Tensor induction of relative syzygies
S. Bouc

Abstract: The main result of this paper states a formula expressing the effect of tensor induction
on relative syzygies in the Dade group of a p-group. This provides tools to study the structure of this
group, and a new proof of theorems A and B of [5]. Finally, it is possible to say when a relative syzygy

is a torsion element of the Dade group.

1. Introduction

Let p be a prime number, and & be a field of characteristic p. If P is a finite p-group,
a finitely generated kP-module M is called an endo-permutation module if Endg (M)
is a permutation module, i.e. admits a P-invariant k-basis. Those modules appears in
many different places in the modular representation theory of finite groups, and they
have been studied intensively.

In [8],[9], E.C. Dade defined a group structure on the set of equivalence classes of
endo-permutation k£ P-modules, which is now called the Dade group of P, and denoted
by Dy (P). This group has natural functorial properties: when @ is a subgroup of P,
there is an operation of restriction Resj‘éJ from Dy (P) to Dg(Q). Similarly, if R is
a quotient of P, there is an operation of inflation Infﬁ from Dg(R) to Di(P), and
an operation Defﬁ from Dg(P) to Dy (R), called deflation in [5], which corresponds
to Dade’s slash construction. These three operations are already defined and used in
Dade’s papers.

It was observed by L. Puig ([13]) that when @ is a subgroup of P, tensor induction of
modules gives an operation Teng from Dy (@) to Dg(P). There is moreover an obvious

operation Isogl associated to a group isomorphism from P to a group P’. Recently,
in a joint work with J. Thévenaz ([5]), we showed that these five operations can be
described via a single formalism, using bisets.

Typical examples of endo-permutation modules are the syzygies of the trivial mod-
ule. Following a suggestion of L. Puig, J.L. Alperin proved more generally that the
syzygies of the trivial module relative to any permutation module are endo-permutation
modules. These are defined as the kernel of the augmentation map kX — k sending
each basis element z of the P-set X to 1 € k, and denoted by Qx.

The aim of this paper is to describe the effect of the five functorial operations on
these relative syzygies, i.e. to state formulas giving Fﬁl (Qx) in terms of elements of the
Dade group of P’, for a P-set X, and one of the above operations Fﬁl. Actually, the
only difficult case is the case of tensor induction, and this will be the central question
of this work.

The paper is organized as follows: in sections 1 to 3, I recall some basic definitions
and facts about relative projectivity and the Dade group. Section 4 describes the easy
cases of the functorial aspect of relative syzygies. Section 5 is devoted to the proof of
the formula for tensor induction.

This formula is used in section 6 to show that the subgroup of Dy(P) generated
by relative syzygies is actually a subfunctor of Dy, i.e. that it is invariant by the five
operations.



In section 7, some information on the structure of the Dade group is given: in
particular, the subgroup generated by relative syzygies and by the intersection of the
kernels of all restriction-deflation maps to elementary abelian sections has finite index
in the whole Dade group, and the exponent of the quotient group divides the order of P.
Roughly speaking, one can say that an element of Dy (P) can be recovered up to a power
of p and up to a torsion element from its restriction-deflations to elementary abelian
sections of P. This provides also an alternative proof of Theorem A and Theorem B
of [5].

Finally in section 8, I state a theorem telling when a relative syzygy can be a torsion
element in the Dade group. The case of Qp;o was originally a question of J. Thévenaz.

2. Relative syzygies

When studying endo-permutation modules, one considers usually the case where the
ground ring is a field of characteristic p (or a discrete valuation ring of characteristic 0
with residue field of characteristic p), and the group is a p-group. However, the first few
results can be stated for an arbitrary commutative ring O, and arbitrary finite groups.

The symbol ® denotes tensor product over O. If G is a group and M and N are OG-
modules, their tensor product M ® N is always viewed as an (OG-module via diagonal
action. Similarly the module Homp (M, N) is viewed as an OG-module with G-action
given by (gp)(m) = gp(g~tm) for g € G, ¢ € Homo (M, N), and m € M. 1 denote by
M* the O-dual of M, ie. M* = Homp (M, O).

2.1. X-split morphisms

(2.1.1) Definition: Let G be a finite group.

o A morphism of OG-modules f : M — N 1is said to be split if there exists a
morphism of OG-modules a : N - M such that f = foao f.

o Let X be a finite G-set. A morphism of OG-modules f : M — N s said to be
X-split if the morphism OX @ f : OX @ M — OX ® N s split.

o A short exact sequence of OG-modules
0—L-5M-"5N—0

1s said to be X-split if a is X -split, or equivalently, if b is X-split.

Note indeed that if f is a surjective (resp. injective) morphism of OG-modules, then
f is split if and only if it admits a right (resp. left) inverse.

