The slice Burnside ring
and the section Burnside ring
of a finite group

Serge Bouc

CNRS-LAMFA
Université de Picardie

Pohang, March 28, 2011
Overview

1. Biset functors

- Definition
- Applications

2. The Burnside functor

3. Slices
 - Morphisms of \(G \)-sets
 - The slice Burnside ring
 - The slice Burnside functor

4. Sections
 - Galois morphisms of \(G \)-sets
 - The section Burnside ring
 - The section Burnside functor

Serge Bouc (CNRS-LAMFA)

Slice - Section

Pohang, March 28, 2011

2 / 17
Overview

1. **Biset functors**
 - Definition
Overview

1. Biset functors
 - Definition
 - Applications
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors

2. The Burnside functor
Overview

1 Biset functors
 • Definition
 • Applications
 • Simple functors

2 The Burnside functor

3 Slices
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors

2. The Burnside functor

3. Slices
 - Morphisms of G-sets
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors

2. The Burnside functor

3. Slices
 - Morphisms of G-sets
 - The slice Burnside ring
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors

2. The Burnside functor

3. Slices
 - Morphisms of G-sets
 - The slice Burnside ring
 - The slice Burnside functor
Overview

1 Biset functors
 - Definition
 - Applications
 - Simple functors

2 The Burnside functor

3 Slices
 - Morphisms of G-sets
 - The slice Burnside ring
 - The slice Burnside functor

4 Sections
Overview

1 Biset functors
 - Definition
 - Applications
 - Simple functors

2 The Burnside functor

3 Slices
 - Morphisms of \(G \)-sets
 - The slice Burnside ring
 - The slice Burnside functor

4 Sections
 - Galois morphisms of \(G \)-sets
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors

2. The Burnside functor

3. Slices
 - Morphisms of G-sets
 - The slice Burnside ring
 - The slice Burnside functor

4. Sections
 - Galois morphisms of G-sets
 - The section Burnside ring
Overview

1. Biset functors
 - Definition
 - Applications
 - Simple functors

2. The Burnside functor

3. Slices
 - Morphisms of G-sets
 - The slice Burnside ring
 - The slice Burnside functor

4. Sections
 - Galois morphisms of G-sets
 - The section Burnside ring
 - The section Burnside functor
Motivation

Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G, \text{Res}_G^H : R_C(G) \rightarrow R_C(H)$, and induction $\text{Ind}_G^H : R_C(H) \rightarrow R_C(G)$. When $\phi : G \rightarrow G'$, there is $\text{Iso}(\phi) : R_C(G) \rightarrow R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \triangleleft G$, there is an operation of inflation $\text{Inf}_G^{G/N} : R_C(G/N) \rightarrow R_C(G)$, and deflation $\text{Def}_G^{G/N} : R_C(G) \rightarrow R_C(G/N)$. These five operations endow R_C with a structure of biset functor.
Motivation

Example:

\[\begin{align*}
\text{Example:} \\
\text{Motivation:} \\
\text{Example:}
\end{align*} \]
Example: the correspondence $G \mapsto R_C(G)$
Motivation

- **Example**: the correspondence $G \mapsto R_C(G)$ has operations of restriction.

 When $\phi : G \cong \rightarrow G'$, there is $\text{Iso}(\phi) : R_C(G) \rightarrow R_C(G')$.

 These operations endow R_C with a structure of Mackey functor.

 When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N} : R_C(G/N) \rightarrow R_C(G)$ and deflation $\text{Def}_{G/N} : R_C(G) \rightarrow R_C(G/N)$.

 These five operations endow R_C with a structure of biset functor.
Example: the correspondence $G \mapsto R^C(G)$ has operations of restriction $\forall H \leq G$.
Motivation

- **Example**: the correspondence $G \mapsto R_{\mathbb{C}}(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(H)$.
Motivation

- **Example**: the correspondence $G \mapsto R^G(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R^G(G) \to R^G(H)$, and induction $\text{Ind}_H^G : R^G(H) \to R^G(G)$.
Example: the correspondence $G \mapsto \mathbb{R}_C(G)$ has operations of restriction $\forall H \leq G, \text{Res}_H^G : \mathbb{R}_C(G) \to \mathbb{R}_C(H)$, and induction $\text{Ind}_H^G : \mathbb{R}_C(H) \to \mathbb{R}_C(G)$.

When $\varphi : G \to G'$
Example: the correspondence $G \leftrightarrow R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_C(G) \to R_C(H)$, and induction $\text{Ind}^G_H : R_C(H) \to R_C(G)$. When $\varphi : G \to G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

These operations endow R_C with a structure of Mackey functor.

When $N \unlhd G$, there is an operation of inflation $\text{Inf}^G_G : R_C(G) \to R_C(G/N)$ and deflation $\text{Def}^G_G : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.
Motivation

- **Example**: the correspondence $G \leftrightarrow R_{\mathbb{C}}(G)$ has operations of restriction $\forall H \leq G, \text{Res}^G_H : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(H)$, and induction $\text{Ind}^G_H : R_{\mathbb{C}}(H) \to R_{\mathbb{C}}(G)$.

When $\varphi : G \to G'$, there is $\text{Iso}(\varphi) : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(G')$.

These operations fulfill various conditions of compatibility.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G, \ Res^G_H : R_C(G) \to R_C(H)$, and induction $\ Ind^G_H : R_C(H) \to R_C(G)$.

When $\varphi : G \xrightarrow{\cong} G'$, there is $Iso(\varphi) : R_C(G) \to R_C(G')$.

These operations fulfill various conditions of compatibility, e.g. transitivity conditions $\forall K \leq H \leq G, Res_K^H \circ Res_H^G = Res_K^G$.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_C(G) \to R_C(H)$, and induction $\text{Ind}^G_H : R_C(H) \to R_C(G)$.

When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

These operations fulfill various conditions of compatibility, e.g. transitivity conditions $\forall K \leq H \leq G$, $\text{Ind}^G_H \circ \text{Ind}^H_K = \text{Ind}^G_K$.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G, \text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$. When $\varphi : G \rightarrow G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations fulfill various conditions of compatibility, e.g. the Mackey formula

$$\forall H \leq G \geq K, \text{ Res}_H^G \circ \text{Ind}_K^G = \sum_{g \in [H \backslash G / K]} \text{Ind}_{H \cap g \cdot K}^H \circ \text{Iso}(c_g) \circ \text{Res}_{H \cap g \cdot K}^K.$$
Mackey functors

Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$.

When $\varphi : G \xrightarrow{\cong} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

These operations fulfill various conditions of compatibility, e.g. the Mackey formula

$$\forall H \leq G \geq K, \quad \text{Res}_H^G \circ \text{Ind}_K^G = \sum_{g \in [H \backslash G / K]} \text{Ind}_{H \cap gK}^H \circ \text{Iso}(c_g) \circ \text{Res}_{H \cap gK}^K.$$

These operations endow R_C with a structure of Mackey functor.
Example: the correspondence $G \mapsto R_\mathbb{C}(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_\mathbb{C}(G) \to R_\mathbb{C}(H)$, and induction $\text{Ind}_H^G : R_\mathbb{C}(H) \to R_\mathbb{C}(G)$. When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_\mathbb{C}(G) \to R_\mathbb{C}(G')$. These operations endow $R_\mathbb{C}$ with a structure of Mackey functor.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $Res_H^G : R_C(G) \to R_C(H)$, and induction $Ind_H^G : R_C(H) \to R_C(G)$. When $\varphi : G \to G'$, there is $Iso(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \triangleleft G$
Mackey functors

- **Example**: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$.

 When $\varphi : G \to G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

 These operations endow R_C with a structure of Mackey functor.

- When $N \triangleleft G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$.
Example: the correspondence $G \mapsto R_\mathbb{C}(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_\mathbb{C}(G) \to R_\mathbb{C}(H)$, and induction $\text{Ind}_H^G : R_\mathbb{C}(H) \to R_\mathbb{C}(G)$.

When $\varphi : G \xrightarrow{\cong} G'$, there is $\text{Iso}(\varphi) : R_\mathbb{C}(G) \to R_\mathbb{C}(G')$. These operations endow $R_\mathbb{C}$ with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_\mathbb{C}(G/N) \to R_\mathbb{C}(G)$, and deflation $\text{Def}_{G/N}^G : R_\mathbb{C}(G) \to R_\mathbb{C}(G/N)$.

These five operations endow $R_\mathbb{C}$ with a structure of biset functor.
Example: the correspondence $G \mapsto R_{\mathbb{C}}(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(H)$, and induction $\text{Ind}_H^G : R_{\mathbb{C}}(H) \to R_{\mathbb{C}}(G)$.

When $\varphi : G \cong G'$, there is $\text{Iso}(\varphi) : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(G')$.

These operations endow $R_{\mathbb{C}}$ with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_{\mathbb{C}}(G/N) \to R_{\mathbb{C}}(G)$, and deflation $\text{Def}_{G/N}^G : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(G/N)$ (taking co-invariants by N).
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_C(G) \to R_C(H)$, and induction $\text{Ind}^G_H : R_C(H) \to R_C(G)$.

When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

These operations endow R_C with a structure of **Mackey functor**.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}^G_{G/N} : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}^G_{G/N} : R_C(G) \to R_C(G/N)$.

These five types of operations fulfill a (long) list of **compatibility conditions**.
Mackey functors

Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$. When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$. These five types of operations fulfill a (long) list of compatibility conditions, e.g. $\text{Def}_{G/N}^G \circ \text{Ind}_H^G = \text{Ind}_{HN/N}^{G/N} \circ \text{Iso}_{H/H \cap N}^{HN/N} \circ \text{Def}_{H/H \cap N}^H$.
Mackey functors

- **Example**: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$.

 When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

 These operations endow R_C with a structure of Mackey functor.

- When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$.

 These five types of operations fulfill a (long) list of compatibility conditions.
Biset functors

- **Example**: the correspondence \(G \mapsto R_C(G) \) has operations of restriction \(\forall H \leq G, \text{Res}^G_H : R_C(G) \to R_C(H) \), and induction \(\text{Ind}^G_H : R_C(H) \to R_C(G) \).

When \(\varphi : G \xrightarrow{\sim} G' \), there is \(\text{Iso}(\varphi) : R_C(G) \to R_C(G') \).

These operations endow \(R_C \) with a structure of Mackey functor.

- When \(N \trianglelefteq G \), there is an operation of inflation \(\text{Inf}^G_{G/N} : R_C(G/N) \to R_C(G) \), and deflation \(\text{Def}^G_{G/N} : R_C(G) \to R_C(G/N) \).

These five operations endow \(R_C \) with a structure of biset functor.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_C(G) \rightarrow R_C(H)$, and induction $\text{Ind}^G_H : R_C(H) \rightarrow R_C(G)$. When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \rightarrow R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}^G_{G/N} : R_C(G/N) \rightarrow R_C(G)$, and deflation $\text{Def}^G_{G/N} : R_C(G) \rightarrow R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets.
Biset functors

Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$. When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \triangleleft G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H.

Serge Bouc (CNRS-LAMFA)
Example: the correspondence $G \mapsto R_{\mathbb{C}}(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(H)$, and induction $\text{Ind}^G_H : R_{\mathbb{C}}(H) \to R_{\mathbb{C}}(G)$. When $\varphi : G \leftrightarrow G'$, there is $\text{Iso}(\varphi) : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(G')$. These operations endow $R_{\mathbb{C}}$ with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}^G_{G/N} : R_{\mathbb{C}}(G/N) \to R_{\mathbb{C}}(G)$, and deflation $\text{Def}^G_{G/N} : R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(G/N)$. These five operations endow $R_{\mathbb{C}}$ with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U.
Biset functors

- **Example**: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \rightarrow R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \rightarrow R_C(G)$. When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \rightarrow R_C(G')$. These operations endow R_C with a structure of Mackey functor.

- When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \rightarrow R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \rightarrow R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

- They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, i.e. a set with a left action of H. When $\varphi : G \xrightarrow{\sim} H$, there is $\text{Iso}(\varphi) : R_C(G) \rightarrow R_C(H')$. These operations endow R_C with a structure of biset functor.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$.

When $\varphi : G \cong G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, i.e. a set with a left action of H, a right action of G.

Biset functors
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$. When $\varphi : G \xrightarrow{\sim} G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, i.e. a set with a left action of H, a right action of G, which commute.
Biset functors

- **Example**: the correspondence \(G \mapsto R_\mathbb{C}(G) \) has operations of restriction \(\forall H \leq G, \text{Res}^G_H : R_\mathbb{C}(G) \rightarrow R_\mathbb{C}(H) \), and induction \(\text{Ind}^G_H : R_\mathbb{C}(H) \rightarrow R_\mathbb{C}(G) \).

 When \(\varphi : G \cong G' \), there is \(\text{Iso}(\varphi) : R_\mathbb{C}(G) \rightarrow R_\mathbb{C}(G') \).

 These operations endow \(R_\mathbb{C} \) with a structure of Mackey functor.

- When \(N \trianglelefteq G \), there is an operation of inflation \(\text{Inf}^G_{G/N} : R_\mathbb{C}(G/N) \rightarrow R_\mathbb{C}(G) \), and deflation \(\text{Def}^G_{G/N} : R_\mathbb{C}(G) \rightarrow R_\mathbb{C}(G/N) \).

 These five operations endow \(R_\mathbb{C} \) with a structure of biset functor.

- They can be unified using bisets: in each case, there are two finite groups \(G \) and \(H \), and a finite \((H, G)\)-biset \(U \), i.e. a set with a left action of \(H \), a right action of \(G \), which commute, i.e. such that \((hu)g = h(ug)\), \(\forall h \in H, u \in U, g \in G \).
Biset functors

- **Example**: the correspondence $G \leftrightarrow R_C(G)$ has operations of
 restriction $\forall H \leq G, \text{Res}_H^G : R_C(G) \to R_C(H)$, and
 induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$.

 When $\varphi : G \to G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$.

 These operations endow R_C with a structure of Mackey functor.

- When $N \trianglelefteq G$, there is an operation of
 inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and
 deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$.

 These five operations endow R_C with a structure of biset functor.

