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Abstract : Let k be a field of characteristic p > 0. Let C,; be the
category whose objects are the finite p-groups, morphisms are the k-linear
combinations of bisets, and composition of morphisms is obtained by k-linear
extension from the usual product of bisets. Let F),; denote the category of
k-linear functors from C,; to the category of k-vector spaces.

This paper investigates the structure of the functor KRy mapping a p-
group P to kRg(P) = k ®z Ro(P), as an object of F, s, where Rg(P) is the
Grothendieck group of the category of finite dimensional Q P-modules. The
main result is an explicit description of the lattice of all subfunctors of kRg.
In particular for p odd, it is shown that £Rg is a uniserial object in F,, ;. For
p = 2, the lattice of subfunctors of kRg can be described as the lattice of
closed subsets of a graph whose vertices are the 2-groups of normal 2-rank 1.

In both cases a composition series of kRg is obtained, which leads to a
formula giving the dimension of the evaluations Sg x(P) of the simple objects
S of Fp i associated to p-groups () of normal p-rank 1, different from C),.
This formula can be phrased in terms of rational representations of P, but
also in terms of the geometry of the lattice of subgroups of P, using the
notions of basic subgroups and origins. For example, if p = 2, the dimension
of S1.,(P) is equal to the number of absolutely irreducible QP-modules.
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1 Introduction

The formalism of bisets for finite groups, exposed in [1], provides a single
framework involving the usual operations of induction, restriction, inflation,
and deflation naturally associated to the usual representation groups of finite
groups. With this formalism, these representation groups appear as functors
from a suitable category, whose objects are (some specific classes of) finite
groups, and morphisms are (some classes of) bisets, or linear combination of
bisets, with values in the category of abelian groups, or more generally of
modules over some fixed commutative ring.

The context of this article is the following special case, also exposed in [4]
(Section 7) : let p be a prime number, and & be a field. Let C = C,x denote
the following category :

e The objects of C are the finite p-groups.
o If P and @) are finite p-groups, then
Home (P, Q) = k ®z B(Q x P?) |

where B(Q) x P°) is the Burnside group of @ x P, viewed as the
Grothendieck group of the category of finite ()-sets-P.

e The composition of morphisms in C is obtained by k-bilinearity from
the usual product of bisets : if P, ) and R are finite p-groups, if X is a
Q-set-P, and Y is an R-set-(), then the composition of X € Hom¢ (P, Q)
and Y € Hom¢(Q, R) is equal to Y o X =Y x¢o X.

Let F = F, r denote the category of k-linear functors from C,j to the cate-
gory of k-vector spaces. Then F is an abelian category. The simple objects
of F are parametrized by pairs (@), V') consisting of a finite p-group @) and a
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simple kOut(Q)-module V' ([1] Proposition 2 page 678). The simple functor
corresponding to the pair (@, V) is denoted by Sg v .

Most of the natural representation groups, such as the groups Rg(P)
of rational representations of the p-group P, or the Burnside group B(P),
provide examples of objects of F, after tensoring with k : in particular, the
correspondence P — kRg(P) = k ®z Rg(P) is a k-linear functor on C, with
values in k-vector spaces. If () and P are finite p-groups, and if U is a finite
Q)-set-P, viewed as an element of Home (P, @), then

kRo(U) : kRg(P) — kRo(Q)

is the map obtained by k-linearity from the map sending the class of the
QP-module V to the class of the Q@Q-module QU ®gp V.

Remark 1.1 The reason for restricting the attention to p-groups is twofold :
firstly, for p-groups, the Ritter-Segal theorem holds : any rational represen-
tation of a p-group is a (virtual) permutation representation, thus combina-
torial or geometric properties of p-groups give information on their rational
representations. Secondly, some important functors appearing naturally in
modular representations of finite groups are defined only for p-groups : the
main examples here are provided by groups of endo-permutation modules
(see [4] for details), i.e. subgroups of the Dade group, such as the group of
relative syzygies ([2]), which are functorial in the above sense.

Example 1.2 Recall in particular, if ) is a subgroup of P, then the opera-
tion associated to the set U = P, viewed as a (J-set-P, is ordinary restriction
Resg of modules. If U is viewed as a P-set-(), the corresponding operation is
induction Indg of modules. Similarly, if Q = P/N is a factor group of P, then
the set U = @, viewed as a P-set-(), corresponds to inflation Infg of mod-
ules. And when U is viewed as a ()-set-P, the associated operation is called
deflation, and denoted by Defg . The effect on a module is the construction
of co-invariants by N. Finally, if ¢ : P — @ is a group isomorphism, then
the obvious associated operation of change of group is denoted by Isog, and
corresponds to the set U = @, viewed as a (J-set-P.

The structure of kRg as an object of F, depends on the characteristic ¢
of k. The case q # p is solved by Theorem 8.2 and Corollaries 8.3 and 8.4
of [4] : in this case, if ¢ does not divide p — 1, the functor kRq is simple,
isomorphic to S1j. And if ¢ divides p — 1, then kRg has a unique non



zero proper subfunctor F', isomorphic to S¢, i, and the quotient kRq/F is
isomorphic to S7 .

This article deals with the remaining case ¢ = p. The situation in this
case is quite different. The possible methods to attack this question are also
completely different : the main tool in [4] was the fact that the Burnside
algebra kB(P) = k ®z B(P) of a p-group P is semi-simple if ¢ # p, with
explicit formulae for primitive idempotents. In the case ¢ = p on the contrary,
the algebra kB(P) is local, and it has no non-trivial idempotents.

The main results stated here (Theorem 6.1, Theorem 6.2, Corollary 6.5)
describe the lattice of subfunctors of kRg, in terms of groups of normal
p-rank 1. Any such group P has a unique irreducible faithful rational mod-
ule ®p, whose image in kRg(P) generates a subfunctor Hp of kRg. Then
any subfunctor of kRg is the sum of those functors Hp it contains. When
p is odd, the situation is simple, since kR is uniserial. When p = 2, the
lattice of subfunctors of kRg can be described as the lattice of closed subsets
of an explicit graph, whose vertices are the isomorphism classes of groups of
normal p-rank 1.

The main consequence of this description is the following :

Theorem 1.3 Let k be a field of characteristic p > 0.

1. If p # 2, then the functor kRq is a uniserial object of Fpr. If Fy =
kRo D Fy D Fy D ... D F, D...1s the set of its non-zero subfunctors,
then

Fo/Fy =2 Sy, EfFip =S¢ 0 fori> 1

where Civ1 denotes a cyclic group of order p.

2. If p =2, then the functor kRg has a filtration Fy = kRg D 1 D 5 D
...D F, D ... by subfunctors F,, such that Qo F,=0 and

Fo/F1 = Sl,k
Fl/FQ = SC’4,/€ S¥ SD16,k S¥ SSD16,]<;
Fz‘/Fi+1 = SCQi+17k ® SQ2¢+17k S SD2¢+37k D SSD2i+3’k ifi z 2

where Coi, Qqi, Dai and SDqyi denote respectively the cyclic, generalized
quaternion, dihedral, and semi-dihedral group of order 2°.

This theorem can be considered as a functorial refinement of methods ini-
tiating in P. Roquette’s work ([7]). Assertion 1 has been conjectured by
I. Bourizk ([5] Conjecture 1).



For p = 2, the description of the lattice of subfunctors of kRg shows in
particular that the subfunctor Hg, of kRg attached to the quaternion group
(Q)s is a uniserial object of F. This was conjecture 2 in [5].

The other main result of this article (Theorem 5.12) is a computation
of the k-dimension of the evaluation of the simple functors Spy, when P is
a p-group of normal p-rank 1, different from C), (the notion of type of an
irreducible rational module for a p-group is introduced in Definition 3.5) :

Theorem 1.4 Let () be a finite p-group.

1. The dimension of S1x(Q) is equal to

dim S1£(Q) = |V € Irrg(Q) | V has type 1 or C,}|
= {V elrg(@)[(V,V)q<p—1}]
= H{V elrg(@Q) [ (V,V)q #0(p)}]

2. If P has normal p-rank 1, and if |P| > p?, then

dimy Sp(Q) = {V € Irrg(Q) | V has type P}

This gives a partial answer to a question already raised in [1] (Section 8, page
713).

Remark 1.5 The particular status of C), in this theorem will be explained
in Remark 5.7.

The paper is organized as follows : in section 2, I will recall some results on
the rational irreducible representations of p-groups. Section 3 deals with the
irreducible representations of p-groups of normal p-rank 1.

This leads to the definition of the subfunctors Hp of kRq, in section 4.
In section 5, it is shown that the functor Hp has a unique simple quotient,
isomorphic to Spy if |P| # p. An expression of the k-dimension of Spx(Q)
is given, for a p-group @) and a p-group P of normal p-rank 1 (different from
C,), in terms of rational representations of ().

Section 6 describes the possible mutual inclusions of subfunctors Hp, and
this gives the structure of the lattice of subfunctors of kRg. The last section
exposes an interpretation of the dimension of the evaluations of the simple
functors obtained in section 4, in terms of the bilinear forms introduced in
[1] Proposition 16 page 717. The result is an expression of these dimensions
purely in terms of the structure of the lattice of subgroups of the given p-
group, without any reference to rational representations.



2 Rational representations of p-groups

Recall the following theorem from [3] :

Theorem 2.1 (/3] Theorem 1) Let p be a prime number, and P be a finite
p-group. If V is a non-trivial simple QP-module, then there exist subgroups
R D Q of P, with |R: Q| = p, and an isomorphism of QP-modules

V = IndgInfy QR

where Qg s the augmentation ideal of the group algebra Q(R/Q).
In other words there is an exact sequence of QP-modules

0—-V —-Q(P/Q)— QP/R)—0

where the map Q(P/Q) — Q(P/R) is the natural projection. In particular
m RQ(P)
V =Q(P/Q) - Q(P/R)

Conversely, the following proposition is a test for irreducibility of the module
Indglnfg/QQR/Q :

Proposition 2.2 (/3] Proposition 4) Let p be a prime number, and P be a
p-group. Let R D Q be subgroups of P, with |R : Q| = p. Then the following
conditions are equivalent:

1. The module Indglnfg/QQR/Q s an irreducible QP-module.
2. If S is any subgroup of P such that RN S C Q, then |S| < |R].

