A remark on the Dade group and the Burnside group

Serge Bouc

Abstract: The object of this note is to show that the formula for tensor induction of relative
syzygies in the Dade group, stated in [3], can be viewed as a special case of a functorial homomorphism
from the dual B* of the Burnside group to the subgroup D of the Dade group generated by relative
syzygies. It follows that there exists a short exact sequence of functors

0— Ry — B* - DY/D{ . —0

where Ry is the functor of rational representations. This may be viewed as an improvement (from Q
to Z) of Theorem D of [5].

1. Introduction

1.1. Let p be a prime number, and k be a field of characteristic p. In [6],[7], E.C.
Dade defined a group structure on the set D(P) = Dy (P) of equivalence classes of
endo-permutation kP-modules, which is now called the Dade group of P. This group
can also be viewed as the set of equivalence classes of permutation P-algebras over k,
under a suitable relation.

Most examples of endo-permutation modules are provided by relative syzygies, de-
fined as follows : let X be a finite P-set, then the relative syzygy (x of the trivial
module with respect to X is defined as the kernel of the augmentation map kX — k
sending each element of the set X to 1.

In [3], it was shown that the subgroup D% (P) generated by these relative syzygies is
invariant under the natural functorial operations of restriction, inflation, deflation, and
tensor induction on the Dade group. These operations can be defined using the corre-
sponding operations of restriction, inflation, Brauer quotient, and tensor induction of
permutation algebras. In particular, a rather complicated formula for tensor induction
of relative syzygies was stated :

1.2. Theorem : [[3] Theorem 5.1.2] Let () C P be p-groups. Let X be a non-empty
finite Q-set. Then in the Dade group D(P)

Tenfx = Y. up(UV) {a € V\P/Q| XV 20} Qppyr
U,VE[SP]
U<pV

where [sp] is a set of representatives of the poset sp of conjugacy classes of subgroups
of P, where pp is the Mébius function of the poset sp, and XV°"9 is the set of fized
points of X under VN Q.

1.3. The object of this note is to give an interpretation of the previous formula in
perhaps more conceptual terms, using the following definition :
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1.4. Definition : Let B(P) denote the Burnside group of P, and let
B*(P) = Homg (B(P), Z)

denote the dual group.

If X is a finite P-set, let wx be the element of B*(P) defined on the canonical basis
of B(P) by
1 if X@#0

0 otherwise ’

ox(P/@) = {

where @Q is a subgroup of P.

1.5. Now let C, denote the following category :

e The objects of C,, are the finite p-groups.

o If P and @ are finite p-groups, then Hom¢, (P, Q) is the Grothendieck group of
finite (Q, P)-bisets, or equivalently the Burnside group B(Q x P°P).

e The composition in C,, is bilinear, and if U : P — @ is a finite (@, P)-biset and
V : @ — R is afinite (R, Q)-biset, then the composition VoU is equal to V xqU.

The category C, is preadditive, in the sense of Mac Lane ([8]), and the correspondence
sending a p-group P to its Burnside group B(P) is a functor from C, to the category
Ab of abelian groups : if @ is another finite p-group and U is a finite (Q, P)-biset, then
the map B(U) : B(P) — B(Q) is the linear map sending the class of the P-set X to
the class of the @-set U xp X.

Similarly, the correspondence P + B*(P) is an additive functor from C, to Ab :
with the same notation, the map B*(U) : B*(P) — B*(Q) is defined by

B*(U) ="B(U) ,

where ! B(U°P) denote the transposed map of B(U°P), and U°P is the (P, Q)-biset with
underlying set equal to U, and (P, @)-action defined by

Y(g,h) € P x Q, Yu € U, g.u.h (in UP) = h *ug ! (in U)

1.6. In [5] Section 3, we attached to any endomorphism a of the field k, and to any
finite p-group P, a map v, : D(P) = D(P), and we observed in Example (3.3) that the
element 2p/; of D(P) is invariant under ~,. The same argument shows more generally
that if X is a finite P-set, then 7v,(2x) = Qx. It now follows from Proposition (3.10)
of [5], and from Sections 4 and 5 of [3], that the correspondence sending P to D}(P) is
also an additive functor from C, to Ab.
The main results of this note can now be stated :

1.7. Theorem : There is a unique natural transformation © : B* — D of additive
functors from C, to Ab, with the property that

Op(wx) = Qx
for any finite p-group P and any finite P-set X.
Let Rg denote the functor from C, to Ab sending a p-group P to the group Rg(P) of
its rational representions, and let Rg denote the dual functor. It follows from a theorem
of Ritter and Segal ([4]) that the natural transformation B — Rgp sending the finite

P-set X to the permutation module QX is surjective. This gives by duality an injective
natural transformation ¢ : Ry — B*.



