 1)_

In particular B is an epimorphism. As D o B = D', the images of D and D’ are
the same. So 3) implies 1), and this completes the proof. O

| =m0

Finally, I have

COROLLARY 2.13. Let [M,N]— M @ N be a (biadditive) tensor product from
B x B to an abelian category C, which is right exact with respect to M and N. Then

1. If F and F’' are right exact functors from A to B, sois FQ F': A —C.
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2. In particular if A = B = C, then for any positive integer n, define inductively
the functor M +— M®" by

M®1 - M M@n — M@(n—l) oM Zf n>1
Then the functor M — M®™ is right exact.

ProoF. The functor F ® F’ is the functor from A to C defined by the compo-
sition
!
A3 axAx g gp
So it is exact by proposition 2.9.
If moreover A = B = C, the functor M — M®" is right exact by an easy
induction argument. O

2.4. Extension of functors. The main result concerning right exact functors
is the following:

THEOREM 2.14. Let P be a full subcategory of an abelian category A with the
following properties:

1. The objects of P are projective in A.

2. Any object of A is a quotient of an object of P.

3. If P and @ are objects of P, then so is P& Q.

Then any functor F' from P to an abelian category B can be uniquely extended (up
to isomorphism of functors) to a right exact functor from A to B.

Proo¥. First uniqueness is almost obvious: let F; and Fs be right exact func-
tors from A to B, and @ be an isomorphism from the restriction of F; to P to the
restriction of P. In particular, for any object P of P, there is an isomorphism p
from Fy(P) to Fy(P).

Now uniqueness will follow from the following

ProposiTION 2.15. Let A be an abelian category, and P be a full subcategory
of A satisfying the hypothesis of theorem 2.14. Let Fy and Fy be (non-necessarily
additive) right exact functors from A to an abelian category B. Then if 0 is a
natural transformation from the restriction of Fy to P to the restriction of Fs to P,
there exists a unique natural transformation 0 from Fy to Foy which coincides with

# on P.

ProoF. For any object M of A, choose a short exact sequence

(2.5) Q5 PSS M0

with P and @ in P. Such a sequence exists by condition 2). Since F} and Fy are
right exact, the rows of the following commutative diagram are exact

Qe P) M Fy(P) M (M) =0
l Oqep op
Qe P) % Fy(P) M Fy(M) =0
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Then there is a unique morphism fy : F1 (M) — F3(M) completing this diagram
into a commutative one. This morphism does not depend on the choice of the
resolution 2.5: indeed, if

Q&5 PYL Moo
is another resolution of M by objects of P, then as 9/ is an epimorphism and as
P is projective, there is a morphism a : P — P’ such that ¢’ o a = . Thus if
04 : F1(M) — F5(M) is built using the second resolution, I have

04y Fr (V) = 04y Fr () Fr(a) = Fo(¢")0p: Fy(a) = ...
.= Fy(y')Faa)fp = Fo(1)0p = O Fy (1)
So fy = éjw since Fy (%) is an epimorphism. Moreover if M = P is already in P, I
can choose the resolution P > P 5 M — 0 of M, and then
Opr = Oy Fi(1) = Fo(1)0p = 0p

Now it is clear that the maps give a well defined natural transformation ex-
tending #, and that this extension is unique. O

To complete the proof of the theorem, I have to prove the existence of an extension
F' of F. For any object of A, I choose an exact sequence (2.5). Since F’ must be
right exact, and coincide with F on P, the sequence
AF( r’

() (¥)

F(Q® P) F(P)—L /(M) — 0

must be exact. So I can define F’(M) as the cokernel of AF(p). Of course, I must
make this definition functorial with respect to M.

I will show that if f : M — M’ is a morphism in A, then there is a well defined
morphism FJC : F'(M) — F'(M'), which is moreover functorial with respect to f:
this follows from standard arguments on projective resolutions.

fQ % p Y M = 0is any exact sequence with P’ and @’ in P, then there
is a map a : P — P’ such that ¢/ oa = f o ¢, because P is projective and 1’ is an
epimorphism. Now ¢/ oaop = 0, so as Ker¢y’ = Imy’, and as @ is projective, there
is amap b : @ — @ such that ¢’ ob=ao .

Now I have the following diagram with exact rows

F(Qa P) AF—(W)> F(P) M

F(éﬁ)[ F(a)

r@ery) 2O ey T iy Lo

FI(M) —0

This diagram is commutative since
o, b 0\ -, b 0\ _ . _
AF(p )F< 0 ) = (F(«p,l)—F(O,l))F( - ) = F(g'ob,a)—F(0,a) = ...

.H:FWO%Q—FW¢0:F@KF@J}JNQU):FWNAF@)

It follows that there is a morphism FJ’, : F'(M) — F'(M') such that F} o F'(¢) =
F'(¢') o F(a).
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This morphism does not depend on the choice of a and b, since if a’ : P — P’
is another map such that ¢/ o a’ = f o 4, then ¢/ o (a — a’) = 0, so there is a map
¢: P — @ such that a—a’ = ¢’ oc. Now F(ac,) is a map from F(P) to F(Q' & P'),
and

ar@)r () = (P 0=r0.0) () = (e octa)-F(e) = Fla)-F(@)

This proves first that F; is well defined. Soif F = 1,asIcantakea =1landb=1,1
have F] = 1. A similar argument shows that F;og = F} o Fj, so the correspondence
M — F'(M) and f — I} is a functor from A to B.

Moreover if P is in P, then I can choose the following exact sequence for P

PSP3I PO
The associated sequence is

(1)

AL(%F(P) — 5 F'(P)—=0

F(P& P)
As AF(0) = 0, T have F'(P) ~ F(P). Moreover, if f : P — P’ is a morphism in
P, then as the diagram

p % P L P S0

R S )
PP % P 5 P50

is commutative, the following commutative diagram

rpapry 2O ppy L pp) S
F(ﬁ?)[ ﬂﬂ[ Fwﬂ
rrrapry 2EO ppy L gy S

shows that F'(f) = F(f), and this induces an isomorphism between F' and the
restriction of F’ to P. Finally, the diagram

ey —Y o rp) —L o P(P) S0

FlQaPr) —Zh p(p) F'(M) —0

shows that Fé) = F'(¢).
It remains to check that the functor F’ is right exact: denote by

Om X Py ™ M =0

the chosen resolution by objects of P for the object M of A. Suppose moreover as
before that if M = P is in P, then this sequence is

PApLpy

so that F’(P) can be identified with F'(P).
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Now let M be any object of A, and consider first an exact sequence in A
Q5 PS5 M0

with P and @ in P. By the above arguments there are maps a : P — Py,
b:Q — Qur, @ : Pyy — Pand b : Qy — @ and a commutative diagram

L

QLP—>M—>O

[Tl )

QMSO—M>PM—M>M—>O

AsYoa oa =1y oa =1, there is amap ¢ : Pyy — @ such that 1 —a’oca = poc.

Similarly, there is a map ¢’ : P — Qar such that 1 —aoa’ = g o ¢’. Now there is
a commutative diagram

FQeP)

(2.6) F<82)[ m@[ 1

F(Qum ® Py) éﬂﬂ@ Nﬁﬂ‘g%@ F'(M) —0

in which the bottom line is exact by construction of F’(M). Now F(a,coa) is a map
from F(Pyr) to F(Q & P), and

AF@ﬂoF<wza)::@Np@)—FULU)oF(wZa):.“

...=F(poct+ad'oa)—F(a'oa) = F(1)—F(a')oF(a) = 1—F(a’)o F(a)

—

Similarly, the map F( ¢ ) : F(P) = F(Qum @ Par) is such that

AF@M)Ongw):l—meuww

This shows that F(a) and F(a') induce mutual inverse isomorphisms between the
cokernel of AF(p) and the cokernel of AF (), equal to F'(M) by definition. In
other words, the top line in 2.6 is exact.

In particular, if ¢ : P — M is an epimorphism from an object of P to M, then
F'(3) is also an epimorphism.

Now let

0-MANBL S0

be an arbitrary short exact sequence in A. It is well-known (see [Wei94] Horseshoe
lemma 2.2.8) that it is possible to find a resolution

Oy A PLY N S0
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by objects of P, such that there is a commutative diagram

0= Qu — Qy > Qr —0
\ oy + $

0= Py S Py 5 P =0
Lo v

0 M —> N —> L =0

with exact rows and columns (note that this resolution needs not be equal to the
prescribed resolution of N).
Then it is easy to check that the following diagram is commutative

o0 5)

F(Qy @& Py) ———5 F(QL® PL) =0

AF(ey) AF(eL)
F(Py & PY) Fla) F(PY) Fe), F(PL) =0
() )[ F(4) P(4)
F'(M & N) Al(e) F'(N) ), F'(L) =0
' ' !
0 0 0

Moreover, its columns are exact by the above remarks, as well as its two top lines.
Now the bottom line is also exact: the map F'(¢) o F/(¢/y) = F(¢}) o F(B) is an
epimorphism, because F (¢} ) and F(53) are. Hence F’(3) is also an epimorphism.
And if 0 : F/(N) — B is any map in B such that § o AF'(¢) = 0, then

Yy 0
0 oy

As the middle row is exact, there is a map p : F(Pr) — B such that
0o F'(Yy) =poF(B)

HOAF’(zp)oF’< ):eoF’(¢;V)oAF(a) =0

Now

0= 00 F() 0 AP () = o F(8) 0 AF(sly) = po AR (pr) o I

o

;)
g
As the top line is exact, I have
poAF(pr) =0
and as the right column is exact, there is a map A : F/(L) — B such that p =
Ao F'(¢r). Thus
00 F'(diy) = Ao F'(ypr) o F(B) = Ao F'(¢) o F'(¢y)

As F'(i)y) is an epimorphism, I have § = Ao F'(¢}), so the bottom line of the above
diagram is exact, and the functor F” is right exact. This completes the proof of the
theorem. O
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3. Permutation Mackey functors

3.1. Mackey functors. Let R be a commutative ring, and G be a finite
group. I will use Dress definition of Mackey functors for G over R (see [Dre73]):

DeFINITION 3.1. A Mackey functor M for G over R is a bivariant functor
from the category G-set of finite G-sets to the category R-Mod of (left) R-modules,
satisfying the following conditions:

o If X and Y are finite G-sets, and ix and iy are the respective inclusions of
X and Y nto their disjoint union X U'Y, then the following morphisms

, : M= (ix)
M(X)® M(Y) (etin). ) M(XUY) M

M(X)® M(Y)

are mutual inverse isomorphisms.

o If

X 25V

ol
4 — T
d
is a cartesian square of finite G-sets, then M. (b)M*(a) = M*(d)M.(c)

I will mostly consider the case R = Z of Mackey functors over the integers,
called simply Mackey functors. The Mackey functors for (G, and natural transfor-
mation of bivariant functors, form an abelian category, denoted by Mack(G).

If M is a Mackey functor for G, and H is a subgroup of G, then M(G/H)
is also denoted M (H). If K C H are subgroups of G, then pg is the projection
G/K — G/H defined by ptl(zK) = zH. The transfer t&£ is the map M. (pf), and
the restriction r is the map M*(pi).

3.2. Burnside functors. I will denote by bg or b the Burnside Mackey func-
tor for the group G. Its value b(H) for a subgroup H of G is just the Grothendieck
group of finite H-sets, for relations given by decomposition in disjoint union.

More generally, its value 5(X) on a finite G-set X is the Grothendieck group
of the category G-setlx of finite sets over X (see [Bou97]). If f : X — Y is
a morphism in G-set, then b,(f) : 6(X) — b(Y) is defined by composition, and
b*(f) : 6(Y) = b(X) by pull-back.

If M is a Mackey functor for the group G, and X is a finite G-set, the Mackey
functor Mx is defined (see [Web91], [TW95], [Bou97]) on a finite G-set Y by
Mx(Y) = M(Y x X), and for a morphism f : ¥ — Z in G-set by Mx .(f) =
M, (f x Idx) and M} (f) = M*(f x Idx). This construction is functorial with
respect to X: if f : X — X’ is a morphism in G-set, then there are obvious
morphisms My : Mx — Mx and M?: Mx — Mx.

More generally, if X is any G-set (finite or not), and if X = Uyee\ xw is its
decomposition in (finite) G-orbits, T will set

MX = S Mw
weG\X
For a finite G-set X, these two definitions of Mx coincide, in that there is a canoni-
cal isomorphism between them: if i, is the inclusion of w into X, then the sequence
(M;,,)wec\x is an isomorphism from @y e\ x M, to Mx.
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Note that with this definition, for any G-set X and any finite G-set Y, there is
a natural isomorphism

(3.7) ©  M(Gya) = Mx(Y)= @& M(Y xw)
(y,2)e[G\(Y x X)] wEG\X

mapping the element v € M(Gy ;) to the element M,(my.)(v) € M(Y x Gz),
where my,  is the map from G/Gy » = Y x Gz given by

my (9Gy ) = (9Y, 97)

To avoid the choice of a system of representatives [G\(Y x X)], one can also view

the left hand side module of (3.7) as

((y,x)?YxX M(nyx)) ’

Using this isomorphism, if ¢ : Y — Y’ is a morphism of finite G-sets, then the map
Mx « (%) becomes the map

G

1(Gya) M(Gy )

( © ©®
(y,2)€Y xX (y',2)EY'x X

sending (vy z)(yz)ey xx 10 (v o)y o)y xx defined by
Gy s
AP D DR
YEG, Ay~ (y')
Similarly, the map M% (¢) gives the map

((yf,x)69 M(Gyl’x))G - (

G
M(Gy.z))
EY'xX

S
(y,2)€Y xX
sending (U/ylyx)(ylyx)6YI><X to (vy,z)(y,e)ey xx defined by

G
_ ¥(y),z, I
Yye =TG, . Yyy)se

3.3. Permutation functors.

DEFINITION 3.2. A permutation Mackey functor is a Mackey functor isomor-
phic to bx, for some G-set X. I denote by PMack(G) the full subcategory of
Mack(G) formed by permutation Mackey functors.

Note that if X is any G-set, and Y is a finite G-set, then bx(Y) is the
Grothendieck group of the category of finite G-sets over ¥ x X.

For a finite G-set X, and any Mackey functor M, it is easy to check (see
[Bou97]) that

(38) HomMack(G)(bX;M) >~ M(X)

This isomorphism is as follows: if m € M (X), then for any finite G-set Y, the map
associated to m from bx (V) = b(Y x X) — M(Y) is defined by

Z
’c/ \\zi — M, (a)M*(b)(m) € M(Y)
Y X
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In particular, the functor bx is projective. Hence for any G-set X (finite or not),
the functor bx is projective, as a direct sum of projectives. If M is any Mackey
functor, then
Homysaer(ay(bx, M)~ [ M(w)
weG\X

3.4. Lefschetz invariants. Let X be a G-set (finite or not). There is another
possible interpretation of bx, using Lefschetz invariants. If Y is a finite G-poset,
recall (see [Thé87]) that the Lefschetz invariant of Y is the element of b(G) defined
by

AY=— > (-nMlasa,
SEG\SA(Y)
where Sd(Y') is the set of totally ordered non-empty subsets of Y, and |s]| is the
cardinality of s and G its stabilizer in G. If H is a subgroup of G, then the
(algebraic) number of fixed points of H on A§ is the Euler-Poincaré characteristic
of the set of fixed points of H on Y

(AP = x(¥™)

So two G-posets Y and Z have the same Lefschetz invariant if and only if for any
subgroup H of G, the Euler-Poincaré characteristic (Y #) and x(Z#) are equal.

Any G-set X can be viewed as a G-poset with the discrete ordering (z < y <
z = y): when no other poset structure is given, the discrete one will be understood.
Similarly, all maps between G-posets will be G-equivariant maps, compatible with
the (given or understood) poset structures.

DEeFINITION 3.3. If X andY are G-sets, and (A, f) is a (finite or not) G-poset
over Y x X, I denote by fy (resp. fx) the composition of f with the projection
onto Y (resp. onto X ).

I denote by G-posetly x the category of G-posets (Z,f) over Y x X such
that for any y € Y, the fibre f;l(y) s finite. Such a poset is said to have finite
fibres over Y. Note that this implies in particular that f=(y,z) is finite for any
(y,z) €Y x X, and that 7 is finite if Y is.

I say that two objects (A, f) and (A’, f') of G-posetly x are equivalent (no-
tation (A, f) ~ (A', f), if

V(y,e) €Y x X, AT, = AT,

I denote by hg(Y,X) the set of equivalence classes of objects of G-posetly x,
modulo this equivalence relation.

LEMMA 3.4. Let X be a G-set

1. Let Y be a finite G-set. Then the correspondence which maps the finite
G-poset (Z, f) over Y x X to

(A?_yiz(y’x)) (y,2)€Y x X © ((y,x)?YxXb(Gy’x))G = bx (Y)

induces a one to one correspondence Oy x between hg(Y, X) and bx (Y).
2. If (Z,f) and (Z', f') are finite G-posets over Y x X, then

Oy x(Z2UZ fUf)=0vx(Z, f)+0vx(Z, F)
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3. If 1Y =Y’ is a morphism of finite G-sets, and (Z, f) is a finite G-poset
over Y x X, then

bx (¥)0y.x (2, f) = by x (7, (6 x Idx) o )

If (Z', f') is a finite G-poset over Y' x X, let (Z, fy) be the G-set defined
by the pull-back diagram

z —L 57

IYJ, J,f;ﬂ

Y —— Y
Y

viewed as a sub-G-poset of Y x Z'. Then setting f = (fy, fxoa): Z =Y xX
turns (Z, f) into a finite G-poset over Y x X, and

Wby x(Z', f') = by x(Z, f)

ProoF. The correspondence # is clearly well-defined and injective, by the very
definition of equivalence of posets over Y x X, since it is clear that for (y,z) € Y x X
and g € G, I have

Ggy,gz: —_ Gy)z
Af‘l(gy,gaf) - g(Af‘l(yw))
G
Conversely, if (6, ) € (@(yyx)e(yxx) b(nyx)) , then for each (y, z) € [G\(Y xX)],

it is possible to find a finite G -poset 7, , with Lefschetz invariant equal to 3, .
(see Lemme 2 of [Bou92]). Of course, if 8, , = 0, I take Z, , = . Now define

7 = Ugy myeta\(v xxIndé, 7y

This is a finite G-poset. Let f : Z — Y x X mapping the element (g,z) of
Indgy .2y to (gy,gx). Then (Z, f) is a finite G-poset over Y x X, and moreover
for (y,z) € [G\(Y x X)], it is clear that

Sy, z) = {1} x Ly C Indgy Ly

It is isomorphic to 7y ., so its Lefschetz invariant is §, ., and the first assertion
follows.