3. The group Np(Q)/Q is cyclic or generalized quaternion, the group R/Q
15 its unique subgroup of order p, and if S is any subgroup of P such

that |S| > |Q|, then SN Np(Q) € Q.
This proposition shows in particular that R is determined by Q.

Definition 2.3 Let P be a finite p-group. By definition, a basic subgroup of
P is a subgroup Q of P such that the following two conditions hold :

1. The group Np(Q)/Q is cyclic or generalized quaternion.
2. If S is any subgroup of P such that |S| > |Q|, then SN Np(Q) € Q.
The group P itself is a basic subgroup of P.

Notation 2.4 Let P be a finite p-group.
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o Let Irrg(P) denote the set of isomorphism classes of irreducible QP-
modules, and let Bp denote the set of basic subgroups of P.

o If Q) is a proper basic subgroup of P, then let Vg denote the simple QP-
module Indglnfg/QQQ/Q, where Q/Q is the unique subgroup of order p

of Np(Q)/Q. Also let Vp denote the trivial QP-module. The simple
module Vg is called the module associated to the basic subgroup Q).

o IfV and W are finite dimensional QP-modules, let
(V,W)p = dimg Homgp(V, W)

This extends uniquely to a bilinear form on Rg(P), with values in Z,
still denoted by ( ,)p.

o [fV is a simple QP-module, denote by m(V, W) the multiplicity of V'
in W, i.e. the number of times V appears in a decomposition of W as
a direct sum of simple QP-modules.

o [fS and Q) are subgroups of P, set

Ip(5,Q) = {x € P[ SN Np(Q) € Q}

and

The following proposition lists some properties of basic subgroups and asso-
ciated representations :

Proposition 2.5 Let P be a finite p-group.
1. If Q is & proper basic subgroup of P, and § s any subgroup of P, then
Ip(S,Q)={zxeP|S"NQCQ} |,
and
(Q(P/S), Va)p=(p — D[{z € S\P/O | 57N O C Q)]
~r- D 7,5.0)

2. If Q is a basic subgroup of P, and if S is any subgroup of P, then

_1Zx(5.Q)
m(Vo, QP/S)) = 177570



3. If Q is a basic subgroup of P, then the cardinality of Tp(Q,Q) is a
power of p. If moreover ) # P, then

(Vo Vo = (p — 1>”‘”ﬁﬂ\zp<@, Q)

4. If Q and Q' are basic subgroups of P, then the corresponding simple
QP-modules Vi and Vg are isomorphic if and only if |Q| = |Q’| and

Ip(Q, Q") # 0.

Proof : Observe first that if @ is a proper basic subgroup of P, if z € P
and S* N Np(Q) C @, then ST NQ C @, since Q@ C Np(Q). Conversely, if

STANpP(Q) € Q, then Q C (5* N Np(Q))Q, since Q/Q is the only subgroup
of order p of Np(Q)/Q. Thus

Q= ((5"NNp@)NQ)Q = (5"NQ-Q
and S* N Q ¢ Q. This shows that
S*NQ C Q ifandonlyif SN Np(Q)CQ
Now recall that if R and S are subgroups of P, then
(Q(P/R),Q(P/S))p = |R\P/Q|

If @ is a proper basic subgroup of P, since Vy = Q(P/Q) — Q(P/Q) in
Rqo(P), it follows that

(Q(P/S), Va)r = S\P/Q| — [S\P/Q)|

Let 2 € P. There are two cases : either 52NQ ¢ @, and then Q = (5"NQ)Q
since |@ : Q] = p. Hence @ C S*.Q in this case, and Sz@Q = SzQ. Or
STNQ C Q, and in this case

Eille] 15]1Q

SzQ| = — = =p|Sx
Sz Q)| nol Pl ng) plSzQ)|

This shows that the map ¢ : S\P/Q — S~\P/C~2 sending SzQ to SzQ is such
that |¢~1(u)| = 1 or p, for all u € S\P/Q. Hence

S\P/QI=1\P/Ql = Y~ (7wl -1)

ueS\P/Q
= (p—=DH{ueS\P/Q| ¢ " (u)| = p}|

7



and finally
(Q(P/S), Vo)p = (p—{z € S\P/Q | 5*NQ C Q}] (2.6)

proving the second formula in Assertion 1.
Now the group Np(Q) normalizes ), and acts on the right on the set

U={zeS\P/Q|S°NQCQ}

by right multiplication. The stabilizer in Np(Q) of SxQ is the set of ele-
ments n € Np(Q)) such that Sxn@ = Sx@, or equivalently

n e 520N Np(Q) = (5N Np(Q).0 =0

In other words, the group Np(Q)/Q acts freely on U, and the set of its orbits
is precisely the set of elements x € S\ P/Np(Q) such that S* N Np(Q) C Q.
Hence

Ul = INp(Q)/QIIZr(S, Q)]

proving the third formula of Assertion 1.
It follows in particular that (Q(P/S), Vg)p = 0 if |S| > |Q)|, by definition
of a basic subgroup. Thus

Vo, Volp = (Q(P/Q),Va)r — (Q(P/Q),Va)r = (Q(P/Q), Vo) p
- -0 7,0.0)

proving the second part of Assertion 3.
Now for any QP-module W

(W, Va)p =m(Vo, W){(Vg, Vo) p

since the irreducible modules are mutually orthogonal for ( , )p. Taking
W = Q(P/S) gives Assertion 2, in the case ) # P. The case @ = P is
obvious, since the trivial module Vp has multiplicity 1 in Q(P/.S).

Taking now S = 1 in Assertion 2 gives

_ [P : Np(Q)|
Zr(Q, Q)|

showing that the denominator is a power of p, and completing the proof of
Assertion 3 in the case () # P. The case Q = P is trivial.

Finally, suppose that () and )’ are basic subgroups of P such that the QP-
modules Vi and Vi are isomorphic. Then @) = P if and only if Q' = P, since

m(Vg, Q(P/1))
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Vg is not the trivial module for ) # P. And if ) and @’ are proper basic sub-
groups of P, then |Q| = |Q'[, since dimg Vg = [P : Q|(p—1)/p = dimg Vpr =
|P:Q|(p—1)/p. Hence |Q] > |Q'|, and (Vy, Vo) p = (Q(P/Q), Vo) p. This
is non zero if Viy = Vip,. By Assertion 1, the set |Zp(Q, Q')| is not empty.
Conversely, if |Q| = |Q'], then either Q@ = Q' = P, and Vi = Vipr = Vbp,
or @ and Q' are proper basic subgroups of P. Since |Q| > |Q'|, it follows as
above that (Vo, V) p = (Q(P/Q), Viy) p, and this is non zero by Assertion 1,
if moreover |Zp(Q,Q")| # 0. Hence Vi = Vi since Vg and Vg are both
simple. This completes the proof of Assertion 4. 0

Notation 2.7 If P s a finite p-group, define the following relation on Bp :

Q=pQ &5 Q= Q| and Ip(Q, Q") # 0

Theorem 2.8 Let P be a finite p-group.
1. The relation =p is an equivalence relation on Bp.

2. The correspondence Q) € Bp — Vi € Irrg(P) induces a one to one
correspondence between the set of equivalence classes of basic subgroups
of P for the relation =p and the set of isomorphism classes of rational
wrreducible representations of P.

Proof : Assertion 1 follows from Assertion 4 of Proposition 2.5. The same
argument shows that the correspondence ) € Bp — V € Irrg(P) induces
an injective correspondence between the set of equivalence classes of ba-
sic subgroups of P for the relation = and the set Irrg(P). This induced
correspondence is moreover surjective, since any irreducible QP-module is
isomorphic to Vg, for some basic subgroup ) of P, by Theorem 2.1 and
Notation 2.4. 0

Remark 2.9 It it easy to check directly (i.e. without using the modules
V) that the relation =p is reflexive and symmetric, but it’s far from obvious
to prove transitivity without this.



3 Groups of normal p-rank 1

Definition 3.1 A p-group P is said to have normal p-rank 1 if it does not
have any normal subgroup isomorphic to (C,)?. Denote by N the class of
finite p-groups of normal p-rank 1, and by [N] a set of isomorphism classes

of elements of N'. More generally, if A is a subclass of N, set [A] = AN[N].

If P € N, then by Theorem 4.10 of Chapter 5 of [6], the group P is cyclic
if p is odd, and if p = 2, the group P is cyclic, or generalized quaternion of
order at least 8, dihedral of order at least 16, or semi-dihedral of order at
least 16.

The following schematic diagram represents the lattice of subgroups of
the dihedral group Dig, the quaternion group )4, and the semi-dihedral
group SDi¢ (an horizontal dotted link between two vertices means that the
corresponding subgroups are conjugate) :

N N R N
Dig Q16
o
LI,
L=

Nl

This diagram gives a good idea of the general case, quoted without proof in
the following lemma :

Lemma 3.2 Let P a non-cyclic group in N'. Then p =2, and P has ezactly
3 mazimal subgroups A, B, and C'. The group C' is cyclic, and moreover :

—_

0



1. If P is dihedral, then A and B are dihedral.
2. If P = Qg, then A and B are cyclic.

3. If P is generalized quaternion of order at least 16, then A and B are
generalized quaternion.

4. If P is semi-dihedral, then A is dihedral and B is generalized quater-
nion.

There are 0,1, or 2 conjugacy classes of non-central involutions in P, accord-
ing to P being generalized quaternion, semi-dihedral, or dihedral.

Remark 3.3 It follows in particular that if R is a subgroup of P € A/, then
R € N, except if p=2 and R = (Cy)? or R = Dg.

The following theorem gives another way, different from Theorem 2.8, to
build irreducible representations of a finite p-group. It is more or less well
known, and already implicit in Roquette’s methods ([7]) :

Theorem 3.4 Let p be a prime number, and P be a p-group. IfV is an
irreducible QP-module, then there exist subgroups S and T of P, with S<T,
and a faithful irreducible Q(T/S)-module W such that :

1. The module V' is isomorphic to Ind?lnf%SW.

2. This 1somorphism induces an isomorphism of Q-algebras

Endgp(V) 2 Endgrysy (W)

3. The group T/S has normal p-rank 1.

Proof : For convenience, let me sketch a proof, which is very similar to
the proof of Theorem 2.1 (see [3]), and goes by induction on the order of P.
One can suppose V faithful, since otherwise V' is inflated from a factor group
of P, for which the theorem holds by induction. Moreover inflation preserves
the required properties.