If f: M — N is a morphism of OG-modules, I denote by Sec(f) the set of O-linear
morphisms ¢ : N — M such that f = foao f. The group G acts on Sec(f) by
conjugation: if ¢ € G and a € Sec(f), the morphism g.a : N — M defined for n € N
by

(g-a)(n) = ga(g™"n)

is clearly in Sec(f).



(2.1.2) Lemma: Let G be a finite group, let X be a finite G-set, and f : M — N be a
morphism of OG-modules. Then the following are equivalent:

1. The morphism f is X-split.
2. For any x € X, the stabilizer Gy of ® in G admits a fized point on Sec(f).
3. There exists a morphism of G-sets from X to Sec(f).

Proof: Let a : OX @ N - OX ® N be an O-linear morphism. Then a is defined for
z € X and n € N by

(2.1.3) a(z@n) =Y y®ay.(n)

where ay, , € Homp (N, M). Then a is a morphism of OG-modules if and only if for
any g € G,any z,y € X and n € N

agy,ge(n) = gayw(g_ln)

or equivalently g.ay ; = @gy g-. Now for any z € X and m &€ M
(OX @ floao(OX @ f)lz®n) = (OX f) oa(x@f(m))

(0X f)( Y ye ay,xf(m))

yeXx

E Yy ® fayof(m)

yeX

The condition OX ®@ f = (0OX ® f) oao (OX @ f) is equivalent to

(2.1.4) fayof(m) =6y . f(m)

for all ,y € X and m € M, the symbol §, , being a Kronecker symbol.

In particular, if f is X-split, there exists such an a. Now for any @ € X, the element
g 5 1s in Sec(f), and it is invariant by the action of G,. Thus condition 2) holds.

Clearly condition 2) implies condition 3) (just choose a Gy-invariant element ay of
Sec(z) for a set of representatives [G\X] of G\ X, and map g.z to g.a for any g € G
and z € [G\X]).

Finally if 3) holds, let & be a morphism of G-sets from X to Sec(f). For z,y € X,
define ay . : N — M by

ay,z = Oy,c ()

This clearly defines (by equation 2.1.3) a morphism of OG-modules from OX ® N to
OX ® M, which is in Sec(OX ® f) by equation 2.1.4. O

Assertion 3) of the lemma gives the following

(2.1.5) Corollary: With the same notation
1. Iff : M — N s X-split, then soi1s fQL : ML — NQ®L, for any OG-module L.

2. Let Y be a finite G-set such that Homg_set(Y,X) # 0. Then if f : M — N s
X-split, it is also Y -split.



3. If f: M — N s X-split, then f* : N* - M~* s X-split.

Proof: If ¢ : X — Sec(f) is a morphism of G-sets, then the map z — ¢(2) ® Idy, is a
morphism of G-sets from X to Sec(f ® Idr). This proves 1). Assertion 2) is obvious.
Assertion 3) uses the fact that since X is finite, the module OX is free and finitely
generated over O. Hence (OX @ M)* ~ OX @ M* (see [7] prop 2.29). 0

2.2. Relative projectivity

The notion of relative projectivity appears under various forms in representation
theory and category theory, with successive generalizations: projectivity of an OG-
module with respect to a subgroup of the group G (see D.G. Higman [12], J.A. Green
[11]), with respect to a G-set (see [1] def. 3.6.13), with respect to a module (see [6]),
projectivity of an object relative to a functor (see [4] def 4.1), projectivity of an object
with respect to a cotriple ([16] def. 8.6.5). The definition I will use here is the second
one:

(2.2.1) Definition: Let G be a finite group, and X be a finite G-set. An OG-module M
1s projective relative to X, or X -projective, if it satisfies one of the following equivalent
conditions:
1. There exists an OG-module N such that M is a direct summand of OX ®@ N.
2. The morphism from Endpo(OX) @ M to M mapping f @ m to tr(f)m is a split
epimorphism of OG-modules.
3. The morphism from OX @ M to M mapping x @ m tom (forx € X and m € M)
1s a split epimorphism of OG-modules.
4. For any diagram

M
[a
L £ N

such that the morphism OX ® B s a split epimorphism, there exists a morphism
of OG-modules v : M — L such that o~y = a.

(2.2.2) Remarks: In assertion 2), I denote by tr(f) the trace of f, which is well defined
since OX is O-free and finitely generated, since X is finite. The module QX is its own
dual over @, and the functor M — OX ® M from the category of OG-modules to itself,
is its own left and right adjoint. The morphism in condition 2) is the counit of this
adjunction. Now the equivalence of conditions 1), 2) and 4) is standard (see [16] for
details). The equivalence of 2) and 3) is straightforward.

It leads to the following version of Higman’s criterion:

(2.2.3) Lemma: Let G be a finite group, and X be a finite G-set. If M is an OG-
module, the following are equivalent:

1. The module M is X -projective.
2. There exists a map of G-sets ¢ from X to Endo (M) such that

> p(z) = Idy

rzeX



Proof: An O-linear map a : M — OX ® M is defined by

a(m) = E z® az(m)

where ay; € Endp(M). This defines a morphism of OG-modules if and only if g.a; =
age for all z € X and g € G. Moreover a is a section of ¢ if and only if )~ «, is the
identity of M. 0

(2.2.4) Corollary: With the same notation
1. If M s an X -projective OG-module, then so is M ® N, for any OG-module N.