1.8. Theorem : The image of the natural transformation © o4 is equal to the torsion
part DY of D, In other words, there is an exact sequence of functors from Cp to Ab

0— Ry — B*—» D?/Dl.. -0

1.9. Remark: Theorem 1.8 gives in some sense an explanation for the exact sequence
of functors of Theorem D of [5] (see also Proposition 7.6.2 of [3]) : this sequence can be
obtained by applying the functor Hom 45(—, Q) to the previous one, giving finally

0—-QD - QB -+ QRg —»0 ,

since moreover QD = QD* (see Remark 10.3 of [5]), and since QD = QD% (by Propo-
sition 7.4.9 of [3]).

2. Proof of Theorem 1.7

2.1. Theorem 1.2 follows easily from Theorem 1.7, by expressing that the map ©
commutes with (tensor) induction. Unfortunately, I couldn’t find any direct proof of
Theorem 1.7, and the only proof I know uses Theorem 1.2.

2.2. Lemma : The set of elements wp;q, for Q € [sp], is a Z-basis of B*(P).
Proof: Let dp/g be the element of B*(P) defined by

_ | 1 if @ and R are conjugate in P
Op/q(P/R) = { 0 otherwise

Then the set of elements dp,q, for Q € [sp], is the dual basis of the canonical basis
of B(P). Now if R is a subgroup of P, one has that

WpP/R = Z 5P/Q )
QE€l[sp]

Q<pR
since for any subgroup S of P, the set (P/R)® is non empty if and only if S <p R.
Hence the set of elements wp/g, for R € [sp], is obtained from the basis (6p/r) re[sp] Of

B*(P) by a matrix which is triangular with 1 on the diagonal, for a suitable ordering
of the set [sp]. The lemma follows. 0

2.3. Remark: By definition of the Mdbius function of sp, it follows that

Spr=Y, wr(Q Rwp/q ,
QE€lsp]
Q<pR

thus for any ¢ € B*(P)
e= > oP/R)up(Q,R)wpq

Q,R€e[sp]
Q<pR



2.4.

The uniqueness assumption in Theorem 1.7 is now obvious : indeed by Lemma, 2.2,

the map @p : B*(P) — D®(P) is uniquely defined by

Or(wp/Q) = Qp/q

It remains to check that this definition implies

(2.5)

Op(wx) = Qx

for any finite P-set X, and that the maps ©p define a natural transformation of
functors from B* to D®.

2.6.

In order to check relation 2.5, first note that by Remark 2.3

wWx = Z /LP(U,V)LUP/U
U, VE[sp]
U<pV
XV #£0

in B*(P). Hence, it remains to check that a similar relation holds in D(P), namely

Ox = Z pp(U,V)Qpy

U, VE[sp]
U<pV
XV #£0
But this is precisely the content of Lemma 5.2.3 of [3], i.e. the case @ = P of Theo-
rem 1.2.
2.7. Since every morphism in C,, is a linear combination of transitive bisets, and since

any transitive biset is the composition of a restriction, followed by a deflation, followed
by an isomorphism, followed by an inflation, and followed by an induction (see Lemme 3

of [1]

or Lemma 7.4 of [5]), it is enough to check that
F(Op(wx)) =0q(F(wx)) ,

whenever P and @) are finite p-groups, when X is any finite P-set, and F' : P — @
is one of restriction, deflation, isomorphism, inflation, or induction. Hence there are
essentially three cases :

There is a group homomorphism f : Q — P, and F' is restriction along f. This
case involves restriction, inflation and isomorphism. It corresponds to the mor-
phism from P to @ in C, defined by the (@, P)-biset P, acted on the right by
multiplication by P, and on the left by first taking image by f and multiplying
on the left in P. If R is any subgroup of @), one has that

(Resjwx )(Q/R) = wx (P xq Q/R)

Now the map from P°? xg Q/R to P/f(R) sending (g,¢qR) to gf(q)f(R), for
g € P and ¢ € Q, is an isomorphism of P-sets. Thus

1 if XF(B) £
0 otherwise

(Resjox)(Q/R) = wx (P/(R)) = {

Thus Resjwx = wres,x in this case, as was to be shown, since Resf{dx = Qres; x
by Lemma 4.1.1 of [3].



e The group @ is equal to P/N, for some normal subgroup N of P, and F is deflation
from P to Q. This case corresponds to the morphism from P to @) in C, defined
by the (@, P)-biset @, acted on the left by multiplication by @), and on the right
by first taking image in () and multiplying on the right in Q). If R is any subgroup
of P containing N, and if R = R/N, one has that