Now if P has an elementary abelian normal subgroup £ = (C},)?, let L be
a direct summand of ResEV. Let I denote the inertial subgroup of L in P,
and let L denote the isotypic component of L in ReshV. Then V 2 Indy' L
by Clifford theory. Moreover I contains the centralizer Cp(F) of E, which
has index at most p in P, since P/Cp(F) is isomorphic to a subgroup of
the automorphism group of E. Thus |P : I| < p, and in particular [ < P.
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If [ = FE, then L 2 V is faithful, thus L is faithful. But E has no faithful
irreducible rational representations. Hence I has index p in P. Moreover
L is an irreducible representation of I, and if x € P is such that “L = L,

then *L = L, thus x € I. It follows that Endgp(V') = Endg;(L). Now the
induction hypothesis applies to I and L, completing the proof. O

Definition 3.5 In the situation of Theorem 3.4, the pair (T, S) will be called
a genetic section of P forV, and if R = T/S is a p-group of normal p-rank 1,
then V' will be said to have type R.

The set of all sections (T, S) appearing as genetic sections of P for some
V € Irrp(P), will be denoted by Gp.

Remark 3.6 A natural question is then to ask if the type of an irreducible
QP-module V is well defined : the answer is affirmative, and a proof will
be given in Corollary 5.9. Another more direct proof will be sketched in
Remark 3.9, using the following result on the irreducible faithful rational
representations of p-groups of normal p-rank 1, which also shows that once
the genetic section (7',.5) of P for V' is given, then the module W appearing
in Theorem 3.4 is uniquely determined up to isomorphism :

Proposition 3.7 Let p be a prime number. If P is a finite p-group of normal
p-rank 1, then P admits a unique faithful irreducible rational representation,
up to isomorphism.

Proof : By Theorem 2.8, this amounts to show that there is a single equiv-
alence class of basic subgroups @ of P (for the relation =p) for which Vj, is
faithful. If P = 1, this is trivial. If not, let ) be a basic subgroup of P. If

Vo is faithful, then @) # P. Moreover since Vg = Indglnfg y QQQ
the intersection of conjugates of () in P is trivial. Equivalently () intersects
the center of P trivially.

If P is cyclic or generalized quaternion, this forces () = 1. Conversely,
in that case, it follows from the definition that the trivial subgroup is basic.
The corresponding simple Q P-module V; is faithful, and it is the only faithful
simple QP-module in this case, up to isomorphism.

If P is dihedral or semi-dihedral, and if () intersects the center of P
trivially, then @ is trivial, or non-central of order 2. In that case, the trivial
subgroup is not basic (since Np(1)/1 = P is neither cyclic nor generalized
quaternion !). Hence () is non central, of order 2. Conversely if ) is non-
central and of order 2, then Np(Q) has order 4, equal to Q.Z, where Z is the

/o 18 faithful,

12



center of P. Thus Np(Q)/Q is cyclic, and @ is basic, since any subgroup of
P of order at least 4 contains Z.

Now if P is semi-dihedral, then there is a single conjugacy class of non-
central subgroups of order 2 in P. Such a subgroup () is basic, and V{, is the
only faithful simple QP-module, up to isomorphism.

And if P is dihedral, there are two conjugacy classes of non-central sub-
groups of order 2 in P. Let Q and @)’ be such subgroups in different classes.
Then Np(Q) has order 4, and is equal to (.7, where Z is the center of P.
Since Q' N Np(Q) =1 C @Q, it follows that @ =p @’. Hence Vy = Vy is the
only faithful simple QP-module in that case, up to isomorphism.

Notice that this argument holds also for the dihedral group Dg of order 8,
showing that it has a unique faithful rational simple module.

Notation 3.8 If R is a finite p-group of normal p-rank 1, or if R = Dy, let
®g denote its unique faithful irreducible rational representation.

If P is a finite p-group, and if (T, S) € Gp, let V(T,S) = IndIT)Inf;/SCI)T/S
denote the corresponding simple QP-module.

Remark 3.9 One can then prove directly that if P is a p-group, the type of
a simple QP-module V' is well defined, up to isomorphism : indeed, if V' has
type R, then Endgr®r = EndgpV. Let (7,5) and (77, 5") be genetic sections
of Pfor V,and set R=T/S and R' =T1"/S’. Then Endgr®r = Endgr Pr.
But the structure of the algebra Endgr®r (actually a skew-field) can be
explicitly obtained from the above description of @z, and then it is easy to
see that for R and R" in \V, the algebra isomorphism Endgr®r = Endgr @ g/
is equivalent to the group isomorphism R = R’.

There is now an obvious equivalence relation on the set Gp of genetic sections
of a finite p-group P : say that the elements (7, 5) and (77,5") of Gp are
equivalent if and only if the corresponding simple QP-modules V (T, S) and
V(T',S") are isomorphic. It turns out that this equivalence relation can be
translated in a purely “geometric” form : first recall the following definition
from [1] :

Definition 3.10 (/1] page 685) Let P be a p-group. Two pairs (T,S) and
(V,U) of subgroups of P, with S<T and U <1V are said to be linked (notation
(T,5)— V., 0)) if

S(rnv)=rT urnv)y=v SNV =TnuU

or equivalently if T.U = S.V (as subsets of P) and TNU =SNV.
Two such pairs (V,U) and (T, S) are said to be linked modulo P (notation
(V,U) —p (T,95) if there exists v € P such that (V,U) — (*T,*S).
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Theorem 3.11 Let P be a finite p-group.

1. The relation —p is an equivalence relation on Gp.

2. The correspondence (T,S) € Gp — V(T,S) € Irrg(P) induces a one
to one correspondence between the set of equivalence classes of genetic

sections of P for the relation —p and the set of isomorphism classes
of irreducible QP-modules.

Proof : This is another form of Theorem 7.11, proved in Section 7. 0

The following shows in particular that if R € N (or if R = Dg), then the
proper deflations of ®p are zero :

Lemma 3.12 Let P be a finite group. If N is a non-trivial normal subgroup
of P, and ® is a faithful simple QP-module, then

Defp/y® = 0
Proof : If V is any Q(P/N)-module, then Infﬁ/NV is a sum of non-faithful
irreducible representations of P. Thus (®, Infllz/NV) p = 0, since ® is faith-

ful. By adjunction, it follows that (Defﬁ/NCI), V)p/n = 0 for any V, hence
Defp/y® = 0. 0

Notation 3.13 Denote by N the subclass of N consisting of groups of order
at least p?.
Lemma 3.14 Let P € N1, and R be a mazimal subgroup of P.

1. If P is cyclic or generalized quaternion, then Resh®p = p®p.

2. If P is dihedral or semi-dihedral, then

br  if R is cyclic or generalized quaternion

i —
Resp®p = { 20, if R is dihedral

Proof : Let Z denote the only central subgroup of P of order p. There are
several cases :

e If P is cyclic or generalized quaternion, then so is R. Moreover ®p =
Q(P/1) — Q(P/Z). Then clearly

Resp®p = [P : R|(Q(R/1) — Q(R/Z)) = pPr

in this case.

14



e If p=2 and P is dihedral or semi-dihedral, then
®p =Q(P/S) - Q(P/SZ)

where S is non-central of order 2. If R contains S, then R is dihedral,
and

Respdp = Y (QR/"S) — Q(R/*SZ)) = 20

z€P/R

since *S' is a non-central subgroup of R of order 2, and Z is the unique
central subgroup of order 2 of R. The conclusion is the same if P is
dihedral, and R is dihedral, but does not contain .S. In that case indeed,
one has that ®p = Q(P/S") —Q(P/S'Z) for a non-central subgroup S’
of P contained in R.

e The only remaining cases are when P is dihedral or semi-dihedral, and
R is cyclic or generalized quaternion. In that case

Resh®p = Q(R/1) — Q(R/Z) = &5

and this completes the proof of the lemma. 0

4 The subfunctors of £Rg

Notation 4.1 If P is a finite p-group, and if V is any finitely generated
QP-module, let V denote the image of V in kRg(P).

The set {V | V € Irrg(P)} is a k-basis of kRo(P). If u € kRo(P) and
V € Irrg(P), let v(V,u) denote the element of k defined by

u= > AV,u)V

Velrrg(P)

If P has normal p-rank 1, let Hp denote the subfunctor of kRq generated by
dp € /{ZRQ(P)

This means that Hp is the intersection of all subfunctors F' of kRg such that
F(P) > ®p. Then clearly, for any any finite p-group @

Hp(Q) = {kRo(¢)(®p) | ¢ € Home(P, Q)}

Equivalently Hp(Q) is the k-subspace of kRg(Q) generated by the images of
the elements QU ®qp ®p, where U is a finite ()-set-P.
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Lemma 4.2 Let P be a finite p-group. Let V € Irrg(P), and let (T,5)
denote a genetic section of P for V.

1. Let W be any QP-module. Then ~(V, W) is equal to the image m(V, W)
of the integer m(V, W) in k.

2. Let u € kRgo(P). Then v(V,u) = 7(<I>T/5, Defg/SResg(u))

Proof : Assertion 1 is obvious. The equality in Assertion 2 is k-linear in u,
hence it suffices to check the case u = W, for some QP-module W. But
again by adjunction

V.V p m(V,W) = (V,W)p = <1nd$1nf§/sq>(T/S), W)p
= (®gys, Deff sResy W)zys
= <(I)T/57(I)T/S>T/S m(CIDT/S,Defg/SResgl/V)

The equality m(V,W) = m(q)T/g,Defg/sResgl/V) follows, since moreover
(V,V)p = (®r/s, Pr/s)1/s. Now the result follows from Assertion 1. D

Lemma 4.3 Let F' be a subfunctor of kRg, and P be a finite p-group. Let
u € F(P), and V € Irrg(P) such that v(V,u) # 0. If V' has type R, then
dp € F(R)

Proof : Let (7,S) be a genetic section of P for V. Thus T'/S = R. Set
ny = 7(V,u). One has that ny = v(®7/g,v) by Lemma 4.2, where v =
Defg/SResi(u). In particular v € F(T'/S) since F' is a subfunctor of kRg.
By isomorphism, it follows that there is an element w € F(R) such that
ny =(®r,w) # 0.