- They can be unified using bisets: in each case, there are two finite
 groups G and H, and a finite (H, G)-biset U.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G, \text{Res}^G_H : R_C(G) \to R_C(H)$, and induction $\text{Ind}^G_H : R_C(H) \to R_C(G)$. When $\varphi : G \rightarrowtail G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \triangleleft G$, there is an operation of inflation $\text{Inf}^G_{G/N} : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}^G_{G/N} : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, such that the operation $R_C(U) : R_C(G) \to R_C(H)$.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}^G_H : R_C(G) \to R_C(H)$, and induction $\text{Ind}^G_H : R_C(H) \to R_C(G)$. When $\varphi : G \to G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, such that the operation $R_C(U) : R_C(G) \to R_C(H)$ is induced by $W \mapsto \mathbb{C} U \otimes_{\mathbb{C} G} W$.
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $Res^G_H : R_C(G) \to R_C(H)$, and induction $Ind^G_H : R_C(H) \to R_C(G)$.

When $\varphi : G \xrightarrow{\sim} G'$, there is $Iso(\varphi) : R_C(G) \to R_C(G')$.

These operations endow R_C with a structure of Mackey functor.

When $N \trianglelefteq G$, there is an operation of inflation $Inf^G_{G/N} : R_C(G/N) \to R_C(G)$, and deflation $Def^G_{G/N} : R_C(G) \to R_C(G/N)$.

These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, such that the operation $R_C(U) : R_C(G) \to R_C(H)$ is induced by $W \mapsto C U \otimes_C G W$.

Compatibility conditions
Example: the correspondence $G \mapsto R_C(G)$ has operations of restriction $\forall H \leq G$, $\text{Res}_H^G : R_C(G) \to R_C(H)$, and induction $\text{Ind}_H^G : R_C(H) \to R_C(G)$. When $\varphi : G \hookrightarrow G'$, there is $\text{Iso}(\varphi) : R_C(G) \to R_C(G')$. These operations endow R_C with a structure of Mackey functor.

When $N \triangleleft G$, there is an operation of inflation $\text{Inf}_{G/N}^G : R_C(G/N) \to R_C(G)$, and deflation $\text{Def}_{G/N}^G : R_C(G) \to R_C(G/N)$. These five operations endow R_C with a structure of biset functor.

They can be unified using bisets: in each case, there are two finite groups G and H, and a finite (H, G)-biset U, such that the operation $R_C(U) : R_C(G) \to R_C(H)$ is induced by $W \mapsto C U \otimes_C G W$. Compatibility conditions $\Leftrightarrow R_C(V) \circ R_C(U) = R_C(V \times_H U)$.
Biset functors

Definition

A biset functor M consists of the following data:

1. For any finite group G, an abelian group $M(G)$,
2. For any finite (H,G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$,
3. Such that:
 - If $U \sim U'$ as (H,G)-bisets, then $M(U) = M(U')$.
 - $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$.
 - $M(V) \circ M(U) = M(V \times H U)$.
 - $M(\text{Id}_G) = \text{Id}_{M(G)}$.

More generally, one can consider biset functors with values in $k\text{-Mod}$, for a commutative ring k. Biset functors over k form an abelian category \mathcal{F}_k.

Serge Bouc (CNRS-LAMFA)
Biset functors

- When G, H, and K are groups

When G, H, and K are groups, and U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times H U = (V \times U) / H$. $V \times H U$ is a (K, G)-biset.

When G is a group, let Id_G denote the set G, viewed as a (G, G)-biset for left and right multiplication.

The Grothendieck group $B(H, G)$ of the category of finite (H, G)-bisets is called the Burnside group of (H, G)-bisets.

Definition A biset functor M consists of the following data:

1. For any finite group G, an abelian group $M(G)$,
2. For any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$, such that:
 1. If $U \sim U'$ as (H, G)-bisets, then $M(U) = M(U')$.
 2. $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$.
 3. $M(V) \circ M(U) = M(V \times H U)$.
 4. $M(\text{Id}_G) = \text{Id}_{M(G)}$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category \mathcal{F}_k.

Serge Bouc (CNRS-LAMFA)
When G, H, and K are groups, when U is an (H, G)-biset
When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset.
Biset functors

When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$.

More generally, one can consider biset functors with values in $k\operatorname{-Mod}$, for a commutative ring k. Biset functors over k form an abelian category $\mathcal{F}k$.

Serge Bouc (CNRS-LAMFA)
Slice - Section
Pohang, March 28, 2011 4 / 17
When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$, where $(v, u)h = (vh, h^{-1}u)$ for $v \in V$, $u \in U$, $h \in H$.
When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K, G)-biset.
When G, H, and K are groups, when U is an (H,G)-biset, and V is a (K,H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K,G)-biset, by $k(v,H u)g = (kv,H ug)$, for $k \in K$, $g \in G$, $(v,H u) \in V \times_H U$.
Biset functors

- When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K, G)-biset.
- When G is a group
When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K, G)-biset.

When G is a group, let ld_G denote the set G.

Biset functors
Biset functors

- When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K, G)-biset.

- When G is a group, let Id_G denote the set G, viewed as a (G, G)-biset for left and right multiplication.
Biset functors

- When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K, G)-biset.

- When G is a group, let Id_G denote the set G, viewed as a (G, G)-biset for left and right multiplication.

- The Grothendieck group $B(H, G)$ of the category of finite (H, G)-bisets
Biset functors

- When G, H, and K are groups, when U is an (H, G)-biset, and V is a (K, H)-biset, define $V \times_H U = (V \times U)/H$. $V \times_H U$ is a (K, G)-biset.
- When G is a group, let ld_G denote the set G, viewed as a (G, G)-biset for left and right multiplication.
- The Grothendieck group $B(H, G)$ of the category of finite (H, G)-bisets is called the Burnside group of (H, G)-bisets.
Biset functors

Definition

A biset functor \(M \) consists of the following data:

1. For any finite group \(G \), an abelian group \(M(G) \),
2. For any finite \((H,G)\)-biset \(U \), a group homomorphism \(M(U) : M(G) \to M(H) \),
3. Such that:
 - if \(U \sim U' \) as \((H,G)\)-bisets, then \(M(U) = M(U') \).
 - \(M(U_1 \sqcup U_2) = M(U_1) + M(U_2) \).
 - \(M(V) \circ M(U) = M(V \times H U) \).
 - \(M(\text{Id}_G) = \text{Id}_{M(G)} \).

More generally, one can consider biset functors with values in \(k\)-\(\text{Mod} \), for a commutative ring \(k \).

Biset functors over \(k \) form an abelian category \(\mathcal{F}_k \).
A biset functor M consists of the following data:

1. For any finite group G, an abelian group $M(G)$,
2. For any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \rightarrow M(H)$,
3. Such that:
 - if $U \sim U'$ as (H, G)-bisets, then $M(U) = M(U')$,
 - $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$,
 - $M(V \times H U) = M(V) \circ M(U)$,
 - $M(Id_G) = Id_{M(G)}$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category F_k.
A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
Biset functors

Definition

A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$,

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category \mathcal{F}_k.
A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$,

such that:

1. if $U \sim U'$ as (H, G)-bisets, then $M(U) = M(U')$.
2. $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$.
3. $M(V \circ M(U)) = M(V \times H U)$.
4. $M(\text{Id}_G) = \text{Id}_{M(G)}$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category \mathcal{F}_k.
A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$,

such that:

1. if $U \cong U'$ as (H, G)-bisets, then $M(U) = M(U')$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category \mathcal{F}_k.

Serge Bouc (CNRS-LAMFA)
Biset functors

Definition

A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H),$

such that:

1. if $U \cong U'$ as (H, G)-bisets, then $M(U) = M(U')$.
2. $M(U_1 \uplus U_2) = M(U_1) + M(U_2).$
A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \rightarrow M(H)$,

such that:

1. if $U \cong U'$ as (H, G)-bisets, then $M(U) = M(U')$.
2. $M(U_1 \uplus U_2) = M(U_1) + M(U_2)$.
3. $M(V) \circ M(U) = M(V \times_H U)$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category F_k.

Serge Bouc (CNRS-LAMFA)
Biset functors

Definition

A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$,

such that:

1. if $U \cong U'$ as (H, G)-bisets, then $M(U) = M(U')$.
2. $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$.
3. $M(V) \circ M(U) = M(V \times_H U)$.
4. $M(Id_G) = Id_{M(G)}$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k. Biset functors over k form an abelian category F_k.
Biset functors

Definition

A biset functor M consists of the following data:

- for any finite group G, an abelian group $M(G)$,
- for any finite (H, G)-biset U, a group homomorphism $M(U) : M(G) \to M(H)$,

such that:

1. if $U \cong U'$ as (H, G)-bisets, then $M(U) = M(U')$.
2. $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$.
3. $M(V) \circ M(U) = M(V \times_H U)$.
4. $M(Id_G) = Id_{M(G)}$.

More generally, one can consider biset functors with values in k-Mod, for a commutative ring k.
Biset functors

Definition

A biset functor M consists of the following data:

1. for any finite group G, an abelian group $M(G)$,
2. for any finite (H, G)-biset U, a group homomorphism $M(U): M(G) \to M(H)$,

such that:

1. if $U \cong U'$ as (H, G)-bisets, then $M(U) = M(U')$.
2. $M(U_1 \sqcup U_2) = M(U_1) + M(U_2)$.
3. $M(V) \circ M(U) = M(V \times_H U)$.
4. $M(Id_G) = Id_{M(G)}$.

More generally, one can consider biset functors with values in $k\text{-}Mod$, for a commutative ring k. Biset functors over k form an abelian category \mathcal{F}_k.
Biset functors

Let C_k be the following category:

The objects of C_k are the finite groups.

If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.

Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times H U$.

The identity morphism of the group G is $\text{Id}_G \in kB(G, G)$.

A biset functor is a k-linear functor $C_k \to k$-Mod.

Examples:

1. The functors of complex representations $\mathbb{R} C$.
2. The Burnside functor B: $G \mapsto B(G) = B(G, 1)$.
 It is the Yoneda functor $\text{Hom}_{C_k}(1, -)$.
 In particular B is projective in $F \mathbb{Z}$.
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G,H) = kB(H,G)$.
- Composition in C_k is the bilinear extension of $(V,U) \mapsto V \times H U$.
- The identity morphism of the group G is $\text{Id}_G \in kB(G,G)$.

A biset functor is a k-linear functor $C_k \to k$-Mod.

Examples:

1. The functors of complex representations \mathbb{C}.
2. The Burnside functor $B: G \mapsto B(G) = B(G,1)$.
 - It is the Yoneda functor $\text{Hom}_{C_k}(1,-)$.
 - In particular, B is projective in $\mathbb{F}Z$.
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.

Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times H U$.

The identity morphism of the group G is $[\text{Id}_G] \in k B(G, G)$.

A biset functor is a k-linear functor $C_k \to k$-Mod.

Examples:

1. The functors of complex representations \mathcal{R}.
2. The Burnside functor \mathcal{B}:
 $G \mapsto B(G) = B(G, 1)$.
 It is the Yoneda functor $\text{Hom}_{C_k}(1, -)$.
 In particular \mathcal{B} is projective in $F Z$.
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = k \otimes \mathbb{Z} B(H, G)$.

Examples:
1. The functors of complex representations RepC.
2. The Burnside functor B: $G \mapsto B(G) = B(G, 1)$. It is the Yoneda functor $\text{Hom}_{C_k}(1, -)$.

In particular B is projective in $\text{F}_\mathbb{Z}$.

Serge Bouc (CNRS-LAMFA)
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.

A biset functor is a k-linear functor $C_k \to k\text{-Mod}$.

Examples:

1. The functors of complex representations R^C.
2. The Burnside functor $B: G \mapsto B(G) = kB(G, 1)$. It is the Yoneda functor $\text{Hom}_{C_k}(1, -)$.

In particular B is projective in FZ.

Serge Bouc (CNRS-LAMFA)
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.
Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.

A biset functor (with values in $k\text{-Mod}$) is a k-linear functor $C_k \to k\text{-Mod}$.
Equivalent definition

Let \(C_k \) be the following category :

- The object of \(C_k \) are the finite groups.
- If \(G \) and \(H \) are finite groups, then \(\text{Hom}_{C_k}(G, H) = kB(H, G) \).
- Composition in \(C_k \) is the bilinear extension of \((V, U) \mapsto V \times_H U \).
- The identity morphism of the group \(G \) is \([\text{Id}_G] \in kB(G, G)\).

A **biset functor** is a \(k \)-linear functor \(C_k \rightarrow k\text{-Mod} \).

Examples :

- \((k = \mathbb{Z}, C = C\mathbb{Z})\)
- The functors of complex representations \(\mathbb{C} \).
- The Burnside functor \(B : G \mapsto kB(G, 1) \).
 It is the Yoneda functor \(\text{Hom}_{C_k}(1, -) \).
 In particular \(B \) is projective in \(\mathbb{F}_\mathbb{Z} \).
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.

A **biset functor** is a k-linear functor $C_k \rightarrow k\text{-}\text{Mod}$.

Examples: $(k = \mathbb{Z}, C = C_\mathbb{Z})$
Biset functors

Equivalent definition

Let C_k be the following category:
- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.

A biset functor is a k-linear functor $C_k \to k\text{-Mod}$.

Examples: $(k = \mathbb{Z}, C = C\mathbb{Z})$
- The functors of complex representations $R_{\mathbb{C}}$.
Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.

A biset functor is a k-linear functor $C_k \to k\text{-Mod}$.

Examples: $(k = \mathbb{Z}, C = C_\mathbb{Z})$

1. The functors of complex representations R_{C}.
2. The **Burnside** functor $B : G \mapsto B(G) = B(G, 1)$.
Biset functors

Equivalent definition

Let C_k be the following category:
- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.

A biset functor is a k-linear functor $C_k \to k\text{-Mod}$.

Examples:

1. The functors of complex representations $R_{\mathbb{C}}$.
2. The Burnside functor $B : G \mapsto B(G) = B(G, 1)$. It is the Yoneda functor $\text{Hom}_{\mathcal{C}}(1, -)$.
Biset functors

Equivalent definition

Let C_k be the following category:

- The object of C_k are the finite groups.
- If G and H are finite groups, then $\text{Hom}_{C_k}(G, H) = kB(H, G)$.
- Composition in C_k is the bilinear extension of $(V, U) \mapsto V \times_H U$.
- The identity morphism of the group G is $[\text{Id}_G] \in kB(G, G)$.

A biset functor is a k-linear functor $C_k \to k\text{-Mod}$.

Examples: $(k = \mathbb{Z}, C = C_\mathbb{Z})$

1. The functors of complex representations R_C.
2. The Burnside functor $B : G \mapsto B(G) = B(G, 1)$. It is the Yoneda functor $\text{Hom}_C(1, -)$. In particular B is projective in $F_\mathbb{Z}$.
Some applications

Let P denote a finite p-group. Rational representations of P. Genetic subgroups, genetic bases. Description of the kernel of the linearization morphism $B(P) \to RQ(P)$. Structure of the group of units $B(P) \times$. Structure of the Dade group $D(P)$.