The second assertion is clear, since the Lefschetz invariant of a disjoint union
E U E’ is the sum of the Lefschetz invariant of F and E’.

The third assertion follows from the fact that

(1/) OfYan)_l(ylax) = uyew_l(y’)(fY:fX)_l(y: I)
so that
Gy/)m7 _ Gy/)r C}y)m7
Af"l(y’,w) - Z Inde,z Af‘l(y,w)
YEG , AY~1(y')

Moreover the transfer for the Burnside functor is just induction.
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Similarly, if (Z', f) is a finite G-poset over Y, let Z be the pull-back of Y and

7" over Y':
/Z\
Y Z'
A
Y’ X
Let f be the map from Z to Y x X defined by this diagram. Now if (y,z) € Y x X,

then
) = £ (b0

SO
Gyo  _ Gy(v),e A Fo(y)e
At = Resq, AL =) )
This completes the proof of the lemma. O

Now I have a nice interpretation of bx, and even a little more: observe that in the
case of two finite G-sets X and Y, isomorphism (3.8) gives

Homygaer(ay(by, bx) =~ b(Y x X)
(see also [Bou97]). When Y is infinite, this is no longer true. The correct formu-

lation is the following:

ProrosiTION 3.5. Let G be a finite group, and X, Y be any G-sets. For any
object (A, f) of G-posetly x and any finite G-set Z, let ba t 7z be the map sending
the finite G-poset (T, g) over Z x'Y to the G-poset (U, h) over Z x X defined by

the pullback-diagram
/U\
T A
2/ N B/ N\
Z Y X

Then the map ba ¢ z passes down to equivalence classes of finite G-posets over Z x
Y, and this defines a morphism of Mackey functors ba ; from by to bx. Moreover
this induces a one to one correspondence

Oy x : ha(Y, X) ~ Hompsacr(ay(by, bx)
such that Hyyx(A LI A/, f LI f/) = Hyyx(A, f) + ayyx(A/, f/)
ProoF. First it is clear that the pull-back U is finite, since gy (T) is, and f has
finite fibres over Y. It is also clear that ba ; 7 passes down to equivalence classes of

finite G-posets over Z x Y: with the notation of the proposition, if (z,2) € 7 x X,
then

h™z,2) = Uyevg™ ' (z,y) x [~ (y, »)
So

G G G G G G

A e = Ind e ( es >y A =y )( es v A v )

h=1(z,0) > Gayo \BRE8G. ATy ) (Resg) T A2 o
yeG, \Y
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So this only depends on the equivalence class of (T, g) and (A, f).

Moreover, the maps ba ¢ z define a morphism of Mackey functors: if¢ : Z — Z’
is a morphism of finite G-sets, an element of by (Z) can be represented by the
equivalence class of a finite G-poset (T, g) over Z x Y. Then by .(¢)(T,g) is the
class of (T, g¢'), where ¢’ = (¢ x Idy)og. But ba ¢ z(T,9) = (U, h), and

bx « (4) (U, ) = (U, (6 x Tdx) o h)
On the other hand

bA,fVZ' (T, (1/) X Idy) Og) = (U, h’)
where h' = (¢ X Idx) o h. This proves that

bxxoba sz =bayfz 0by,
Similarly, if now ¢ : 7/ — Z is a morphism of finite G-sets, then
by obasz0 =ba sz 0 bx

This is because in the following diagram

VA YN
N Ny N

if (T, g) is a finite G-poset over Z x X, if T is the pull-back of Z’ and T over 7,
and T3 the pull-back of T} and U over T', then 75 is also the pull-back of 7’ and U
over Z (this last pull-back involves the composition of two cartesian squares, which
is cartesian).

The last assertion of the proposition follows from the fact that if Y is a finite
G-set, then by (3.8)

HomMack(G)(bYa bx) = () HomMack(G)(bY; bw) ~ () b(Y X w) ~ bx(Y)
wEG\X wEG\X

Thus if Y is any G-set

Homysger(a(by, bx) = H bx (w H ha(w', X)
W EG\Y w’eG\Y

Now a sequence (T,) € Hw’EG\Y hg(w', X) defines a G-poset T' = Uyrey\y Tur,
with finite fibres over Y. The equivalence class of T" depends only on the sequence
(T,'). Conversely, the equivalence class of the G-poset (T, f) over Y x X, with
finite fibres over Y, defines the sequence T, = f~!(w’ x X). This completes the
proof of the proposition. O

COROLLARY 3.6. Let X, Y and Z be G-sets. If f : by — bx 1s the morphism
of Mackey functors defined by the class of the object (A, f) of G-posetly x, and g :
bz — by is the morphism defined by the class of the object (A’, f') of G-poset|z y,
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then the morphism f og : by — bx is defined by the class of the object A” of
G-poset|z x defined by the pull-back diagram

A/ \A
BNy N
Z Y X

Proor. This is clear from the proposition. Note that A” has finite fibres over
Z, if A has finite fibres over Y and A’ has finite fibres over Z. O

3.5. Resolutions. The subcategory of permutation Mackey functors is “big
enough”:

ProrosiTiON 3.7. For any Mackey functor M for the group G, there exists a
G-set X and an epimorphism ¢ :bx — M.

Proo¥. Let E be a set of subgroups of GG, and for each H € E| let S be a
non-empty subset of M (H). Let

X = I_IHeE(G/H) x SH

where G acts trivially on Sg. There is a natural morphism 6 from bx to M: indeed
the orbits of G on X are the sets (G/H) x {s}, for H € E and s € Sg. This gives

Hompsger(ay(bx, M) ~ H M(G/H)

HeE
SESyH

The right hand side contains the element (s)mer ses,, which corresponds to a
morphism 6 from bx to M. The element s € M(G/H) defines the morphism
from bg g to M mapping the (discrete) set (7', f) over Z x (G/H) to the element
M.(fz)M*(fa/m)(s). In particular, if Z = 17" = G/H, and f is the diagonal
inclusion, then this element is just s itself. In other words, if I = Im 6, then I(H)
contains Sy, so it contains the sub-Mackey functor J of M generated by the union
of the Sy, for H € E (this is the intersection of all the subfunctors N of M such
that N(H) D Sy for all H € E (see [TW90] Proposition 2.1)).

The image I of 8 is actually equal to J: indeed, for any subgroup K of G, the
value of J at K is

J(K)=<tK@Eril.s)|HEE, sc Sy, 2€ G, LCKN"H >
But the element t¥(?rf, s) is the image under 0k of the element (G/L,f) of
b (K), where f(gL) = (9K, gxH).
This proves in particular that the morphism # is an epimorphism if and only if

the set Ugec Sy generates M as a Mackey functor. The proposition follows, taking
for E the set of all subgroups of G, and Sy = M (H) for all H. O

4. Tensor induction for Mackey functors

4.1. Bisets. Let G and H be finite groups. A set U is called a biset (more
precisely an H-set-G) if the group H x G°P acts on U. Equivalently, the group H
acts on the left on U, and the group G acts on the right, and those two actions
commute.
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If U is an H-set-G, I denote by U°P the G-set-H which is equal to U as a set,

and double action is given for ¢ € G, h € H, and u € U by

guh (in UP) = h~tug™! (in U)
So let U be a finite H-set-G, and Z be a G-set. Let Homg(U,Z) be the set
of morphism of G-sets from U to Z. This is an H-set: if h € H and ¢ €
Homg (U, Z), then he is the morphism of G-sets from U°? to Z defined by

(ho)(w) = (h™"u) Yu e U, he H
If now Z is a G-poset, then Homg (U, 7) is an H-poset:

e <¢YinHomg(U?,7) & YueU, p(u) <¢(u)in Z

ProPOSITION 4.1. The correspondence X — Homg (U, X) induces a functor
Ty from PMack(G) to PMack(H), mapping the object bx to buomg(ver x), and
the morphism ¢ : by — bx defined by the class of the object (A, f) of G-posetly x
to the morphism defined by the class of the H-poset

Ty(A, f) = (Homg (U7, A), Homg (U7, f))
over
Homg(U?,Y x X) ~ Homg(U?,Y) x Homg(U", X)

ProorF. First I must check that if (A, f) is a G-poset over Y x X, with finite
fibres over Y, then

(D, F) =Ty (A, f) = (Homa (U7, A), Homg (U7 f))
is an H-set over Homg(U?,Y x X), identified with
Homg(U?,Y) x Homg(U?, X)

which has finite fibres over Homg(U,Y). Fix ¢ € Homg(U,Y), and look for
a € Homg (U, A) such that fy oa = ¢: then for all u € U, the element a(u) has
to be in f;lgo(u), which is a finite set by hypothesis. As U is finite, there is only a
finite number of possibles choices, hence a finite number of possibles a’s.

Next I must show that the class of Ty (A, f) depends only on the class of (A, f).
Fix ¢ € Homg(U,Y) and ¢ € Homg(U?, X), and a subgroup K of H, . Then
an element a of Homg (U, A} such that foa = (i, 1) is defined by the following
conditions

Yu€e U, a(u) € f71 (p(u),w(u)) Yu€e U, Yg € G, Yk € K, a(kug™) = ga(u)

So a defines a sequence of elements a(u) in f~! (p(u),w(u)), for u in a system

[K\U/G] of representatives of orbits of K x G on U. The element a(u) must be
invariant by the subgroup of GG defined by

Gru={9€G |3k €K, kug™" = u}

Grru
Conversely, if I choose elements a, € (f'_1 (p(u),w(u))) : , for u € [K\U/G],

then I can define a(v) for any v € U by setting a(v) = gay, if v = kug™!, with
u€ [K\U/G], g€ G,and k € K.

In other words, there is a bijection

(Few) =TT (7 (etw) vw))

ue[K\U/G]
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This is clearly an isomorphism of posets, so

Y ((F-lw,w))K) = II « ((f‘l(s"’(“)”““)))%)

ue[K\U/G]

: : : : G (), 0(u)
In particular, this depends only on the Lefschetz invariants Af_l(t,’)(u),lp(u)) (note

that Gk . 1s a subgroup of Gy y) if K is a subgroup of H, ). Since these
Euler-characteristics define the Lefschetz invariant A

of (D, F') depends only on the class of (A, f).

Finally I have to check functoriality: first the identity morphism of bx is associ-
ated to the class (X, dx) of the (discrete) set X over X x X, where dx(z) = (z, z).
Clearly

(tp v)’ the equivalence class

TU(X, dx) = (HomG(UOP,X), dHOmG(Uop’X))
so Ty maps the identity to the identity. Moreover, if

A/ \A
AT NS
Z Y X

is a composition of morphisms by — by — bx, then taking images by the functor
Homg (U°F, —) gives the diagram

Homg (U°P, A7)
Homg (UP, A" Homg (U, A)
Homg (U, 7) Homg(UP,Y) Homg (U, X)

and the middle square in this diagram is cartesian, by definition. This proves that
Ty commutes with composition of morphisms, and this completes the proof of the
proposition. O

4.2. Tensor induction. Now I can give the definition of tensor induction for
Mackey functors:

DEeFINITION 4.2. Let G and H be finite groups, and U be a finite H-set-G.
I call tensor induction associated to U the right exact functor from Mack(G) to
Mack(H) extending the functor Ty : PMack(G) — Mack(H). This extension is
again denoted by Ty .

Recall that Ty is constructed as follows: for a Mackey functor M for GG, choose
an exact sequence

LA LN VN

by
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Then Ty (M) is defined as the cokernel of the map ATy (yp), so the following se-
quence is exact

by @ x) 2P 7 ) T2 1y S0

Moreover
Ty (by ©bx) = Tu(byux) = bHomg (Uer,yux)

Suppose that ¢ is defined by the G-poset (D, f) over Y x X. Then ATy (D, f) is
the morphism from byemg (ver,yux) 10 bHomg (Uor x) defined by the difference

Homg (U, D U X) Homg(UP, U X

Homg (U, Y UX)  Homg (U, X) Homg (U, Y UX) Homg (U, X)

The left hand term is the image of the poset

DuX

N

Yux

where a is fy UIdx, and bis fx on D and identity on X. The other one is obtained
from it by replacing D by 0.

Define Homg (U, D; X) as the set of G-morphisms « from U to D U X such
that Im o € X. Then Ty (M) is also the cokernel of the map

bHome (U,Y;X) = bHome (U, X)
defined by the following poset

Homg (U, D; X)

N\

Homeg (U, Y;X)  Homg(U?, X)

4.2.1. Examples. The case U = §. Let U = (). Then for any G-set X, the H-set
Homeg (U, X) is a one element set. It follows that the functor Ty is the constant
functor, equal to b.

The case H = G = U. Suppose H = G, and that U is the set GG, with double action
given by left and right multiplication. Then for any G-set X

Homg(G, X) ~ X

It follows that the functor T is the identity functor.

Projectivity. As the functor Ty maps permutation functors to permutation functors,
it follows that it maps projectives to projectives: if P is any projective Mackey
functor for G, then P is a direct summand of some permutation functor bx. Then
Ty (P) is a direct summand of Ty (bx ) = brome (Uer,x), hence it is projective.
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4.3. Composition. The tensor induction Ty is functorial with respect to U:

ProrosiTiON 4.3. Let G, H and K be finite groups. If U is a finite H-set-G
and V is a finite K-set-H , then there is an isomorphism of functors

TV OTU ~ TVXHU

Proo¥. Recall that V xg U is the quotient V x U, viewed as a K-set-G, by
the action of H given by (v,u)h = (vh, h~tu).

Now observe that Ty « , v is right exact by definition, and that Ty o Ty is right
exact by proposition 2.9. Moreover, for any G-set X

(4.9) (Tv o Ty )(bx) = Tv (bHome (Uer, X)) = DHomp(V or Home (Ur, X))

But there is an adjunction
Homy (VOP,Homg(UOP, X)) ~ Homg (U xz VP, X)

and moreover UP x g Vo ~ (V x g U)°. Equation 4.9 is easily seen to be functorial
with respect to X: in other words, the restrictions of Ty« v and Ty o Ty to
PMack(G) are isomorphic. As they are both right exact, proposition follows from
theorem 2.14. O

4.4. Tensor product. Recall from [Bou97] chapter 1 that if M and N are
Mackey functors, then their tensor product is the Mackey functor M @ N defined
on the finite G-set X by

MeN)(X)=( & MY)eN(Y))/T
Y5X
where (Y, ¢) is a (finite) G-set over X, and J is the submodule generated by the
elements

M. (f)(m)@n' —m @ N*(f)(n') Vme M(Y), n’ € N(Y')
and the elements
M*(f)(m') @n—m@ N.(f)(n) vm' € M(Y'), ne N(Y)

whenever f: (Y, ¢) = (Y',¢’) is a morphism of G-sets over X, which means that
pof =9 Ifme M) and n € N(Y) for a G-set (Y, p) over X, I denote by
[m @ n](y,,) the image of m ® n in (M @ N)(X).

If # : X — X’ is a morphism of G-sets, then the image of [m ® n](y ) by
(M &N).(0) is [m@n](y,pp)- I (Y, ¢') is a G-set over X', if m’ € M(Y') and n' €
N(Y'), then the image of [m’ ® n']y: 1) by (M @ N)*(f) is equal to [M*(a)(m) ®
N*(a)(n)](y,e), where (Y, ) is the pull-back of (Y’,¢’) along 0

y 2 v/

| I

X —— X/
7]

Also recall from [Bou97] Lemma 7.2.3 that if X and Y are finite G-sets, there are
natural isomorphisms

(M @N)xxy ~ Mx ® Ny
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Now this isomorphism clearly holds also for infinite sets X and Y, because

Mx®Ny2( (&) Mw)®( (&) Nw/)ﬁ...
wEG\X W' €G\Y

2 d My@Ny~ & (MONuxw ~(MN)uwxw =~ ...
wEG\X wEG\X
w eG\Y w eEG\Y

P (M@N)Xxy
The following proposition states this isomorphism precisely, when M and N are

both equal to the Burnside functor (note that b&b ~ b by Proposition 2.4.5 of
[Bou97]):

PrOPOSITION 4.4. Let X and Y be G-sets, and Z be a finite G-set. If (T, )
is a finite G-set over Z, if (U, f) is a finite G-poset over T'x X, and (V,g) is a
finite G-poset over T' x Y, denote by U.pV the fibre product of U and V over T,
viewed as a sub-G-poset of U x V. Then U.pV 1is a finite G-poset over Z x X XY,
and the correspondence

(U, f) X (V,g) S bx(T) X by(T) —UrV € bXXy(Z)
induces an isomorphism (bx @by )(Z) — bxxy(Z), which is part of an isomor-
phism of Mackey functors
bx @by = bxxy

Proo¥. First I have to specify the morphism A : UpV — Z x X x Y: if

(u,v) € U.pV, that is (u,v) € U x V and fr(u) = gr(v), then

hu,v) = (9o fr(u), Fx(u), gv (v))
Now if (z,z,y) € Z x X x Y, then
h_l(za Ty y) = utEp_l(z)f_l(ta ‘L) x g_l(t7 y)

which gives of course

Garw,y -~ Garw,y Gie G Gy Gy

Ah—l(z,x,y) = Z IndGm)y (ResGt,m,yAf—l(t,x)) (ReSGt,m,yAg—l(t,y))
tEG: z,y\ 071 (3)

So the equivalence class of (U.7V, h) depends only on the classes of (U, f) and (V, g).

