A remark on a theorem of Ritter and Segal

Serge Bouc

A well-known theorem proved independently by Ritter ([4]) and Segal ([5])
states that if P is a p-group, then the natural morphism from the Burnside ring
B(P) of P to the Grothendieck ring Rg(P) of rational representations of P,
mapping a finite P-set X to the permutation module QX, is surjective.

The object of this note is to complete this theorem in the following way:

Theorem 1 Let p be a prime number, and P be a finite p-group. If V is a
non-trivial simple QP-module, then there exist subgroups R D @ of P, with
|R: Q| = p, and an isomorphism of QP-modules

V ~ IndgInf}, o Qr/q

where Q¢ is the augmentation ideal of the group algebra QR/Q.
In other words there is an exact sequence of QP-modules

0>V —->QP/Q) » QP/R) -0
where the map Q(P/Q) — Q(P/R) is the natural projection. In particular in

Ro(P)
V =QP/Q) - QP/R)

The following lemma is a special case of this theorem:

Lemma 2 1. Let P be a cyclic p-group. Then the modules

Indglnfg/Q(R) QR/@(R)
for non-trivial subgroups R of G, are the non-trivial irreducible QP-modules.

2. Let P be an elementary abelian p-group. Then the modules
Infp, 0 Qp/0
for subgroups Q of index p in P are the non-trivial simple QP-modules.

Proof: The number of simple QP-modules for a finite group P is equal to
the number of conjugacy classes of cyclic subgroups of P (see [6] Chapitre 13
Théoréme 29 Corollaire 1). Hence in both cases, it suffices to show that the
listed modules are simple and not isomorphic to each other. Indeed the number
of non-trivial subgroups of a cyclic group P is equal to the number of (conjugacy
classes of) cyclic subgroups of P, minus one, and the number of subgroups of
index p in an elementary abelian p-group P is equal to the number of (conjugacy
classes of) cyclic subgroups of P, minus one.

If P is cyclic of order p”, and R is a subgroup of P of order p¢ > 1, then
the module Ind%,Inf} /o(r)2r/a(R) has dimension p"~%(p—1). Thus as d varies
from 1 to n, those modules are not isomorphic to each other. Since moreover

Indg It /a(r) Q2r/a(r) = Infhye(r) Ind 5 o) Qr/o(m)



and since inflation takes simple modules to simple modules, it suffices to prove
that for any cyclic p-group P, if R is the subgroup of P of order p, the module
V = Indﬁﬂ g is simple. But looking at scalar products of the character of V'
with complex characters of P shows that the character of V is the sum of all
primitive characters of P. If W is a non-zero rational direct summand of V,
with character xw, then there is a primitive complex character { of P such
that the scalar product (xw,() is non-zero, hence equal to 1. It follows that
(xw,%¢) = 1 for all automorphism s of the field of p™-th roots of unity. Since the
Galois group of this field is transitive on the primitive roots of unity, it follows
that (xw,¢’) = 1 for all primitive complex character ¢ of P. This shows that
the character of W is equal to the character of V', hence that W = V. Thus V
is a simple QP-module.

Now if P is elementary abelian, the modules Infg/Q Qpq, for |P: Q| = p, are
inflated from simple modules for the group of order p, by the previous discussion
of the cyclic group case. Hence they are simple. Since the kernel of Infg /QQ P/Q
is @, it follows that those modules are not isomorphic to each other. 0

Corollary 3 Let E be an elementary abelian subgroup of P. Then any simple
QP-module has dimension at most (p—1)|P : E|.

Proof: Let V be a simple QP-module, and E be an elementary abelian sub-
group of P. By Frobenius reciprocity, there is a non-zero morphism of QP-
modules from V to InngeSEV. Since QP is semi-simple, this morphism is
split injective, and there is a simple direct summand W of ResgV such that V
is a direct summand of ITndfW. By lemma 2, the dimension of W is at most
p—1, thus dimgV < |P: E|(p —1). 0

Proof of theorem 1: The following proof is inspired by methods of M. En-
guehard ([2]), and goes by induction on the order of P. I can suppose that P is
neither cyclic nor elementary abelian.

Let V be a non-trivial simple QP-module. If V is not faithful, then there
exists a non-trivial normal subgroup N of P such that

V ~ Infp yW

where W is a Q(P/N)-module. If V is simple and non-trivial, then so is W. By
induction hypothesis, there are subgroups R/N D Q/N of P/N such that

P/N -R/N
W = Indy/ NInfi/ 5 Qp g

Taking inflation to P gives
V ~ Inngnfg/NQR/Q ~ Inngnfg/QQR/Q

Hence I can suppose that V is faithful. Now there are two cases:

e There exists a normal subgroup F of P which is elementary abelian of order p?.
Let L be a simple summand of ResgV as a QF-module, and let I denote the
inertial subgroup of L in P, i.e.