Serge Bouc (CNRS-LAMFA)
Slice - Section
Pohang, March 28, 2011
Let P denote a finite p-group.
Some applications

Let P denote a finite p-group.

- Rational representations of P.

Some applications

Let P denote a finite p-group.

- Rational representations of P. Genetic subgroups
Some applications

Let P denote a finite p-group.

Some applications

Let P denote a finite p-group.

- Description of the kernel of the linearization morphism $B(P) \rightarrow R_\mathbb{Q}(P)$.

Some applications

Let P denote a finite p-group.

- Description of the kernel of the linearization morphism $B(P) \to R_\mathbb{Q}(P)$.
- Structure of the group of units $B(P)^\times$.
Some applications

Let P denote a finite p-group.

- Description of the kernel of the linearization morphism $B(P) \rightarrow R_{\mathbb{Q}}(P)$.
- Structure of the group of units $B(P)^\times$.
- Structure of the Dade group $D(P)$.
Some applications

Let P denote a finite p-group.

- Description of the kernel of the linearization morphism $B(P) \to R_\mathbb{Q}(P)$.
- Structure of the group of units $B(P)\times$.
- Structure of the Dade group $D(P)$.
Simple functors

Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection.

Simple biset functors with values in k-Mod up to isomorphism \leftrightarrow Pairs (H, V) such that H is finite, V is simple, and $kOut(H)$-module up to isomorphism.

Serge Bouc (CNRS-LAMFA)
The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection.
Simple functors

Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$
Simple functors

Parametrization of simple functors

The correspondence \(S \mapsto (H, V) \), where \(H \) is a minimal group such that \(S(H) \neq 0 \), and \(V = S(H) \), induces a bijection
Simple functors

Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection

Simple biset functors

with values in k-Mod

up to isomorphism
Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection

Simple biset functors
with values in k-\textbf{Mod}
up to isomorphism

Pairs (H, V)
$\begin{cases}
H \text{ finite group} \\
V \text{ simple } k\text{Out}(H)\text{-module}
\end{cases}$
up to isomorphism
Simple functors

Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection

Simple biset functors with values in k-Mod up to isomorphism

Pairs (H, V)

$\begin{cases}
H \text{ finite group} \\
V \text{ simple } k\text{Out}(H)\text{-module}
\end{cases}$ up to isomorphism

(H, V)
Simple functors

Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection

Simple biset functors with values in $k\text{-Mod}$ up to isomorphism

Pairs (H, V)

\begin{align*}
S_{H,V} &\leftrightarrow (H, V) \\
\{ &\begin{array}{l}
H \text{ finite group} \\
V \text{ simple } k\text{Out}(H)-\text{module}
\end{array} \\
&\text{up to isomorphism}
\end{align*}
Simple functors

Parametrization of simple functors

The correspondence $S \mapsto (H, V)$, where H is a minimal group such that $S(H) \neq 0$, and $V = S(H)$, induces a bijection

Simple biset functors with values in k-Mod up to isomorphism

Pairs (H, V)

\begin{align*}
S_{H,V} & \leftrightarrow (H, V) \\
\{ H \text{ finite group} & \\
V \text{ simple } k\text{Out}(H)\text{-module} & \}
up to isomorphism
\end{align*}
Simple functors

Examples:

1. S_1, $k \sim = kR_Q$, and kB is its projective cover.

2. S_H, V subquotient of $kB \iff V = k$, and H is a B-group.

This gives a way to compute $\dim_k S_H$, $k(G)$, when H is a B-group, as the number of certain conjugacy classes of subgroups of G (e.g. cyclic ones if $H = 1$).

4. In general $\dim_k S_H$, $V(G)$ is equal to the rank of a complicated matrix built from sections (T, S) of G (i.e. $S \triangleright T \leq G$) such that $T/S \sim = H$. The computation of this rank is usually very hard.
Simple functors

Examples:

1. S, $k \sim \mathbb{Q}$, and kB is its projective cover.

2. $S\mathcal{H}$, V subquotient of kB $\iff V = k$, and \mathcal{H} is a B-group.

3. This gives a way to compute $\dim_k S\mathcal{H}$, $k(G)$, when \mathcal{H} is a B-group (e.g. cyclic ones if $\mathcal{H} = 1$).

4. In general $\dim_k S\mathcal{H}, V(G)$ is equal to the rank of a complicated matrix built from sections $(T, S) \leq G$ such that $T/S \sim H$. The computation of this rank is usually very hard.
Simple functors

Examples: \((k \text{ is a field, } \text{char}(k) = 0)\)
Examples: \((k \text{ is a field, } \text{char}(k) = 0)\)

1. \(S_{1,k}\)
Simple functors

Examples: (\(k\) is a field, \(\text{char}(k) = 0\))

1. \(S_{1,k} \cong kR_Q\)
Examples: $(k$ is a field, $\text{char}(k) = 0)$

1. $S_{1,k} \cong kR_{\mathbb{Q}}$, and kB is its projective cover.
Simple functors

Examples: (\(k\) is a field, \(\text{char}(k) = 0\))

1. \(S_{1,k} \cong kR_\mathbb{Q}\), and \(kB\) is its projective cover.
2. \(S_{H,V}\) subquotient of \(kB\)
Examples: (k is a field, char(k) = 0)

1. $S_{1,k} \cong kR_Q$, and kB is its projective cover.
2. $S_{H,V}$ subquotient of $kB \iff V = k$
Examples: \((k \text{ is a field, } \text{char}(k) = 0)\)

1. \(S_{1,k} \cong kR_{\mathbb{Q}}, \text{ and } kB \text{ is its projective cover.}\)
2. \(S_{H,V} \text{ subquotient of } kB \iff V = k, \text{ and } H \text{ is a } B\text{-group.}\)
Simple functors

Examples: \(k\) is a field, \(\text{char}(k) = 0\)
1. \(S_{1,k} \cong kR_{\mathbb{Q}},\) and \(kB\) is its projective cover.
2. \(S_{H,V}\) subquotient of \(kB \iff V = k,\) and \(H\) is a \(B\)-group.
3. This gives a way to compute \(\dim_k S_{H,k}(G),\) when \(H\) is a \(B\)-group.
Simple functors

Examples: (\(k\) is a field, \(\text{char}(k) = 0\))

1. \(S_{1,k} \cong kR_Q\), and \(kB\) is its projective cover.
2. \(S_{H,V}\) subquotient of \(kB \iff V = k\), and \(H\) is a \(B\)-group.
3. This gives a way to compute \(\dim_k S_{H,k}(G)\), when \(H\) is a \(B\)-group, as the number of certain conjugacy classes of subgroups of \(G\).
Examples: (k is a field, $\text{char}(k) = 0$)

1. $S_{1,k} \cong kR_\mathbb{Q}$, and kB is its projective cover.

2. $S_{H,V}$ subquotient of $kB \iff V = k$, and H is a B-group.

3. This gives a way to compute $\dim_k S_{H,k}(G)$, when H is a B-group, as the number of certain conjugacy classes of subgroups of G (e.g. cyclic ones if $H = 1$).
Simple functors

Examples: \(k \) is a field, \(\text{char}(k) = 0 \)

1. \(S_{1,k} \cong kR_\mathbb{Q} \), and \(kB \) is its projective cover.

2. \(S_{H,V} \) subquotient of \(kB \) \(\iff \) \(V = k \), and \(H \) is a \(B \)-group.

3. This gives a way to compute \(\dim_k S_{H,k}(G) \), when \(H \) is a \(B \)-group, as the number of certain conjugacy classes of subgroups of \(G \) (e.g. cyclic ones if \(H = 1 \)).

4. In general \(\dim_k S_{H,V}(G) \) is equal to the rank of a complicated matrix...
Examples: \((k\text{ is a field, } \text{char}(k) = 0)\)

1. \(S_{1,k} \cong kR_Q\), and \(kB\) is its projective cover.

2. \(S_{H,V}\) subquotient of \(kB \iff V = k\), and \(H\) is a \(B\)-group.

3. This gives a way to compute \(\dim_k S_{H,k}(G)\), when \(H\) is a \(B\)-group, as the number of certain conjugacy classes of subgroups of \(G\) (e.g. cyclic ones if \(H = 1\)).

4. In general \(\dim_k S_{H,V}(G)\) is equal to the rank of a complicated matrix built from sections \((T, S)\) of \(G\).
Examples: $(k$ is a field, $\text{char}(k) = 0)$

1. $S_{1,k} \cong kR_{\mathbb{Q}}$, and kB is its projective cover.
2. $S_{H,V}$ subquotient of $kB \iff V = k$, and H is a B-group.
3. This gives a way to compute $\dim_k S_{H,k}(G)$, when H is a B-group, as the number of certain conjugacy classes of subgroups of G (e.g. cyclic ones if $H = 1$).
4. In general $\dim_k S_{H,V}(G)$ is equal to the rank of a complicated matrix built from sections (T, S) of G (i.e. $S \trianglelefteq T \leq G$).
Examples: \((k\text{ is a field, } \text{char}(k) = 0)\)

1. \(S_{1,k} \cong kR_Q\), and \(kB\) is its projective cover.
2. \(S_{H,V}\) subquotient of \(kB \iff V = k\), and \(H\) is a \(B\)-group.
3. This gives a way to compute \(\dim_k S_{H,k}(G)\), when \(H\) is a \(B\)-group, as the number of certain conjugacy classes of subgroups of \(G\) (e.g. cyclic ones if \(H = 1\)).
4. In general \(\dim_k S_{H,V}(G)\) is equal to the rank of a complicated matrix built from sections \((T, S)\) of \(G\) (i.e. \(S \trianglelefteq T \leq G\)) such that \(T/S \cong H\).
Examples: \((k\) is a field, \(char(k) = 0\))

1. \(S_{1,k} \cong kR_{Q}\), and \(kB\) is its projective cover.
2. \(S_{H,V}\) subquotient of \(kB\) \(\iff\) \(V = k\), and \(H\) is a \(B\)-group.
3. This gives a way to compute \(\dim_k S_{H,k}(G)\), when \(H\) is a \(B\)-group, as the number of certain conjugacy classes of subgroups of \(G\) (e.g. cyclic ones if \(H = 1\)).
4. In general \(\dim_k S_{H,V}(G)\) is equal to the rank of a complicated matrix built from sections \((T, S)\) of \(G\) (i.e. \(S \trianglelefteq T \leq G\)) such that \(T/S \cong H\). The computation of this rank is usually very hard.
The Burnside group

The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\}/<[X \sqcup Y] - [X] - [Y]>.$$

The group $B(G)$ is a free abelian group on $\{[G/H] | H \in \mathbb{S}_G\}$.

The cartesian product of G-sets induces a ring structure on $B(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in \mathbb{S}_G} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

$Q B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

The prime spectrum of $B(G)$ can be explicitly described (Dress).

$\text{Spec } B(G)$ connected $\iff G$ is solvable.

The correspondence $G \mapsto B(G)$ is a Green biset functor.
The Burnside group $B(G)$ of a finite group G
The Burnside group is the Grothendieck group of finite G-sets, i.e. $B(G) = \mathbb{Z}\{\text{finite } G\text{-sets}\}/<\text{X \sqcup Y} - \text{X} - \text{Y}>$. The group $B(G)$ is a free abelian group on $\{G/H | H \in \text{s}_G\}$. The cartesian product of G-sets induces a ring structure on $B(G)$. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in \text{s}_G} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969). $Q B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983). The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable. The correspondence $G \mapsto B(G)$ is a Green biset functor.
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{\text{[G-sets]}\}/$$
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

\[B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle. \]
The Burnside group

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >.$$

2. The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$ (i.e. $H \leq G$, mod. G).
The Burnside group

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

 $B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle$.

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.
The Burnside ring

1. **The Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

 $B(G) = \mathbb{Z}\{[G\text{-sets}]\}/\langle [X \sqcup Y] - [X] - [Y] \rangle$.

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

Serge Bouc (CNRS-LAMFA)
Slice - Section
Pohang, March 28, 2011
The Burnside ring

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 \[B(G) = \mathbb{Z}\{[G\text{-sets}]\}/< [X \sqcup Y] - [X] - [Y] >. \]

2. The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$.

3. The cartesian product of G-sets induces a ring structure on $B(G)$.

4. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$.
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

The group $B(G)$ is a free abelian group on $\{[G/H] | H \in [s_G]\}$.

The cartesian product of G-sets induces a ring structure on $B(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, induced by $\phi_H : X \mapsto |X^H|$.
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >.$$

The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$.

The cartesian product of G-sets induces a ring structure on $B(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911).
The Burnside ring

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

 $B(G) = \mathbb{Z}\{[G\text{-sets}]\}/\langle [X \sqcup Y] - [X] - [Y] \rangle$.

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

6. The prime spectrum of $B(G)$ can be explicitly described (Dress).

7. The correspondence $G \mapsto B(G)$ is a **Green biset functor**.

8. Serge Bouc (CNRS-LAMFA)
The Burnside ring

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 \[B(G) = \mathbb{Z}^{\{G\text{-sets}\}} / \langle [X \sqcup Y] - [X] - [Y] \rangle. \]
2. The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$.
3. The cartesian product of G-sets induces a ring structure on $B(G)$.
4. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).
5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra.
The Burnside ring

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

 $B(G) = \mathbb{Z}\{[G\text{-sets}]\}/< [X \sqcup Y] - [X] - [Y] >$

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

5. $\mathbb{Q}B(G)$ is a **split semisimple commutative \mathbb{Q}-algebra**. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).
The Burnside ring

1. The **Burnside group** \(B(G) \) of a finite group \(G \) is the Grothendieck group of finite \(G \)-sets, i.e.
\[
B(G) = \mathbb{Z}\{[G\text{-sets}]\}/\langle [X \sqcup Y] - [X] - [Y] \rangle.
\]

2. The group \(B(G) \) is a **free abelian group** on \(\{[G/H] \mid H \in [s_G]\} \).

3. The cartesian product of \(G \)-sets induces a **ring structure** on \(B(G) \).

4. There is a **ghost ring homomorphism** \(\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z} \), injective (Burnside \(\leq 1911 \)), with finite explicit cokernel (Dress 1969).