Next I have to check that the submodule of relations [J is mapped to zero in
bxxy(Z): solet 6 : (T,¢) = (T",¢") be a morphism of G-sets over Z. Let (U, f) be
a finite G-poset over T x X, which gives a G-poset (U’, f') over T by composition
with 6 x Idx (note that U = U’). Let (V',¢') be a finite G-poset over 7", which
gives a G-set (V, g) over T by pull-back along . T must check that the posets U.pV
and U'.7/V' over 7 x X xY are equivalent.

They are in fact isomorphic: an element of U.pV is an element in U x V| or a
triple (u,¢,v') in U x T x V', such that

0(t) = g7 (v') fr(u) =1

This element is mapped to (gofT (u), fX('u),ggf(v')) €EZxXxY.

On the other hand, an element of U’'.pV" is an element (u,v') € U x V', such
that 0fr (u) = ¢/ (v'). Tt is mapped to <<p'9fT (u), fX('u),ggf(v')). Now the map

(u, ") e U .o V' (u, fr(u),v') € UgV

is clearly an isomorphism of posets.
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So I have a well-defined map from Oz : (bx ®by)(Z) — bxxy(Z). This is
an isomorphism: indeed, let ®z be the map from bxxy (Z) to (bx @ by )(Z) which
sends the finite G-poset (W, f) over Z x X x Y to

(W, Idw x fx) @ (W, Idw x fy)lw t2)

where Idw x fx : W — W x X is defined by (Idw X fx)(w) = (w, fx(w)), and
the maps fz, fx and fy are obtained from f by composition with the projections
on Z, X and Y.

It is clear that ©z o ®z is the identity, since the fibre product W.iw W is equal
to W. Conversely, if (T, ¢) is a finite G-set over Z, if (U, f) is a finite G-poset over
T x X, and (V, g) is a finite G-poset over T' x Y, then

QZOGZ([(U, f)®(V,g)](T,¢))=[(U-TV; Idy rv xhx)@(U.rV, Idy zv <hy )l v hy)
But as (U, f) = bx «(fr)(U, Idv X fx), up to an element of J, I have

(U, )@ (V. g)lir,p) = [(U, 1dy x fx) @ b5 (fr)(V, 9)) w0 5r)

But b3 (fr)(V,9) = (UxV k), where k : UpV — U x Y is the map defined by
k(u,v) = (u, gy (v)). Now again (U.pV, k) = by «(kv)(U.7V, Idy v x ky), so up to
J, I have

(U, HloV,9)lr,e) = bx (kv)(U, Idu x fx)@(U.rV, Idy v xky)|(0.2vhz) = - - -

R—— [(UTV, IdU.TV X hx) [024] (U.TV,ICZU.TV X hy)](UTV,hz)

So @7 0Oz is also the identity. To complete the proof of the proposition, it suffices
to check that the maps ®z define a morphism of Mackey functors, which is clear.
So the maps Oz define also a morphism of Mackey functors, and © and & are
inverse isomorphisms. O

COROLLARY 4.5. Let G and H be finite groups, and U be a finite H-set-G. If
M and M’ are Mackey functors for G then

TU(M®MI) ~ TU(M)®TU(MI)
as Mackey functors for H, and this isomorphism is functorial in M and M’.

Proor. I will prove that there is an isomorphism of functors from Mack(G) x
Mack(G) to Mack(H)

([M, M7 Ty (M & M’)) ~ ([M, M) = Ty (M) & TU(M’))

Indeed, the previous proposition states an isomorphism of functors between the
restriction of those two functors to the subcategory P = PMack(G) x PMack(G).
But the objects of P are projective in C = Mack(G) x Mack(G), and any object
of C is the quotient of some object of P. Moreover P is closed under direct sums.

The left hand side functor above is right exact, because it is composed of Ty,
which is right exact, and of the tensor product, which is right exact (as any tensor
product over a ring, which it actually is. See [Bou97] Chapter 1). The right hand
side is composed of Ty x Ty, which is right exact, and of the tensor product. So
both sides are right exact, and isomorphic when restricted to P. Hence they are
isomorphic, by theorem 2.14. O
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4.5. Disjoint unions. The tensor induction Ty also behaves well with respect
to disjoints unions of bisets:

ProrosiTiON 4.6. Let G and H be finite groups. If U and U’ are finite H-
sets-G, then for any Mackey functor M for G

TUI_IU’ (M) ~ TU(M) ® TU’ (M)
and this isomorphism is functorial in M.

ProoOF. Here again, both sides are right exact functors in M. So it suffices to
check that their restrictions to PMack(G) are isomorphic.
But for any G-set X

Home ((7UT"), X ) = Homa (U UU', X) = Hom (U7, X) x Homg (U, X)
This gives an isomorphism

Touv (bx) = bHomg (U°r, X) x Home (U7, X) = PHomg (Uer, X) @ BHomg (Uror x) = - - -
=Ty (bx) @ Ty (bx)

which is easily seen to be functorial in X. So the proposition follows from theorem

2.14. (]

4.6. Direct sums. One can think of Ty (M) as a sort of U-th power of M.
Here is the corresponding “binomial identity”:

ProrosiTiON 4.7. Let G and H be finite groups, and U be a finite H-set-G.
For any Mackey functors M and M’ for G
Ty (M @ M') ~ = Indfj Ty (M) ® Ty_v (M)

V G-—invariant
V mod. H

(where Hy = {h € H | hV = V'}), and this isomorphism is functorial in M and
M.

ProoF. Both sides define functors from Mack(G) x Mack(G) to Mack(H).
The left hand side is clearly right exact, since it is composed of Ty and of the direct
sum, which is (additive!) exact. The right hand side is a direct sum of induced of
tensor products of tensor inductions. As induction is an exact functor, the right
hand side is also right exact. So again, it suffices to check that both sides are
isomorphic when restricted to PMack(G) x PMack(G).

But if X and X’ are G-sets, then there is a bijection

Homg (U, X U X') ~ L] Homg(V, X) x Homg((U — V)P, X')
VCU
V G—invariant
Indeed any ¢ : U — X U X' is determined by V = ¢~1(X), which is a sub-G-set of
U, and its restrictions to V and U — V', which are G-morphisms from V to X and
U —V to X' respectively.
Now keeping track of the action of H gives the isomorphism of H-sets

(4.10)

Homg (U, X U X') ~ I_I IndgvHomg(VOP,X) x Home((U — V)P, X')

VCU
V G—invariant
V mod. H



30 SERGE BOUC

But if K is a subgroup of GG, and Z is a K-set, it is easy to see that

This follows by taking direct sums from the case of a finite set Z. In that case for
any G-set Y

binag 7(Y) = b(Y x Ind§ Z) = b(Ind,G((ResIG(Y.Z)) = ...

.= (ResZb)(ResEY.Z) = by (Res%Y) = (Ind§ )bz (Y)

Now equation 4.10 gives the following isomorphism

b = Ind# b ~
Indg(Uep, XUX') = VGCBU nd7, OHome (Ver, X ) xHomg ((U—V)or, X1) = - ..
V G—invariant
V mod.H

H R
- L2, Indg, (bHomG(Vop,X) ® bHomG((U—V)OP,X'))
V G-—invariant
V mod. H

This isomorphism is functorial in X and X’, and this completes the proof of the
proposition. O

5. Relations with the functors Ly

5.1. Comnstruction of Ly. If G, H, and K are groups, if U is an H-set-G
and V is a K-set-H, then in [Bou96a), I defined the product V oy U by

VogU={(v,u) eV xU|Vhe H vh=v=>39g€G, hu=ug}/H

This is a (generally strict) sub-K-set-G of V x g U.

In particular, if U is finite, the product X +— U og X is a functor from G-set to
H-set, and those functors are exactly those preserving disjoint unions and cartesian
squares ([Bou96a] Théoréme 1). By composition, they give functors M — M o U
from Mack(H) to Mack(G).

Those functors between Mackey categories have left and right adjoints, de-
scribed in [Bou97] Chapter 9. I denote by Ly the left adjoint of the functor
M w— MoU. So Ly is a functor from Mack(G) to Mack(H). Let me recall some
notations and definitions:

DEFINITION 5.1. If X is a finite H-set, let Dy(X) be the following category:

e The objects of Dy(X) are the finite H-sets over X x (U/G). If (Y, f) is
such an object, I denote by fx the X-component of f, and by fu its U/G-
component. [ denote by U.;Y or UY the fibre product of U and Y over
U/G. It is an H-set-G, with action given by h(u,y)g = (hug,hy). To
simplify the notations, I view H\U.Y as a left G-set (it should really be
denoted (H\U.Y)P ).

o A morphism o : (Y, f) = (Y', f") in Dy(X) is a morphism of H-sets over
X x (U/G), such that moreover the morphism U.oc : UY — U.Y' is injective
on each H-orbit, that is

V(u,y) €eUY, Vhe H, hu=u, alhy) =a(y) > hy =y
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If (Y, f) is an object of Dy (X), then a G-set (Z,a) over H\U.Y is said to be
v-disjoint if the following condition holds

V(z,u,y) € Z x U XY, a(z) = H(u,y) = (u,z) €U og Z

(this last condition means that there exists an g € G with ug = u but gz # z).
If moreover M is a Mackey functor for G, I set

Qu(M)(Y, f) = M(H\U.Y)/ Y M.(a)M(2)

(Z,a)

where the sum runs through the G-sets (Z,a) over H\U.Y which are v-disjoint.
Then Qu (M) is a functor on Dy (X), with values in abelian groups. I set
CoM(X) =l QuM)(Y. )
(Y,f)EDu(X)
If (Y, f) is an object of Dy(X) and if m € M(H\U.Y), I denote by mqy ;) the
image of m in Ly (M)(X).

The correspondence X +— Ly (M)(X) can be turned into a Mackey functor for
H, denoted by Ly(M).
Morever, if § : M — M’ is a morphism of Mackey functors for GG, then set

Lu(0)(mey,5)) = 0moy (M), g

This gives a well defined morphism Ly (0) of Mackey functors for H from Ly (M)
to Ly(M'). More precisely:

THEOREM 5.2. ([Bou97] Theorem 9.5.2) Let G and H be finite groups, and
U be a finite G-set-H. The correspondence

M H[,U(M)

9 € HomMack(G)(M, M/) — ﬁU(G) € HomMack(H) (,CU(M), L:U(M/))

is a functor from Mack(G) to Mack(H), which is left adjoint to the functor N —
NoU.

COROLLARY 5.3. The functor Ly s right exact.

Proo¥. This is because it is additive and has a right adjoint: see for example
[Wei94] Theorem 2.6.1. O

5.2. Examples.

5.2.1. Induction and restriction. Let H be a subgroup of G. If U = G, viewed
as an H-set-G, then the functor N +— N oU is the induction functor Indg, and the
functor Ly is the restriction functor Res%. If U = G is viewed as a G-set-H, then
the functor N — N o U is the restriction functor Resg, and the functor Ly is the
induction functor Indg.

5.2.2. Inflation. Let N be a normal subgroup of G, and H = G/N. IfU = H is
viewed as an H-set-G, then the functor N — N oU is the inflation functor Inff (see
[TW90],[TW95]). The functor £y will be denoted by M + M?¥ (it is denoted
M* in [TW95]).
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5.2.3. Coinflation. Let N be a normal subgroup of G, and H = G/N. If
U = H is viewed as a G-set-H, then the functor N o U will be denoted by pg (it
is the functor 8' of [TW95] section 5). The functor Ly will be denoted by & (its
existence is mentioned in [TW95] and it is called 3).

The functor & can be described as follows (see [Bou97] 9.9.3): if X is a G-set,
let D& (X) be the following category:

e The objects of D& (X) are the G-sets over X.
e A morphism « : (Y, f) — (Y, f') in D (X) is a morphism of G-sets over
X, which is moreover injective when restricted to every orbit of N on Y.

Then if M is a Mackey functor for H, the correspondence (Y, f) — M(N\Y) is a
functor on D% (X), and

GONX) = D MNY)
(¥,})eDF(X)
5.3. The case U/G = .

LEMMA 5.4. Let G and H be finite groups, and U be a finite H-set-G. Then
for any G-set X

Lu(bx) = bvoex
Proo¥. This follows from the case of a finite G-set X, which is a remark at
the end of Chapter 9 of [Bou97]: indeed for any Mackey functor N for H
HomMack(H)(EU(bX); N) = HomMack(G)(bX; NOU) = (NOU)(X) = ...
[ — N(U oG X) = HomMack(H)(onGX; N)
The lemma follows, because all those isomorphisms are natural in N. O

ProrosiTION b.5. Let G and H be finite groups, and U be a finite H-set-G.
The following conditions are equivalent:

1. The functor 1y s additive.
2. The functors Ty and Ly are isomorphic.
3. The group G is transitive on U.

Proo¥r. First if Ty is additive, then for any G-sets X and Y
To(bxuy) ~ bHomg(Ueor,xuy) = T (bx by ) ~ Ty (bx) DTy (by) ~ ...

-+ 2 bHomg (Uor, X) P Homa (Uer,Y) = PHome (Uor, X )UHome (UoP,Y)
As the rank of the evaluation at {1} of by is the cardinality of X, this implies in
particular, if X and Y are finite trivial G-sets, that

(X + 1)1/ = X100 |
which forces |U/G| = 1. So 3) holds.

Obviously 2) implies 1), since the functors Ly are always additive.
Now if 3) holds, I claim that Homg (U, X) ~ U og X for any G-set X: choose
uin U, take ¢ € Homg (U, X), and consider the couple

0(p) = (u,p(u)) €U xg X

This does not depend on the choice of u, since by 3) any other choice is in the
G-orbit of u, say equal to ug, for ¢ € GG, and since

('ug,w(ug)) = (ug,g‘lso('lt)) = ('u,SO(U))
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Moreover if g € G fixes u on the right, then

ge(u) = p(ug™") = p(u)
This proves that # is a map from Homg (U, X) to U o X. It is a morphism of
H-sets, since for h € H

0(he) = (u, (he)(w)) = (u, p(h~"u)

Choose g € G such that h=tu = ug™! (or ug = hu), which is possible by 3). Then

(we(h'w) = (wp(ug™) = (w.90(w)) = (ug, 0(w)) = (hu, ¢(u)) = ho(¢)
Conversely, if (u,z) € U og X, define a map ¢ (u,z) : U — X by
0'(u,z)(v') =g 'z if g€G, v =ug

This map is well-defined by 3), and because (u,z) is in U og X. It is a map of
H-sets: if h € H, then choose gy € G with hu = ugy. Then

(h@'(u, m))(u') =6 (u, a:)(h_lu') =6 (u, m)(h_lug) = Hl(u,:b)(ugo_lg) =g gz
whereas @' (hu, z)(u') is given by
0' (hu, z)(u') = ' (ugo, z)(u') = g tgoz

since u’ = (ugo)gy 'y
Now 0'6(p) = ¢’ (u, @(u)) But for v’ € U

(. plw) () = g™ p(u) if g E€GC, ' = ug

So ¢’ (u, cp(u)) (u') = p(ug) = ¢(v'), and the map ¢’ o 6 is the identity.
Conversely
00" (u,z) = (u, o' (u, m)(u)) = (u, )
So @ and #' are mutually inverse isomorphisms.
Now for any G-set
T (bx) = bHomg (Uer,x) = broex ~ Lu(bx)
This is natural in X. As Ty and Ly are right exact, they are isomorphic by theorem
2.14. So 2) holds, and this completes the proof of the proposition. O
COROLLARY 5.6. Let G and H be finite groups, and U be a finite H-set-G.
Then for any Mackey functor M for G
1. If K s a subgroup of H
Resji Ty (M) ~ Ty sixcor

KxGopr

v (M)

2. If N is a normal subgroup of H, then

N
(10(M))" = Ty (M)
3. If N is a normal subgroup of a group K, and H = K/N, then
Ty (M) ~ T xxaory, (M)

K X
nfglGor

Moreover, these isomorphisms are natural in M.
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Proo¥. This is straightforward, using proposition 4.3, with V = H, viewed
as a K-set-H in case 1), and V = H viewed as a K-set-H in case 2), and V = H
viewed as an H-set-K in case 3). O

5.4. The products Ty o L. The previous corollary gives examples of com-
position Ly o Ty. The next proposition computes the composition Ty o Ly :

ProrosiTION 5.7. Let G, H and K be finite groups. Let U be a finite H -set-
G, and V be a finite K-set-H. If f : V°? — U/G is a morphism of H-sets, let
V.;.uaU denote the quotient set of the fibre product of V and U over U/G, by the
right action of H given by (v,u)h = (vh,h='u). If K; is the stabilizer of f in K,
then V.y gU is a finite K¢-set-G by k.(v,u).g = (kv,ug). Then for any Mackey
functor M for G

Ty o Lu(M) ~ ® Indi, Tv , v (M)
fERK\Hompy (Veor U/G) 4 '

and this isomorphism is natural in M.

ProoF. Both sides are right exact functors. So it suffices to check that their
restrictions to PMack(G) coincide.
So let M = bx, for some G-set X. The left hand side is

Ty o Ly(bx) ~ Tv (broex) = bHomp (Ver UosX)

Now as there is always a (unique) map px from X to the trivial G-set o, there is a
natural map vx = Uogpx from Uog X to Uoge ~ U/G, given by (u, z) — uG. So
the functor X — (U og X, vx) is a functor from the category G-Set of (arbitrary)
G-sets, to the category H-Set|y,q of (arbitrary) H-sets over U/G. Conversely, if
(Y, f) is an H-set over U/G, then the set H\U.;Y is a G-set, and moreover:

ProrosITION 5.8. Let G and H be finite groups, and U be a finite H-set-G.
The functor (Y, f) — H\U.;Y from H-Setly,q to G-Set is left adjoint to the
functor X — (U og X, vx).