Now proceed by induction on |R| : if |R| = 1, since kRg(1) is one dimen-
sional, it follows that ®; € F(1).

Otherwise, the element w is equal to

w = nVCI_DR + Z mWW ,
Welrrg(R)
W#Pg

where my, = (W, w). But all the simple QR-modules W different from &g
are of type S, with |S| < |R|, by Proposition 3.7. By induction hypothesis,
one has that &g € F(S) whenever my, # 0. Thus W € F(R), since W
is obtained from ®x by inflation followed by induction, and since F' is a
subfunctor of kRg.

By difference, it follows that ny®r € F(R), hence & € F(R), as was to
be shown. 0
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Theorem 4.4 If F' is a subfunctor of kRg, then

where N is the subclass of N' consisting of p-groups R for which ®r € F(R).

Proof : Observe first that the inclusion

Z Hp CF

Pe[NF]

is obvious : if ®p € F(R), then F contains the subfunctor Hp generated
by (BR.

Conversely, let ) be a finite p-group, and u = ZVGIer(Q) v(V,u)V be an
element of F(Q)). Then by Lemma 4.3, if V' € Irrg(Q) has type R and if
v(V,u) # 0, one has that &z € F(R), i.e. R € Np. Now V € Hg(Q) since
V' is obtained from ®x by inflation followed by induction. It follows that
U € Y pen, Hr(Q), as was to be shown. D

Proposition 4.5 Let F be a subclass of N'. If P is any element of N such

that Hp C > Hpg, then there exists R € F such that Hp C Hpg.
Re[F]

Proof : Indeed, if Hp C 3 p (7 Hp, then there is a finite subset S of [F],
and for R € S, there is an element pr € Home (R, P), such that

Op = Z kRQ(SOR)((I_’R)
ReS

It follows in particular that there is some element R € S with v(®p,v) #0
for some element v = kRg(¢r)(®r) of Hr(P). Lemma 4.3 shows then that
@PEHR(P),LQ. that HPQHR. a
Notation 4.6 Denote by P < Q the relation on N defined by
P=Q<« Hp C Hg

A subclass A of N is said to be closed if

VPeNVQe AP<Q=PcA
A subset S of [N] is said to be closed if S = [A] for some closed subclass A
of N.
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Theorem 4.7 The correspondences sending a subfunctor F' of kRg to the

subset [NF] of [N], and the subset S of [N] to the subfunctor > Hg, are
ReS
mutual inverse isomorphisms between the lattice of subfunctors of kRg (or-

dered by inclusion of subfunctors), and the lattice of closed subsets of [N]
(ordered by inclusion of subsets).

Proof : First, if F' is a subfunctor of kRg, then Np is a closed subclass
of NV, by definition of Np.

Denote by A the first correspondence, and by B the second one. Then
clearly A and B are maps of posets. Theorem 4.4 shows that B o A is equal
to the identity, and Proposition 4.5 shows that Ao B is equal to the identity :
indeed if S C [N], and if P € N is such that Hp C 3, s Hp, then there
exists R € S with Hp C Hp. Hence P € S since S is a closed subset of [NV].
Thus NB(S) =S8. 0

5 The functors Hp

Proposition 5.1 Let P € N.

1. The functor Hp has a unique mazximal (proper) subfunctor Jp, defined

by
JP:ZHR )
R

where the sum runs through the elements R of [N] for which Hg is a
proper subfunctor of Hp.

2. The quotient functor Hp/Jp is isomorphic to the simple functor Sg .,
where Q is an element of N of minimal order such that Hg = Hp.

3. If Q is any element of N of minimal order such that Hg = Hp, then
Q 1is isomorphic to a section of P.

Proof : Let I be a proper subfunctor of Hp. Then F is equal to the sum of
the functors H it contains. Those are all proper subfunctors of Hp. Thus
F C Jp. And Jp is indeed a proper subfunctor of Hp, by Proposition 4.5.
This proves Assertion 1.

Now the quotient S = Hp/Jp is a simple functor, isomorphic to a simple
functor Sg v, for some p-group @ and some kOut(())-module V' : the group
(@ is of minimal order subject to S(Q) # 0, and then V' = S(Q), as kOut(Q)-
module.
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Let u € Hp(Q) — Jp(Q), and write u = Y ycp, g) 7YV, u)V. Then if

v(V,u) # 0, and V has type R, Lemma 4.3 shows that & € Hp(R). If
|R| < |Q| then Hp(R) = Jp(R) by minimality of Q. In this case V € Jp(Q).
Since u # 0, it means that there must exist a V' € Irrg(Q) of type @, and
such that v(V,u) # 0. In other words @ € N, and v(®g,u) # 0. Moreover
Hp(Q) = Jp(Q) + k®q. Now &g € Hp(Q), hence Hg C Hp. And since
o ¢ Jp(Q), it follows that Hy is not contained in Jp. Hence Hg = Hp.

Now if Q" € N is such that |Q'| < |Q| and Hy = Hp, then also Jo = Jp,
hence S = Hgy/Jo. But S(Q') = 0 by minimality of ). In particular
Do € Jo/(Q'), hence Hg C Jgr, which is not possible since Jg is a proper
subfunctor of Hg/. Thus () has minimal order such that Hg = Hp.

Finally S(Q) = Hp(Q)/Jp(Q) is one dimensional over k, generated by
the image of ®q. This element is clearly invariant by Out(Q). Hence S(Q)
is the trivial module, and S = S .

Conversely, if R is any element of N such that Hp = Hp, then also
Jr = Jp, and Hr/Jr = Sgy. In particular S x(R) # 0, since otherwise
Hg(R) = Jr(R), and ® € Jr(R), hence Hr = Jg, a contradiction. By
Lemme 7 page 678 of [1], this implies that ) is isomorphic to a section of R
(hence also of P). In particular, any two elements R of minimal order such
that Hr = Hp are isomorphic. 0

Lemma 5.2 Let P and QQ be finite p-groups, and let U be a finite Q)-set-P.
Let 'V be a simple QP-module such that (V,V)p > p, and let W be a simple
QQ-module.

If (W, W) < (V,V)p, then m(W,QU ®qp V') is a multiple of p.

Proof : Indeed by adjunction

(W,QU ®@qpV)q = dimgHomgq(W,QU ®qp V)
dim(@ HOme (QUOp ®QQ VV, V)
(QU? ®gq W, V)P

where U denotes the opposite biset, i.e. the set U viewed as a P-set-Q) by
ray(in UP) =y luz(inU), forz € P,ye Q,ueU.
It follows that

(W, W) m(W,QU @qp V) = (V,V)p m(V,QU? ®qq W)

But since (V,V)p > p, it follows from Assertion 3 of Proposition 2.5 that
there is an integer a > 0 such that

(V.;V)p=(p—1)p"
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Now either W is trivial and then
m(W,QU ®@qp V) = (p — 1)p" m(V, QU™ ®qq W) =0 (p)
or W is non-trivial, and there exists an integer b > 0 such that
(W.W)g=(p-1)"
Moreover b < a since (W, W)q < (V,V)p. Then
m(W,QU ®gp V) = p**m(V,QU? ©gq W) =0 (p)
as was to be shown. 0
Notation 5.3 Let m € N. If P is a finite p-group, denote by N,,(P) the

k-subspace of kRo(P) generated by the elements V', for V € Irrg(P), such
that (V.VYp =0 (p™).

Lemma 5.4 With this notation Ny, is a subfunctor of kRg.

Proof : If m = 0 there is nothing to prove, since Ny = kRg. One can suppose
m > 1, and the result follows then from Lemma 5.2 : if P and @) are finite
p-groups, if ¢ € Home (P, Q), if V' € Irrg(P) is such that (V,V)p =0 (p™),

and if W € Irrg(Q) are such that 7(VV, kR@gp)(V}) # 0, then there is a
finite @)-set-P, say U, such that the multiplicity of W in QU ®gp V is not

divisible by p. Since (V,V)p > p, it follows from Lemma 5.2 that (W, W)y >
(V,V)p. But there are integers a and b such that (V,V)p = (p — 1)p%, and
(W,W)g = (p—1)p° Thus b > a, and a > m if (V,V)p =0 (p™). Hence
(W,W)g =0 (p™), as was to be shown. 0
Proposition 5.5 Let P be a p-group of normal p-rank 1, of order p°.

1. If P is cyclic or generalized quaternion, then

(1 ifd=0
<(I)P,(I)P>P - { (p _ 1)pd71 Zfd 2 1

2. If P is dihedral or semi-dihedral, then

(Bp, Pp)p =277
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Proof : Suppose first that P is cyclic or generalized quaternion. If P = 1 the
result is trivial. Otherwise the proof of Proposition 3.7 shows that ®p = Vj.
Now by Assertion 3 of Proposition 2.5

[Ne(1) 1P|

T:”up(l, 1) = p- 2!

Vi, Vi)p=(p—1) »

Assertion 1 follows.
Similarly, if P is dihedral or semi-dihedral, and if () is a non-central
subgroup of P of order 2, then ®p =V, and

_ [Np(Q) : Q)

1Zp(Q, Q)]

Moreover w = 1 in this case, since Np(Q) has order 4. And if z € P is
such that Q@ N Np(Q) C @, then either x € Np(Q), or x ¢ Np(Np(Q)), and
then Q" N Np(Q) = 1, or equivalently |QzNp(Q)| = 8. Since Np(Np(Q))
has order 8, there are (|P| — 8)/8 such double cosets QzNp(Q). This shows
that |Zp(Q, Q)| = |P|/8 = 2973, and Assertion 2 follows. Note that the
argument still holds if P is a dihedral group of order 8 (which is not of
normal 2 rank 1) : if @ is a non-central subgroup of P of order 2, then @ is
basic, and (Vg, Vg)p = 2273 = 1. D

Theorem 5.6 Let P and @ be finite p-groups of normal p-rank 1. Then
Hp = Hg if and only if one of the following holds :

1. One has that |P| < p and |Q| < p. In this case Hp = Hy = kRg.
2. One has |P| > p?, and Q = P.

Proof : If Hp = kRg, then in particular Hp is not contained in N, which
is a proper subfunctor of kRg (since (®1,P1)1 =1 # 0 (p)). It follows that
(®p, Pp)p is not divisible by p. By Proposition 5.5, this can only happen if
1P| <p.