1 if XEA)
0 otherwise

(Detlyox)(Q/) = x(@ xq Q/R) =wx(P/R) = {

Thus (Defgwx) = wyxn~ in this case, as was to be shown, since DengX = Qxn~
by Lemma 4.2.1 of [3].

e The group P is a subgroup of @, and F' is induction from P to (). This case
corresponds to the morphism from P to @) in C, defined by the (Q, P)-biset @,
acted on the left by multiplication by @), and on the right by multiplication by P.
If R is any subgroup of ), one has that

(Ind2wx)(Q/R) = wx(Q xq Q/R) = wx(Res$Q/R)
{z € P\Q/R| X" £ 0}|

By Theorem 1.2, the equality to check in this case is

IndBwx = Y ueU, V) {ae V\Q/P| XY™ # 0} wouw
U,VE[SQ]
U<LqV

Let w denote the right hand side of this relation. One has that

w(Q/R) = S weU,V) {ae V\Q/P | XV £ 0}
U,Ve[sq]
R<qQU<ZqQV
= 3 0%, HaeV\Q/P| XV £0}|
VE[SQ]

where 6}%‘, =1if R and V are conjugate in @), and 63", = 0 otherwise. Thus

w(Q/R) = |{a € R\Q/P | X®'"" £0}| ,

and w = Indgwx, as was to be shown.

This completes the proof of Theorem 1.7 0

2.8. Remark: The last part of this proof shows that conversely, Theorem 1.7 implies
Theorem 1.2.



3. Proof of Theorem 1.8

3.1. If P is a finite p-group, and let ¢ € B*(P). I must show that @ p(¢p) is a torsion
element of D(P) if and only if ¢ belongs to ip (R (P))-
By Remark 2.3
p= Y @¢(P/Rur(Q,R)wp/q

QiRE[SP]
Q<pR

thus
Or(p)= > @(P/R)upr(Q,R)pq

Q,R€[sp]
Q<pR

in D(P). The element Op(¢p) is a torsion element of D(P) if and only if the element
2|P|Op(yp) is, i.e. if there exists an integer n > 0 such that

2n Z o(P/R)up(Q, R)|P|Qp/qg =0
Q,RE[SP]
Q<pR
By Proposition 6.5.1 of [3], for any finite P-set X, one has that
Plx == > |U|u(U,V)Teny A(V)
Ucvee

XU

where p is the Mdbius function of the poset of all subgroups of P, ordered by inclusion,
and A(P) is defined in Notation 6.2.1 of [3] by

A(P) = QM(P) )

where M (P) is the disjoint union of sets P/, for maximal proper subgroups @ of P.
It follows that

2n > @(P/Rupr(QR) Y |Up(U,V)Teny A(V) =
Q,Re[sp] Uucvcee
Q<pPR U<pQ

Summing first on @ gives, by the defining property of the Mébius function pp

2n Y o(P/U)UIWU,V)Teny A(V) =
UCVCP

In this expression, for V C P, the coefficient of Ten{, A(V') is equal to

2n Y o(P/U)UIu(U,V)
UCv

hence it is constant on the conjugacy class of V in P. It follows that the whole previous
summation can be written as

> 2m|P: Np(V)|( D o(P/U)|U|u(U, V) Teny; A(V) =0
VeElsp] Ucv



By Corollary 6.5.2 and Proposition 6.4.1 of [3], this is equivalent to requiring that for
any non-cyclic subgroup V of P

2n|P: Np(V)| D o(P/U)U|w(U,V) =0 ,

UCv

or equivalently, since n > 0

S (PO U, V) =0
UCv

Now Theorem 1.8 follows from the following :

3.2. Lemma : Let P be a finite p-group, and let ¢ € B*(P). Then ¢ € ip (RZ@(P))
if and only if, for any non-cyclic subgroup Q) of P

> e(P/U)U|u(U,Q) =0

vee

Proof: The group Ry (P) is a free abelian group, with canonical basis (V*)y crerq(p)
indexed by the set Irrg(P) of rational irreducible representations of P. The value of
the linear form V* on a (finitely generated) QP-module W is equal to the multiplicity
m(V,W) of V as a summand of W. Since B*(P) is also a free abelian group, there is
a commutative diagram

R(P) N B*(P)
(3.3) TP l bp ;
Homy (RQ (P), (@) I—> Homgz (B(P)a @)
P

where rp and bp are the canonical maps, which may be viewed as inclusions, and
Ip = Homgz(ip,Q). This square is obviously cartesian : if s : B(P) — Rg(P) is the
canonical map sending a P-set to the corresponding permutation QP-module, and if
i : Z — Q is the canonical injection, then for o € HomZ(RQ(P),Q) and 8 € B*(P),
the equality a o s = i o 8 implies a(Im(s)) C Im(i) = Z, hence Im(a) C Z since s is
surjective.