I={zeP|*L~L}



Then by Clifford theory (see [1] Theorem 11.1) there exists a positive integer e

such that
ResLV ~ e( Z IL)
geEP/I

Let I denote the L-isotypic component of ReshV (i.e. the submodule generated
by all simple summands isomorphic to L). Then

V ~Ind} L

Now I contains the centralizer Cp(E) of E in P, and the quotient P/Cp(E) is
a p-subgroup of the automorphism group of E, which has order p(p—1)(p? —1).
Hence I has index 1 or p in P.

If|P: I| = p,then V ~ IndY L, and L is a simple I-module. It cannot be the
trivial module, since in this case V ~ Indf,3 Q which is not simple. By induction
hypothesis, there exist subgroups R D @ of P such that

L ~ IndInfg 0 Qg0
Taking induction up to P gives
V ~ IndgInfy 0 Qr/q

Hence I can suppose I = P, and in this case V = L. If V is faithful, then L
has to be a faithful simple QE-module. By Lemma 2, there are no such simple
QFE-modules, and this is a contradiction.

e The other case is when P has no normal subgroup of order p2. In this case,
by Theorem 4.10 of Chapter 5 of [3], the group P is cyclic if p is odd, and if
p = 2, the group P is cyclic, or quaternion of order at least 8, dihedral of order
at least 16, or semi-dihedral of order at least 16.

If P is cyclic, the result holds by Lemma 2. Hence I can suppose that p = 2,
and P is quaternion, dihedral, or semi-dihedral, and P has order 2", with n > 3.

In this case P has a non-central cyclic subgroup A of index 2. Let C denote
the unique subgroup of order 2 of A.

The restriction of V to A is a faithful QA-module, hence by lemma 2 it must
contain Indéﬂc as a direct summand. In particular dimg V' > 272

Now if P contains an elementary abelian subgroup E of order 4, then there
is a simple QFE-module W such that V is a direct summand of Indi. Since
W is one dimensional by lemma 2, it follows that dimgV < |P : E| = 2" 2.
Thus dimg V' = 2”2, and V is isomorphic to IndL,W. Moreover W must be
non-trivial, since otherwise QQ is a direct summand of Indi ~ V. Hence
W = Infg /e /F, for some subgroup F' of E of index 2, and V has the form
required for theorem 1.

If P contains no elementary abelian subgroup E of order 4 (and P is not
cyclic), then P is generalized quaternion. In this case C' is the only subgroup of
P of order 2, and the simple QC-modules are one dimensional, isomorphic to Q
and Q¢. Since V is faithful, the restriction Res5V must contain Q¢ as a direct
summand. By Frobenius reciprocity, it follows that V is a direct summand of
M = Indgﬂo. To complete the proof of theorem 2, it suffices to show that M
is simple.



This can be done by the following elementary proof. The quaternion group
P of order 2" has the following presentation

n—1 n—2
P=<uzyld® =12 =y, yayt=a">

The subgroup A is generated by z, and C is generated by z2°~ = y2. The
group P is the disjoint union of A and Ay. Thus

M = QP ®qc Q¢ = (QA ®qc Q) @ (QAy ®qc 0)
Now the generator 2" of C acts by -1 on Q¢. It follows that
Q4 ®gc Q¢ = F = QX]/<X*" " + 1>

and this is an isomorphism of QA-modules if the action of z on F is given by
multiplication by X. Moreover F is a field, since X " 4 1isa cyclotomic
polynomial.

Denote by o the automorphism of F sending X to X~! = —X2"7°~1 and
by Y the element y ® 1 of QAy ®gc Qc. Then M ~ F @ FY as QP-modules,
where the action of x is given by left multiplication by X, and the action of y
is given by

y(A+ BY) = —0(B)+0(A)Y, VA,BeF

since moreover y? acts by -1 on Q¢. In other words if M is endowed with the
Q-algebra structure induced by the following multiplication

(A'+ B'Y)(A+BY) = A'A— B'o(B) + (A'B+ B'o(A))Y, VA,A',B,B' €F

then the generators  and y of P act on M by multiplication by X and Y
respectively. To show that M is simple, it suffices to show that M is a skew
field. But for A,B € F

(A+ BY)(c(A) — BY) = Ao(A) + Bo(B) € F

IfA=ag+a1 X+...+agm—2_ X2 ~Vand B = bo+b1 X +...4+bgn-s_ X" "1
with coefficients a; and b; in Q, for 0 < i < 272, then the coefficient of 1 in
Ac(A) + Bo(B) is equal to a§ + af + ...+ a3._o_, + b3 +bf +... + b2 _o_,.
This is positive if A + BY is non-zero, hence Ao (A) + Bo(B) # 0 is invertible
in IF, hence in M. Thus M is a skew-field, as was to be shown. 0

In view of theorem 1, it is natural to ask when conversely, being given
two subgroups R D @ with |R : Q| = p, the module Inngnfﬁ/QQR/Q is an
irreducible QP-module. A possible answer is the following;:

Proposition 4 Let p be a prime number, and P be a p-group. Let R D @ be
subgroups of P, with |R: Q| = p. Then the following conditions are equivalent:

1. The module Indﬁlnfﬁ/QQR/Q is an irreducible QP -module.
2. If S is any subgroup of P such that RNS C @, then |S| < |R|.