Conversely, if |P| < p, then Hp = kRg : first suppose that P = 1. Let
@ be a finite p-group. If R is a subgroup of @), then

Q(Q/R) = IndgInff ,Q

In other words, if U is the set Q/R, viewed as a Q-set-1, then Q(Q/R) =
Ro(U)(Q). Since Q = &4, and since any element of kRgy((Q) is a k-linear

combination of elements Q(Q/R), it follows that Hy; = kRg.
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Now if P is cyclic of order p, then
®p =Q(P/1) - Q(P/P)
Restriction to the trivial group gives
Resj®p =pQ—Q=(p—1)Q=(p—1)P4

Now p —1 = —1 in k, proving that ®; € Hp(1). Thus H; C Hp, and
Hp = kRy.

Now suppose P has order at least p?>. Then (®p,®p) = 0 (p), thus
Hp C Ny. Hence if Hg = Hp, then Hg C Ny, hence also |Q] > p?. There are
positive integers m and [ such that (Pp, Pp)p = (p—1)p™, and (Pg, Pg)g =
(p — 1)p'. Thus Hp C N,,, and then Hg C N,,. Hence (g, ®g)o =0 (p™),
and [ > m. By symmetry [ = m.

To prove that () = P, it suffices to prove that the hypothesis Hp = Hg
and |P| > p? implies |P| = |Q|. Indeed, in that case, the groups P and
(@ will both be of minimal order such that Hp = Hgy. Hence each will be
isomorphic to a section of the other, by Assertion 3 of Proposition 5.1.

Suppose then that |Q)] < |P|, and that (®g,Pg)g = (Pp,Pp)p. By
Proposition 5.5, this can only happen if p = 2, if P is dihedral or semi-
dihedral of order 2¢, and Q is cyclic or generalized quaternion of order 292
The following lemma shows that ®g ¢ Hp(Q) in that case, completing the
proof. 0

Remark 5.7 This proof gives the reason why the cyclic group of order p plays
a special role in this work : the group C, is the only non trivial element P
of N for which the dimension of ®p is not divisible by p, or equivalently, for
which Res? ®p # 0.

Lemma 5.8 Let P be a dihedral or semi-dihedral group of order 2¢, and Q
be a cyclic or generalized quaternion group of order 2972. Then if U is a
finite Q-set-P, the multiplicity of ®q in QU ®@qp Pp is even.

Proof : One can suppose that U is a transitive biset, and in this case
(Lemme 3 of [1], or Lemma 7.4 of [4]), there are subgroups X of P and Y of
@, there is a normal subgroup R of X, and a normal subgroup R’ of Y, with
X/R=Y/R such that

QU ®qp ®p = Indglnf%;/R/Iso;//gDefﬁ/RResi(CDP)
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Since |@| < |P|, then |X/R| < |P|, which forces |X| < |P| or |R| # 1.
Suppose first that X = P. Then R is a non-trivial normal subgroup of P,
and Defg/RcI)p = 0 by Lemma 3.12 in this case.

Now if X # P, the restriction Res’ factors through the restriction to some
maximal subgroup M of P. By Lemma 3.14, one has that Res},®p = 2®,,
if M is dihedral, and Res},®p = @, if M is cyclic or generalized quaternion.
In the first case, all simple modules have even multiplicity in Res},®p. Thus
m(®g, QU ®qp Pp) is even in that case.

In the second case, one has that (@, @) = 2972, since M is cyclic or
quaternion of order 27!, Now there is a Q-set-M, say V, such that

QU ®@qp @p = QV @qm P

If m(®g, QU @qgpPp) = m(Pg, QV @qa Par) is odd, it follows by Lemma 5.2
that
(Bq, q) = (Par, Pas)ar = 2972

This is a contradiction since (®q, Pg) = 2773 when Q is cyclic or generalized
quaternion of order 2972, This completes the proof of the lemma. 0

Corollary 5.9 Let P be a finite p-group, and let V be a simple QP-module.
If (T, S) and (T",5") are genetic sections of P for V, then T/S =T"'/S’.

Proof : Set R =T/S and R' =T"/S". Since the trivial module is the only
one of trivial type, one can suppose that V' is non-trivial, and that R and
R’ are non-trivial. By assumption V & IndInfE®p, and V = Ind?, InfL, @ 5.
The first isomorphism implies V = Ind?lnfgqg r, and then the second one
gives ®p € Hp(R). Hence Hy C Hp/, thus Hgp = Hp by symmetry. It
follows that R = R/, by Theorem 5.6, since R and R’ are non-trivial. 0

The following corollary is a summary of the previous results :
Corollary 5.10 Let P € N.

1. If |P| < p, then Hp = kRg has a unique maximal subfunctor Jy, and
the quotient kRg/J1 is isomorphic to Sy .

2. If |P| > p?, then Hp has a unique maximal subfunctor Jp, and the
quotient Hp/Jp is isomorphic to Spy.

Corollary 5.11 Let F' be a subfunctor of kRg, and let F' be a mazimal
proper subfunctor of F. Then there exists P € N, with P % C,, such that
F/F' = Spy.
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Proof : Indeed since F” is a proper subfunctor of F', by Theorem 4.4, there
must be P € N such that Hp C F but Hp € F’, and one can moreover
suppose P 2% C,. Then Hp+ F' = F, and F/F' = Hp/(HpNF’) is a simple
quotient of Hp. Hence it is isomorphic to Spg. O

Theorem 5.12 Let Q) be a finite p-group.
1. The dimension of S1x(Q) is equal to

dimg S14(Q) = |{V € Irrg(Q) | V has type 1 or C,}|
= {V elrg(@) [ (V,V)q <p—1}
= {V elm(Q) [ (V:V)e #0 (p)}]

2. If P € N and |P| > p?, then
dimi Sps(Q) = |{V € Treg(Q) | V' has type P}

Proof : If P € N and |P| # p, then Hp/Jp = Spj, by Corollary 5.10. Let
u € Hp(Q). Then
u = Z Y(V,u)V
Vel (Q)
If Ve Irrg(Q) has type R, and if v(V,u) # 0, then by Lemma 4.3 one has
that &z € Hp(R), thus Hg C Hp. If the inclusion is proper, then Hp C Jp,
and ®p € Jp(R). It follows that V € Jp(Q).

Hence Hp(Q) is generated by the elements V, where V is of type R < P,
and moreover V' € Jp(Q) if Hp is properly contained in Hp. The quotient
Hp(Q)/Jp(Q) is then generated by the images of the elements V, for V €
Irrg(Q) of type R such that Hgp = Hp. By Corollary 5.10, if P = 1, this
implies |R| < p, and if |P| > p?, this implies R = P.

Now suppose that u € Hp(Q) is a linear combination of elements V, for
V € Irrg(P), of type R such that Hgr = Hp, and that u € Jp(Q). Then if
v(V,u) # 0 for some V € Irrg(Q), Lemma 4.3 shows that &z € Jp(R), and
then Hr = Hp C Jp, a contradiction. It follows that v = 0, and the images
of the elements V, for V € Trrg(P), of type R such that Hp = Hp, form
a k-basis of Hp(Q)/Jp(Q). The theorem follows then from Proposition 2.5
and Proposition 5.5. 0

Remark 5.13 If p = 2, Theorem 5.12 implies that the k-dimension of
S1%(Q) is equal to the number of absolutely irreducible rational representa-
tions of Q).
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Remark 5.14 1. Bourizk ([5] Proposition 4 and Proposition 6) has given
upper and lower bounds for dimy Sp(Q), when P and () are finite p-groups
with |P| # p. One can check that these bounds are compatible with the
values given here, in the case P € N : for example, if P has order at least
p?, the lower bound in Proposition 4 of [5] is equal to the number [ of normal
subgroups R of Q such that Q/R = P. If P € N/, then each of these quotients
has a unique faithful rational irreducible representation, and inflating to P
gives at least [ non-isomorphic irreducible rational representations of @) of
type P. The other verifications are similar.

6 The lattice of subfunctors of kRg

The following is the first part of Theorem 1.3 :

Theorem 6.1 If k is a field of odd characteristic p, then the functor kRg 1is
a uniserial object of Fpp. If Fo = kRo D F1 D Fy D ... D F, D ... s the
set of its non-zero subfunctors, then

FO/FlgSl,k Fi/ﬂ+1r£5€pi+17kf07’i21 s

where Cpiv1 denotes a cyclic group of order p'.

Proof : Indeed, if p # 2, then N just consists of cyclic groups. If P is
cyclic of order p* > p2, then ®p = Q(P/1) — Q(P/Z), where Z is the only
subgroup of order p of P. If @) is the only subgroup of P of index p, then
®p = Ind,®q. This shows that ®p € Hg(P), ie. that Hp C Hg. By
Corollary 5.10, the inclusion is proper.

Now the set of subfunctors Hc, ,,, for m > 2, is linearly ordered by in-
clusion. Moreover recall that iy = H¢, = kRg. Proposition 5.1 shows that
Ji = HCpQ’ and that Jp = HCpm+1 if P is cyclic of order p™ > p?. Since Jp is
the unique maximal subfunctor of Hp, it follows that kRg is uniserial, with
filtration

kRg DHcp2 DHCP3 D...DHgm D,

Moreover the quotient kRg/ Hcp2 is isomorphic to Si 4, and the quotient
He,./ Hc ., Is isomorphic to Sc,., for m > 2. 0
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Theorem 6.2 Suppose p = 2, and consider the following graph structure on

WL

.C4 SDIG .D16

\/%/ \

Then for P and Q in [Ni], one has that P < Q if cmd only iof there is an
(oriented) path from @ to P in [N].