Proo¥F. The corresponding statement for finite sets is proposition 9.1.1 of
[Bou97]. The proof extends verbatim to arbitrary sets: the unit of this adjunc-
tion is denoted by v (it it the reason for the word v-disjoint in definition 5.1), and
defined for an H-set (Y, f) over U/G by the morphism

Viy f) Y =5 U og (H\UfY)

given by vy 5)(y) = (u, H(u, y)) if f(y) = uG.
The counit of this adjunction is denoted by 5. It is defined for a G-set Z by
the map
nz i H\U.,,(Uog Z) = Z

defined by nz (H(u’, (u, z)) =h~1'zif h € H is such that «' = uh. O

This result means that there is a one to one correspondence between the set of
morphisms of H-sets ¢ from VP to U og X, such that v o ¢ is a given morphism
f from V°P to U/G, and the set of morphisms of G-sets from H\U.;V to X. In
other words

Hompg (VP,U o X) = |_| Homg (H\U.;V, X)
feEHompyg (Ver U/G)
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Keeping track of the action of K gives
Homp (VU og X) = L] Indj, Homg (H\U.;V, X)
feK\Homp (V°r,U/G)
Thus

~ K S
PHomss(Vor Voo X) = fEK\Homia(VOP,U/G) e, bhomo (1\U. V. )

This isomorphism is natural in X. This completes the proof, since with the nota-
tions of the proposition 5.7, the map (u,v) — (v, u) induces an isomorphism

H\U.fv ~ V.fyHU
of K;-sets-G. O

ProrosITION 5.9. Let G and H be finite groups, and U be a finite H-sel-G.
Let X be a G-set and M be a Mackey functor for G. Then there is an isomorphism

Ty (Mx) ~ Ty (M)tome (Uor, )
natural in M.

ProOOF. Here again its enough to check the isomorphism for permutation func-
tors. But if Y is a G-set, it is clear that (by)x is isomorphic to by xx. As

Homg(U?,Y x X) ~ Homg(U?,Y) x Homg(U?, X)

1t follows that

Ty ((bY)X) = (bHomG(UOP’Y))HomG(U"pyX)

so the result holds for permutation functors, and the proposition follows.i O

REMARK 5.10. This proposition is also a consequence of proposition 5.7 in the
case of a finite G-set X: let X = G x X, viewed as a G-set-G by g.(¢",2).¢" =
(99'¢",g.x). Then one can prove that the functor M — Mx is isomorphic to the
functor £: this is because it is self adjoint, and moreover for any G-set Y, one
has X og Y ~ X x Y.

6. Direct product of Mackey functors

6.1. Definition. There is a reasonable definition of the direct product of
Mackey functors:

DEeFINITION 6.1. Let G and H be finite groups. If M is a Mackey functor for
G, and N a Mackey functor for H, I denote by M X N, and I call direct product
of M and N, the Mackey functor for G x H defined by

MRN =" (M)e.5*H(N)
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6.2. Examples.
6.2.1. Direct product of permutation functors. The direct product of two per-
mutation Mackey functors is a permutation Mackey functor:

LEMMA 6.2. Let G and H be finite groups. If X 1s a G-set and 'Y s an H -set,
then

bx Wby ~ blnngHXxInngHY

Proo¥. This follows from the fact that
LgXH(bx) = bInngHX
by lemma 5.4, and from the isomorphism
bingoxr x ® binsoxmmy = by xa x oy

6.2.2. Extension of coefficients. As a special case of direct product of Mackey
functors, I will look at the case G = {1}: the category Mack({1}) is equivalent
to the category of abelian groups, because a Mackey functor for the trivial group
is completely determined by its value on the trivial set, which is just an abelian
group. Conversely, any abelian group A defines a Mackey functor for the trivial
group, still denoted by A, which value A(X) on the finite set X is equal to the
group AX) of functions from X to A. If f: X — Y is a map of finite sets, then
A*(f) + A(Y) = A(X) is the composition with f, and A.(f) : A(X) — A(Y) is
defined by

z€f~1(y)

ProrosiTION 6.3. Let G be a finite group. If M s a Mackey functor for G,
and A is an abelian group, then after identification of {1} x G with G, for any finite
G-set X

(AR M)(X) = A®zM (X)
and for any map of finite G-sets f : X =Y
(ABM).(f) = A2zM. (/) (AR M) (f) = A95M* (f)

In other words, the functor A X M is just the functor M, “with coefficients in
A”.

Proor. First consider the case A = Z. This is just the Burnside functor for
the trivial group. But L{Gl}(b) = b by lemma 5.4, and 1 have

ZRM =b@.S(M)=bOM ~ M

More generally, if S is any set, then the free abelian group Z(%) is the functor bg
for the trivial group. So

G (75 = S M ~
vy (Z2) = bingg, s © M = S?SM

So its value on any G-set X is Z(%) @ M(X). Now for a fixed Mackey functor M,
the functor A — AKX M is clearly additive and right exact. Choosing a resolution
of A by free Z-modules

zT 5725 5450
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leads for any G-set X to the exact sequence
(ZDRM)(X) = (2O RM)(X) = (AR M)(X) =0
This sequence is isomorphic to
zM o M(X) =75 @ M(X) = (AR M)(X) = 0

This proves that (AR M)(X) ~ A® M(X), and this isomorphism is natural in M
and A. The proposition follows. O

6.3. Associativity. The direct product of Mackey functors is associative:

ProrosiTIiON 6.4. Let G, H, and K be finite groups. If M is a Mackey functor
for G, if N i1s a Mackey functor for H and P is a Mackey functor for P, then after
identification of (G x H) x K with G x (H x K), there is an isomorphism

(MEN)RP~MKX(NK P)
which s natural in M, N and P.

ProoF. Indeed, by definition
(M BN) B P = G (1§ (M) & (N)) 4 (P)
Let U = G x H, viewed as a (G x H x K)-set-(G x H). Then
G (M) &GN ) = Ty (1§ (M) &1 (V)
By proposition 4.4, this is also
Ty (1§ (M) & Ty (155H (V)
Let V = G, wiewed as a (G x H)-set-G. Then
Ty (175 (M) = Ty o Ty (M) = Toagmv (M)
But U ogxp V is the set G, viewed as a (G x H x K)-set-G. Thus
Ttoaynv (M) = g (M)
A similar argument shows that
Ty (4§77 (N) ) = <5 ()
Finally
(MEN)E P~ (LngxK(M) & LngxK(N)) & 1SXHXE ()
On the other hand
M (N B P) = SXHXK(p) 6 <Lfl><H><K(N) & LIG(xHxK(N))

Now proposition follows from the associativity of tensor product (see [Bou97]
Proposition 1.9.1), and from the naturality of the above isomorphisms. O
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6.4. Tensor induction of direct products.

ProrosiTiON 6.5. Let G, H, and K be finite groups, and U be a finite K -set-
(Gx H). Then U/H is a finite K-set-G and U/G is a finite K-set-H. If M is a
Mackey functor for G and N s a Mackey functor for H, then

and this isomorphism s natural in M and N .

ProoF. Let V = G, viewed as a (G x H)-set-G, and W = H, viewed as a
(G x H)-set-H. Then by proposition 4.4
Ty (M B N) = Ty (T (M) & T () ) = (To 0 Ty (M) & (T o Ty (V) )
But moreover
TU OTv(M) ~ TUXGva(M)
and as U Xgugy V ~ U/H as K-set-H, this gives
TU OTv(M) ~ TU/H(M)
A similar argument shows that
TU [¢] Tw(N) ~ TU/G(N)
and the proposition follows. O

6.5. Tensor product from direct product. The tensor product of Mackey
functors can be recovered from the direct product, by diagonal restriction:

ProOPOSITION 6.6. Let G be a finite group, identified with the diagonal subgroup
A(G) of G x G. Then if M and N are Mackey functors for G

Resy/G(MBN)~M &N

and this isomorphism is natural in M and N.
ProoF. Indeed the restriction to A(G) can be viewed as the tensor induction
Ty for the set U = G x G, viewed as a A(G)-set-(G x G). Now by proposition 6.5
Ty (M B N) = Ty)a(M) & Tyya(N)

Here the first U/G is relative to the second factor of G x G, and the second is
relative to the first factor. Anyway, those two G-sets-G are isomorphic to G, with
its left and right action by multiplication. So Ty, ¢ is the identity functor, and the
proposition follows. O

6.6. Identification of the direct product. The direct product of Mackey
functors can be computed as follows:

PROPOSITION 6.7. Let G and H be finite groups, and X be a finite (G x H)-set.
If M 1s a Mackey functor for G, and N s a Mackey functor for H, then

(6.11) (MBN)(X) = (& MH\Y)oN(G\Y))/T
y&x
where (Y, ¢) is a finite (G x H)-set over X, and J is the submodule generated by

M.(H\f)(m) ®n' —m @ N*(G\[)(n) Vm e M(H\Y), n’ € N(G\Y")
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whenever f 1 (Y,¢) = (Y, ¢') is a morphism of (G x H)-sets over X, which is
injective when restricted to every H-orbit, and by the elements

M*(H\f)(m')@n —m' @ N.(G\f)(n) vm' € M(H\Y'), n € N(G\Y)
whenever 1 (Y, @) = (Y',¢') is a morphism of (G x H)-sets over X, which is
injective when restricted to every G-orbit

PrROOF. Let K = G x H. Recall that for a K-set Y, the value of :5(M)(Y) is

EONY) = lm M(H\Z)
(2,1)eDE(Y)
where DE (V) is the category with K-sets over Y as objects, the morphisms being
the morphisms of K-sets over Y which are injective when restricted to each orbit
of H. If m € M(H\Z), denote by m(y ;) its image in E(Y).
Let

(ME N)(X) = (@& MH\Y)NG\Y))/T
Y5X
If (Y,¢) is a finite K-set over X, if m € M(H\Y), and n € N(G\Y), I denote by
[m & n]y,,) the image of m ® n in (M ®' N)(X).
As
(MBN)(X) = (&(M) & (N)(X) = (& EM)HY) @ (N)(G\Y))/K
Y5X

for a suitable submodule K, I can try to define a morphism @ from (M R’ N)(X)
to (M ® N)(X) by

@ (ImBnlrp)) = [mor.se) © novsan)ive

This is possible if J is mapped to zero. So let f: (Y, ¢) — (Y, ¢’) be a morphism
of K-sets over X, which is injective on every H-orbit. Let m € M(H\Y) and
n' € N(G\Y'). Now

P ([m X N*(G\f)(”')](Y,w)) = [m(y 1dy) @ N*(G\F) (') (v 1ay)](v.0)

But N*(G\f)(n')(y,1ay) = Lg(N)*(f)(n'(Yudw)), so in (M B N)(X), I have

Y

® ([m X N*(G\f)(”')](y,w)) = [& (M)u(£)(my,1ay)) By rar v o0

As LIG((M)*(f)(m(deY)) = mqyy) and as f is supposed to be injective on every
H-orbit, it is a morphism in DE (X) from (Y, f) to (Y’, Idy:). Thus in (£(Y"), 1
have

mey, gy = Mo (H\f)(m) (v 14,1
This gives

@ (BN G\ (0 Niv ) = ML (\F)m) v 1y Sy gy Jiv ) = -

= O([M.(H\F) () B ')y 1)

A similar argument obtained by reversing the roles of M and N shows that @ is

well-defined.
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I will now define a map © from (M K N)(X) to (M X' N)(X): let (Y, ¢) be
a K-set over X. If (Z, f) is an object of DE(Y), if m € M(H\Z), if (T,g) is an
object of DE(Y) and N € N(G\T), I build the fibre product Z.7°

7T 25 7

S

T —— Y
g

and then I set
O([mz,5y @ ez g)lv,e)) = [M*(H\7z)(m) B N*(G\77)(n)] (27,007 0r2)

This map is also well-defined: T must check that © is compatible with the inductive
limits in the definition of ¢, and that K is mapped to zero.

Suppose first that I replace mz sy by M.(H\a)(m)(z: sy, for some morphism
a:(Z,f) = (Z',f) in DE(Y). Then

@<[M* (H\a)(m)(z: sy ® n(T,g)](Y,@) =...
o= [MT(H\mz )M (H\a)(m)K N*(G\WT)(n)](Z’.T,Lpof’owZ,)

There is a commutative diagram

T

A

Tz
T

\KT
7!
r
g

A
A

Z.
Tr
T

Y

Now it is clear that the square

7T 25 7

) J-

Z7T —— 7

7rZ/
is cartesian, so the square

mzr 2 oz

H\a.Tl lH\a

H\Z'T —— H\Z'

H\WH\Z/

is also cartesian by Lemma 9.3.3 of [Bou97], because « is injective on the H-orbits.
Now it follows that

M*(H\mz)M.(H\e) = M.(H\a.T)M*(H\r7)
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Moreover, the morphism «.7' : Z.T' — Z'.T is injective on every H-orbit, because
« is. Thus in (M R’ N)(X), I have

Mo (H\a.TYM™(H\7z) & N*(G\7r)(n)](z' .7 0ot '0n ) =
o= [MT(H\mz) RN (G\a. T)N*(G\77) (n)](2.7,00 for )
But
N*(G\a.T)N*(G\mr) (n) = N*(G\mr)(n)
This proves that

© ([M*(H\a)(mhz',f') ® ”<T,g>]<w>) =0 ([m<z,f) ® “<T,g>]<w>)

and a similar argument shows that © is compatible with the relations coming from
the inductive limits.

Now suppose that « : (Y, ¢) — (Y, ¢') is a morphism of K-sets over X. Let
(Z, f) be an object of DE(Y) and m € M(H\Z). Let (T',g') be an object in
DE(Y"), and n' € N(G\T). In (M ® N)(X), I have
(6.12) [m(z,5) @ uti (N)* (@) (ngr 1) (v,) = [6 (M) < (@) (mz,1)) @ s gn)v7,61)
I have to check that both sides have the same image in (M K’ N)(X). But

16 (M)« (@)(mz,5)) = m(z,a0)
Moreover, if the square
T —— T

Ll

Y —— Y/

o
is cartesian, then

vt (N (@) (e o)) = N*(G\a) (n')(z.9)
The image by © of the right hand side of (6.12) is
(6.13) [M*(H\mz)(m) B N*(G\mp)N*(G\a)(n")] (2.7, pogorr)

Now the square
P/ N

] s
7 —— Y

is cartesian, because it is composed of two cartesian squares. So the image by © of

the left hand side of (6.12) is
[M*(H\7z)(m) ®N*(G\(a o mr))(n')](z.1,p%0g'0a0mr)

This is equal to (6.13). So © is well-defined.

It is clear that © o @ is the identity: indeed, if (Y, ) is a K-set over X, if
m € M(H\Y) and n € N(G\Y), then

O 0 &([m B n](y,)) = Olmey,1a) @ n(y,1a)lv,e) = [M B nlye)

since Y.Y = Y. Moreover, if (7, f) and (T,g) are any K-sets over Y, if m €
M(H\Z) and n € N(H\T), then in (M K N)(X)

[m(z,f) @ n(T,g)](Y,<p) = [LIG{(M)*(f)(m(Z,Id)) @ n(T,g)](Y,g;) =
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o= [mz 19 ®Lg(N)*(f)("(T,g))](Z,WOI) =
oo = [z 10y @ N*(G\7r) (n) (2.7 7)) (Z,005) = - --
= [z @ (V) (22) (N (G\R2) (0) 2.1 100 ) z.05) = -
= [MT(H\7z)(m) (2.7 145 7) @ N (G\77) (1) (27 1d5 1)) 0)
Thus ® o O is also the identity, and this proves the proposition. O
From now on, I will identify (M ® N)(X) with the right hand side of (6.11).
COROLLARY 6.8. Iff : X — X' is a morphism of (G x H)-sets, then

(M8 N (0) ([m B n)(yg)) = [m B )y gop)
If (Y, ¢') is a (G x H)-set over X', if m' € M(H\Y') and n' € N(G\Y'), then
(1 8 NY* ([ Bl o)) = (M (H\a) (') B N (G\a) ()]
where Y, ¢, and a are defined by the cartesian square

y —2 5 v/

T

X — X'
[

Proo¥. This follows from straightforward translations, using the isomorphisms
® and © of the proposition. O

REMARK 6.9. Those identifications give an explicit form of the isomorphisms
of proposition 6.3
(ARM)(X)~ A M(X)
Just map a @ m € A ® M(X) to [A*(px)(a) ®m](x 1dx) € (AR M)(X), where
px : X — e is the only possible map. Conversely, map [a ® m]y ) to

Y aly) ® Mu(@)M.(iy) M* (iy) (m)
yeG\Y
where i, : G/Gy = Y is defined by i, (9Gy) = gy-
REMARK 6.10. Recall from [Bou96b] Section 3 the following notations: if L

is a subgroup of G x H, denote by G' = p1(L) (resp. H' = p2(L)) the projection
of L on G (resp. on H). Let

ki(L)={9€G|(g,1) € L} ko(L)y={he€ H|(1,h) € L}
Then k;(L) ap;(L) for j = 1,2, and the quotients K =p;(L)/k1(L) and p2(L)/k2(L)

are isomorphic. Let s : G’ — K be the canonical surjection. Then there exists a
surjection t : H' — K such that

L={(g,h) € G"x H' | s(g9) = t(h)}

The previous identification of M XN gives the following evaluation at the subgroup
LofGx H:

(MR N)(L) = <Keg9LM(p1 (K)) ® N(pQ(K))) 17
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where J is the submodule generated by

D men—merfn for K'CK, ky(K') = ky(K)
Tﬁig?)m @n—me tﬁjﬁﬁ?)n for K'C K, ki(K') = ki(K)

rm@yn—m@n for (z,y) €L

6.7. Wreath products. Let G be a group, and n be a positive integer. 1
denote by G1 S, the wreath product of G with the symmetric group S,: it is the
semi-direct product of G" and S,, for the action of S, by permutations of the
factors of G™. There is a more intrinsic presentation of those wreath products:

ProrosiTiON 6.11. Let G be a group, and E be a free right G-set. If n =
|E/G| is finite, then Autg(E) ~ G1S,.
Proor. Choose a system of representatives Q of F/G. Then as a right G-set
E~QxG
where G acts trivially on Q. Now if § € Autg(Q2 x G)
Yw e Q, Vg €G, O(w,g9) =0(w,1)g

so there exists a map v : G — Q and a permutation ¢ of 2, such that

0w.9) = (7). 7(0)s)

Conversely, if ¥ € G and ¢ is a bijection of Q, this formula defines a G-auto-
morphism of Q x G. If |Q] = n, this states a bijection between Autg(Q x G) and
G 1 S, which is easily seen to be a group isomorphism. O

DEeFINITION 6.12. IfG is a finite group, and n is a non-negative integer, define
MB" as the Mackey functor for G* equal to the Burnside functor for the trivial
group if n =0, and to M" 'R M ifn > 1.