5. \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

6. The **prime spectrum** of \(B(G) \) can be explicitly described (Dress).
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

2. The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$.

3. The cartesian product of G-sets induces a ring structure on $B(G)$.

4. There is a ghost ring homomorphism $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

6. The prime spectrum of $B(G)$ can be explicitly described (Dress). $Spec B(G)$ connected
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 $$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

6. The **prime spectrum** of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.
1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
$$B(G) = \mathbb{Z} \langle [G\text{-sets}] \rangle / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] | H \in [s_G]\}$.

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

6. The **prime spectrum** of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.

7. The correspondence $G \mapsto B(G)$
The Burnside functor

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 \[B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >. \]
2. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.
3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.
4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).
5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).
6. The **prime spectrum** of $B(G)$ can be explicitly described (Dress).
 \[\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable.} \]
7. The correspondence $G \mapsto B(G)$ is a **Green biset functor**

Serge Bouc (CNRS-LAMFA)
The Burnside functor

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 \[B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >. \]

2. The group $B(G)$ is a **free abelian group** on \{\([G/H] \mid H \in [s_G]\)\}.

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

6. The **prime spectrum** of $B(G)$ can be explicitly described (Dress). $Spec B(G)$ connected $\iff G$ is solvable.

7. The correspondence $G \mapsto B(G)$ is a **Green biset functor** (there is a compatible product $B(G) \times B(G') \rightarrow B(G \times G')$)
The Burnside functor

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 $B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle$.
2. The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$.
3. The cartesian product of G-sets induces a ring structure on $B(G)$.
4. There is a ghost ring homomorphism $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).
5. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).
6. The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.
7. The correspondence $G \mapsto B(G)$ is a Green biset functor.
8. Tensor induction
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\}/<[X \sqcup Y] - [X] - [Y]>. $$

The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$. The cartesian product of G-sets induces a ring structure on $B(G)$. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969). $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983). The prime spectrum of $B(G)$ can be explicitly described (Dress). $Spec B(G)$ connected $\iff G$ is solvable. The correspondence $G \mapsto B(G)$ is a Green biset functor. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.
The slice Burnside group

The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.

$$\Xi(G) = \mathbb{Z}\{G\text{-sets} \}/\langle X \sqcup Y \to Z \mid X \to f(X) \land Y \to f(Y) \rangle.$$
The slice Burnside group

1 The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$
The slice Burnside group

The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >.$$

Replace G-sets by the category $G\text{-Mor}$ of morphisms of G-sets:

→ Replace G-sets by the category $G\text{-Mor}$ of morphisms of G-sets:
The slice Burnside group

The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

→ Replace G-sets by the category G-Mor of morphisms of G-sets: objects are morphisms $X \xrightarrow{f} Y$ of finite G-sets.
The slice Burnside group

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 $B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >$.

→ Replace G-sets by the category $G\text{-Mor}$ of morphisms of G-sets: objects are morphisms $X \xrightarrow{f} Y$ of finite G-sets, morphisms are pairs (a, b) such that

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{a} & & \downarrow{b} \\
Z & \xrightarrow{g} & T
\end{array}
\]

is commutative.
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\}/<[X \sqcup Y] - [X] - [Y]>.$$
The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}^{\{G\text{-sets}\}} / < [X \sqcup Y] - [X] - [Y] >.$$

The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.

$$\Xi(G) = \mathbb{Z}^{\{X \rightarrow Z\}} / < X \sqcup Y \rightarrow Z - X \rightarrow \pi_1(X) - Y \rightarrow \pi_1(Y) >.$$

The group $B(G)$ is a free abelian group on $\{ [G/H] | H \in \mathbb{G}/s \}$. The group $\Xi(G)$ is a free abelian group on the set $\{ [G/S \rightarrow T] | (T, S) \in \Pi(G) \}$, where $\Pi(G)$ is the set of slices (T, S) of G, i.e. pairs such that $S \leq T \leq G$, and $G/S \rightarrow G/T$ is the projection map.
The slice Burnside group

The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle$.

The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets.
The slice Burnside group

The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.
$$\Xi(G) = \mathbb{Z}\{[X \to Z] \} /$$
The slice Burnside group

1 The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] − [X] − [Y] >.$$

→ The **slice Burnside group** $\Xi(G)$ of a finite group G is the Grothendieck group of *morphisms* of finite G-sets, i.e.

$$\Xi(G) = \mathbb{Z}\{[X \overset{f}{\to} Z]\} / < [X \sqcup Y \overset{f}{\to} Z] − [X \overset{f|_X}{\to} f(X)] − [Y \overset{f|_Y}{\to} f(Y)] >.$$
The slice Burnside group

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 \[B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle. \]

2. The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.
 \[\Xi(G) = \mathbb{Z}\{[X \xrightarrow{f} Z]\} / \langle [X \sqcup Y \xrightarrow{f} Z] - [X \xrightarrow{f|_X} f(X)] - [Y \xrightarrow{f|_Y} f(Y)] \rangle. \]

3. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.
The slice Burnside group

1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >.$$

2. The **slice Burnside group** $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.
$$\Xi(G) = \mathbb{Z}\{[X \stackrel{f}{\rightarrow} Z]\} / < [X \sqcup Y \stackrel{f}{\rightarrow} Z] - [X \stackrel{f|_X}{\rightarrow} f(X)] - [Y \stackrel{f|_Y}{\rightarrow} f(Y)] >.$$

3. The group $B(G)$ is a **free abelian group** on $\{[G/H] \mid H \in [s_G]\}$.

4. The group $\Xi(G)$ is a **free abelian group** on the set
$\{[G/S \rightarrow G/T] \mid (T, S) \in [\Pi(G)]\}$.
1. The **Burnside group** $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

$$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

2. The group $B(G)$ is a **free abelian group** on $\{[G/H] | H \in [s_G]\}$.

3. The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.

$$\Xi(G) = \mathbb{Z}\{[X \rightarrow Z] \mid X \rightarrow Z \sim [X \rightarrow f(X)] - [Y \rightarrow f(Y)] \rangle.$$

4. The group $\Xi(G)$ is a **free abelian group** on the set $\{[G/S \rightarrow G/T] \mid (T,S) \in [\Pi(G)]\}$, where $\Pi(G)$ is the set of slices (T,S) of G.
The slice Burnside group

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.
 $B(G) = \mathbb{Z}\{[G\text{-sets}]\} / < [X \sqcup Y] - [X] - [Y] >$.

→ The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.
 $\Xi(G) = \mathbb{Z}\{[X \overset{f}{\rightarrow} Z]\} / < [X \sqcup Y \overset{f}{\rightarrow} Z] - [X \overset{f|_X}{\rightarrow} f(X)] - [Y \overset{f|_Y}{\rightarrow} f(Y)] >$.

2. The group $B(G)$ is a free abelian group on $\{[G/H] \mid H \in [s_G]\}$.

→ The group $\Xi(G)$ is a free abelian group on the set
 $\{[G/S \rightarrow G/T] \mid (T, S) \in [\Pi(G)]\}$, where $\Pi(G)$ is the set of slices (T, S) of G, i.e. pairs such that $S \leq T \leq G$.
The slice Burnside group

1. The Burnside group $B(G)$ of a finite group G is the Grothendieck group of finite G-sets, i.e.

 $$B(G) = \mathbb{Z}\{[G\text{-sets}]\} / \langle [X \sqcup Y] - [X] - [Y] \rangle.$$

2. The slice Burnside group $\Xi(G)$ of a finite group G is the Grothendieck group of morphisms of finite G-sets, i.e.

 $$\Xi(G) = \mathbb{Z}\{[X \overset{f}{\rightarrow} Z]\} / \langle [X \sqcup Y \overset{f}{\rightarrow} Z] - [X \overset{f|_X}{\rightarrow} f(X)] - [Y \overset{f|_Y}{\rightarrow} f(Y)] \rangle.$$

3. The group $B(G)$ is a free abelian group on $\{[G/H] | H \in [s_G]\}$.

4. The group $\Xi(G)$ is a free abelian group on the set $\{[G/S \rightarrow G/T] | (T, S) \in [\Pi(G)]\}$, where $\Pi(G)$ is the set of slices (T, S) of G, i.e. pairs such that $S \leq T \leq G$, and $G/S \rightarrow G/T$ is the projection map.
The slice Burnside ring

The cartesian product of G-sets induces a ring structure on $B(G)$.

The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in \mathcal{S}_G} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

This induces a ghost ring homomorphism $\Phi : \Xi(G) \to \prod_{(T, S) \in \Pi(G)} \mathbb{Z}$, injective, with finite explicit cokernel.
The cartesian product of G-sets induces a **ring structure** on $B(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in \mathcal{S}_G} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

This induces a ghost ring homomorphism $\Phi : \Xi(G) \to \prod_{(T, S) \in \Pi(G)} \mathbb{Z}$, injective, with finite explicit cokernel.
The cartesian product of G-sets induces a ring structure on $B(G)$.

There is a product in the category of morphisms of G-sets.
The cartesian product of G-sets induces a ring structure on $B(G)$.

There is a product in the category of morphisms of G-sets, defined by

$$(X \xrightarrow{f} Y) \times (Z \xrightarrow{g} T) = ((X \times Z) \xrightarrow{f \times g} (Y \times T)).$$
The slice Burnside ring

The cartesian product of G-sets induces a ring structure on $B(G)$. The product of morphisms of G-sets induces a ring structure on $\Xi(G)$. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in \mathcal{S}_G} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969). This induces a ghost ring homomorphism $\Phi : \Xi(G) \to \prod_{(T, S) \in \mathcal{P}(\Sigma G)} \mathbb{Z}$, injective, with finite explicit cokernel.
The slice Burnside ring

3. The cartesian product of G-sets induces a ring structure on $B(G)$.

→ The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

4. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, induced by $\phi_H : X \mapsto |X^H|$.
The cartesian product of G-sets induces a ring structure on $B(G)$.

The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).
The slice Burnside ring

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

\rightarrow The product of morphisms of G-sets induces a **ring structure** on $\Xi(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

\rightarrow Let $(T, S) \in \Pi(G)$.
The slice Burnside ring

3. The cartesian product of G-sets induces a ring structure on $B(G)$.

→ The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

4. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

→ Let $(T, S) \in \Pi(G)$. For a morphism $m = (X \xrightarrow{f} Y)$
The cartesian product of G-sets induces a ring structure on $B(G)$.

The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

Let $(T, S) \in \Pi(G)$. For a morphism $m = (X \xrightarrow{f} Y)$, define

$$\phi_{T,S}(m) =$$
The cartesian product of G-sets induces a ring structure on $B(G)$.

The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

There is a ghost ring homomorphism $\Phi : B(G) \rightarrow \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

Let $(T, S) \in \Pi(G)$. For a morphism $m = (X \xrightarrow{f} Y)$, define $\phi_{T,S}(m) = \text{number of morphisms}
\begin{pmatrix}
 G/S & G/T \\
 a & b \\
 X & Y
\end{pmatrix}.

The slice Burnside ring

3 The cartesian product of G-sets induces a ring structure on $B(G)$.

→ The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

4 There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

→ Let $(T, S) \in \Pi(G)$. For a morphism $m = (X \xrightarrow{f} Y)$, define

$$\phi_{T, S}(m) = \text{number of morphisms}$$

$$\phi_{T, S}(m) = |f^{-1}(Y^T)^S|.$$
3 The cartesian product of G-sets induces a ring structure on $B(G)$.

→ The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

4 There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

→ Let $(T, S) \in \Pi(G)$. For a morphism $m = (X \xrightarrow{f} Y)$, define

$$\phi_{T, S}(m) = \text{number of morphisms}$$

$$\begin{pmatrix}
G/S & G/T \\
\downarrow a & \downarrow b \\
X & Y
\end{pmatrix}.$$

$$\phi_{T, S}(m) = |f^{-1}(Y^T)^S|.$$
This induces a ring homomorphism $\phi_{T, S} : \Xi(G) \to \mathbb{Z}$.
The slice Burnside ring

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

→ The product of morphisms of G-sets induces a **ring structure** on $\Xi(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (**Burnside ≤ 1911**), with finite explicit cokernel (**Dress 1969**).

→ This induces a **ghost ring homomorphism**
The slice Burnside ring

3 The cartesian product of G-sets induces a **ring structure** on $B(G)$.

4 There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in \mathcal{S}_G} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

This induces a **ghost ring homomorphism**

$$\Phi : \Xi(G) \to \prod_{(T,S) \in \mathcal{P}(G)} \mathbb{Z}$$
The slice Burnside ring

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

\rightarrow The product of morphisms of G-sets induces a **ring structure** on $\Xi(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

\rightarrow This induces a **ghost ring homomorphism** $\Phi : \Xi(G) \to \prod_{(T,S) \in [\Pi(G)]} \mathbb{Z}$, injective
The slice Burnside ring

3. The cartesian product of G-sets induces a ring structure on $B(G)$.

→ The product of morphisms of G-sets induces a ring structure on $\Xi(G)$.

4. There is a ghost ring homomorphism $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

→ This induces a ghost ring homomorphism $\Phi : \Xi(G) \to \prod_{(T,S) \in [\Pi(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.
The slice Burnside ring

3. The cartesian product of G-sets induces a **ring structure** on $B(G)$.

\rightarrow The product of morphisms of G-sets induces a **ring structure** on $\Xi(G)$.

4. There is a **ghost ring homomorphism** $\Phi : B(G) \to \prod_{H \in [s_G]} \mathbb{Z}$, injective (Burnside ≤ 1911), with finite explicit cokernel (Dress 1969).

\rightarrow This induces a **ghost ring homomorphism** $\Phi : \Xi(G) \to \prod_{(T,S) \in [\Pi(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.
The slice Burnside ring

- The slice Burnside ring $B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

- $\mathbb{Q}\mathfrak{Ξ}(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents $\mathfrak{Ξ}_G(T), \mathfrak{Ξ}_S$ are known explicitly.

- The prime spectrum of $B(G)$ can be explicitly described (Dress). Spec $B(G)$ connected $\iff G$ is solvable.

- The prime spectrum of $\mathbb{Q}\mathfrak{Ξ}(G)$ can be explicitly described. Spec $\mathbb{Q}\mathfrak{Ξ}(G)$ connected $\iff G$ is solvable.
$\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).
The slice Burnside ring

\[\mathbb{Q}B(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q} \Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi_G^T, S \) are indexed by slices of \(G \) up to conjugation.

\[\xi_G^T, S = \frac{1}{|N_G(T, S)|} \sum_{U \leq S \leq V \leq T} |U| \mu(U, S) \mu(V, T) [G/U \to G/V]. \]

\[\mathbb{Q} \Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly.