Proof : First check that if R—— P is an arrow in [N], then P < R.
There are several cases :

o Xon —— Xoui1, where X is one of @), C, or D : in this case Xon is a

Xon
subgroup of Xyn+1, and @XWH = IndX§n+1q)X2n, thus Xon+1 < Xon.
o (on —— Qon+1 : here again Pg = Indg;f“

S ®c,,., and it follows
that Q2n+1 j CQn

® SDgn —— Xon-1, where X is Q or C' : here Xy.-1 is a subgroup of
SDyn, and Ress > ®gp,, = Px by Lemma 3.14. It follows that
X2n 1 j SDQn

Qn—l )

Don —— Cyn-1 @ here again Resgjz_lé Don = tbcw_l, and it follows
that anfl = DQn.

Don —— SDynt1 : here again $g Dyni1 = Ind?]%" » ®p,,, and it follows

that SDgns1 < Dan.

Conversely, suppose that P and R are in [N;], and that P < R. Then there
exists ¢ € Home (R, P) such that ®p = kRg(p)(Pr). Hence there is a finite
P-set-Q, say U, such that m(®p, QU ®qr Pr) is odd. One can moreover
suppose that U is a transitive biset. In other words, there are subgroups
YaX CPand T<Z C R, with X/Y = Z/T, such that QU ®@p ®g is equal
to

U = Ind% o Ian/Y o ISOZ//T o DefZ/T o Reshdp
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Since m(®p, ¥) is odd, it follows in particular that Resj®r ¢ 2Rq(Z). But
it follows easily from Lemma 3.14 and from Remark 3.3 that if R € N} and
|R : Z| > 4, then Res} € 2Ry(Z). And if |R : Z| = 2, the only case where
Res? ¢ 2Rgy(Z) is when R is dihedral or semi-dihedral, and Z is cyclic or
generalized quaternion.

In this case Resgq)R = &y, Then Z < R, and P < Z, since m(®p, V)
is odd and ¥ = Indilnfﬁ/ylso)z(//}/ DefZ 7Pz Since moreover R —— 7 in
[V1], it suffices to consider the case Z = R.

Then T'=1 by Lemma 3.12, and one can suppose R = X/Y. Moreover

(®p, ®p)p m(Pp, U) = (Pg, Pr)r m(Pg, Defy Resk &p) . (6.3)

Now X is a subgroup of P € N, and X has a quotient R in N;. By
Remark 3.3, it follows that X € N;. Now by Lemma 3.14 and Lemma 3.12,
the right hand side of equation 6.3 is zero if Defﬁ is a proper deflation, i.e.
if R X.

Hence one can suppose that R is a subgroup of P, such that m(®p, Indgq) R)
is odd. There are several cases :

e If P is cyclic or generalized quaternion, then there is indeed a path

from R to P in [N].

e If P is dihedral, then there is a path from R to P in [N]if R is dihedral.
If R is cyclic, then R is contained in a cyclic subgroup C' of index 2
in P. Since ®¢ = Ind$dp, it follows that m(®p, Ind5®¢) is odd, and
then P < C. This cannot occur, since C' < P in this case.

e Finally, if P is semi-dihedral, then there is a path from R to P in [N7] if
R is cyclic or generalized quaternion. And the case where R is dihedral
cannot occur, since R =< P in this case. O

Definition 6.4 A subset S of [N1] is called closed if for any arrow R—— P
in [M1] with R € S, one has that P € S.

Corollary 6.5 The lattice of proper subfunctors of kRg is isomorphic to the
lattice of closed subsets of the graph [N7], ordered by inclusion of subsets.

Proof : This follows from Theorem 4.7. 0

Remark 6.6 This shows in particular that the functor £Rg is not a noethe-
rian object of Fj, since the sequence S,, = 522 Hsp,, for n > 4, is an
infinitely increasing sequence of subobjects of kRg.
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Corollary 6.7 The functor Heg, is a uniserial object of Fay. The set of its
non-zero subfunctors is

HQs DHQw D... DHQ2n D...
Moreover Hg,,, /HQ2n+1 = S0un ks Jorn > 3.

Proof : Indeed, if Q € N} and Q < Qsg, then Q is generalized quaternion.
Thus Hg,,,, = Joum- 0

Remark 6.8 This result was Conjecture 2 in [5], since (with notation of [5])
one has that eg, = ®q,.

The following theorem implies part 2 of Theorem 1.3 :

Theorem 6.9 Suppose that p=2. If | € N, then

kRg ifl=0
Nl: HC4+HSD15+HD15 Zflzl
Hgu + Heyyy + Hspy g + Hpy g ifl>2
Moreover N N; =0, and
leN
S1k ifl=0
Nl/Nl+1 g SC47]€ @ SSD167k @ SDIGJC Zfl —= 1

SQ21+1 & Sczl+1 S SSD21+3 D SD21+3 ifl>2

Proof : Since any subfunctor of kRg is equal to the sum of the subfunctors
Hp it contains, it follows from Theorem 6.2 that

Jl = HC4 + HSD16 + HD16

Moreover if P € N, then (®p, ®p)p is even by Proposition 5.5. It follows
that ®p € N;(P), hence that Hp C N;. Thus J; C Ny, and J; = N; since
N is a proper subfunctor of kRg. In particular, it follows that No/N; = S .

Now if m € N, with m > 2, and P is one of Qgm+1, Com+1, SDom+s or
Dom+s, then (Pp, Pp)p = 2™, thus Hp C Ny, for [ € N, if and only if m > [.
Hence

Nl - Z HQ2M+1 + Z HCWHH + Z HSD2M+3 + Z HD2m+3

m>l m>l m>l m>l

= HQ21+1 + HC + HSD21+3 + Hp

2l+1 ol+3 )
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since moreover for m > [

+ Hp C Hp

om+1 om+3 om+3

HQ2m+1 C HQ21+1 He C HCQZH Hsp

2l+3

Let I = lﬂN N;. Then I cannot contain any functor Hp. Thus I = 0.
€

Now for [ > 2 the functor Hp is a proper subfunctor of HQ2Z ., if and only
if P& Qom, with m > 1+ 2. Hence Jo, , = Hg,,,,, whence Jg , , C N1

Similarly if [ > 1, the functor Hp is a proper subfunctor of H¢,, , if and
only if P = (Jam or P = Com, with m > [+2. Thus Jo, , = Hg,, , + Hc, .,
whence JCQI+1 C Ny

Again the functor Hp is a proper subfunctor of Hgp,, , if and only if
P = Qm or P = Cym, with m > 1+ 2. Thus Jsp,,,, = Hg,,,, + Hc,.,,, and
Jsp, 5 © Ny

Finally Hp is a proper subfunctor of Hp,, , if and only if P = (Jom, with
m>1+3,or P2 Com, withm > 1+ 2, or P2 SDom, with m > [+ 4, or
P = Dym, with m > [ + 4. Hence JD2H3 = H02l+2 + HSDQZ+4 + Hp nd
Ips € Nija.

ol+3 —
Let o1 denote the canonical epimorphism

ol+47 a

HC4 D HSDIG D HDIS - HC4 + HSDIS + HD16 = Nl )
and for [ > 2, and let 0; denote the canonical epimorphism
HQQL-H D HCQL-H @ H5D21+3 D HD21+3 - N,

where N, = Hq,,, + He,,, + Hsp, ; + Hp,,,. The above remarks show
that
o1(Je, ® Jspis ® Ipyg) S N

and that
Ul(JQ21+1 ® JCQH—I ® JSDzlJrS © ‘]Dzl+3) C Nt

for I > 2. Let m; : Ny — N;/N;;1 denote the canonical projection. It follows
that m; o o factors through an epimorphism

o1 - SC4,k @ SSD15,k‘ D SDle,k - Nl/N2
and that m; o oy factors through an epimorphism
al : SQ2l+1 D SCQL-H D SSD2l+3 ® SD21+3 - Nl/NH_l

for [ > 2.
Let K; = Ufl(NHl) denote the kernel of m; o ;. Then

© JpCK C @& Hp ,

PEEl PEEl
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where

B = {Cy, SD1¢, D16} ifl=1
L= {Q2l+1, CQL-H, SD21+3, D21+3} lf l Z 2

Fix PO S El- Then

JPQ g HPO N (Kl + ©® HP) g HPO
pPere—{Po}

Since Jp, is maximal in Hp, it follows that Hp, N (K;+ @&  Hp) is equal
PeE—{Po}

to Jp, or to Hp,. In the latter case Hp, € K| + @ pep,—{pr,} Hp, and taking
images by o; gives

Hp, Col(KG+ @  Hp)= N+ Z Hp
Pebi—{Fo} PEE—{Po}

By Theorem 4.4 and Lemma 4.5, it follows that Hp, is contained in Vi, or
in Hp, for some P € E;, — {Fy}. Both are impossible, thus

HP0ﬁ<Kl+ ©® HP) = JPO
PeE—{Po}

This holds for any P, € Ej, and it follows that

K= & Jp
PEEl
Hence the epimorphisms &; are isomorphisms. 0

7 Basic subgroups and genetic sections

Recall the following proposition from [1]

Proposition 7.1 (/1] Proposition 16 page 717) Let P and Q be finite p-
groups. Let Bo(P) be the free Z-module with basis the set of conjugacy classes
of pairs (T, S) of subgroups of P with S<T and T/S = Q. If (T,S) and
(V,U) are such pairs, set

(T,9) | (V,U))z = {x € T\P/V | (T, S) — (*V," U)}|

and denote by ((T,S) | (V,U))x the image of ((T,S) | (V,U))z in k.
Then there is an isomorphism of k-vector spaces

Sqx(P) = kBo(P)/Rad(| )i ,
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where kBg(P) = k ® Bg(P), and Rad( | )i is the radical of the k-valued
bilinear form (| )x on kBo(P) = k® Bg(P). In particular, the dimension of
So.x(P) is equal to the rank of the form (| )i on kBg(P), and this bilinear
form induces a non-degenerate bilinear form on Sqr(P), still denoted by

(k-

This section describes the relations between basic subgroups and genetic
sections, and gives an interpretation of the above proposition in these terms.