Note in particular that A®* ~ M.

ProPOSITION 6.13. Let G be a finite group, and E be a finite free right G-set.
Then if |E/G| = n, and if H = Autg(FE), the group H is isomorphic to G1.S,, and
the set E is a finite H-set-G. Then for any Mackey functor M for G

Resg. Tp(M) ~ M®"
Proovr. It follows from corollary 5.6 that
ResgnTe (M) = TResgn ygor 2(M)

Now the restriction of F to G x G is the disjoint union of n-copies of G: more
precisely, if G(i) is the i**-factor of G

Resgnygor E = I_I Infgzsfg;,,(?
i=1
It follows that
ReSGnTE(M) ~ i§1 T fg(nz)XxGCj:P G(M)
But moreover
an
Tigomxaor (M) = LG(i)(M)

G(i)xGoP
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An easy induction argument shows that
ME" =18 (M) ® ... © 1y, (M)
and this completes the proof of the proposition. O

REMARK 6.14. Suppose that H is a subgroup of G, of index n. Let £ = G
viewed as a free right H-set. Then |E/H| = n. Moreover, the group G acts on the
left on E by multiplication, and this action commutes with the right action of H.
This gives a morphism G — Auty (F) ~ H 1S, this is the Frobenius morphism.

In that case, the functor Tg certainly deserves the name of tensor induction,
and could be denoted by Ten$%.

7. Tensor induction for Green functors
7.1. Green functors. Recall the following definition (see [Bou97] Chapter 2)

DEFINITION 7.1. Let R be a commutative ring. A Green functor A (over R)
for the group G is a Mackey functor (over R) endowed for any G-sets X and Y of
bilinear maps

AX) x AY) =2 A(X xY)
denoted by (a,b) — a X b which are bifunctorial, associative, and unitary, in the
following sense:
o (Bifunctoriality) If f : X — X' and g : Y = Y’ are morphisms of G-sets,
then the squares
AX) x A(Y) —— A(X xY)
Apxants) | |4-trx0
AX') x AY') —— A(X' xY)

X
AX) x A(Y) —— A(X xY)
aipxato)| [a xa
AX') x A(Y') —— A(X' x Y

X
are commutative.

o (Associativity) If X, Y and Z are G-sets, then the square

A(X) x AY) x A(Z) 22002000 4(x) x A(Y x 2)

(x)xIdA(Z)l lx

AX xY) x A(Z) — AX xY x 2)

X
is commutative, up to identifications (X XY )xZ ~ X xY xZ ~ X x (Y x 7).
o (Unitarity) If e denotes the G-set with one element, there exists an element
€ € A(e) such that for any G-set X and for any a € A(X)
Ac(px)(a xe) =a = As(¢x)(e X a)

denoting by px (resp. qx ) the (bijective) projection from X x e (resp. from
ex X)toX.
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If A and B are Green functors for the group G, a morphism f (of Green functors)
from A to B is a morphism of Mackey functors such that for any G-sets X and Y,
the square

AX) x A(Y) —— A(X xY)

fXXfYJ' J,IXXY

B(X) x B(Y) —— B(X xY)

X

s commutative.
If moreover f, : A(e) — B(e) maps the unit of A to the unit of B, then I will say
that f s unitary.

Equivalently, a Green functor A (over Z) can be defined as a Mackey functor
equipped with morphisms

piADA— A e:b— A

satisfying the usual conditions of associativity and unitarity: the following diagrams
are commutative

. é R R 1 . 1& R
ASASDA L2y 4% A b®A&>A®A& &b
7.14 51 [
(7.14) “®l l n T n
AA —— A
I
A

Here 7 is any of the canonical isomorphisms b@ A ~ A ~ A®b.

Similarly, if A is a Green functor for GG, an A-module M is a Mackey functor
equipped with a morphism p : A® M — M, such that the following diagrams are
commutative

. . @ . . 1 .
AGAGM 2% Ao M oM =25 Ao m
(7.15) p@ll l“ ) .

AoM —— M
: M
I will denote by A-Mod the category of A-modules.

7.2. Tensor induction. Tensor induction maps Green functors to Green func-
tors:

ProOPOSITION 7.2. Let G and H be finite groups, and U be a finite H-set-G.
1. If A is a Green functor for G, then Ty (A) is a Green functor for H.
2. If M is an A-module, then Ty (M) is a Ty (A)-module.

3. The correspondence M — Ty (M) is a (generally non-additive) right ezact
functor from A-Mod to Ty (A)-Mod.

ProoFr. This is clear, since Ty commute with tensor products, and maps the
Burnside functor to the Burnside functor. So the image by Ty of the diagrams
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(7.14) give commutative diagrams

To(A4) & Tu(4) & Ty (4) 2700, 7 (4) & Ty (4)
Tuw)@ll lmu)
Ty (A) & Ty (A) o Ty (A)
b& Ty (A) Eo! Tu (4) & Ty (A) 10Tu(e) u(A) &b
7 Ty (p) U
Ty (A)

So Ty (A) is a Green functor.

Similarly, if M is an A-module, then the images of the diagrams (7.15) give
a structure of Ty (A) module on Ty (M). By definition, the correspondence M —
Ty (M) is a right exact functor. O

REMARK 7.3. There is a similar result for the functors Ly (see [Bou97] Propo-
sition 10.3.2). In the case U/G = o, I have seen that 7y = Ly. One can check that
the two structures of Green functor coincide in this case.

REMARK 7.4. If G and H are finite groups, if A is a Green functor for G and
B is a Green functor for H, then AKX B is a Green functor for G x H: this follows
from the fact that LgXH(A) and LfIXH(B) are, and that the tensor product of Green
functors is a Green functor (see [Bou97] Proposition 6.3.1).

7.3. Examples.

7.3.1. Extension of coefficients. Let G and H be finite groups. If R is a com-
mutative ring, then a Mackey functor over R for G is just a module over the Green
functor

REb~ .5 (R) @b~ {4 (R)
If U is a finite G-set-H, then Ty (M) is a module over the Green functor
Ty (RRb) > Tyja(R) @ Tuyq1y(b) = Tuja(R)

This functor Ty/g(R) depends only on R and U/G, which is just a finite H-set.
More generally, if A is an abelian group, and V is an H-set, the functor Ty (A) is
a Mackey functor for H, that may be quite complicated, even if A is cyclic:

PRrROPOSITION 7.5. Let n be an positive integer, and Q be a set of cardinality
n. If H is a finite group, and V is a finite H-set, then Ty (Z/n7Z) is the quotient
of the Burnside functor b for H by the subfunctor generated by the elements QY =
Homy1y (W, Q) € b(Hw ), where W is a non-empty subset of V.

PrROOF. Let 0 — Z 5 Z — Z/nZ — 0 be the standard resolution. As Mackey
functors over the trivial group, it can be viewed as

0= by Bby—Z/nZ =0
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The {1}-poset over e x e defining the morphism n : by, — b, is just the discrete set
Q with n elements. Now Ty (Z/nZ) is defined by the following exact sequence
bHom{l}(V,o;o) — bHom{l}(V,o) — TV(Z/nZ) — 0
This is also
bHom{l}(V,o;o) - b= Tv(Z/nZ) —0

Evaluation at the trivial H-set gives
b(Homy1(V, e;0)) = b(e) = Ty (Z/nZ)(s) = 0

Now an element ¢ of Homyq}(V, e; e) is completely determined by the preimage W
of the first point, which must be non-empty. If K is a subgroup of H, then ¢ in
invariant by K if and only if W is. So the H-sets /K — Homyq}(V, e;e) are in
one to one correspondence with the K-invariant non-empty subsets of V', and they

generate b(Hom{l}(V, o o)) as K runs through the subgroups of H. To find the
image of these elements in b(e), I have to build pull-backs
T — Hom{l}(V,Q;o)

! L

HK —— Hom{l}(V, o 0)
@

Now if ¢ is associated to the subset W of V', the pull-back T is isomorphic to
T~ Ind#q! (go(K))

Moreover ¢~ * (go(K)) is the set of maps §:V — QU e, such that §(W) C Q, and
B(V — W) = e. So it is isomorphic to Homyq} (W, Q). Thus

Indfa=! (go(K)) = Indff Resw QW
Now the proposition follows, since for any subgroup L of H, the module
Ty (L) = (Res Tv)() = Tregrv (o)
can be computed by the previous procedure. O

EXAMPLE 7.6. Suppose H = Z/pZ, for a prime p, and V = H, acted on by
multiplication. Then if § # W C V| either Hy is trivial, or Hyr = H and W = V.
This proves that Ty (Z/nZ)(H) is the quotient of b(H), generated by H/H and
H/{1}, by the submodule generated by the elements

n? —n

nH/H +

H/1 and nH/1

whereas Ty (Z/nZ)(1) is the quotient of b(1) ~ Z by n{1}/{1}. So the evaluation
of Ty (Z/nZ) at the trivial subgroup is always Z/nZ. Its evaluation at H is the
quotient of Z?2 by the submodule generated by (n,d) and (0, n), where d is the g.c.d
of n and 22=2 equal to n if n is prime to p, and to n/pif p | n. So if n is prime to
p, the functor Ty is just Z/nZKb. But if p | n, then

Ty (Z/nZ)(H) = Z/(n/p)Z x Z{ (np)Z

This example shows that Ty (R) need not be a Mackey functor over R, even if
R = Z/pZ for a prime p. However, there is a simple case:
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COROLLARY 7.7. Let n be a positive integer, and H be a finite group. If V is
a (non-empty) finite H-set, then
1. If n is prime to the order of H, then
Tv(Z/nZ)~Z/nZRK b

2. Let h be the least integer such that if Hi C Hs... C Hy = H s a strictly
increasing sequence of subgroups of G, then Hy is of order prime to n. Then
Ty (Z/nZ) is a Mackey functor over Z/n"Z.

ProoF. The first assertion is proved by induction on the order of H. If H is
trivial, this is true, because Ty (Z/nZ)(1) is a tensor product of copies of Z/nZ,
thus isomorphic to Z/nZ. This is because the functor 7, is the identity functor for
the trivial group. Note next that QW1UWz = QW1 » QW2 in b(H). Now if W is any
orbit of H on V, then Q" can be written as

(7.16) OV =nH/H+ > H/H;

!
where the H; are proper subgroups of H, equal to stabilizers of non-constant func-
tions f from W to Q. Moreover, the cyclic group C = Z/nZ acts on Q" and
this action commutes with the action of . The stabilizer of f € Q" in C x H is
the direct product D x K of its projections on C' and H, because C' and H have
relatively prime orders. Now D stabilizes f, so D = 1.

Moreover, if ¢ € C and f € QW | then the stabilizer of ¢.f in H is equal to the
stabilizer of f, and c.f cannot be in the orbit of f under H if ¢ # 1. This proves
that the coefficient of H/H in the sum (7.16) is a multiple of n, so Ty (Z/nZ)(H) is
the quotient of b(H) by a submodule I contained in nb(H). Moreover, by induction
hypothesis, the element nH¢/Hy is zero in Tv (Z/nZ)(Hy). As

nH/H; = Indjy, (nHy/Hy)
this element is zero in Ty (Z /nZ)(H). SonH/H = 0in Ty (Z /nZ)(H), and nb(H) C
1. So
Tv(Z/nZ)(H) = b(H)/nb(H) ~ (Z/nZR b)(H)
This proves the first assertion.

The second assertion follows by induction on h: the case h = 1 is the first
assertion. All I have to show then is that 7Ty (Z/nZ)(H) = 0. But this is clear,
since multiplying equation (7.16) by n”~1 gives

n"H/H+Y n"H/Hy=0 in Ty(H)
!
By induction hypothesis, for each f in this sum, [ have n*=YH;/H; = 0in Ty (Hy),
son"H/H = 0, as required. O

7.3.2. Direct product of Green functors. If A and B are Green functors for the

group G, then A® B is also a Green functor for G (see [Bou97] 6.3). The product

on A ® B follows from associativity and commutativity of tensor product of Mackey
functors, which give the following morphisms

(A©9B)®(A®B) 5 A®@BO®A®B S ARAQBOB - A®B
Similarly, the unit of A ® B follows from the isomorphism b& b ~ b

bbb A8E A5 B
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The following lemma deals with similar morphisms between directs products:

LEMMA 7.8. Let G and H be finite groups.
1. If A and B are Mackey functors for G, if C' and D are Mackey functors for
H, then there are isomorphisms
(A®B)R (C® D) ~ (AR C)®(BR D)

of Mackey functors for G x H, which are natural in A, B, C, and D.
2. There is an isomorphism

bXb~b
of Mackey functors for G x H.

ProoF. The first assertion follows from associativity and commutativity of
tensor product, and of corollary 4.5, since

(A®B)R(C& D) =:5"" (A6 B)@. 5 (C&
..:LgXH(A)@)LgXH(B)@LH xH .
S (A @ B (C) 0. S (B) @8 (D) ~ (ARC) ©(BR D)
The second assertion is also clear, since
bRb=1SH ()@ S*H () ~bDb~b

Note that in 6 X b ~ b, the first b is the Burnside functor for G, the second is the
Burnside functor for H, and the third is the Burnside functor for G x H. O

| 2

D)
()& ‘”H()

~

Now if A is a Green functor for G, and H is a Green functor for H, then the
morphisms

(ARB)&(ARB) 3 (A®A)R(B&B) » AR B

b bRbARCE 4w B

turn AKX B into a Green functor for G x H. Similarly, if M is an A-module and N
is a B-module, then M KX N has a natural structure of A X B-module. Moreover,
the isomorphisms of corollary 4.5 and proposition 6.5 are isomorphisms of Green
functors:
ProrosiTiON 7.9. Let G, H, and K be finite groups.
1. If A is a Green functor for G, if B is a Green functor for H, and U is a
finite K-set-(G x H), then there is an isomorphism of Green functors
2. If A and B are Green functors for G, and if U is a finite H-set-G, then
there there is an isomorphism of Green functors
Ty (A® B) ~ Ty (A) @ Ty (B)
3. If A is a Green functor for G, and U and U’ are finite H-sets-G, then there
there is an tsomorphism of Green functors
TULJU’(A) ~ TU (A) ® TU/(A)
4. If A is a Green functor for G, and if U s a finite H-set-G, then there is an

tsomorphism of Green functors

TU (AOp) ~ TU (A)Op
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Proor. The two first assertions follows from the definition of the Green functor
structure on Ty (AR B) and Ty (A @ B). The third one follows from the the following
diagram

Tyuw (A) & Tuuw: (A) —=— Tyur(A® A)
Ty (A) ® Ty (A) é Ty (A) ® Ty (A)
Ty (A) ® Ty (A) g Ty (A) © Ty (A) [ Touo (p)
Ty(AG A) gTUI(A® A)
Ty (A) |j Tiri(A) s Tyur(4)

where p : A® A — A is the product of A. This diagram is commutative, because
for any G-sets X and Y, the following diagram is commutative

brom ruu’, x) ® bHomg (LU, X) ——bHomg(ULU, X xY)

!
bHome (U, X) @ PHome (U7, X) @ bHome (U,Y) @ bHoms (U7,Y)

! 1d
bHome (U, X) @ PHome (U,Y) @ PHome (U7, x) @ bHome (U7,Y)

!

bHome (U, X xY) © DHomg (U7, X xY) ———bHoms (VLU X xY)
For last assertion, recall that the product on A°? can be defined by
ARAS A®A— A

where o denotes the natural isomorphism expressing the commutativity of the ten-
sor product. Now the assertion follows from the following commutative diagram,
where M and N are Mackey functors for G

Ty (M &N) ——— Ty (M) & Ty (N)
TU(U)J' Jra
Ty (N @ M) — Ty (N)® Ty (M)

To check the commutativity of this diagram, it suffices to suppose M = bx and
N = by, for some G-sets X and Y. In that case, it follows from the commutativity
of the following square

Homg (U, X x Y) —=— Homg(U?, X) x Homg(U,Y)
HOch;(UOP,s)J' va

Homg (U?,Y x X —— Homg(U,Y) x Homg(U®P,Y)

where s is the bijection exchanging the factors of a product of sets. O
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8. Cohomological tensor induction

8.1. Cohomological Mackey functors. Let G be a finite group, and R be a
commutative ring. A Mackey functor M for G over R is called cohomological if for
any subgroups K C H of GG, the composition ¢ is multiplication by the index
[H : K]. This is equivalent to say that M is a module over the Green functor F' Pgr
(see [TW95] Proposition 16.3). The functor F Py is defined more generally for an
RG-module V' and a finite G-set X by

FPV (X) = HOHle(RX, V)

where RX is the permutation RG-module associated to X (see [Bou97] 4.5.2).
Clearly FPr ~ R x F Py, so a Mackey functor over R is cohomological if and only
if it is cohomological as a Mackey functor (over Z).