The prime spectrum of \(B(G) \) can be explicitly described (Dress).

\[\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable}. \]

The prime spectrum of \(\Xi(G) \) can be explicitly described.

\[\text{Spec } \Xi(G) \text{ connected } \iff G \text{ is solvable}. \]
The slice Burnside ring

\(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\(\mathbb{Q} \Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_{T,S} \) are indexed by slices of \(G \) up to conjugation.

The prime spectrum of \(B(G) \) can be explicitly described (Dress).

\(\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable.} \)

\(\text{Spec } \Xi(G) \text{ connected } \iff G \text{ is solvable.} \)
QB(G) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

\(\mathbb{Q} \Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi_{T,S}^G \) are indexed by slices of \(G \) up to conjugation.

\[
\xi_{T,S}^G = \frac{1}{|N_G(T, S)|} \sum_{U \leq S \leq V \leq T} |U| \mu(U, S) \mu(V, T) [G/U \to G/V].
\]
The slice Burnside ring

\(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\(\mathbb{Q} \Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T, S \) are known explicitly.
The slice Burnside ring

5. \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

→ \(\mathbb{Q}\Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T, S \) are known explicitly.

6. The prime spectrum of \(B(G) \) can be explicitly described (Dress). Spec \(B(G) \) connected \(\iff \) \(G \) is solvable.
The slice Burnside ring

5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

6 $\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents ξ^G_T, S are known explicitly.

The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.

Let $\Theta(G) = \{ (T, S, p) \mid (T, S) \in \Pi(G) \}$
The slice Burnside ring

\[\mathbb{Q}B(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q}\Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T, S \) are known explicitly.

The prime spectrum of \(B(G) \) can be explicitly described (Dress).

\[\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable.} \]

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}\} \)
The slice Burnside ring

5. \(\mathbb{Q}B(G)\) is a split semisimple commutative \(\mathbb{Q}\)-algebra. Its \textbf{primitive idempotents} are known explicitly (Gluck 1981, Yoshida 1983).

\(\rightarrow\) \(\mathbb{Q}\Xi(G)\) is a split semisimple commutative \(\mathbb{Q}\)-algebra. Its \textbf{primitive idempotents} \(\xi_T^G, S\) are known explicitly.

6. The \textbf{prime spectrum} of \(B(G)\) can be explicitly described (Dress). \(\text{Spec } B(G)\) connected \(\iff G\) is solvable.

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p\} \).
The slice Burnside ring

5 \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its \textit{primitive idempotents} are known explicitly (Gluck 1981, Yoshida 1983).

→ \(\mathbb{Q}\Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its \textit{primitive idempotents} \(\xi^G_T, S \) are known explicitly.

6 The \textbf{prime spectrum} of \(B(G) \) can be explicitly described (Dress).

\(\text{Spec } B(G) \) connected \(\iff \) \textit{G} is solvable.

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p\} \).

For \((T, S, p) \in \Theta(G)\)
The slice Burnside ring

5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

$\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents $\xi^G_{T,S}$ are known explicitly.

6 The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.

Let $\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p\}$. For $(T, S, p) \in \Theta(G)$, consider $\Xi(G) \xrightarrow{\phi_{T,S}} \mathbb{Z} \to \mathbb{Z}/p$.
The slice Burnside ring

5 \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q} \Xi(G) \text{ is a split semisimple commutative } \mathbb{Q} \text{-algebra. Its primitive idempotents } \xi^G_{T,S} \text{ are known explicitly.} \]

6 The **prime spectrum** of \(B(G) \) can be explicitly described (Dress). \(\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable.} \)

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p \} \).

For \((T, S, p) \in \Theta(G) \), consider \(\ker(\Xi(G)^{\phi_{T,S}} \mathbb{Z} \to \mathbb{Z}/p) \).
The slice Burnside ring

\[\mathbb{Q}B(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q}\Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T,S \) are known explicitly.

The prime spectrum of \(B(G) \) can be explicitly described (Dress). Spec \(B(G) \) connected \(\iff \) \(G \) is solvable.

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p\} \).

For \((T, S, p) \in \Theta(G) \), set \(I_{T,S,p} = \text{Ker}(\Xi(G)^{\phi_{T,S}} : \mathbb{Z} \to \mathbb{Z}/p) \).
The slice Burnside ring

\(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\(\mathbb{Q}\Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_{T,S} \) are known explicitly.

The prime spectrum of \(B(G) \) can be explicitly described (Dress). \(\text{Spec } B(G) \) connected \iff \(G \) is solvable.

Let \(\Theta(G) = \{ (T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, \left| N_G(T, S) : S \right| \notin p \} \).

For \((T, S, p) \in \Theta(G) \), set \(I_{T,S,p} = \text{Ker}(\Xi(G) \xrightarrow{\phi_{T,S}} \mathbb{Z} \to \mathbb{Z}/p) \).

Then \(\text{Spec } \Xi(G) = \{ I_{T,S,p} \mid (T, S, p) \in [\Theta(G)] \} \).
\(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\(\mathbb{Q}\Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_{T,S} \) are known explicitly.

The prime spectrum of \(B(G) \) can be explicitly described (Dress).

\[\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable.} \]

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p\} \).

For \((T, S, p) \in \Theta(G) \), set \(I_{T,S,p} = \ker(\Xi(G) \xrightarrow{\phi_{T,S}} \mathbb{Z} \to \mathbb{Z}/p) \).

Then \(\text{Spec } \Xi(G) = \{I_{T,S,p} \mid (T, S, p) \in [\Theta(G)]\} \).

When \(p \) is a prime
The slice Burnside ring

5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

$\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents $\xi_{T,S}^G$ are known explicitly.

6 The prime spectrum of $B(G)$ can be explicitly described (Dress).

$\text{Spec } B(G)$ connected $\iff G$ is solvable.

Let $\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |NG(T, S) : S| \notin p\}$.

For $(T, S, p) \in \Theta(G)$, set $I_{T,S,p} = \text{Ker}(\Xi(G) \xrightarrow{\phi_{T,S}} \mathbb{Z} \rightarrow \mathbb{Z}/p)$.

Then $\text{Spec } \Xi(G) = \{I_{T,S,p} \mid (T, S, p) \in [\Theta(G)]\}$.

When p is a prime, and $(T, S) \in \Pi(G)$
The slice Burnside ring

\[\mathbb{Q}B(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q}\Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T, S \) are known explicitly.

The prime spectrum of \(B(G) \) can be explicitly described (Dress).

\[\text{Spec } B(G) \text{ connected } \iff G \text{ is solvable}. \]

Let \(\Theta(G) = \{ (T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p \}. \)

For \((T, S, p) \in \Theta(G) \), set \(I_{T, S, p} = \ker(\Xi(G) \xrightarrow{\phi_{T, S}} \mathbb{Z} \to \mathbb{Z}/p) \).

Then \(\text{Spec } \Xi(G) = \{ I_{T, S, p} \mid (T, S, p) \in [\Theta(G)] \} \).

When \(p \) is a prime, and \((T, S) \in \Pi(G) \), define \((T, S)^+_p = (PT, PS) \).
The slice Burnside ring

1. \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

2. \(\mathbb{Q}\Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi_T^G \) are known explicitly.

3. The prime spectrum of \(B(G) \) can be explicitly described (Dress).

 \[Spec \ B(G) \text{ connected } \iff G \text{ is solvable.} \]

Let \(\Theta(G) = \{ (T, S, p) \mid (T, S) \in \Pi(G), p \in Spec \mathbb{Z}, |N_G(T, S) : S| \notin p \} \).

For \((T, S, p) \in \Theta(G) \), set \(I_{T,S,p} = \text{Ker}(\Xi(G) \xrightarrow{\phi_T^S} \mathbb{Z} \to \mathbb{Z}/p) \).

Then \(Spec \ \Xi(G) = \{ I_{T,S,p} \mid (T, S, p) \in [\Theta(G)] \} \).

When \(p \) is a prime, and \((T, S) \in \Pi(G) \), define \((T, S)^+_p = (PT, PS) \),

where \(P \in Syl_p(N_G(T, S)) \).
The slice Burnside ring

$\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

→ $\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents ξ^G_T, S are known explicitly.

The prime spectrum of $B(G)$ can be explicitly described (Dress).

$\text{Spec } B(G)$ connected $\iff G$ is solvable.

Let $\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \notin p\}$.

For $(T, S, p) \in \Theta(G)$, set $I_{T,S,p} = \ker(\Xi(G) \phi_{T,S} : \mathbb{Z} \rightarrow \mathbb{Z}/p)$.

→ Then $\text{Spec } \Xi(G) = \{I_{T,S,p} \mid (T, S, p) \in [\Theta(G)]\}$.

When p is a prime, and $(T, S) \in \Pi(G)$, define $(T, S)^+_p = (PT, PS)$, where $P \in \text{Syl}_p(N_G(T, S))$, and $(T, S)^+_p = \lim(((T, S)^+_p)_p^+)$. ...
The slice Burnside ring

1. $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

$\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents ξ^G_T, S are known explicitly.

2. The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.

Let $\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \not\in p\}.$

For $(T, S, p) \in \Theta(G)$, set $I_{T, S, p} = \text{Ker}(\Xi(G) \xrightarrow{\phi_{T, S}} \mathbb{Z} \to \mathbb{Z}/p)$.

Then $\text{Spec } \Xi(G) = \{I_{T, S, p} \mid (T, S, p) \in [\Theta(G)]\}.$

If $(T, S, p), (V, U, q) \in \Theta(G)$
The slice Burnside ring

QB(G) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q} \Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its **primitive idempotents** \(\xi_{T,S}^G \) are known explicitly.

The **prime spectrum** of \(B(G) \) can be explicitly described (Dress).

Spec \(B(G) \) connected \(\iff \) \(G \) is solvable.

Let \(\Theta(G) = \{ (T, S, p) \mid (T, S) \in \Pi(G), p \in Spec \mathbb{Z}, |N_G(T, S) : S| \notin p \} \).

For \((T, S, p) \in \Theta(G) \), set \(I_{T,S,p} = \text{Ker}(\Xi(G)^{\phi_{T,S}} : \mathbb{Z} \to \mathbb{Z}/p) \).

Then **Spec** \(\Xi(G) = \{ I_{T,S,p} \mid (T, S, p) \in [\Theta(G)] \} \).

If \((T, S, p), (V, U, q) \in \Theta(G) \), then \(I_{T,S,p} \subseteq I_{V,U,q} \) if and only if
The slice Burnside ring

5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

$\rightarrow \mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents ξ^G_T, S are known explicitly.

6 The prime spectrum of $B(G)$ can be explicitly described (Dress).

Spec $B(G)$ connected $\iff G$ is solvable.

Let $\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in Spec \mathbb{Z}, |N_G(T, S) : S| \notin p\}.$

For $(T, S, p) \in \Theta(G)$, set $I_{T, S, p} = \text{Ker}(\Xi(G) \phi_{T, S} : \mathbb{Z} \to \mathbb{Z}/p).$

\rightarrow Then Spec $\Xi(G) = \{I_{T, S, p} \mid (T, S, p) \in \Theta(G)\}.$

If $(T, S, p), (V, U, q) \in \Theta(G),$ then $I_{T, S, p} \subseteq I_{V, U, q}$ if and only if $p = q$ and $(T, S) \equiv_G (V, U)$
The slice Burnside ring

5 \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\(\rightarrow \) \(\mathbb{Q}\Xi(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T,S \) are known explicitly.

6 The prime spectrum of \(B(G) \) can be explicitly described (Dress).

\(\text{Spec } B(G) \) connected \(\iff \) \(G \) is solvable.

Let \(\Theta(G) = \{ (T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S): S| \notin p \} \).

For \((T, S, p) \in \Theta(G)\), set \(I_{T,S,p} = \ker(\Xi(G)^{\phi_{T,S}} \mathbb{Z} \to \mathbb{Z}/p)\).

Then \(\text{Spec } \Xi(G) = \{ I_{T,S,p} \mid (T, S, p) \in [\Theta(G)] \} \).

If \((T, S, p), (V, U, q) \in \Theta(G)\), then \(I_{T,S,p} \subseteq I_{V,U,q} \) if and only if

- \(p = q \) and \((T, S) =_G (V, U)\)
- \(p = \{0\} \) and \(q = q\mathbb{Z} \) and \((T, S)\hat{q} =_G (V, U)\)
The slice Burnside ring

5 \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\[\rightarrow \mathbb{Q}\Xi(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi^G_T,S \) are known explicitly.

6 The prime spectrum of \(B(G) \) can be explicitly described (Dress). \(\text{Spec } B(G) \) connected \(\iff \) \(G \) is solvable.

Let \(\Theta(G) = \{(T, S, p) \mid (T, S) \in \Pi(G), p \in \text{Spec } \mathbb{Z}, |N_G(T, S) : S| \not\in p\} \).

For \((T, S, p) \in \Theta(G)\), set \(I_{T,S,p} = \text{Ker}(\Xi(G) \xrightarrow{\phi_{T,S}} \mathbb{Z} \rightarrow \mathbb{Z}/p) \).

\[\rightarrow \text{Then } \text{Spec } \Xi(G) = \{I_{T,S,p} \mid (T, S, p) \in [\Theta(G)]\}. \]

If \((T, S, p), (V, U, q) \in \Theta(G)\), then \(I_{T,S,p} \subseteq I_{V,U,q} \) if and only if

\[\begin{array}{l}
p = q \text{ and } (T, S) = G (V, U) \\
p = \{0\} \text{ and } q = q\mathbb{Z} \text{ and } (T, S)^q = G (V, U) \end{array} \]
5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\rightarrow $\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents ξ^G_T, S are known explicitly.

6 The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected \iff G is solvable.

\rightarrow The prime spectrum of $\Xi(G)$ can be explicitly described.
The slice Burnside ring

5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

$\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents ξ^G_T, S are known explicitly.

6 The prime spectrum of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected \Leftrightarrow G is solvable.

$\text{Spec } \Xi(G)$ connected

$\text{Spec } \Xi(G)$ connected
The slice Burnside ring

5. \(\mathbb{Q}B(G) \) is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents are known explicitly (Gluck 1981, Yoshida 1983).

\[\mathbb{Q} \bar{\Xi}(G) \] is a split semisimple commutative \(\mathbb{Q} \)-algebra. Its primitive idempotents \(\xi_{T,S}^G \) are known explicitly.