Hence to complete the proof of Lemma 3.2, it suffices to prove the following claim :

3.4. Claim : An element ¢ € Homz(B(P),Q), i.e. a linear form on B(P) with
values in Q, lies in the image of the map Ip if and only if for any non-cyclic subgroup

Q of P
(3.5) > e(P/U)UIU,Q) =0

vee

Suppose first that ¢ € Im(Ip). Then ¢ is a linear combination with rational coeffi-
cients of the elements Ip(V*), for V € Irrg(P). It suffices to prove that Equation 3.5
holds for these elements.



If E and F are QP-modules, define
<E, F)P = dim@ Home(E, F) s

and extend this scalar product to a bilinear form on Rg(P), with values in Z. With
this notation, one has that

(V,V)pV* (W) =(V,W)p ,
for any finite dimensional QP-module W. Thus if ¢ = Ip(V*)

V,V)p 3 oP/UNUIU,Q) = Y |[Ulu(U,Q)(V,QP/U)p
Uce uce

= 2 U, Q)ResiV, Qu

vee

= ) wlU.Q)> xv) ,

UcQ zeU

where xyv is the character of V. This can also be written as

V,iV)e 3 o@/UUIU,Q) = xv(@)( Y. wlU.Q) ,

UcQ z€eQ <z>§U§Q

and this is zero if @ is not cyclic. Hence Equation 3.5 holds.

Now Homz(Rg, Q) and Homz(B,Q) both are Mackey functors for P over Q, and
the maps Ig, for Q C P, form a morphism of Mackey functors I : Homy (RQ,Q) —
Homz(B,Q). In particular, there is a natural action of the Burnside algebra Q®z B(P)
on Homgz(Rg(P),Q) and Homz(B(P),Q). For example, the action of Q ®z B(P) on
Homgz (B(P),Q) is given by

Yp)(X)=p(X xY) ,

for X and Y in B(P), and ¢ € Homz(B(P),Q).
This algebra Q ®z B(P) is a split semi-simple commutative algebra, with primitive
idempotents
e = > |IR|u(R,Q)P/R
2 NP ( )|
RCQ
for @ € [sp] (see for example [2] Theorem 3.3.2).

The proof of Claim 3.4 can be completed by induction on the order of P : first
observe that there is nothing to prove if P is cyclic, since in that case ip and Ip are
isomorphisms, and since the condition of the claim is void if P is cyclic. This starts
induction.

Now suppose that P is non—cyclic, and that Claim 3.4 holds for any proper subgroup
of P. Let p € HomZ( (P) ) and suppose that relation 3.5 holds for any non-cyclic
subgroup @ of P. If R C Q are subgroups of P, then

Resho(Q/R) = ¢(P/R)

Hence the induction hypothesis implies that Resgcp is in the image of the map Ig, for
any proper subgroup @ of P. Moreover

(epp)(X) = p(epX) = |X|p(ep)



by the defining property of the idempotent eb. This shows that

epe = ¢(ep)dp/p

Moreover 1
w(er) = 157 2 |RIu(R, Q)e(P/R) =0
RCP
by assumption, since P is not cyclic. Hence ebyp = 0, and ¢ = > ehy. But

Qe[sp]—{P}
eg is a linear combination with rational coefficients of elements of Homgz (B(P),Q) of
the form IndEResﬁcp, for R C . Hence eggo € Im(Ip), for any proper subgroup @
of P. Hence ¢ € Im(Ip), as was to be shown. 0

References

[1] S. Bouc. Foncteurs d’ensembles munis d’une double action. J. of Algebra,
183(0238):664-736, 1996.

[2] S. Bouc. Burnside rings. In Handbook of Algebra, volume 2, chapter 6D, pages
739-804. Elsevier, 2000.

[3] S. Bouc. Tensor induction of relative syzygies. J. reine angew. Math., 523:113-171,
2000.

[4] S. Bouc. A remark on a theorem of Ritter and Segal. J. of Group Theory, 4:11-18,
2001.

[5] S. Bouc and J. Thévenaz. The group of endo-permutation modules. Invent. Math.,
139:275-349, 2000.

[6] E. Dade. Une extension de la théorie de Hall et Higman,. J. Algebra, 20:570-609,
1972.

[7] E. Dade. Endo-permutation modules over p-groups I. Ann. of Math., 107:459-494,
1978.

[8] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate texts
in Mathematics. Springer, 1971.

Serge Bouc

UFR de Mathématiques
Université Paris 7-Denis Diderot
75251. Paris Cedex 05 , France
email: bouc@math.jussieu.fr