LEMMA 8.1. Let G be a finite group, and M be a Mackey functor for G. Then
M admits a biggest cohomological quotient M ", given by

M — FP, o M

Proor. This follows from the alternative description of the tensor product of
Mackey functors (see [Bou97] Proposition 1.5.1): if M and N are Mackey functors
for G, if H is a subgroup of GG, then

(N & M)(H) ~ (KeCaH N(K)® M(K)) /T

where J is the submodule generated by the elements
t"neom—-—nerfm for LCKCH, neN(L), me M(K)
rEneom-nothfm foo LCKCH, neN(K), me M(L)
hm@hm—n@m for KCH, ne NK), me M(K), he H

Moreover, if K is a subgroup of G, then F' Pz (K) ~ Z. Restriction maps are identity,
and transfers are multiplication by the index. Thus

(FPy& M)(H) ~ (Kech Ze M(K))/J

where J is generated by
lem—1@tEkm for LCKCH, me M(L)
l@rEkm—[K:Ll®m for LCKCH, meM(K)
le@m—1®@hm for KCH meM(K), he H

Now the element 1 @ m, for K C H, and m € M(K), is equal to 1 ® t&(m) in
(FPy ® M)(H). This proves that (F Pz ® M)(H) is the quotient of M(H) by
the submodule generated by the elements tf£rffm — [H : K]m, for K C H and
m € M(K). Thus FP,& M is a cohomological quotient of M. Moreover, it is
clear that any morphism from M to a cohomological functor must factor through
FPy® M, and the lemma follows. O

LEMMA 8.2. Let G be a finite group, and X be a G-set. Then
(bx)COh ~ FPZX
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Proor. This follows from the previous lemma, and from the isomorphisms
(bx)COh = sz®bX ~ (FPZ@I))X ~ (FPZ)X

Moreover the isomorphism (F Pz)x ~ F Py follows from the case of a finite G-set
X: in that case indeed, for a finite G-set YV

(FPy)x(Y) = FPy(Y xX) = Hompa(Z(Y x X), Z) ~ Hompo(ZYQZX, Z) ~ . ..

o HomZG(ZY, HomZ(ZX,Z)) ~ Homyg(ZY,ZX) = FPyx(Y)
since Z X is self-dual. Those isomorphisms are moreover functorial in Y. O

8.2. Tensor induction of cohomological Mackey functors. The image
of cohomological Mackey functors by tensor induction is often zero:

ProrosiTION 8.3. Let G and H be finite groups, and U be a finite H-set-G.
The following conditions are equivalent:

1. There exists a cohomological Mackey functor M such that Ty (M) is non-
zero.

2. The functor Ty (F Pg) is non-zero.

3. There exists a prime number p such that for any u € U, the stabilizer G,, of
u in G is a p-group.

ProorF. If M is cohomological, then M is a module over F Py. Thus Ty (M)
is a module over Ty (F Pz). So if Ty (F Pz) = 0, then Ty (M) is a module over the
zero Green functor, so it is zero. Thus 1) implies 2).

Now suppose 2) holds. Decompose U as a disjoint union of transitive bisets U;,
for ¢ € I. Then

TU(sz) ~ _(?I TUi (sz)

Each U; is a transitive biset, isomorphic to (H x G)/L;, for some subgroup L; of
H x G. Choose an index i, and denote by H' = p1(L;) (resp. G’ = pa(L;)) the
projection of L; on H (resp. on G). Let

ki(Li) ={he H | (h,1)€ L} N =ka(Li) ={9€ G| (1,9) € Li}

Let K = pa(L;)/k2(L;), and s : G' — K be the canonical surjection. Then there
exists a surjection ¢ : H' — K such that

Li=A{(h,g) € H' x G" | 1(h) = 5(¢)}
Moreover, if
Ky = {(h,t(h) lhe H')} CHxK Ky = {(8(g),g) lge G} CK x G
then (see [Bou96b] Lemme 3)
Ui = (G x H)/L; ~ (H x K)/K; xx (K x G)/K>
Thus the functor Ty, factors as
Ty, = Tiaxk) /K, © LKk xG)/K,

Moreover G is transitive on (K x G)/K» (since the projection of Ky on K is K
itself), so

Tikxa)y K, = L(kxG)/K,
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Thus for any Mackey functor M for G

N
Tisexayic, (M) = (Res M )

Note that the stabilizer in G of the element u = (h, g)L; of U; is equal to ¢ N. Now
if M = FPyg, then Res& M = FPy. Moreover, for any subgroup K’ = S/N of
K=G'/N

(PPN (K') = FPo(S)/T

where J is generated by the submodules ¢35 F Py(T), for subgroups 7' of S not
containing N. In other words

N
(Resg,FPz) (S/N)=12Z/ged{[S:T] | N ¢ T C S}Z

Now if N is not a p-group for some p, then the Sylow subgroups 7" of S (for various
primes), do not contain N, and have relatively prime index in S. So if N is not a
p-group for some prime p, then

(Resg,FPZ)N =0

and it follows that Ty, (FPgz) = 0 in that case. Moreover, if N is a non-trivial
p-group, then the ¢-Sylow subgroups of S for ¢ # p do not contain N, and the
greatest common divisor of their indexes in S is a power of p (dividing the order

N
of S). In particular, the functor (Resg,FPZ) is a Mackey functor over Z/p®Z,

where p? is the p-part of the order of G. Thus if N is a non-trivial p-group, corollary
7.7 shows that Ty, (F Pg) is a Mackey functor over Z /p™Z, for some power p™ of p.

But the tensor product of a Mackey functor over Z/p™Z and a Mackey functor
over Z/q'Z is zero if p and q are relatively prime (since the tensor product of abelian
groups of relatively prime orders is zero). So if 2) holds, then there exists a prime
p such that for any u € U, the stabilizer of u in G is either trivial, or a non-trivial
p-group. So 3) holds.

I will admit for a while that 3) implies 1): this will be a consequence of propo-
sition 8.11. O

8.3. Cohomological tensor induction. The fixed point functor F Pg plays
for cohomological Mackey functors over R the role of the Burnside functor for
Mackey functors. One can try to translate in the category Comackg(G) of coho-
mological Mackey functors over R the definitions of tensor induction for Mackey
functors, in order to define a “cohomological tensor induction”.

Recall the following theorem:

THEOREM 8.4. (Thévenaz-Webb [TW95] Theorem 16.5). Let G be a finite
group and R be a commutative ring.

1. A Mackey functor M for G over R s cohomological if and only if it is
tsomorphic to a quotient of a fized point functor F Py, where V 1s an RG-
module, which can be chosen to be a permutation module.

2. A cohomological Mackey functor is projective in Comackr(G) if and only if
it is 1somorphic to a fized point functor F Py, where V 1s a direct summand
of a permutation module for G.

I will also use the following;:
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LEMMA 8.5. Let G be a finite group. If X andY are G-sets, then
HomComackR(G)(FPRXa FPRy) ~ HOHle(RX, RY)

Proor. This is a direct consequence of the adjunction property of the functors
FPy (see [TW90] 6.1): the functor V — F Py is right adjoint to the functor of
evaluation at {1}. Moreover F'Prx (1) ~ RX. O

DEFINITION 8.6. A permutation cohomological Mackey functor for G over R
1s a Mackey functor isomorphic to F Prx, for some G-set X. The full subcategory
of Comackr(G) consisting of permutation cohomological Mackey functors will be

denoted by PComackg(G).

Thus the category PComackr(G) can be described as follows: the objects of
PComackg(G) are the G-sets. A morphism in PComackgr(G) from Y to X is a
morphism of RG-modules from RY to RX, or equivalently a matrix m(z, y) of co-
efficients in R, indexed by X x Y, which is G-invariant (that is m(gz, gy) = m(z,y)
for all g € G and (z,y) € X xY), such that for all y € Y, the coefficient m(z, y) is
zero except for a finite number of z € X. The composition of morphisms is given
by matrix multiplication.

The previous theorem shows that the subcategory P = PComackg(G) of C =
Comackp(G) satisfies the hypothesis of theorem 2.14: it is formed of projective
objects, any object of C is a quotient of some object of P, and P is closed by direct
sums. So any functor from P to an abelian category can be uniquely extended to
a right exact functor defined on C.

DEFINITION 8.7. (see [Bou96a] 3.1) Let R be a commutative ring, and G and
H be finite groups. If U is an H-set-G, I will say that U is free-R if for any u € U,
the prime factors of the order of the stabilizer G, of u in G are equal to zero in R.

Since two distinct primes cannot vanish in R if R is non-zero, there are only
two cases left if U is free-R:
e Either R has prime characteristic p > 0, and all the groups G, are p-groups
(the set U will be called free-p in that case).
e Or R has characteristic zero or non-prime, and all the groups G, are trivial
(so the set U is right free).

ProrosiTION 8.8. Let R be a commutative ring. Let G and H be finite groups,
and U be a finite free-R H-set-G. If m(x,y) is a matriz defining a morphism in
Comackgr(G) fromY to X, if o : U? - X and ¢y : U =Y are morphisms of
G-sets, define

il )= T m(ew), vw)
uelU/G
(this does not depend of the choice of representatives of U/G ). Then the correspon-
dence
X — Homg(U?, X) m— m
is a functor TE" from PComackg(G) to PComackr(H).

ProorF. First I must check that m defines a morphism in Comackg(H) from
Homg(UP,Y) to Homg (U, X): for a given ¢, the coefficient

il )= [T m(e) bw)

uelU/G
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is non-zero if and only if for any u € U, the coefficient m(«'p(u), 1/)(u)) is non-zero.

So for each wu, there is only a finite number of possible values for p(u). As U is
finite, there is a finite number of ¢ such that m(p, ¢) # 0.
Next I have to check that m is H-invariant. But this is clear, since for h € H

(b ) = T] m(e(h='w), p(h~'w)) = (e, v)

uelU/G

since the image by h=! of a system of representatives of U/G is another system of
representatives.

Now of course, if m represents the identity morphism, then m(¢p, ) is non-zero
if and only if ¢(u) = ¢¥(u) for all u € U, or equivalently if ¢ = . So m is the
identity morphism.

Finally, let Z be another G-set, and p be a matrix representing a morphism in
Comackg(G) from Z to Y. The product matrix m.p is defined by

(m.p)(z,2) = Z m(z,y)p(y, 2)

Let 6 € Homg (U, Z), and ¢ € Homg(U, X). Then

(8.17) mp(e0) = T] | 3 m(e(),v)p(s.00)

ueU/G \y€eY

Now for a given u € U/G

Z m(@(“)ay)P(y:a(u)) = Z m(«'p(u),gy)p(gy,@(u)) =...

yey yEGL\Y
JEG L [Gu,y
=y m(so('ug),y)p(y,é’(ug)): > [Gu:Gu,y]m(so(U),y)p(y,é’('U))
e et

As U is free-R, the coefficient [Gy : Gy 4] is zero unless Gy y = Gy, or equivalently
y € YyGu,

Now expanding the product in equation (8.17) is equivalent to choosing for each
u € U/G an element y, € Y4, This in turn is equivalent to defining a G-morphism
Y from U to Y (by ¥(u') = gyu if u € U/G, g € G, and v’ = ug™!). This gives
finally

mple0)= Y, ] m(0,v(w)p(vw) ew) = ...

YEHomg(U°PY)ueU/G

=Y m(0,9)EY,p)

yY€E€Homg (U°P)Y)

This proves that m — m is multiplicative, and the proposition follows. O

DEeFINITION 8.9. Let R be a commutative ring, and G and H be finite groups.
If U s a finite free-R H-set-G, I will call cohomological tensor induction the
unique right exact functor extending the functor TE" from PComackg(G) to
Comackr(H). This extension will still be denoted by TH<oh.
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Recall that if M is a cohomological Mackey functor for G over R, then TR (M)
is obtained by choosing a resolution of M
FPRYi)FPRXi)M—)O

by permutation cohomological Mackey functors. Then T[?CO}L (M) is defined by the
exact sequence

ATRCOh .
TR FPry & FPrx) M TR FPrx) ——— TEC (M) = 0

8.4. Extension of coefficients. A cohomological Mackey functor M for G
over R is a module over FPg. If f: R — R’ is a morphism of commutative rings,
then the induced morphism F' Pr — F Pg: turns F Pg: into a right F Pg-module. 1
can then consider the functor R’ K M defined by

RRrM=FPr @ M
FP,

R

(see [Bou97] 6.6 for the definition of this tensor product over F'Pg). It is a module
over F Pg:, or equivalently a cohomological Mackey functor over R’. Its evaluation
on a G-set X is simply given by tensoring with R’

(R R M)(X) = RorM(X)
If M admits a resolution
FPry % FPrx % M -0
then the sequence

R ®p R'R®
R' Ry FPry — 28 R R, FPRX—Rw>R’ Rp M — 0

is still exact, because the functor R'@g— is right exact. But clearly, for any G-set
X

RI&RFPRX:FPR’X

So I have a resolution of R’ M by permutation cohomological Mackey functors over
R

Now if H is another finite group, and U is a finite free-R H-set-G, then U is
also free- ', since the morphism f is unitary. By definition T ¢**(R' K M) is
the cokernel of

(8.18) TE <" (F Ppiy @ FPrix) w TE <" (F Prix)
But moreover
TH "(FPrix) = F Priftomg(@os x) = - - -
... = R'Bg F Priomg(uer, x) = R B Ty " (F Prx)
So Té{l ch(R'®p M) is also the cokernel of

R Rp AT " (p)

R W TH" (F Pry @ FPgx) R Rp TH"(F Prx)

And this proves the following
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LEmMA 8.10. Let f : R — R’ be a unitary morphism of commutative rings. If

G and H are finite groups, if U is a finite free-R H-set-G, then U is also free-R/,

and for any cohomological Mackey functor M for G over R, there is an isomorphism
TH MR ®g M) ~ R Bg T (M)

which is natural in M.

Thus cohomological tensor induction commutes with extension of coefficients.
In particular, if p is a prime, if U is free-p, then for any cohomological Mackey
functor M over IF,

TH"(R &y, M) ~ R Ry, Tp,” " (M)

8.5. Comparison. If M is a cohomological Mackey functor for G over a com-
mutative ring R, and if U is finite free-R H-set-G, 1 can build T#<°*(M). But
as M is also a Mackey functor, I can build 7y (M). Those two constructions are
different, but closely related:

ProrosiTiON 8.11. Let G and H be finite groups, and R be a commutative
ring. If U is a finite free-R H-set-G, then for any Mackey functor M for G,
the functor R® M<°" is a cohomological Mackey functor over R, and there are
isomorphisms

(8.19) THeM(RR M) ~ RR Ty (M)*" ~ FPr & Ty (M)

which are moreover natural in M.
In particular, if M is a cohomological Mackey functor, and if U is right free,
then

(8.20) TEeh (M) = Ty (M)eoh
Simalarly, if p is a prime, if U s free-p, then for any cohomological Mackey functor

M over T,

(8.21) T? " (M) ~ T B Ty (M) ~ F Py, & Ty (M)

ProorF. The right hand side isomorphism in (8.19) is clear, since
R® Ty (M)*" ~ R (FPZ & Ty (M)) ~ FPr& Ty (M)

Now both sides of the left hand side isomorphism in (8.19) are functors from
Mack(G) to Comackr(H), which are clearly right exact, since they are composed
of right exact functors. So it suffices to check that their restrictions to PMack(G)
are isomorphic. But if M = by, for some G-set X, then M = FPyx, and

RX M®" = FPpx

It follows that
TE" (R® M) ~ F PRHomg (Uer X)
On the other hand, the functor Ty (M) is baome wer,x), thus

RR Ty (M)*" ~ RB F Pytiomg (Uer,x) ~ F PRtome (Uor,x)

So the functors M — T5°h (RR M ") and M — RR Ty (M)°°" coincide on objects
of PMack(G). To see that the restrictions of those functors to PMack(G) are
isomorphic, I have to look at their actions on morphisms.
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Let me first give this action for the functor Q : M +— M<" from Mack(G)
to Comackyz(G). Lemma 8.2 shows that it maps Pmack(G) to PComackz(G).
Now if X and Y are G-sets, and if @ is a morphism in PMack(G) from Y to
X, represented by a poset (A, f) over Y x X with finite fibres over Y, I want to
describe the morphism @(a). This is a G invariant matrix indexed by X x Y,
with coefficients in Z, which is obtained by evaluation at the trivial subgroup of
the morphism F Pzy — F Pgzx deduced from a. Since for any Mackey functor M,
the evaluations of M and M<°" at {1} coincide, the morphism Q(a) is also the
evaluation of a at {1}, and its expression will follow from the explicit description
of the isomorphism

bx (1) ~ZX

But an element of bx (1) ~ hg(G/1,X) is an equivalence class of finite G-posets
over (G/1) x X. If (Z, f) is such a poset, then as the stabilizer G, of any element

(g,2) of G x X is trivial, I have b(Gg ) ~ Z, and the Lefchetz invariant AfGﬁ”f(g o)

corresponds to X(f_l(g,m)) under this isomorphism. Now the isomorphism of

lemma 3.4 shows that the map
«(2,0) =" x(f_l(l,r))l‘
rzeX

induces the required isomorphism hg(G/1, X) ~ bx (1) ~ ZX. The inverse isomor-
phism maps z¢ € X to the poset (Z, f) defined by

Z=G/1(=G) Vg € G, f(9) = (9,920) € (G/1) x X

were G is given the discrete ordering (clearly f=1(1,z) is empty if 2 # zg, and
F71(1,z0) = {1} is a singleton).
Now if y € Y is a basis element of ZY, it can be viewed as the element

G/1 Y

of by (G/1), where my(g9) = gy for ¢ € G. Its image by a in bx (1) is given by
pull-back

O\
P

Denote by ¢ the map U — (G/1) x X in this diagram. I can write

Q@)W = Y x(¢ (L 2))e

reX

But moreover

e (La)={(9.0) eGxAlg=1, gy = fr(9), fx() =2}~ f'(y,x)
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In other words

Qa)y) = 3 x (7w

rzeX
and the (z,y) entry in the matrix Q(a) is X(f_l(y, J,))

It follows from the definition of the functor T§ ok that the morphism
Té%coh (R X Q(a)) . T[I]%coh (R X (by)COh) - Té%coh (R X (bX)coh)
is defined by the following matrix of coefficients in R

ale )= TT (\(F ) o))
uelU/G
for ¢ € Homg (U, X) and ¢ € Homg(U?,Y).
On the other hand, let F' denote the morphism

Homg (U, f) : Homg (U, A) - Homg(U?,Y) x Homg(U?, X)

It represents a morphism from Ty (by) to Ty (bx). The associated morphism from
RR Ty (by )" to RR Ty (bx )" is given by the matrix

Bl ) = X(F_l(l/), so))

But I have shown in the proof of proposition 4.1 that for any subgroup K of Hy .