6. The prime spectrum of \(B(G) \) can be explicitly described (Dress). \(\text{Spec } B(G) \) connected \(\iff \) \(G \) is solvable.

\[\text{Spec } \bar{\Xi}(G) \] can be explicitly described. \(\text{Spec } \bar{\Xi}(G) \) connected \(\iff \) \(G \) is solvable.
The slice Burnside ring

5 $\mathbb{Q}B(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** are known explicitly (Gluck 1981, Yoshida 1983).

→ $\mathbb{Q}\Xi(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** ξ^G_T,S are known explicitly.

6 The **prime spectrum** of $B(G)$ can be explicitly described (Dress). $\text{Spec } B(G)$ connected $\iff G$ is solvable.

→ The **prime spectrum** of $\Xi(G)$ can be explicitly described. $\text{Spec } \Xi(G)$ connected $\iff G$ is solvable.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)$ with a structure of biset functor.

The correspondence $G \mapsto \Xi(G)$ cannot be endowed with a structure of biset functor.
The correspondence $G \mapsto B(G)$ is a Green biset functor.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups.

Tensor induction endows $G \mapsto B(G)$ with a structure of biset functor.

The correspondence $G \mapsto \Xi(G)$ cannot be endowed with a structure of biset functor.
The correspondence \(G \mapsto B(G) \) is a **Green biset functor**.

Let \(G \) and \(H \) be finite groups, and \(U \) be a finite \((H, G)\)-biset.
The correspondence $G \mapsto B(G)$ is a **Green biset functor**.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_{G} X \xrightarrow{U \times_{G} f} U \times_{G} Y)$
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \to \Xi(H)$. Tensor induction endows $G \mapsto B(G) \times$ with a structure of biset functor. The correspondence $G \mapsto \Xi(G) \times$ cannot be endowed with a structure of biset functor.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \overset{f}{\rightarrow} Y) \mapsto (U \times G X \overset{U \times Gf}{\rightarrow} U \times G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \rightarrow \Xi(H)$. Hence Ξ is a biset functor.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \rightarrow \Xi(H)$. Hence Ξ is a biset functor.

Let G, G' be finite groups.
The correspondence \(G \mapsto B(G) \) is a Green biset functor.

Let \(G \) and \(H \) be finite groups, and \(U \) be a finite \((H, G)\)-biset. The functor \((X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)\) induces a group homomorphism \(\Xi(U) : \Xi(G) \to \Xi(H) \). Hence \(\Xi \) is a biset functor.

Let \(G, G' \) be finite groups. The functor \((X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}\).
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \rightarrow Y) \mapsto (U \times_G X \xrightarrow{U \times G f} U \times_G Y)$ induces a group homomorphism $\Theta(U) : \Theta(G) \rightarrow \Theta(H)$. Hence Θ is a biset functor.

Let G, G' be finite groups. The functor

$$(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}$$

induces a product $\Theta(G) \times \Theta(G') \rightarrow \Theta(G \times G')$. Tensor induction endows $G \mapsto B(G) \times$ with a structure of biset functor.

The correspondence $G \mapsto \Theta(G)$ cannot be endowed with a structure of biset functor.
Let \(G \) and \(H \) be finite groups, and \(U \) be a finite \((H, G)\)-biset. The functor \((X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)\) induces a group homomorphism \(\Xi(U) : \Xi(G) \to \Xi(H) \). Hence \(\Xi \) is a biset functor.

Let \(G, G' \) be finite groups. The functor

\[
(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}
\]

induces a product \(\Xi(G) \times \Xi(G') \to \Xi(G \times G') \), associative
The correspondence $G \mapsto B(G)$ is a **Green biset functor**.

→ Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \to \Xi(H)$. Hence Ξ is a **biset functor**.

→ Let G, G' be finite groups. The functor

$$(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}$$

induces a product $\Xi(G) \times \Xi(G') \to \Xi(G \times G')$, associative, unital
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times G X \xrightarrow{U \times G f} U \times G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \to \Xi(H)$. Hence Ξ is a biset functor.

Let G, G' be finite groups. The functor

$$(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}$$

induces a product $\Xi(G) \times \Xi(G') \to \Xi(G \times G')$, associative, unital, and compatible with the biset functor structure.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \to \Xi(H)$. Hence Ξ is a biset functor.

Let G, G' be finite groups. The functor
\[(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}\]
induces a product $\Xi(G) \times \Xi(G') \to \Xi(G \times G')$, associative, unital, and compatible with the biset functor structure: the diagram
\[
\begin{array}{ccc}
\Xi(G) \times \Xi(G') & \longrightarrow & \Xi(G \times G') \\
\downarrow & & \downarrow \\
\Xi(H) \times \Xi(H') & \longrightarrow & \Xi(H \times H')
\end{array}
\]
is commutative.

Tensor induction endows $G \mapsto B(G)$ with a structure of biset functor.

The correspondence $G \mapsto \Xi(G)$ cannot be endowed with a structure of biset functor.
The slice Burnside functor

The correspondence $G \mapsto B(G)$ is a Green biset functor.

→ Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \to \Xi(H)$. Hence Ξ is a biset functor.

→ Let G, G' be finite groups. The functor

$$(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}$$

induces a product $\Xi(G) \times \Xi(G') \to \Xi(G \times G')$, associative, unital, and compatible with the biset functor structure: the diagram

$$
\begin{array}{ccc}
\Xi(G) & \times & \Xi(G') \\
\downarrow \Xi(U) & & \downarrow \Xi(U') \\
\Xi(H) & \times & \Xi(H') \\
\end{array}
\xrightarrow{\Xi(U \times U')}
\Xi(G \times G')
$$

is commutative, for any finite groups H and H'. Tensor induction endows $G \mapsto B(G)$ with a structure of biset functor.

The correspondence $G \mapsto \Xi(G)$ cannot be endowed with a structure of biset functor.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \to \Xi(H)$. Hence Ξ is a biset functor.

Let G, G' be finite groups. The functor $(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}$ induces a product $\Xi(G) \times \Xi(G') \to \Xi(G \times G')$, associative, unital, and compatible with the biset functor structure: the diagram

\[
\begin{array}{ccc}
\Xi(G) & \times & \Xi(G') \\
\downarrow & & \downarrow \Xi(U') \\
\Xi(H) & \times & \Xi(H')
\end{array} \quad \Xi(U) \quad \Xi(U \times U') \quad \Xi(H \times H')
\]

is commutative, for any finite groups H and H', any finite (H, G)-biset U.

Serge Bouc (CNRS-LAMFA)
The slice Burnside functor

The correspondence $G \mapsto B(G)$ is a Green biset functor.

→ Let G and H be finite groups, and U be a finite (H, G)-biset. The functor $(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$ induces a group homomorphism $\Xi(U) : \Xi(G) \rightarrow \Xi(H)$. Hence Ξ is a biset functor.

→ Let G, G' be finite groups. The functor $(X, X') \in G\text{-set} \times G'\text{-set} \mapsto (X \times X') \in (G \times G')\text{-set}$ induces a product $\Xi(G) \times \Xi(G') \rightarrow \Xi(G \times G')$, associative, unital, and compatible with the biset functor structure: the diagram

$$
\begin{array}{ccc}
\Xi(G) & \times & \Xi(G') \\
\downarrow \Xi(U) & & \downarrow \Xi(U') \\
\Xi(H) & \times & \Xi(H')
\end{array}
\rightarrow
\begin{array}{c}
\Xi(G \times G') \\
\Xi(U \times U')
\end{array}
$$

is commutative, for any finite groups H and H', any finite (H, G)-biset U, any finite (H', G')-biset U'.
The correspondence $G \mapsto B(G)$ is a Green biset functor.
The slice Burnside functor

The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.
The slice Burnside functor

7. The correspondence $G \mapsto B(G)$ is a Green biset functor.

8. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

→ The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.
The slice Burnside functor

7. The correspondence $G \mapsto B(G)$ is a Green biset functor.

8. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

→ Suppose that there is such a biset functor Ξ^\times.
The slice Burnside functor

The correspondence \(G \mapsto B(G) \) is a Green biset functor.

The correspondence \(G \mapsto \Xi(G) \) is a Green biset functor.

Tensor induction endows \(G \mapsto B(G)^\times \) with a structure of biset functor.

Suppose that there is such a biset functor \(\Xi^\times(\Xi^\times(G) = \Xi(G)^\times) \).

If \(G \) is abelian, then \(\dim_{F_2} \Xi(G)^\times = 2r + 1 \), where \(r \) is the number of subgroups of index 2 in \(G \). Hence \(\dim_{F_2} \Xi^\times(\Xi^\times(C_2)^2) = 7 < 9 \).
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

Suppose that there is such a biset functor Ξ^\times.

The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$.
The slice Burnside functor

7. The correspondence $G \mapsto B(G)$ is a Green biset functor.

\rightarrow The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

8. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

\rightarrow Suppose that there is such a biset functor Ξ^\times.
\rightarrow The ghost ring homomorphism $\Xi(G) \leftarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space.
The slice Burnside functor

7. The correspondence $G \mapsto B(G)$ is a **Green biset functor**.

8. **Tensor induction** endows $G \mapsto B(G)^\times$ with a structure of biset functor.

- The correspondence $G \mapsto \Xi(G)$ is a **Green biset functor**.

- Suppose that there is such a biset functor Ξ^\times.

- The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.
The slice Burnside functor

7. The correspondence $G \mapsto B(G)$ is a Green biset functor.

→ The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

8. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

→ Suppose that there is such a biset functor Ξ^\times.

→ The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.

→ Easy computations of $\Xi(G)^\times$
The slice Burnside functor

7. The correspondence $G \mapsto B(G)$ is a Green biset functor.

→ The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

8. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

→ Suppose that there is such a biset functor Ξ^\times.
→ The ghost ring homomorphism $\Xi(G) \leftarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.
→ Easy computations of $\Xi(G)^\times$ in the case $G = 1$, $G = C_2$.

Serge Bouc (CNRS-LAMFA)
Slice - Section
Pohang, March 28, 2011 13 / 17
The slice Burnside functor

7 The correspondence $G \mapsto B(G)$ is a Green biset functor.

→ The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

8 Tensor induction endows $G \mapsto B(G)^{\times}$ with a structure of biset functor.

→ Suppose that there is such a biset functor Ξ^{\times}.

→ The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^{\times}$ is an \mathbb{F}_2-vector space, hence $\Xi^{\times} \in \mathcal{F}_{\mathbb{F}_2}$.

→ Easy computations of $\Xi(G)^{\times}$ in the case $G = 1, G = C_2$, show that Ξ^{\times} involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

Suppose that there is such a biset functor Ξ^\times. The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.

Easy computations of $\Xi(G)^\times$ in the case $G = 1, G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular $\dim_{\mathbb{F}_2} \Xi^\times ((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2} ((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2} ((C_2)^2)$
The slice Burnside functor

The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

Suppose that there is such a biset functor Ξ^\times.

The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.

Easy computations of $\Xi(G)^\times$ in the case $G = 1$, $G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular $\dim_{\mathbb{F}_2} \Xi^\times ((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2} ((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2} ((C_2)^2) = 9$.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

Suppose that there is such a biset functor Ξ^\times.

The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.

Easy computations of $\Xi(G)^\times$ in the case $G = 1$, $G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular

$$\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2}((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2}((C_2)^2) = 9.$$

If G is abelian
The slice Burnside functor

7 The correspondence $G \mapsto B(G)$ is a Green biset functor.

→ The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

8 Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

→ Suppose that there is such a biset functor Ξ^\times.
→ The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.
→ Easy computations of $\Xi(G)^\times$ in the case $G = 1$, $G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular
$$\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2}((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2}((C_2)^2) = 9.$$
→ If G is abelian, then $\dim_{\mathbb{F}_2} \Xi(G)^\times = 2r + 1$.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

Suppose that there is such a biset functor Ξ^\times.

The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.

Easy computations of $\Xi(G)^\times$ in the case $G = 1, G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular

$$\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2}((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2}((C_2)^2) = 9.$$

If G is abelian, then $\dim_{\mathbb{F}_2} \Xi(G)^\times = 2r + 1$, where r is the number of subgroups of index 2 in G.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

Suppose that there is such a biset functor Ξ^\times.

The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.

Easy computations of $\Xi(G)^\times$ in the case $G = 1$, $G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular

$$\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2}((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2}((C_2)^2) = 9.$$

If G is abelian, then $\dim_{\mathbb{F}_2} \Xi(G)^\times = 2r + 1$, where r is the number of subgroups of index 2 in G. Hence $\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) = 7$.

If G is abelian, then $\dim_{\mathbb{F}_2} \Xi(G)^\times$ cannot be endowed with a structure of biset functor.
The slice Burnside functor

1. The correspondence $G \mapsto B(G)$ is a Green biset functor.

2. The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

3. Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

4. Suppose that there is such a biset functor Ξ^\times.
5. The ghost ring homomorphism $\Xi(G) \hookrightarrow \prod \mathbb{Z}$ shows that $\Xi(G)^\times$ is an \mathbb{F}_2-vector space, hence $\Xi^\times \in \mathcal{F}_{\mathbb{F}_2}$.
6. Easy computations of $\Xi(G)^\times$ in the case $G = 1$, $G = C_2$, show that Ξ^\times involves the simple functors S_{1,\mathbb{F}_2} and S_{C_2,\mathbb{F}_2}. In particular $\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) \geq \dim_{\mathbb{F}_2} S_{1,\mathbb{F}_2}((C_2)^2) + \dim_{\mathbb{F}_2} S_{C_2,\mathbb{F}_2}((C_2)^2) = 9$.
7. If G is abelian, then $\dim_{\mathbb{F}_2} \Xi(G)^\times = 2r + 1$, where r is the number of subgroups of index 2 in G. Hence $\dim_{\mathbb{F}_2} \Xi^\times((C_2)^2) = 7 < 9$.

Serge Bouc (CNRS-LAMFA)
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.
The correspondence $G \mapsto B(G)$ is a Green biset functor.

The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

The correspondence $G \mapsto \Xi(G)^\times$ cannot be endowed with a structure of biset functor.
The slice Burnside functor

7 The correspondence $G \mapsto B(G)$ is a Green biset functor.

\rightarrow The correspondence $G \mapsto \Xi(G)$ is a Green biset functor.