Lemma 7.2 Let P € N. If Q is a basic subgroup of P such that Vg = ®p,
then
<Ip(Q,Q)>=P Nn*Q=1

zeP

Proof : There are two cases :

e If P is cyclic or generalized quaternion, then Q = 1, and Ip(Q, Q) is
equal to P. Then both equalities are obvious.

e [f P is dihedral or semi-dihedral, then () is non-central of order 2. The
second equality is clear. For the first one, observe that in this case

15(Q.Q) = No(@) U (P = Np(Np(Q)))

(as in the proof of Proposition 5.5), and that this set generates P. O

Definition 7.3 Let P be any finite p-group. If Q) is a basic subgroup of P

set
:L‘ETQ

The basic subgroup Q of P is called an origin (in P) if Tg/Sq has normal
p-rank 1. In this case if V is a simple QP-module, and if V= Vg, then Q
is called an origin of V' (orV is said to have origin Q).

Proposition 7.4 Let P be a finite p-group. Then :

1. If V is a simple QP-module, let (T, S) be a genetic section of P for V.
If Q/S is a basic subgroup of T/S such that

Q/ISNZ(T/S) =1,

then @ is an origin of V in P, and (Tg, Sg) = (T, 5).
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2. If Q is an origin in P, then (Tg, Sq) is a genetic section of V. More-
over Q/Sq is a basic subgroup of Ty/Sq, and

Q/SqNZ(T/Sq) =1

Proof : Let V be a simple QP-module. Assertion 1 is trivial if V' =2 Q,
since (P, P) is the only genetic section of P for V in this case. Hence one
can suppose that V' is non-trivial. If (7, S) is a genetic section of P for V|
then

V = Ind}Inf] ¢®r/s

Let Q = Q/S be a basic subgroup of T =T/S such that QNZ(T) = 1. This
means that the simple Q7-module corresponding to () is faithful, hence it is
isomorphic to ®#. In other words

~ Tt1. ¢R

where R/Q is the unique subgroup of order p of N#(Q)/Q. Then

QR/@ )
V = IndgInff Q0

Since V is irreducible, it follows that @) is a basic subgroup of P, that R = Q,
and that V = V5. Now by Proposition 2.5

(V,V)p=(@-1)H{z e Q\P/Q|Q"NQ C Q}

But similarly, the group 7" has an irreducible rational module

— nfl @ =~ TndZnf® Q-
V' = Inff) g7 = IndgInfg Qg0

thus Q is a basic subgroup of T and
(V' Ve =p-1){re\T/Q| Q" NQ CQ}
Since (V,V)p = (Bz, dz)z = (V/, V')7, it follows that
{z e Q\P/Q Q" NQCQ} ={reQ\T/Q|Q"NQ CQ}
In other words Ip(Q, Q) = I7(Q, Q). Now clearly
I7Q,Q) = {zS |z € Ip(Q,Q)}

and T is generated by I+(Q,Q) by Lemma 7.2. Hence T is generated by
Ip(Q,Q), i.e. T =1Tg, and moreover

S=nNn*"Q |,

zeT
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ie. S = Sg. Thus @ is an origin of V in P, and (Ty, Sg) = (7,S). This
proves Assertion 1.

Conversely, let @) be an origin in P. If ¢ = P, then Vy = Q, and
(T, Sq) = (P, P). Assertion 2 is trivial in this case, and one can suppose
that @) is a proper subgroup of P. In particular () is a proper basic subgroup
of P, and Ty O Np(Q) 2 Q Thus

Vo 2 Ind?, InfTQ oW
where

Tq/Sq /5
Wo = Ind g}, °Tn nf500

Now the intersection of conjugates of Q)/Sg in T/ Sg is equal to Sg/Sg = 1.
This is equivalent to saying that QQ/SoNZ(Ty/Sg) = 1. Now Wy, is a faithful

Q(Ty/Sqg)-module, and Wy, is irreducible, since Vg is an irreducible QP-
module. It follows from Proposmon 2.2 that Q@ = Q/Sq is a basic subgroup

of T =Tq/Sg, and that Q/SQ = Q/SQ = Q Now by Proposition 2.5

(Wo, Wo)r = (p— D{zSe € Q\T/Q | Q"N Q C Q)

Now the map

0:{r € Q\To/Q| Q"NQ S Q} — {28 € Q\T/Q | T NQ € Q)
defined by 6(z) = 2S¢ is one to one. Hence
(Wo, Wo)r = (p— Dz € Q\Tp/Q | Q"N Q C QY
But again by Proposition 2.5
(Vo Volr = (- 1){z € Q\P/Q | Q" NQ C Q}]
Now if z € P and Q* N Q C Q, then z € Ip(Q, Q) C Tg. Thus
Vo, Var = (p— Dz € Q\Tp/Q | Q"N Q C QY = (Wo, Wo)r

showing that (T, Sg) is a genetic section of P for V. D

Corollary 7.5 1. IfV € Irrg(P), then there exists an origin for V in P.
In other words, each equivalence class of Bp for =p contains an origin.

2. If Q and R are origins in P, and if Q) =p R, then T/ Sq = Tr/Sk.
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Proof : Each assertion follows from the corresponding assertion of Propo-
sition 7.4 : for Assertion 1, by Theorem 3.4, there exists a genetic section
(T,S) of P for V, and moreover T'/S always has a basic subgroup Q/S in-
tersecting the center Z(7'/S) trivially, by Proposition 3.7. For Assertion 2,
if @ and R are origins in P, and if Q =p R, then Vg = Vi. Thus (T, Sg)
and (Tg, Sg) are both genetic sections of P for Vi, and Assertion 2 follows
from Corollary 5.9. 0

Corollary 7.6 Let Q be an origin in P.

1. If Ty /Sq is cyclic or generalized quaternion, then () = Sq, and
Tqo = Np(Q) = I1p(Q, Q)

2. If Tq/Sq is dihedral or semi-dihedral, then Np(Q)/Q has order 2. In
other words Np(Q) = Q.

Proof : Suppose first that Ty /Sq is cyclic or generalized quaternion. Then
Q) = Sg, since QQ/Sq intersects the center of Ty/Sg trivially. Now al-
ways Np(Q) C Ip(Q,Q) C Tg. Moreover T normalizes Sg = @, thus
To € Np(Q).

And if Ty /Sq is dihedral or semi-dihedral, then Np(Q) = Ng,(Q), and
NTQ(Q)/Q~’£ N1y,/50(Q/Sq) = Cy. Hence Np(Q)/Q = Cs, or equivalently
Np(Q) = Q. D

Remark 7.7 It may happen that a basic subgroup is not an origin : for
an example, consider the central product P = D4 % Cy of order 32, and the
subgroup () which is the image in P of a non-central subgroup of D¢ of
order 2. Then @ is basic in P, but T = P and Sg = 1, thus Ty /Sg = P is
not in N.

But if R is the subgroup of P generated by ab, where a is an element of
order 4 in D and b is a generator of Cy4, one can check that R =p (), and
that R is an origin in P. It should be noted in that case that the groups
Np(Q)/Q and Np(R)/R are not isomorphic : both are cyclic, but the first
one has order 4, and the second one has order 8.

This latter point is general : suppose that V' is a non-trivial irreducible
QP-module for some finite p-group P, and that the type of V' is cyclic or
generalized quaternion. Let () be a basic subgroup for V' of P, and R be an
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origin of V in P. Then (T, S) = (Np(R), R) is a genetic section of P for V,
by Corollary 7.6, thus V = V(T S), and in particular

1
(V,V)p = (Prys, Pr/s)1/5 = (1 — 5)\T S|,

by Proposition 5.5. On the other hand, the group U = Np(Q)/Q is cyclic
or generalized quaternion, since () is basic, and it is easy to see that V =
IndﬁP(Q)Inng(Q Oy, thus

(V,Vp > (@0, @)y = (1 — ﬁ)\m ,

with equality if and only if the section (N r(Q), Q) is a genetic section of P
for V. Thus |[Np(Q) : Q| = |U| < |T: S| = |Np(R) : R|, with equality if and

only if @) is also an origin of V in P.

Lemma 7.8 Let P,Q € N, and let R be a finite p-group. Let U be a finite
R-set-P and V' be a finite R-set-Q) such that (QU @qp Pp, QV @qoPo)r # 0.
Then

(QU @gp ®p,QV ®qq Po)i = (P, Pp)p(Pg, Pg)o

If equality holds, then QU ®@qp ®p and QV ®gq Pg have a unique irreducible
common direct summand W . Moreover if W is of type S, then Hg = Hp =
Hgq, thus either P, () and S are of order at most p, or P=Q = S.

Proof : Let W € Irrg(R), and set
mwy = m(W, @U ®Qp (I)P) mé,[, = m(CIDP, QUOP ®QR W)
nw — m(W, @V ®QQ (I)Q) n'W = m(q)p, @VOP ®QR W)

Then my,, my,, nw and ny, are non-negative integers, and

QU ®Qp (I)P = @ mWW

Welrrg(R)
QVage®e = @ W
Welrrg(R)
thus
(QU @gp ©p,QV @gq Po)r= Y mwnw(W,W)r . (7.9)
Welrrg(R)
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Moreover
mw (W, Wi = (W.QU ®qp Pp)r
= (QU?” @qr W, ®p)p
= m§/[/<q)P> (I)P>P )

and similarly ny (W, W) g = nj, (9o, Pg)o. Hence

bp, O by, P
<@U KopP dp,QV Q@ (I)Q>R = Z mé/[/n%,< P, I;/I>/PISVQ’ Q)Q
Welrrg(R) < ) >R

(7.10)
Set 0 = (QU ®@qp Pp, QV ®gg Pg)r- Multiplying equations (7.9) and (7.10)
shows that o2 is equal to

Z mWnW<WW>R>< Z m%/n%/@P’q)Pﬁ@qu)@Q) ’

Welrrg(R) Welrrg(R) <W’ W>R

hence

o> Y mwnwmipniy(Pp, p)p(Po, Po)q
Welrrg(R)

Now if (QU ®@qgp Pp, QV ®qg Po)r # 0, then there exists W € Irrg(R) such
that the integers my, and ny are both positive, which happens if and only
if my;, and nj;, are both positive too. It follows that

0* = (Pp, 0p)p(Pq, Po)q

Moreover equality can hold only if there is a unique W with this property,
and in that case moreover my = mj, = ny = nj, = 1. Thus the coefhi-
cient ')/(VV, kRQ(U)((I_Dp)> of W in the expression of kRg(U)(®p) as a linear
combination of images of irreducibles (see Notation 4.1) is equal to my = 1,
and if W has type S, then &g € Hp(S) by Lemma 4.3. Hence Hg C Hp.
Similarly Hg C Hy,.