(rwer ) = T (7 (stwe)) ™)

ue[K\U/G]

where
GK,uz{gEG|EIkeK, ku:ug}

In the case K = {1}, I have Gk, = G, which is a p-group if R is of prime
characteristic p, and trivial otherwise. In both cases, I have

Y ((f-l (v(w), so(u)))G“) =x(r (v ew))  (@R)

Hence the matrices a and 3 are equal. This shows that the restrictions of the
functors M ~ T (RRM°") and M — RR Ty (M) to PMack(G) are isomor-
phic. Since they are both right exact, those two functors are isomorphic, and this
completes the proof of proposition 8.19.

Thus if M is cohomological and U is right free, then M¢°* = M and (8.20)
follows from (8.19) for R = 7Z.

Now if M is a cohomological Mackey functor over [F,, then Me°" = M, because
M is cohomological, and F, M = M since M is a functor over F,. So (8.21) follows
from (8.19) in the case R =TF,. This completes the proof of proposition 8.11. O

As a consequence, T can now prove the missing implication 3) = 1) in proposition

8.3

COROLLARY 8.12. Let G and H be finite groups. If p is a prime, and U
is a finite free-p H-sel-G, then F'Py, is a cohomological Mackey functor, and
Ty (F'Pr,) # 0.
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Proor. Indeed
FPy, Ty (FPy,) ~ Ty " (FPy,) = FPy, %0
so in particular Ty (F"Py,) # 0. O

8.6. Composition and graded bisets. In this section, I will explain how to
compose those functors T§ ¢k Since cohomological tensor induction seems quite
compatible with tensor induction of Mackey functors, one could expect a formula
similar to proposition 4.3. However, one must be very careful about the meaning
of such a formula.

The context is the following: there are three finite groups G, H, and K, a finite
biset U, wich is an H-set-G, and a finite biset V', which is a K-set-H. The problem
is to compare the functors T{#<°" o T <" and T‘?f?{hU. Let X be a G-set. Then

T o T M (F Prx) = TV " (F Prutomg (Usr, X)) = F PRHomg (V 0% Homg (Us?, X))

As usual, the canonical isomorphism
(8.22) Homy (VOP, HomG(UOP,X)) ~ Homg ((v x U, X)

shows that T#coh o TH<"(FPry) and Tﬁi‘;{hU(FPRX) are isomorphic. So the
restrictions of T{# <" o T <ok and foc‘;{hU to PComackr(G) are isomorphic on ob-
jects. However, they are not isomorphic as functors, which means that the previous
isomorphism is badly behaved with respect to morphisms.

To see this, let m : Y — X be a morphism in PComackgr(G), i.e. a G-invariant
matrix indexed by X x Y, such that for any y € Y, there is only a finite number
of © € X for which m(z,y) # 0. Using isomorphism 8.22, it follows from the

definitions that for ¢ € Homg ((V X B U)OP,X) and ¢ € Homg ((V X B U)OP,Y),
I have
(8.23) Tt o it m)(p,w) = [ TT m(etv.w), v, 0))
veV/HueU/G
On the other hand
824) T me )= T m(evw, v, )
(v,u)e(VxgU)/G

As the sets V/H x U/G and (V xg U)/G are not isomorphic in general, it follows
that the expressions in 8.23 and 8.24 are not equal. To see how much they differ,
fix sets [U/G] and [V/H] of orbits representatives, and consider the map

0 - [V/H] X [U/G] — (V XH U)/G, 0(‘00,U0) = (UQ,U())G.

This map is surjective, since if (v,u) € V x g U, there exist vg € [V/H] (unique)
and h € H such that v = voh. Now in V x g U, I have (v, u) = (vg, hu), and there
exist ug € [U/G] (unique) and g € G such that hu = ugg. Then clearly

0(vo, ug) = (vo, ug)G = (vo, ugg)G = (vo, hu)G = (voh, u)G = (v, u)G .

Now two pairs (vg, ug) and (v1, u1) have the same image under ¢ if and only if there
exist h € H and g € GG such that

vy = vgh and hui; = upg .

The first equality gives v1 = vy = voh, since v; and vg are in the set of representa-
tives [V/H]. The second one gives u; = h~lugg. In other words u;G is in the left
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orbit of ugG under the right stabilizer H,, of vg. So the inverse image 6-1 ((v, u)G)
has cardinality [H, : Hy uc], where

H,={h€ H |vh=uv} Hyuwe=1{h € H|vh=v, g € G, hu = uy}
and I can rewrite equation 8.23 as
(8.25)
[HUZHU’ug]
@t orfierymer) = [ (mlete, ), v(v,w)

(v, u)el(Vxul)/G]

In particular, this shows that the functors T‘J? COhng ok and Tfﬁ?{hU are isomorphic
if and only if elevation at the power [H, : Hy 4] is the identity endomorphism of
R, for any (v,u) € V x g U. This will be the case in any of the following situations:
e The group H acts freely on V,i.e. H, = {1} for all v € V. This will be true
by hypothesis if R has characteristic 0 or non-prime.
e The group G acts transitively on U, since in that case, the set U/G is a
single point.
e The ground ring is R = IF,.

In general, one can pass from 8.24 to 8.25 by elevating each term m(go(u), w(u))

to the power [H, : H, yg]. This is always equal to 1 if R has characteristic 0 or
non-prime, and a power of p if R has prime characteristic p. In any case, elevation
at the power [H, : H, ug] is an endomorphism of the ring R.

So this suggests to use such ring endomorphisms to define functors between
categories of cohomological Mackey functors, and leads to the following definition:

DEFINITION 8.13. An End(R)-graded H-set-G, or graded biset for short, is a
couple (U, a) where U is a finite free-R H-set-G, and a is a function from H\U/G
to End(R).

If (U',d'), then the disjoint union of (U,a) and (U’ a") is the graded biset
defined by

(U,a) U(U',a")y = (UUU',aUd)
where a Ul a’ is the obvious function H\(U UU')/G — End(R).

If K is another group, and (V,b) is an End(R)-graded K -set-H, then the prod-
uct (V,b) xg (U, a) is the End(R)-graded K -set-G defined by

(V,b) XH (U,a) = (V XH U,b XH a)
where b x g a is the function from K\(V xg U)/G to End(R) defined by
(b xma)(v,u) =b(v) oa(u)omy .y
where m,  is elevation at the power [Hy : Hy ual.

DEeFINITION 8.14. If (U, a) is an End(R)-graded H-set-G, and if X is a G-set,
let

Tw,q)(X) = Homg (U, X)
If m is a morphism in PComackgr(G) fromY to X, let
Twam)(e ) = [T alw) [m(ew),¢)]
uelU/G
for ¢ € Homg(U?, X) and ¥ € Homg(U?,Y).
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Clearly, if I take for a the constant function equal to the identity endomorphism
of R, then the functor T{y 4y is just the previous functor Tgc"h.

LEmMMA 8.15. The correspondence Ty qy is a functor from PComackg(G) to
PComackp(H).

Proo¥r. Let X, Y and Z be G-sets, and let m : ¥ - X andn : 7 —- Y
be morphisms in PComackg(G). Then by definition, for ¢ € Homg (U, X) and
6 € Homg(U?, 7)

(8.26) Twaymon)(p,0) = [] a(w) [(mon)(p(u)6(w)]
wel/G
Moreover, for u € U
(mon) (go(u), H(u)) = Z m(z,o(u), y) n (y, H(u))

This can also be written as

(mon) (go(u), H(U)) = Z m(ap(u), gy) n (gy, H(U)) =...

YEGL\Y
JEG L [Gu,y
- Z [Gu :Guyy]m(go(u),y)n@,@(u)) = Z m(go(u),y)n(y,@(u))
YEGU\Y YyEY CGu

Now expanding the product in 8.26 is equivalent to choosing an element y € Y @4
for all u € U/G. This in turn is equivalent to choosing a G-morphism from U°? to
Y. Finally, this gives

Tiway(mon) (,0) = 3 [T aw [m(e),e)n (v, omw)] = ...

YEHomg (U°PY)ueU/G

= YT atw [m(ew.v@)] TT at [»(e@)¢@)] =

YEHomg (U°P)Y)ueU/G uelU/G

L= > Tiw,a)(m) (¢, ¥)T(w,a) (n) (¥, 0)

Y€EHomg (U°P)Y)

It proves that T(ys 4) is multiplicative on morphisms. Moreover, it is clear that if m
is the identity morphism, then

Twale )= [[ @) (@ew)ww)

uelU/G

where 4 is a Kronecker symbol. This is non-zero if and only if ¢ = %, and in this
case 1t is equal to 1.

It follows that T{yy 4y maps the identity morphism of X to the identity morphism
of Tty ay(X). This completes the proof of the lemma. O

NotraTiON 8.16. I will denote by T(%C;)h the unique extension of the functor

T(w,q) to a right exact functor from Comackg(G) to Comackgr(H). This will be
called the cohomological tensor induction associated to the graded biset (U, a).
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8.7. Properties of cohomological tensor induction.

8.7.1. Tensor product over R. Before stating properties of cohomological tensor
induction associated to a graded biset, I have to extend the notion of tensor product
to cohomological Mackey functors over R: first note that cohomological Mackey
functors over R are also Mackey functors over R, or (RKb)-modules. Since RKb is
a commutative Green functor, any left (RKb)-module is also a right (RKb)-module.
Thus if M and N are Mackey functors over R, I can define

M@rN =M & N
REb

(see [Bou97] 6.6 for the definition of the tensor product in the right hand side).
With this definition, it is easy to check that for any subgroup H of G

(M & N) (1) = (KeCaH M(K) %N(K)) /T

where J is the R-submodule generated by
t"neom—-ne@rfm for LCKCH, neN(L), me M(K)

rEneom-notfm foo LCKCH, ne N(K), me M(L)

hm@hm—n@m for KCH, ne NK), me M(K), he H

In other words, to compute M @ N, replace ® by ®g, and “submodule” by R-
submodule in the formulae for M ® N.

LEMMA 8.17. Let G be a finite group, and R be a commutative ring. If M and
N are cohomological Mackey functors for G over R, then so is M ®r N.

ProoF. Indeed M @g N is a Mackey functor over I'Pr ®g FFPg. Now the
lemma follows from the following isomorphism of Green functors

FPR®FPR:FPR
R

which in turn follows from the previous identification of M @g N(H): indeed, if H
is a subgroup of G, then

(FPR%FPR)(H):( ® R®R)/j

where J is the R-submodule generated by
[K:L[le1l]—[1®1]g for LCKCH

M@l —[l®1lg for KCH heH

So for any L C H, I have [l @ 1] = [H : L][1 ® 1]g, and this proves that
(FPR@)RFPR)(H):R. O

REMARK 8.18. The corresponding statement for direct product is false: if G
and H are finite groups, if M is a cohomological Mackey functor for G over R and
N is a cohomological Mackey functor for H over R, then in general M W N is not a
cohomological Mackey functor: this is because the functor LgXH does not preserve
cohomological Mackey functors.
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8.7.2. Properties.

THEOREM 8.19. Let R be a commutative ring.
1. If G, H and K are finite groups, if (U,a) is an End(R)-graded H-set-G
and (V,b) is an End(R)-graded K-set-H, then there is an isomorphism of

functors
R coh Rcoh ., mmRcoh

Ty o Ty = Tws)xnv.a)
2. If G and H are finite groups, if M and N are cohomological Mackey functors
for G over R, and if (U, a) is an End(R)-graded H-set-G, then
T (0 ) = T ) § T )
3. If G and H are finite groups, if (U,a) and (U',d') are End(R)-graded H-
sets-G, and M s a cohomological Mackey functor for G over R, then
T an (M) = TG (M) ‘% T (M)

4. If G and H are finite groups, if (U, a) is an End(R)-graded H-set-G, and if
M and M’ are cohomological Mackey functors for G, then

R coh n o H R coh 5, R coh !
Ty (M & M') = VB, Indy, Tl (M) O TGZy, ) (M)
V invariant by G
V mod. Hy

5. If G and H are finite groups, if (U,a) is an End(R)-graded H-set-G, if X
ts a G-set and M a cohomological Mackey functor for G, then Mx s a
cohomological Mackey functor for G, and

TN (Mx) ~ TED (M) Homg (Uer X)
Moreover, all these isomorphisms are natural.

PrOOF. Assertion 1) should be clear from the discussion of composition of func-
tors T <" The other assertions state isomorphisms between right exact functors,
so it is enough to check these isomorphisms on the restrictions to the corresponding
subcategories of permutation cohomological Mackey functors, and this is easy: for
instance, assertion 2) is a consequence of the natural isomorphism

FPrx ® FPry ~ FPp(xxy)
and of the bijection Homg (U, X x Y) ~ Homg(U?, X) x Homg(U,Y). O

8.7.3. Cohomological Green functors. A cohomogical Green functor A for G
over R is a Green functor over R, which is cohomological as a Mackey functor.
Equivalently, it is a Green functor over R, such that the unit morphisme : b — A
factors through b — F Pgz. This is also equivalent to say that A is a Green functor,
with a (unitary) morphism of Green functors F'Pgp — A. In particular, any A-
module is a cohomological Mackey functor for G over R.

LEMMA 8.20. Let R be a commutative ring. Let G and H be finite groups,
and (U,a) be an End(R)-graded H-set-G. If A is a cohomological Green functor

for G over R, then TE°!(A) is a cohomological Green functor for H over R. If
(U,a)
M is an A-module, then T(%c;)h(M) is a T(%C;;L (A)-module, and the correspondence

M~ T@fj{’“(M) is a functor from A-Mod to T@%ﬁ (A)-Mod.
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Proo¥. The images by T(R Co)h of the commutative diagrams

e®1 1®¢
AbpAdpA 2285 AGpA FPropA — s Abp A AbgFPg
dp 1 u
1n®r Jv Jv n u n
A@rA — A
o
A

give a Green functor structure on T(Rc")h (A), and a unitary morphism of Green

functors T(R C")h(FPR) FPr— T(R CO)h(A), SO T(Rco)h (A) is a cohomological Green

functor. The other assertions of the lemma are trivial. O

ProrosiTiON 8.21. Let R be a commutative ring, and G and H be finite
groups.

1. If A and B are cohomological Green functor for G over R, and if (U,a) is
an End(R)-graded H-set-G, then there is an isomorphism of cohomological
Green functors

TS (A B) = TES (4) & TR (B)

2. If A is a cohomological Green functor for G over R, and (U, a) and (U',d’)
are End(R)-graded H-sets-G, then there is an isomorphism of Green func-
tors

Tt 0y () = TR (A) @ TS (4)

3. If A is a cohomological Green functor for G over R, and (U, a) is an End(R)-
graded H -set-G then there is an isomorphism of Green functors

R coh R coh
ity (A%) = TGy (A)°F
ProOOF. The proof of these assertions is similar to the proof of the correspond-
ing assertions of proposition 7.9. O

9. Tensor induction for p-permutation modules

9.1. Definition. Let k be a field of characteristic p. If G and H are finite

groups, and if (U, a) is an End(k)-graded H-set-G, I have built the functor T(k C"SL

from Comacky(G) to Comacky(H). This functor maps permutation cohomogical
Mackey functors for G over k to permutation cohomological Mackey functors for
H. Hence it maps projective cohomological Mackey functors for G to projective
cohomological Mackey functors for H.

But a projective cohomological Mackey functor M for G over k is isomorphic to
F Py, where V is a direct summand of a permutation kG-module, or p-permutation
kG-module (see [Bro85]): this is a kG-module admitting an S-invariant k-basis,
for some p-Sylow subgroup S of G. Note that the module V is the evaluation of
FPy at {1}. Soif V is a p-permutation kG-module, then T(k C"})‘ (F Py) is isomorphic
to F' Py, for some p-permutation kG-module W. This leads to the following:

DerFINITION 9.1. Let kG-p-Mod denote the full subcategory of the category of
kG-modules formed by p-permutation kG-modules (note that this is generally not
an abelian category).
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The composed functor
Vo Taoh (FPy)(1)
from kG-p-Mod to kH-p-Mod will be called tensor induction for p-permutation
modules, and denoted by T(kpeg
If a is the constant function equal to the identity endomorphism of k, then

T(kUng will simply be denoted Tkper

9.2. Properties. Evaluation at the trivial subgroup of the isomorphisms of
theorem 8.19 gives the following

PRrROPOSITION 9.2. Let p be a prime number and k be a field of characteristic p.
1. If G, H, and K are finite groups, if (U, a) is an End(k)-graded H-set-G and
(V,b) is an End(k)-graded K -set-H, then

k per kper _ mkper
Twvw °Twa) = Tvxawa

2. If G and H are finite groups, if M and N are p-permutation kG-modules,
and if U is an End(k)-graded H-set-G, then

T (M 04 N) = T () 00 T2 (V)

3. If G and H are finite groups, if (U,a) and (U',a’) are End(k)-graded H-
sets-G, and M s a p-permutation kG-module, then

TP s an (M) = TP (M) @k TREST (M)

4. If G and H are finite groups, if (U,a) is an End(k)-graded H-set-G, and if
M and M' are p-permutation kG-modules, then

kper H k per k per ’
T( )(M @ M ) VGCBU IndHVT(V,CL'V) (M) ®k T(U—V,CHU—V) (M )
V invariant by G
V mod. H

Moreover, all these isomorphisms are natural.
9.3. p-permutation algebras.