8 Tensor induction endows $G \mapsto B(G)^\times$ with a structure of biset functor.

\rightarrow The correspondence $G \mapsto \Xi(G)^\times$ cannot be endowed with a structure of biset functor.
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a Galois morphism if

$$\forall x, x' \in X, \quad f(x) = f(x') \Rightarrow \exists \phi \in \text{Aut}_G\text{-Set}(X), \quad \phi(x) = x' \text{ and } f \circ \phi = f.$$

Let $G\text{-Mor}\text{Gal}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X, \quad f(x) = f(x') \Rightarrow G_x = G_{x'}.$
Definition

Let G be a group.

A morphism of G-sets $f: X \rightarrow Y$ is called a Galois morphism if $\forall x, x' \in X, f(x) = f(x') \Rightarrow \exists \phi \in \text{Aut}_G \text{-Set}(X), \phi(x) = x' \text{ and } f \circ \phi = f$.

Let G-Mor$_{\text{Gal}}$ denote the full subcategory of G-Mor consisting of Galois morphisms of G-sets.

Lemma

Let $f: X \rightarrow Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X, f(x) = f(x') \Rightarrow Gx = Gx'$.
Galois morphisms of G-sets

Definition

Let G be a group.
A morphism of G-sets $f : X \to Y$
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if

$$\forall x, x' \in X, f(x) = f(x') \Rightarrow \exists \phi \in \text{Aut}_{G\text{-Set}}(X), \phi(x) = x' \text{ and } f \circ \phi = f.$$
Galois morphisms of G-sets

Definition

Let G be a group.

A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if

\[
\forall x, x' \in X, f(x) = f(x') \quad \exists \phi \in \text{Aut}_{G-\text{Set}}(X), \phi(x) = x' \text{ and } f \circ \phi = f.
\]
Definition

Let G be a group.
A morphism of G-sets $f : X \rightarrow Y$ is called a **Galois morphism** if
\[
\forall x, x' \in X, \ f(x) = f(x') \Rightarrow
\]

Let G-Mor$_{\text{Gal}}$ denote the full subcategory of G-Mor consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \rightarrow Y$ be a morphism of G-sets.
The following are equivalent:
1. f is a Galois morphism.
2. $\forall x, x' \in X, \ f(x) = f(x') \Rightarrow G_x = G_{x'}$.
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \rightarrow Y$ is called a **Galois morphism** if

$\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G\text{-Set}}(X)$
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \rightarrow Y$ is called a **Galois morphism** if

$\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G-Set}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f.$
Definition

Let \(G \) be a group.

A morphism of \(G \)-sets \(f : X \to Y \) is called a **Galois morphism** if
\[\forall x, x' \in X, \quad f(x) = f(x') \Rightarrow \exists \varphi \in Aut_G-Set(X), \quad \varphi(x) = x' \text{ and } f \circ \varphi = f. \]

Let \(G\text{-Mor}^{Gal} \) denote the full subcategory of \(G\text{-Mor} \) consisting of Galois morphisms of \(G \)-sets.
Definition

Let G be a group.
A morphism of G-sets $f : X \rightarrow Y$ is called a \textbf{Galois morphism} if
\[\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in \text{Aut}_{G\text{-Set}}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f. \]

Let $G\text{-Mor}^{\text{Gal}}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \rightarrow Y$ be a morphism of G-sets.
Definition
Let G be a group.
A morphism of G-sets $f : X \rightarrow Y$ is called a Galois morphism if
\[\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G-Set}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f. \]
Let G-MorGal denote the full subcategory of G-Mor consisting of Galois morphisms of G-sets.

Lemma
Let $f : X \rightarrow Y$ be a morphism of G-sets. The following are equivalent:
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a Galois morphism if

$\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G\text{-}Set}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f.$

Let $G\text{-}Mor^{Gal}$ denote the full subcategory of $G\text{-}Mor$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if \(\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G-Set}(X), \ \varphi(x) = x' \) and $f \circ \varphi = f$. Let $G-Mor^{Gal}$ denote the full subcategory of G-Mor consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. \(\forall x, x' \in X \)
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if

$\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G\text{-Set}}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f.$

Let $G\text{-Mor}^{Gal}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent :

1. f is a Galois morphism.
2. $\forall x, x' \in X, \ f(x) = f(x') \ \Rightarrow$
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if $\forall x, x' \in X$, $f(x) = f(x') \Rightarrow \exists \varphi \in \text{Aut}_{G\text{-Set}}(X)$, $\varphi(x) = x'$ and $f \circ \varphi = f$. Let $G\text{-Mor}^{\text{Gal}}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X$, $f(x) = f(x') \Rightarrow G_x = G_{x'}$.
Galois morphisms of G-sets

Definition
Let G be a group.
A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if
\[\forall x, x' \in X, \quad f(x) = f(x') \Rightarrow \exists \varphi \in \text{Aut}_{G\text{-Set}}(X), \varphi(x) = x' \text{ and } f \circ \varphi = f. \]
Let $G\text{-Mor}^{Gal}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma
Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent:
1. f is a Galois morphism.
2. $\forall x, x' \in X, \quad f(x) = f(x') \Rightarrow G_x = G_{x'}$.

Example: Let $(T, S) \in \Pi(G)$. Then:
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \rightarrow Y$ is called a **Galois morphism** if

\[\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in \text{Aut}_{G\text{-Set}}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f. \]

Let $G\text{-Mor}^{\text{Gal}}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \rightarrow Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X, \ f(x) = f(x') \Rightarrow G_x = G_{x'}$.

Example: Let $(T, S) \in \Pi(G)$. Then:

$G/S \rightarrow G/T$ is a Galois morphism.
Definition

Let G be a group. A morphism of G-sets $f : X \rightarrow Y$ is called a **Galois morphism** if

\[\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G-Set}(X), \ \varphi(x) = x' \ and \ f \circ \varphi = f. \]

Let G-MorGal denote the full subcategory of G-Mor consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \rightarrow Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X, \ f(x) = f(x') \Rightarrow G_x = G_{x'}$.

Example: Let $(T, S) \in \Pi(G)$. Then:

$G/S \rightarrow G/T$ is a Galois morphism $\iff S \trianglelefteq T$.
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \to Y$ is called a **Galois morphism** if
\[\forall x, x' \in X, \ f(x) = f(x') \Rightarrow \exists \varphi \in \text{Aut}_{G\text{-Set}}(X), \ \varphi(x) = x' \text{ and } f \circ \varphi = f. \]
Let $G\text{-Mor}^{Gal}$ denote the full subcategory of G-Mor consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \to Y$ be a morphism of G-sets. The following are equivalent :

1. f is a Galois morphism.
2. $\forall x, x' \in X, \ f(x) = f(x') \Rightarrow G_x = G_{x'}.$

Definition

A section (T, S) of G is a slice such that $S \sqsubseteq T$. Let $\Sigma(G)$ denote the set of sections of G.

Serge Bouc (CNRS-LAMFA) Slice - Section Pohang, March 28, 2011 14 / 17
Definition

Let G be a group. A morphism of G-sets $f: X \to Y$ is called a **Galois morphism** if for all $x, x' \in X$, $f(x) = f(x') \Rightarrow \exists \varphi \in \text{Aut}_{G\text{-Set}}(X)$, $\varphi(x) = x'$ and $f \circ \varphi = f$. Let $G\text{-Mor}^{\text{Gal}}$ denote the full subcategory of $G\text{-Mor}$ consisting of Galois morphisms of G-sets.

Lemma

Let $f: X \to Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X$, $f(x) = f(x') \Rightarrow G_x = G_{x'}$.

Definition

A **section** (T, S) of G is a slice such that $S \triangleleft T$.
Galois morphisms of G-sets

Definition

Let G be a group. A morphism of G-sets $f : X \rightarrow Y$ is called a **Galois morphism** if $\forall x, x' \in X, f(x) = f(x') \Rightarrow \exists \varphi \in Aut_{G\text{-}Set}(X), \varphi(x) = x'$ and $f \circ \varphi = f$. Let $G\text{-}Mor^{Gal}$ denote the full subcategory of $G\text{-}Mor$ consisting of Galois morphisms of G-sets.

Lemma

Let $f : X \rightarrow Y$ be a morphism of G-sets. The following are equivalent:

1. f is a Galois morphism.
2. $\forall x, x' \in X, f(x) = f(x') \Rightarrow G_x = G_{x'}$.

Definition

A **section** (T, S) of G is a slice such that $S \subseteq T$. Let $\Sigma(G)$ denote the set of sections of G.
Properties of Galois morphisms

Let \(f: X \to Y \) be a Galois morphism of \(G \)-sets, and \(X_1 \subseteq X \) be a \(G \)-subset of \(X \).

Then \(f|_{X_1}: X_1 \to f(X_1) \) is a Galois morphism of \(G \)-sets.

Let \(f: X \to Y \) and \(g: Z \to T \) be Galois morphisms of \(G \)-sets. Then \(f \times g: X \times Z \to Y \times T \) is a Galois morphism of \(G \)-sets.

Let \(f: X \to Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset.

Then \(U \times_G f: U \times_G X \to U \times_G Y \) is a Galois morphism of \(H \)-sets.

The correspondence \((f: X \to Y) \mapsto (f_{\text{Gal}}: X_{\text{Gal}} f \to Y)\) is a functor \(G\text{-Mor} \to G\text{-Mor} \text{Gal} \), left adjoint to the forgetful functor \(G\text{-Mor} \text{Gal} \to G\text{-Mor} \).

Thus \(G\text{-Mor} \text{Gal} \) is a reflective subcategory of \(G\text{-Mor} \).

Example: Let \((T, S) \in \Pi(G)\), and \(f: G/S \to G/T \) be the projection map.

Then \(f_{\text{Gal}} \) is the projection map \(G/S \triangleright T \to G/T \), where \(S \triangleright T \) is the normal closure of \(S \) in \(T \).
Let \(f : X \rightarrow Y \) be a Galois morphism of \(G \)-sets.

Let \(f : X \rightarrow Y \) and \(g : Z \rightarrow T \) be Galois morphisms of \(G \)-sets.

Then \(f \times g : X \times Z \rightarrow Y \times T \) is a Galois morphism of \(G \)-sets.

Let \(f : X \rightarrow Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset.

Then \(U \times G f : U \times G X \rightarrow U \times G Y \) is a Galois morphism of \(H \)-sets.

The correspondence \((f : X \rightarrow Y) \mapsto (f_{\text{Gal}} : X_{\text{Gal}} f \rightarrow Y) \) is a functor \(G\text{-Mor} \rightarrow G\text{-Mor}_{\text{Gal}} \), left adjoint to the forgetful functor \(G\text{-Mor}_{\text{Gal}} \rightarrow G\text{-Mor}. \)

Thus \(G\text{-Mor}_{\text{Gal}} \) is a reflective subcategory of \(G\text{-Mor}. \)

Example: Let \((T, S) \in \Pi(G)\), and \(f : G/S \rightarrow G/T \) be the projection map.

Then \(f_{\text{Gal}} \) is the projection map \(G/S \owns T \rightarrow G/T \), where \(S \owns T \) is the normal closure of \(S \) in \(T \).
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets.
Properties of Galois morphisms

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \rightarrow f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ and $g : Z \rightarrow T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \rightarrow Y \times T$ is a Galois morphism of G-sets.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets.
Properties of Galois morphisms

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \rightarrow f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ and $g : Z \rightarrow T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \rightarrow Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset.
Properties of Galois morphisms

- Let \(f : X \to Y \) be a Galois morphism of \(G \)-sets, and \(X_1 \subseteq X \) be a \(G \)-subset of \(X \). Then \(f|_{X_1} : X_1 \to f(X_1) \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \to Y \) and \(g : Z \to T \) be Galois morphisms of \(G \)-sets. Then \(f \times g : X \times Z \to Y \times T \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \to Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset. Then \(U \times_G f : U \times_G X \to U \times_G Y \) is a Galois morphism of \(H \)-sets.
Properties of Galois morphisms

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \rightarrow f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ and $g : Z \rightarrow T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \rightarrow Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \rightarrow U \times_G Y$ is a Galois morphism of H-sets.

- Let $f : X \rightarrow Y$ be any morphism of G-sets.
Properties of Galois morphisms

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \rightarrow f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ and $g : Z \rightarrow T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \rightarrow Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \rightarrow Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \rightarrow U \times_G Y$ is a Galois morphism of H-sets.

- Let $f : X \rightarrow Y$ be any morphism of G-sets.
 - For $x \in X$, set $G_x^f = \langle G_z | z \in f^{-1}f(x) \rangle$.

\[\text{Slice - Section} \quad \text{Pohang, March 28, 2011} \]
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- Let $f : X \to Y$ be any morphism of G-sets.
 - For $x \in X$, set $G_x^f = \langle G_z | z \in f^{-1}f(x) \rangle$.
 - For $x, x' \in X$, set $x \sim_f x'$ if there exists $g \in G_x^f$ such that $gx = x'$.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- Let $f : X \to Y$ be any morphism of G-sets.
 - For $x \in X$, set $G_x^f = \langle G_z \mid z \in f^{-1}f(x) \rangle$.
 - For $x, x' \in X$, set $x \sim_f x'$ if there exists $g \in G_x^f$ such that $gx = x'$.
 - Then \sim_f is a G-equivariant equivalence relation on X.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- Let $f : X \to Y$ be any morphism of G-sets.
 - For $x \in X$, set $G_x^f = \langle G_z \mid z \in f^{-1}f(x) \rangle$.
 - For $x, x' \in X$, set $x \sim_f x'$ if there exists $g \in G_x^f$ such that $gx = x'$.
 - Then \sim_f is a G-equivariant equivalence relation on X. The projection map $\gamma_{X,f} : X \to X_f^{Gal} = X/\sim_f$ is a map of G-sets.
Properties of Galois morphisms

Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f_{|X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

Let $f : X \to Y$ be any morphism of G-sets.

- For $x \in X$, set $G^f_x = \langle G_z \mid z \in f^{-1}f(x) \rangle$.
- For $x, x' \in X$, set $x \sim_f x'$ if there exists $g \in G^f_x$ such that $gx = x'$.
- Then \sim_f is a G-equivariant equivalence relation on X. The projection map $\gamma_{X,f} : X \to X^f_{Gal} = X/\sim_f$ is a map of G-sets.
- There is a unique map of G-sets $f^Gal : X^f_{Gal} \to Y$ such that

$$
\begin{array}{ccc}
X & \xrightarrow{\gamma_{X,f}} & X^f_{Gal} \\
& & \xrightarrow{f^Gal} \\
& & Y
\end{array}
$$
Properties of Galois morphisms

- Let \(f : X \rightarrow Y \) be a Galois morphism of \(G \)-sets, and \(X_1 \subseteq X \) be a \(G \)-subset of \(X \). Then \(f|_{X_1} : X_1 \rightarrow f(X_1) \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \rightarrow Y \) and \(g : Z \rightarrow T \) be Galois morphisms of \(G \)-sets. Then \(f \times g : X \times Z \rightarrow Y \times T \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \rightarrow Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset. Then \(U \times_G f : U \times_G X \rightarrow U \times_G Y \) is a Galois morphism of \(H \)-sets.