But also 'y(@p, k:R@(U"p)(W)> =m}y, = 1, thus ®p € Hg(P), or equiva-
lently Hp C Hg. Similarly Hy C Hg, and finally Hp = Hg = Hg. The last
assertion of the lemma follows from Theorem 5.6. 0

Theorem 7.11 Let P be a finite p-group, and let V and V' be irreducible
QP-modules. If (T,S) is a genetic section of P for V, and (T",5") is a
genetic section of P for V', then

(T,8) | (T",8"))z = { 1 vy

0 otherwise
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Proof : Let R (resp. R') denote the factor group 7'/S (resp. 77/S’). The
hypothesis of the theorem means that

V = Ind2Infhdp (V,V)p = (®r, Pr)r ,

and similar conditions for V' and R'. Let U (resp. U’) denote the set P/S
(resp. the set P/S’), viewed as a P-set-R by left and right multiplication
(resp. as a P-set-R’). Then V = QU ®qr Pr, and V' = QU’' ®qr Pr. Hence

(V,V)p = (QU ®qr ®r, QU' Qqr Pr/)p
= (PR, QU™ xpU") @or Pr)r

But U xp U’ is the set S\P/S’, viewed as an R-set-R’ (by left and right
multiplication). Hence there is an isomorphism of R-sets-R’

U?xpU'= || S\TzT'/S" |

z€[T\P/T’]

where [T\P/T'] is a set of representatives of double cosets. For each x €
[T\P/T"], the biset S\Tx1"/S’ is transitive, and the stabilizer L, of Sz5’
in R x R is the set of pairs (rS,7’S’) such that rSzSr'~! = SzS’. Since
rSxS'r'~t = Srar'=1S for r € T and v’ € T”, this gives

L,={(rS,7S)e Rx R |re SzS"'z7"}

The biset S\TzT1"/S’ is isomorphic to (R x R')/L,, and this can be de-
composed using notation and methods of sections 3.1 and 3.3 of [1] : the
projection of L, on R is equal to

Pre=pi(L,) = (S2T'z7'NT)/S=SET'NT)/S
and the projection on R of L, N (R x 1) is equal to
ki, =k(L,) = (SzS'z7'NT)/S =S(*S'NT)/S
Similarly
pox =pa(Ly) =S (T'NT*))S’ koo = ko(Ly) =S (T' N S*)/S’
It follows that
G = p1(La)[F1(Le) = (TN T) /("' N T)(*T' N S)

and
@, = p2(Ls)/ka(Ly) = (TN T7)/(S"NT) (TN ST)
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The canonical isomorphism ¢, — ¢, is the obvious isomorphism induced by

conjugation by z. The group ¢, is a factor group of the subgroup p;(L,)

of R. It is isomorphic to R if and only if S(*7"NT) =T and *S'NT C S. In

particular g, is isomorphic to both R and R’ if and only if (7', S) — *(7", 5").
These remarks show that QU xp U') ®qr' P is isomorphic to

R 1,z qx 2,z R’
@ Indplyzlnff;x Isoq;DefZ; Res,, ®p

x€[T\P/T’]

and this gives

(V.Vp= > (Deft'*Resl ®p Iso%Defl/ Rest Pp)g, . (7.12)

Pl,x
2€[T\P/T"]

Moreover the sum in the right hand side is a sum of non-negative integers.
Let x € [T\P/T'] such that (7,5)—*(1",5"). For such an element x
one has that

p2,m:Rl 5 Q;/I;:RI 5 %:IR 5 pl,m:R

It follows that DefYq’;’IResﬁ"1 P = Pp, and that ISOZ?D@fZ?’IRengéR/ is the
image of @ by an isomorphism R — R’. Since ®p is the unique faithful
rational irreducible representation of R, one has that

z T R’ ~
IsogéDefZZ Res,, ®p = Op
It follows that
V.V p = ((T,9) | (T",5)2(Pr, Pr)r > 0

Thus if V' 2 V', one has that ((7,5) | (T",5"))z = 0.
Conversely, suppose that V' = V', Then

(V.V)p=(V.V)p = (Pr, Pp)r
since R =T/S and (7, 95) is a genetic section of P for V. Hence
(Pr, Pr)r = ((T,9) [ (T",5"))2(®r, Pr)r = 0

Thus ((T,S) | (T",5"))z € {0,1}.

Moreover R = R’ by Corollary 5.9. Let S denote the set of elements
x € [T\P/T'] for which the corresponding term s, in the right hand side of
equation 7.12 is non-zero. By Lemma 7.8, if x € S, then

s2 > (Pg, PR)p(Pr/, Pr)r = (PR, PR)%
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Hence s, > (®Pr,Pr)r, and )  s5: = (Pr, Pr)r. Hence S consists of a
single element x. Moreover by Lemma 7.8, the modules Def?!-* Resﬁz ®p and

ISOZZ DefZZ’x Resg . P have a unique common irreducible direct summand W,
which has type ¥ such that Hr = Hg = Hx.

If R (and R’) have order at least p?, it follows from Theorem 5.6 that
R = R = 3. Moreover ¥ is a section of ¢,, which is a section of R. Thus
¢: = R = R’ in this case, hence (T, 5) —*(1",5"). Thus (7, S5) | (17",5"))z
is non-zero, hence equal to 1.

Now if R (and R’) are trivial, then V and V' are isomorphic to the trivial

module, thus (7,5) = (1",5") = (P, P), and
(T, 9) [ (T",8"))z =1

The remaining case is when R and R’ both have order p. In this case ¢, is
trivial or has order p. If it has order p, the conclusion is the same as before, as
¢; = R= R'. And if ¢, is trivial, then p, , is trivial or equal to R. It cannot
be equal to R, for in that case Def’q’;’zResﬁxbe is a proper deflation of ®p,
hence zero by Lemma 3.12. Thus p;, = 1, which means that TN*7T" C S.
Corollary 7.6 shows that S is a basic subgroup of P, and that T = S =
Np(S). Now *T"N Np(S) < S, and the defining property of basic subgroups
implies that |77] <|S|. But dimgV = |P : T|(p—1) = |P : T'|(p—1). Hence
|T"| = |T'| = p|S|. This contradiction shows that this case cannot occur, and
this completes the proof of the theorem. 0

Remark 7.13 This theorem shows that if (7),.5) and (77,S5") are genetic
sections for the same simple QP-module V', then there exists a unique double
coset TxT', for x € P, such that (7,5)—*(7",5’). Such an element x
defines an isomorphism

~

T/S S (TN*T)/(SN*S) S (T*NT)/(5*NS) = T')8
which is well defined up to an inner automorphism of 7/S (or 77/5").

Theorem 7.14 Let P be a finite p-group. If L € N, let S be the set of
origins Q) of P such that Tg/Sq = L, and let [Sy] be a set of representatives
of 8;, modulo the relation =p. Then

1 fQ=pR
0 otherwise

VQ R e SL, ((Tg So) | (Th )z = {

The images of the elements (Tg, Sq), for Q € [SL] form an orthonormal basis
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Proof : Let () and R be origins in P. The corresponding simple modules
Vi and Vg are isomorphic if and only if @) =p R. Moreover (T, Sqg) is a
genetic section of Vg, by Proposition 7.4. Now the first assertion follows
from Theorem 7.11. The images of the pairs (T, Sg), for @ € [S.], form an
orthonormal set in kB (P). The cardinality of this set is equal to the number
of equivalence classes of origins ) in P for which Ty /Sg = L, modulo the
relation =p. This number is equal to the number of simple QP-modules of
type L, i.e. the dimension of Sy, x(P) by Theorem 5.12, and this is equal to
the rank of the form ( | ),. This completes the proof of the theorem. 0

There is a similar result for the simple module Sy and the group By (P) :

Theorem 7.15 Let P be a finite p-group. Let Sc, be the set of origins Q
of P for which Tq/Sq = Cp, and let [Sc,]| be a set of representatives of Sc,
modulo the relation =p. The elements of B1(P) defined by

UIZ(P7P) uQ:(Q>Q>_ (NP<Q)>NP<Q)> fOTQESCp
are such that

1 ifQ=R=1
VQ.Re{1}USc,, (uglur)z=4q p—1 fQ=pR#1
0 ifQ #p R

The images of the elements ux, for X € {1} U[S¢,] form an orthogonal basis
of S1x(P) = kB1(P)/Rad( | ).

Proof : It is clear that

1 fR=1

VR € {1} U &c,, Wﬂ“ﬁzz{o fR#1 7

because for any subgroups X and Y of P, one has that (X, X) | (Y,Y))z =
|X\P/Y|. In other words

(X, X) [ (V,Y))z = (Q(P/X), QP/Y))p

where 7 is the image in k£ of the integer n.

Now let () and R be in S¢,. Then

(ug | ur)z = (Q(P/Q) — Q(P/Q), Q(P/R) — Q(P/R))p = (Vo, Vi)
This is zero if @ #p R. Moreover if () =p R, then

(ug | ur)z = Vo, Ve)p = (®c,, ®c,)c, =p — 1
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Since p—1 = —11in k, the images of the elements ux, for X € {1}U[S¢, |, form
an orthogonal set of vectors of non-zero length in kB¢, (P). The cardinality
of this set is equal to 1 plus the number of equivalence classes of origins @)
in P for which T, /S = C,, modulo the relation =p. This number is equal
to the number of simple QP-modules of type 1 or C), i.e. the dimension of
S1%(P) by Theorem 5.12, and this is equal to the rank of the form ( | ).
This completes the proof of the theorem. 0

Remark 7.16 If () is a basic subgroup of P, and if V has type C), then @)
is an origin. Indeed in this case, one has that

|NP(Q) : Q| |IP
p

Vo, Vo)p=p—1=(p—1) (Q,Q)]

This implies that Np(Q)/Q has order p, and that Ip(Q, Q) = Np(Q). Thus
Ty = Np(Q), and Sg = Q. Now Typ/Sq is cyclic of order p, and @ is an
origin.
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