DEeFINITION 9.3. A p-permutation kG-algebra is a k-algebra, with an action of
G, admitting an S-invariant k-basis, for some p-Sylow subgroup S of G.

PrOPOSITION 9.4. Let p be a prime number and k be a ring of characteristic p.
Let G and H be finite groups.
1. If (U, a) is an End(k)-graded H-set-G, and A is a p-permutation kG-algebra,
then T(kUifzg(A) is a p-permutation kH -algebra.
2. If (U,a) is an End(k)-graded H-set-G, and A and B are p-permutation kG-
algebras, then there is an isomorphism of p-permutation k-algebras

T (A0kB) ~ T (A)ouTESS] (5)

3. If (U,a) and (U',d’) are End(k)-graded H-sets-G, and A is a p-permutation
kG-algebra, then there is an isomorphism of p-permutation kH -algebras

k per k per k per

T(Ugja)l_l(U’,a’) (A) = T(Uf?a) (A)®kT(UP/7a/) (A)

4. If (U, a) is an End(k)-graded H-set-G, and A is a p-permutation kG-algebra,
then

T = T
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Proof: Since A is a kG-algebra, then F'P4 is a cohomological Green functor
for G over k, so T(’“Uczj)l (F'P,) is a cohomological Green functor for H over k. But as

A is a p-permutation kG-module, the functor T{“UCZ})L(FPA) is isomorphic to F Pg,

for B = T[ijer(A). Now evaluation at the trivial subgroup of the product for the
Green functor F' Pg gives a p-permutation kH-algebra structure on B. The first
assertion follows. The other ones are evaluations at the trivial subgroup of the
corresponding assertions of proposition 8.21. O

9.4. Identification. Let p be a prime number, and k be a field of characteris-
tic p. Let G and H be finite groups, and U be a finite free-p H-set-G' (for simplicity,

I will not handle the case of a graded biset in this section). It is possible to give an

explicit description of the functor T[’;per.

NotaTiON 9.5. If M is a kG-module, denote by {M} the underlying G-set.
Consider the H-set Homg (U, {M}) as a set of functions from U to M. If z € k
and f € Homg(U,{M}), define zf € Homg(U,{M}) by

(e)(u) = 2f(u) Yu € U
If X € Homg (U7, {k}), set
)= [ AMw)

uelU/G
This does not depend on the choice of U/G. Define A * f € Homg(U?,{M}) by

A* N)(u) = A(u)f(u) Vue U

If f and f' are elements of Homg(U?,{M}), let <f + f'> € Homg(U?,{M})
denote the sum of f and f’, defined by

<SS+ I>) = fu) + f'(w) VueU
If V C U is a G-subset of U, define the element [f, f']lyv of Homg(U,{M}) by
If P is a p-subgroup of G, define the Brauer quotient M[P] by
MIP = M" /(> TriM®)
QCP

Let Brp denote the natural projection M¥ — M[P]. If f € Homg(U,{M}),
then in particular for any u € U, the element f(u) is in M %« so I can consider

Brg, (f(u)) . Recall finally that if X is a G-set, then for any p-group P, the module
(kX)[P] is isomorphic to k(XT).
DerFINITION 9.6. If M s a kG-module, define
ty(M) = kHomg(U? , {M})/T
where J is the subspace generated by the elements

Axf)y =7\ f for X €Homg(U?,{k}), f € Homg(U?,{M})
<f+f>—= > v for f.f €Homg(U, {M})

VCU
V G-invariant
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and by all the elements f € Homg(UP,{M}) such that there exists u € U with
Brg, (f(u)) =0.

LEMMA 9.7. The correspondence M w— ty (M) is a functor from kG-Mod to
kH-Mod.

Proor. If ¢ : M — M’ is a morphism of kG-modules, then ¢ induces a
morphism {¢} of the underlying G-sets, hence a morphism

® = Homg(U?, {p}) : Homg(U?,{M}) — Homg(U", {M'})
Now if A € Homg(U?,{k}) and f € Homg(U,{M}), then for any u € U

o0+ () = p(Aw) () = Mu)e(£(w)
so ®(A* f) = A= ®(f). Similarly ®(zf) = 2®(f) if « € k. Thus

(A% = 7(NF) = A B(f) — 7(N)2(/)

Similarly

O(<f+>)(w) = ¢ (f(w) + ' () =¢(F(w) +¢(1'(w)
so ®(<f+ f'>) =< ®(f) + (f') >. And if V is a G-subset of U, then

, - ooy Ap(f(u)) ifueV

o(lf, /W) (w) = ¢(If. F1(w) = o) tuen-v

Thus ®([f, f']v) = [®(f), 2(f')]v.
Finally, if there exists u € U such that Brg, (f(u)) = 0, then as ¢ commutes
with Brg,
Bra, (®(f)(w)) = ¢Bra, (f(u)) =0

This proves that ® passes down to a quotient map ty(¢) : ty (M) — ty(M'), and

the lemma follows. O

ProrosITION 9.8. Let p be a prime number, and k be a field of characteristic

p. Let G and H be finite groups, and U be a finite free-p H-set-G. Then the functor

Tgper s isomorphic to the restriction of ty to kG-p-Mod.

ProoOF. Suppose that M = kX, for some G-set X. Then by definition
TE" (M) = (F Pettoma vor,x) ) (1) = kHomg (U7, X)
Now Homg (U, X) ~ HuEU/G X% and as kX% ~ (kX)[G,], I have

To" (M) = ® (kX)[Gu]
uelU/G
where ® = ®g. Now the proposition follows from the following:
LEMMA 9.9. Let p be a prime number, and k be a field of characteristic p.

Let G and H be finite groups, and U be a finite free-p H-set-G. Then for any
kG-module M, there is an isomorphism of vector spaces

tU(M) ~ UE%)/GM[GU]

(where @ = @) which is natural in M.
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ProoF. There is a natural map

tr (M) = kHomg (U {M})/J — ® M[G.]
uelU/G

/
sending f € Homg(U?,{M}) to @uev/a Bra, (f(u)) Conversely, 1 can map

Quev/a Bra,(my) to the image of the element f € Homg (U, {M}) defined by
fu') = gmy, if W' = ug=! for u € U/G and g € G. Those maps are well-defined,

and inverse to each other. O
So the restrictions of Tgper and ty to the category of permutation modules are
isomorphic.

Now if M is any p-permutation £G-module, there is an exact sequence

(9.27) FPy 5 FPex % FPy — 0
for suitable G-sets X and Y. By definition, the sequence

ATk coh ©
TE " (F Pevux)) U—(Z THEeM(FPyx) — TH" (FPy) — 0

is exact, and evaluation at the trivial subgroup gives an exact sequence

ATk per
TEPT (k(Y U X)) Ay () TEP (kX)) — THP (M) — 0
The left part of this sequence is isomorphic to

ty (k(Y L X)) Awl9) k)

So it suffices to prove that the sequence

AtU(QD

(9.28) ty (k(Y L X)) ty (kX) = ty(M) = 0

is exact if M is a p-permutation module. And this sequence is exact if and only if
it is an exact sequence of k-vector spaces.

But if M is a p-permutation kG-module, the morphism 4 in the sequence (9.27)
is a split epimorphism, since F Py is a projective cohomological Mackey functor.
Thus for any u € U, the sequence

plGu] Y[Gu]

(FY)[G] (kX)[G] MI[Gy] =0

is exact. Hence the direct product of those sequences for v € S = U/G

(¢[Gu])u65 (

(9.29) ((kY)[Gu])uESM((M)[GU]) M[Gu]) 50

u€gES u€eS

is exact. Now up to the isomorphism of the lemma, the sequence (9.28) becomes

© (V)G aEDG]) » © (kX)[Gu] > © MG 0
uelU/G uelU/G uelU/G

It is exact, since the sequence (9.29) is exact, and the functor

(Lu)uevja = @ Ly
uelU/G

is right exact. So the sequence (9.28) is exact, and this completes the proof of the
proposition. O
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REMARK 9.10. For u € U, let
Hyy=1{h€ H|3g € G, hug = u}

Then keeping track of the action of H in lemma 9.9 gives the isomorphims of kH-
modules

ty(M)~ @ tenH MI[G,]
weH\U/G S

where teng(u is the ordinary tensor induction for kH-modules (described in the

next section). The module M[G,] is a kH ,)-module via the following action

hm=gm if heH, geG, hug™' =u

10. Tensor induction for modules

10.1. Definition. Let R be a commutative ring. If G is a finite group, let
RG-FMod denote the full subcategory of RG-Mod consisting of free RG-modules.
Since a free RG-module is always the permutation module associated to a free G-
set, this category can also be seen as the category of free permutation modules: its
objects are the free G-sets, and a morphism from Y to X is a G-invariant matrix
m(z,y), indexed by X x Y, with coefficients in R, and such that for any y € Y,
the coefficient m(z,y) is zero except for a finite number of . Composition of
morphisms is given by matrix multiplication.

Let G and H be finite groups, and U be a finite right free H-set-G. Then if
X is a free G-set, the H-set Homg (U, X) need not be free in general. But I can
consider the RH-module

ty(X) = RHomg (U, X)

If m : Y - X is a morphism in RG-FMod, then for ¢ € Homg (U, X) and
¢ € Homg(U,Y), define

il )= [I m(e) bw)

uelU/G

This matrix defines a morphism of RH-modules from ¢y (Y) to ty(X): for a given
1, there is only a finite number of ¢ such that m(p, ) is non-zero, and moreover
m is H-invariant (see the proof of proposition 8.8). Actually:

LEMMA 10.1. Let R be a commutative ring, and G and H be finite groups. Let
U be a finite right free H-set-G. Then the correspondence

X = ty(X) = RHomg(U?, X) mem
s a functor ty from RG-FMod to RH-Mod.

Proo¥. Clearly if m is the identity matrix, so is m. I have only to check that
the correspondence m — m is multiplicative.

But if Z is another free G-set, and p is a morphism from Z to Y, then the
morphism m o p : Z — X is represented by the product matrix m.p defined for
xr € X and z € Z by

(m.p)(z,z) = Z m(z,y)p(y, 2)

yey
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Now if § € Homg(U°P, Z) and ¢ € Homeg(U?, X)

iwp(e ) =TI | 2 m(e.v)p(v.00)

ueU/G \y€eY

Now expanding this product is equivalent to choosing a sequence (yu)uev/g of
elements of Y. But as U is a free G-set, this is equivalent to choosing a G-
morphism ¢ from U to Y. Thus

b0 = > I m(ew)w)p(e@ ow) = ...

YEHomg(U°PY)ueU/G

L= S (e, )m(y,0)

Y€E€Homg (U°P)Y)

So m +— m is multiplicative, and the lemma follows. O

Note that the subcategory P = RG-FMod of RG-Mod satisfies the hypothesis of
theorem 2.14: its objects are projective, it is closed under directs sums, and any
RG-module is a quotient of a free RG-module. This leads to the following;:

DerINITION 10.2. Let R be a commutative ring. If G and H are finite groups,
and U is a finite right free H-set-G, I call tensor induction associated to U the
unique right exact functor from RG-Mod to RH-Mod eztending the functor ty
from RG-FMod to RH-Mod. This extension s still denoted by 1y .

10.2. Identification. The module ¢ty (M) can be computed as follows:

ProrosiTioON 10.3. Let R be a commutative ring. Let G and H be finite
groups, and U be a finite right free H-set-G. Then for any RG-module M, there is
an isomorphism

ty(M) ~ RHomg (U ,{M})/J
where J s the R-submodule generated by the elements

Axf)=m(N)f for X €Homg(U?,{k}), f € Homg(U?,{M})
<f+f>= >, £ v for f.f €Homg(U” {M})

VCU
V G-invariant

This isomorphism ts moreover natural in M.

REMARK 10.4. This shows that the notation ¢y is coherent with the definition
9.6 given for p-permutation kG-modules, when £ is a field of characteristic p: indeed,
if U is right free, then G,, = {1} for all u € U, so all morphisms Br¢, are equal to
identity, and their kernels are zero. Moreover, if f(u) = 0 for some u, then setting
A(v) = 0 on the orbit of u, and A(v) = 1 elsewhere, T have f = A« f and 7(A) =0,
so f is in the submodule 7 of the proposition.

ProoOF. It is easy to see that if M is an RG-module, then

RHomg (U {M})/T~ © M
uelU/G

like in lemma 9.9. This proves that the functor

M — RHomg(U? ,{M})/T
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is right exact. Now if M is a permutation module RX, the previous isomorphism
gives

RHomg(U?,{M})/T ~ ®/ RX ~ RHomg(U?, X) =ty (M)
uelU/G

So both functors in the proposition are right exact functors, which are isomorphic
when restricted to P = RG-FMod. The proposition follow from theorem 2.14. [

REMARK 10.5. This proposition proves that if M = RX is any permutation
module (not only for a free X), then

tU(M) >~ RHOng(UOp,X)
10.3. Properties.

THEOREM 10.6. Let R be a commutative ring.
1. If G, H, and K are finite groups, if U is a finite right free H-set-G and V
s a finite right free K-set-H, then V xg U 1is a finite right free K-set-G and

ty oty =tvxgu
2. If G, H and K are finite groups, if U is a finite right free K-set-(G x H),
if M s an RG-module and N is an RH-module, then
tu (M Br N) = tu/n (M) ©tu/6(N)

where MXpr N denotes the tensor product M @ g N, viewed as an R(G x H)-
module.

3. If G and H are finite groups, if M and N are RG-modules, and if U is a
finite right free H-set-G, then

tU(M RRr N) ~ tU(M) RRr tU(N)

4. If G and H are finite groups, if U and U’ are finite right free H-sets-G, and
M s an RG-module, then

touo (M) =ty (M) ®g ty (M)

5. If G and H are finite groups, if U is a finite right free H-set-G, and if M
and M’ are RG-modules, then
tU(M@M/) = VECBU Indgvtv(M) Rr tU_V(M/)

V invariant by G
V mod. H

6. If G, H, and K are finite groups, if U is a finite right free H-set-G, and V
s a finite right free K-set-H, then for any RG-module M
ty (RU ®ra M) ~ ® Indi tv., u(M)
FeK\Hompy (Ver U/G)
Moreover, all these isomorphisms are natural.

Proo¥. All those assertions state isomorphisms between right exact functors.
So it suffices to check that the restrictions to RG-FMod are isomorphic, and this
is straightforward: let me just give the details for the last one, where the notations
refer to proposition 5.7. If X is a G-set, then

RU @ RX = R(U xa X) = R(U og X)
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since U is right free. Now I have seen in proposition 5.7 that

Homp (VU og X) = L] Ind} Home(H\U.;V, X)
FEK\Homg (Ver U/G)

It follows that

ty (RU @ M) ~ Ind¥ RH H\U.;V, X
v( 1% ) feK\Homiﬂ(Vopr/G) ndy  RHomg (H\U ¢ )

Moreover H\U.;V and V.¢ gU are isomorphic as K-sets-G. This proves the desired
isomorphism for free permutation modules, and the assertion follows from right
exactness. O

10.4. Comparison. Tensor induction for Mackey functors and for modules
are compatible:

ProrosiTioON 10.7. Let G and H be finite groups.

1. If U is a finite right free H-set-G, then for any Mackey functor M for G,
there is an tsomorphim of ZG-modules

Ty (M)(1) ~ tU(M(l))

where ty denotes tensor induction for ZG-modules.
2. If R 1s a commutative ring, and U s a finite right free H-set-G, then for
any cohomological Mackey functor M for G over R, there is an isomorphism

of RG-modules
TR (M)(1) = to (M (1))
where ty denotes tensor induction for RG-modules.
Those isomorphisms are moreover natural in M.

ProoF. Both assertions state isomorphisms between right exact functors (from
from Mack(G) to ZG-Mod for the first one, and from Comackr(G) to RG-Mod
for the second). So it suffices to check the isomorphism of the restrictions to
PMack(G) for the first assertion, and PComackr(G) for the second.

But if M = bx for some G-set X, then

Ty (M)(1) = (bhomg (Uer,x)) (1) =~ ZHomg (U?, X) ~ ty (ZX)
Similarly, if M = F Prx for some G-set X, then
coh
T§ (M)(1) = <FPRHOH1G(U°P7X))(1) = RHomg (U, X) = ty(X)

Now proposition follows from theorem 2.14. O
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10.5. Examples.

10.5.1. Restriction. Let H be a subgroup of G, and U = G, viewed as an H-
set-G. Then if X is a free G-set, it is clear that Homg (U, X) is isomorphic to
the restriction of X to H. Since

Res$; RX = R(Res$ X)

the functors Resg and ¢y are isomorphic when restricted to RG-FMod. Since they
are both right exact, they are isomorphic, and ¢y is just the restriction functor in
that case.

10.5.2. Inflation. Let N be a normal subgroup of Gand H = G/N. Let U = H,
viewed as a right free G-set-H. If X is an H-set, then Homg (U, X) is isomorphic
to InffIX . Thus

ty(X) = RInf§ X = Inf§ (RX)
Here again, the functors ¢y and Inffl are right exact functors, with isomorphic
restrictions to RG-FMod. So the functor ¢y is just the inflation functor in that
case.

10.5.3. Ordinary tensor induction. Let H be a subgroup of G, and U = G,
viewed as a G-set-H. Then for any H-set X

ty(X) = RHomy (U, X) ~ R(XI¢H]) = (RX)®G:H]
So the functor ¢y is isomorphic to the (ordinary) tensor induction functor ten%
(see [Ben91] 3.15).
In particular, theorem 10.6 5) and 6) gives explicit formulas for ten§ (M & N),
and teng(lndgM) (compare with [Ben91] Proposition 3.15.2), whereas Mackey

formula for tensor induction, transitivity of tensor induction, formulas for composi-
tion of tensor induction with restriction and inflation follow from theorem 10.6 1).
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