3. The group Np(Q)/Q is cyclic or generalized quaternion, the group R/Q
18 its unique subgroup of order p, and if S is any subgroup of P such that

|S| > |Q], then SN Np(Q) € Q.



Proof: Suppose first that the QP-module Indglnfg /oS2R/q isirreducible. Then
its character is orthogonal (for the scalar product) to any irreducible module
of the form Syy = Inngnfg /vy v, where U DV are subgroups of P with
|U:V|=pand|U|> |R|

Those irreducible modules, together with the trivial one, generate the sub-
module M of Rg(P) generated by the permutation modules Q(P/S) = Ind5Q,
for |S| > |R|: clearly Syv € M if [U| > |R)|, since Sy,y = IndQ — Indf,Q in
Ro(P). Conversely, if S is a subgroup of P with |S| > |R|, then Ind5Q is the
sum of the trivial module and of some irreducible modules Sy,y. And if Sy,v
is a direct summand of Indf; Q, then in particular

dimg Sy,y = |P:U|(p—1) < dimgInd5Q—-1=|P: S| -1 < |P: S|

Thus
IS| < (p—1)I|S| < U]

and it follows that |U| > |SL2 |R|.

Thus if Wg o = IndgInfp /0€¥r/q is irreducible, then its character is orthog-
onal to the characters Indj 1, for |S| > |R|. Since the character of Wg,q is equal
to

Indgl — Indﬁl

and since the scalar product of Indgl with Ind§1 is equal to the number of
double cosets QzS, for z € P, it follows that

|Q\P/S| = |R\P/S]|

for any subgroup S of P with |S| > |R|. This is equivalent to requiring that
QxS = RzxS for any = € P, or equivalently that R C @.*S. Now this is
equivalent to R = Q(RN?*S), or RN*S ¢ (@ since () has index p in R. It follows
that if S is a subgroup of P with RN S C @, then |S| < |R|. In other words,
condition 1 implies condition 2.

Conversely, if condition 2 holds, then the previous discussion shows that the
character of the module Wg ¢ is orthogonal to the characters of all the simple
modules Sy,y, for |U| > |R|. Now for dimension reasons, the module Wg g
cannot have a simple direct summand Sy, v, for |U| < |R|. It follows that Wg ¢
has a direct summand Sy,y, with |U| = |R|. Then Syy and Wg, have the
same dimension, hence they are isomorphic. Hence Wpg g is irreducible, and
this completes the proof of the equivalence of conditions 1 and 2.

If condition 2 holds, and if S is a subgroup of P containing ), and not
containing R, the intersection RN S is equal to @, since ) is maximal in R. Tt
follows that |S| < |R|, or equivalently that |S| < |Q|. Hence S = @, and R is
the smallest element of ]@Q, P]. Hence it is the smallest element of |Q, Np(Q)],
and the group Np(Q)/Q has a single subgroup R/Q of order p. It follows that
Np(Q)/Q is cyclic or generalized quaternion. If S is any subgroup of P with
|S| > |Q|, or equivalently |S| > |R|, then RN S ¢ Q. Since R C Np(Q), it
follows that SN Np(Q) € @ and 2 implies 3.

Conversely if 3 holds, and if S is any subgroup of P with |S| > |R|, then
SNNp(Q) € Q and Q.(SNNp(Q)) # Q. Since R/Q is the unique minimal non-
trivial subgroup of Np(Q)/Q, it follows that R C Q.(SNNp(Q)), or equivalently
R=Q.(RNSNNp(Q)) =Q.(RNS). Thus RNS Z @, and 3 implies 2. 0



Theorem 1 has the following easy consequence:

Corollary 5 Let P be a p-group, and V be a finite dimensional QP-module.
Then

dimg V = dimg V" mod. (p—1)
More generally, for k € N denote by Ny, the intersection of all subgroups S of
P with |P: S| =p*. Then

dimg V = dimg V™ mod. p*(p—1)

Proof: The first congruence is a special case of the second one, when k = 0. To
prove this second congruence, decompose V' as a direct sum of simple modules

V=nQo® @ TLR7QSR’Q

SR,Q €ex

for integers n; and ng, g, where X is a set of mutually non-isomorphic non-trivial
simple modules Sg . Now since Vi is a normal subgroup of P, the set of fixed
points Sﬁ’b is a QP-submodule of Sg,q. Hence it is zero or the whole of Sg q.
This last case occurs exactly when N acts trivially on Sg g, i.e. when N C Q.
It follows that
V'N’c = ’I’L1@@ @ nR,QSR,Q
Sr,qQ
where the sum runs over those simple modules Sg,g € ¥ for which Q) DO Ny.
The previous two equations show that

dimg V' = dimg Ve 4 Z ng,q dimg Sg,q
Sr,Q

where the sum runs over those simple modules Sg.g € ¥ for which @ 2 N.
This implies |P : Q| > p¥, i.e. |P: R| > p*. Now the dimension of Sg g is equal
to |P: R|(p—1), and the congruence follows. 0

Acknowledgments: I wish to thank the referee for suggesting substantial
simplifications of the proof of theorem 1.
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