- Let \(f : X \rightarrow Y \) be any morphism of \(G \)-sets.
 - For \(x \in X \), set \(G^f_x = \langle G_z \mid z \in f^{-1}f(x) \rangle \).
 - For \(x, x' \in X \), set \(x \sim_f x' \) if there exists \(g \in G^f_x \) such that \(gx = x' \).
 - Then \(\sim_f \) is a \(G \)-equivariant equivalence relation on \(X \). The projection map \(\gamma_{X, f} : X \rightarrow X^f_{Gal} = X/\sim_f \) is a map of \(G \)-sets.
 - There is a unique map of \(G \)-sets \(f^f_{Gal} : X^f_{Gal} \rightarrow Y \) such that

\[
X \xrightarrow{\gamma_{X, f}} X^f_{Gal} \xrightarrow{f^f_{Gal}} Y.
\]

Moreover \(f^f_{Gal} \) is a Galois morphism.
Properties of Galois morphisms

- Let \(f : X \to Y \) be a Galois morphism of \(G \)-sets, and \(X_1 \subseteq X \) be a \(G \)-subset of \(X \). Then \(f_{|X_1} : X_1 \to f(X_1) \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \to Y \) and \(g : Z \to T \) be Galois morphisms of \(G \)-sets. Then \(f \times g : X \times Z \to Y \times T \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \to Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset. Then \(U \times_G f : U \times_G X \to U \times_G Y \) is a Galois morphism of \(H \)-sets.

- The correspondence \((f : X \to Y) \mapsto (f^{Gal} : X_f^{Gal} \to Y)\) is a functor \(G\text{-Mor} \to G\text{-Mor}^{Gal} \).
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- The correspondence $(f : X \to Y) \mapsto (f^{Gal} : X_f^{Gal} \to Y)$ is a functor G-Mor $\to G$-MorGal, left adjoint to the forgetful functor G-Mor$^{Gal} \to G$-Mor.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f_\mid_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- The correspondence $(f : X \to Y) \mapsto (f^{\text{Gal}} : X^{\text{Gal}}_f \to Y)$ is a functor $G\text{-Mor} \to G\text{-Mor}^{\text{Gal}}$, left adjoint to the forgetful functor $G\text{-Mor}^{\text{Gal}} \to G\text{-Mor}$. Thus $G\text{-Mor}^{\text{Gal}}$ is a reflective subcategory of $G\text{-Mor}$.

Example: Let $(T, S) \in \Pi(G)$, and $f : G/\!\!/S \to G/\!\!/T$ be the projection map. Then f^{Gal} is the projection map $G/\!\!/S \trianglelefteq T \to G/\!\!/T$, where $S \trianglelefteq T$ is the normal closure of S in T.

Serge Bouc (CNRS-LAMFA) Slice - Section Pohang, March 28, 2011 15 / 17
Properties of Galois morphisms

- Let \(f : X \rightarrow Y \) be a Galois morphism of \(G \)-sets, and \(X_1 \subseteq X \) be a \(G \)-subset of \(X \). Then \(f|_{X_1} : X_1 \rightarrow f(X_1) \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \rightarrow Y \) and \(g : Z \rightarrow T \) be Galois morphisms of \(G \)-sets. Then \(f \times g : X \times Z \rightarrow Y \times T \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \rightarrow Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset. Then \(U \times_G f : U \times_G X \rightarrow U \times_G Y \) is a Galois morphism of \(H \)-sets.

- The correspondence \((f : X \rightarrow Y) \leftrightarrow (f^{Gal} : X_f^{Gal} \rightarrow Y)\) is a functor \(G\text{-Mor} \rightarrow G\text{-Mor}^{Gal} \), left adjoint to the forgetful functor \(G\text{-Mor}^{Gal} \rightarrow G\text{-Mor} \). Thus \(G\text{-Mor}^{Gal} \) is a reflective subcategory of \(G\text{-Mor} \).

Example: Let \((T, S) \in \Pi(G)\)
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f|_{X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- The correspondence $(f : X \to Y) \leftrightarrow (f^{Gal} : X^{f^{Gal}} \to Y)$ is a functor G-Mor $\to G$-MorGal, left adjoint to the forgetful functor G-Mor$^{Gal} \to G$-Mor. Thus G-MorGal is a reflective subcategory of G-Mor.

Example: Let $(T, S) \in \Pi(G)$, and $f : G/S \to G/T$ be the projection map.
Properties of Galois morphisms

- Let $f : X \to Y$ be a Galois morphism of G-sets, and $X_1 \subseteq X$ be a G-subset of X. Then $f_{|X_1} : X_1 \to f(X_1)$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ and $g : Z \to T$ be Galois morphisms of G-sets. Then $f \times g : X \times Z \to Y \times T$ is a Galois morphism of G-sets.

- Let $f : X \to Y$ be a Galois morphism of G-sets, and U be an (H, G)-biset. Then $U \times_G f : U \times_G X \to U \times_G Y$ is a Galois morphism of H-sets.

- The correspondence $(f : X \to Y) \mapsto (f^{Gal} : X_f^{Gal} \to Y)$ is a functor $G\text{-Mor} \to G\text{-Mor}^{Gal}$, left adjoint to the forgetful functor $G\text{-Mor}^{Gal} \to G\text{-Mor}$. Thus $G\text{-Mor}^{Gal}$ is a reflective subcategory of $G\text{-Mor}$.

- **Example**: Let $(T, S) \in \Pi(G)$, and $f : G/S \to G/T$ be the projection map. Then f^{Gal} is the projection map $G/S^{\triangleleft T} \to G/T$.
Properties of Galois morphisms

- Let \(f : X \to Y \) be a Galois morphism of \(G \)-sets, and \(X_1 \subseteq X \) be a \(G \)-subset of \(X \). Then \(f|_{X_1} : X_1 \to f(X_1) \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \to Y \) and \(g : Z \to T \) be Galois morphisms of \(G \)-sets. Then \(f \times g : X \times Z \to Y \times T \) is a Galois morphism of \(G \)-sets.

- Let \(f : X \to Y \) be a Galois morphism of \(G \)-sets, and \(U \) be an \((H, G)\)-biset. Then \(U \times_G f : U \times_G X \to U \times_G Y \) is a Galois morphism of \(H \)-sets.

- The correspondence \((f : X \to Y) \mapsto (f^{Gal} : X_f^{Gal} \to Y)\) is a functor \(G\text{-Mor} \to G\text{-Mor}^{Gal} \), left adjoint to the forgetful functor \(G\text{-Mor}^{Gal} \to G\text{-Mor} \). Thus \(G\text{-Mor}^{Gal} \) is a reflective subcategory of \(G\text{-Mor} \).

Example: Let \((T, S) \in \Pi(G)\), and \(f : G/S \to G/T \) be the projection map. Then \(f^{Gal} \) is the projection map \(G/S^{\triangleleft T} \to G/T \), where \(S^{\triangleleft T} \) is the normal closure of \(S \) in \(T \).
The section Burnside ring

1. The Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-Mor, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. $\Gamma(G)$ is a free abelian group on the set of $[G/S \to G/T]$ for $(T, S) \in \Sigma(G)$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in \Sigma(G)} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}[\Gamma(G)]$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.

6. The prime spectrum of $\Gamma(G)$ can be explicitly described. $\text{Spec} \Gamma(G)$ connected $\iff G$ is solvable.

7. The correspondence $G \mapsto \Gamma(G)$ is a Green biset functor.

8. The correspondence $G \mapsto \Gamma(G)$ cannot be endowed with a structure of biset functor.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-MorGal.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-Mor^{Gal}, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{\text{Gal}}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set $
\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}.$
1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-Mor^{Gal}, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set $\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-Mor^{Gal}, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set
 \[\{ [G/S \to G/T] \mid (T, S) \in [\Sigma(G)] \} . \]

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-MorGal, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set $\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective.
The section Burnside ring

1. The **section Burnside group** $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{\text{Gal}}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a **free abelian group** on the set

$$\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}.$$

3. $\Gamma(G)$ is a **subring** of $\Xi(G)$.

4. There is a **ghost ring homomorphism** $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

Serge Bouc (CNRS-LAMFA)

Slice - Section

Pohang, March 28, 2011 16 / 17
1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{Gal}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set $\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi: \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{\text{Gal}}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set
 $$ \{ [G/S \rightarrow G/T] \mid (T, S) \in [\Sigma(G)] \}.$$

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \rightarrow \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{Gal}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set \{\([G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}\}.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.

6. The prime spectrum of $\Gamma(G)$ can be explicitly described.
The section Burnside ring

1. The **section Burnside group** $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{\text{Gal}}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a **free abelian group** on the set $
\{ [G/S \to G/T] \mid (T, S) \in [\Sigma(G)] \}.
$

3. $\Gamma(G)$ is a **subring** of $\Xi(G)$.

4. There is a **ghost ring homomorphism** $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its **primitive idempotents** are known explicitly.

6. The **prime spectrum** of $\Gamma(G)$ can be explicitly described. $\text{Spec } \Gamma(G)$ connected.
1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{Gal}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set $\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.

6. The prime spectrum of $\Gamma(G)$ can be explicitly described. $Spec \ \Gamma(G)$ connected \Leftrightarrow G is solvable.
The section Burnside ring

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of $G\text{-Mor}^{Gal}$, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set $\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.

6. The prime spectrum of $\Gamma(G)$ can be explicitly described. $Spec \, \Gamma(G)$ connected \iff G is solvable.

7. The correspondence $G \mapsto \Gamma(G)$
The section Burnside functor

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-MorGal, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set
 $\{[G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}$.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi: \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.

6. The prime spectrum of $\Gamma(G)$ can be explicitly described. $\text{Spec } \Gamma(G)$ connected \iff G is solvable.

7. The correspondence $G \mapsto \Gamma(G)$ is a Green biset functor.
The section Burnside functor

1. The section Burnside group $\Gamma(G)$ of a finite group G is the Grothendieck group of G-Mor^{Gal}, or equivalently the subgroup of $\Xi(G)$ generated by Galois morphisms of G-sets.

2. The group $\Gamma(G)$ is a free abelian group on the set
\{\([G/S \to G/T] \mid (T, S) \in [\Sigma(G)]\}\}.

3. $\Gamma(G)$ is a subring of $\Xi(G)$.

4. There is a ghost ring homomorphism $\Psi : \Gamma(G) \to \prod_{H \in [\Sigma(G)]} \mathbb{Z}$, injective, with finite explicit cokernel.

5. $\mathbb{Q}\Gamma(G)$ is a split semisimple commutative \mathbb{Q}-algebra. Its primitive idempotents are known explicitly.

6. The prime spectrum of $\Gamma(G)$ can be explicitly described. $\text{Spec} \Gamma(G)$ connected \iff G is solvable.

7. The correspondence $G \mapsto \Gamma(G)$ is a Green biset functor.

8. The correspondence $G \mapsto \Gamma(G)^\times$ cannot be endowed with a structure of biset functor.
Conclusion

There are inclusions of Green biset functors $\mathcal{B} \hookrightarrow \mathcal{\Gamma} \hookrightarrow \mathcal{\Xi}$, and a projection $\pi: \mathcal{\Xi} \rightarrow \mathcal{\mathcal{B}}$, such that $\pi|\mathcal{\mathcal{B}} = \text{Id}_{\mathcal{\mathcal{B}}}$.

For any finite group H, and any field k, there are subfunctors $\mathcal{F}' \subset \mathcal{F} \subseteq k\mathcal{\Gamma}$ such that $\mathcal{\mathcal{F}}/\mathcal{\mathcal{F}}' \sim = \text{S}_H(k)$.

There are subfunctors $\mathcal{F}' \subset \mathcal{F} \subseteq k\mathcal{\Gamma}$ such that $\mathcal{\mathcal{F}}/\mathcal{\mathcal{F}}' \sim = \text{S}_K(V)$, for some K and some $V \neq k$.

One can describe the lattice of ideals of $\mathcal{\mathcal{Q}}$.
There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi: \Xi \rightarrow B$, such that $\pi|_B = \text{Id}_B$.

For any finite group H and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \sim S_{H,k}$.

There are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \sim S_K, V$, for some K and some $V \neq k$.

One can describe the lattice of ideals of $Q\Xi$.

Serge Bouc (CNRS-LAMFA)
There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \rightarrow B$. For any finite group H, and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \sim = S^H_k$, k.

There are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \sim = S^K_V$, for some K and some $V \neq k$.

One can describe the lattice of ideals of $Q\Xi$.

Serge Bouc (CNRS-LAMFA)
Slice - Section
Pohang, March 28, 2011 17 / 17
There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = \text{Id}_B$.

For any finite group H, and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \simeq S_H(k)$.

There are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \simeq S_K(V)$, for some K and some $V \not\simeq k$.

One can describe the lattice of ideals of $Q\Xi$.

Serge Bouc (CNRS-LAMFA)
There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = \text{Id}_B$.

For any finite group H
Conclusion

- There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = \text{Id}_B$.
- For any finite group H, and any field k
Conclusion

- There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = \text{Id}_B$.

- For any finite group H, and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$.
There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = Id_B$.

For any finite group H, and any field k, there are subfunctors $F' \subset F \subset k\Gamma$ such that $F/F' \cong S_{H,k}$.
Conclusion

- There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \rightarrow B$, such that $\pi|_B = Id_B$.
- For any finite group H, and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \cong S_{H,k}$.
- Unfortunately...
There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = \text{Id}_B$.

For any finite group H, and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \cong S_{H,k}$.

There are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \cong S_{K,V}$, for some K and some $V \not\cong k$.
Conclusion

- There are inclusions of Green biset functors $B \hookrightarrow \Gamma \hookrightarrow \Xi$, and a projection $\pi : \Xi \to B$, such that $\pi|_B = Id_B$.
- For any finite group H, and any field k, there are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \cong S_{H,k}$.
- There are subfunctors $F' \subset F \subseteq k\Gamma$ such that $F/F' \cong S_{K,V}$, for some K and some $V \not\cong k$.
- One can describe the lattice of ideals of $Q\Xi$.