2. IfY is a finite G-set such that Homg_se:(X,Y) # 0, and if M is an X -projective
OG-module, then M is Y -projective.

3. If M is an X -projective OG-module, then so is M*.
Proof: Consider a map of G-sets from X to Endo (M) such that erX p(z) = Idy.
For the first assertion, consider the map from X to Endp (M ® N) sending z € X to
o(z) ® Idy. For the second one, if f: X — Y is a map of G-sets, define a map from Y
to Endo (M) by ¥(y) = erf—l(y) @(z). For the third assertion, note that if M is a

direct summand of OX ® N, then M* is a direct summand of (OX ® N)*, which is
isomorphic to OX ® N* since X is finite. 0

2.3. Relative Shanuel’s lemma
The previous definitions lead to the following relative version of Shanuel’s lemma:
(2.3.1) Proposition: Let G be a finite group, and X be a finite G-set. If
0O=+L—->N-M=0

0L 5N -M-—=0

are X -split exact sequences of OG-modules such that N and N’ are projective relative
to X, then there s an isomorphism of OG-modules

LeN ~L'a N

Proof: see [1], Lemma 3.9.1 or Lemma 1.5.3. 0

(2.3.2) Notation: If X is a G-set, then let Qx = Qx(O) denote the kernel of the
O-linear augmentation map ¢ : OX — O sending each x € X to 1 € O.

More generally, if M is an OG-module, then Qx (M) denotes the kernel of the map
e@Idy :OX @M - O@ M ~ M. The module Qx (M) is called the syzygy of M
relative to X. Thus if M is O-flat, then Qx (M) is isomorphic to Qx @ M.

Thus Qx 1s the set of linear combinations erX ry of elements of X with coeffi-
cients in O, such that )~ 7, = 0. If 2o € X is given, then Qx admits a basis over O,
formed of the elements z — zg, for © € X — {2}, hence it is a free O-module.



(2.3.3) Lemma: [Alperin] Let G be a finite group, and X be a non-empty finite G-set.
Then there is an isomorphism of OG-modules

Qx Q%) dO0X 00X ~0a (0X ® 0X)

Proof: Clearly the module OX is X-projective, by condition 1) of definition 2.2.1.
Moreover, the morphism ¢ : OX — O is X-split: the diagonal map 2z — z ® z is a
section of OX ® €.

The module Qx is O-free and finitely generated, so Q% is also O-free and finitely
generated. Tensoring with the (O-free, hence O-flat) module Q% the exact sequence

(2.3.4) 0=-Qx 20X —-0-=0
gives the exact sequence
(2.3.5) 0-0x 0% 20X Qy - Q% —0

The module OX ® Q% is X-projective, and the map OX ® Q% — Q% is X-split
since € is.
On the other hand, dualizing the sequence 2.3.4 gives the sequence

(2.3.6) 000X Q% =0

This sequence is exact since O is O-free. The morphism OX — Q% is also X-split,
by corollary 2.1.5. Now using Shanuel’s lemma and sequences 2.3.5 and 2.3.6 gives the
isomorphism

QxQ%)d0X ~ 06 (0X @ Q%)
Adding OX on both sides gives the isomorphism

Qx Q%) BOX BOX ~0a (0X © Q%) ®OX
Since the sequence
000X 52 0XQ0X 50X 0% =0

is split, the direct sum (OX @ Q%) ® OX is isomorphic to OX ® OX. Finally, T get
the required isomorphism

Qx Q%) dO0X B 0X ~0a (0X ® 0X)

This shows in particular that Qx ® Q% , which is isomorphic to Ende (Q2x) since Qx is
O-free and finitely generated, is a direct summand of a permutation OG-module. 0

One can also view this lemma from the point of view of Rickard’s endo-split permu-
tation resolutions (see [14]): a complex C' of OG-modules is an endo-split permutation
resolution of the OG-module M if it is a bounded complex of permutation OG-modules
with homology concentrated in one degree, isomorphic to M, and such that the complex
Endo (C) is a split complex of OG-modules. With this definition:



(2.3.7) Lemma: The complex C : 0 - OX 5 O — 0 is an endo-split permutation
resolution of Qx .

Proof: Clearly C' has homology concentrated in one degree, and equal to Qx. More-
over, the complex Endp (C) is

0 — Homp (0,0X) = Endp(0X) @ Endo (0O) — Homp (0X,0) = 0

Hence it is isomorphic to the complex
0= 0X 5 Fndo(0X)® 050X =0

where the map a is defined by a(z) = (¢z,1) € Endo(OX) & O for ¢ € X, the
endomorphism ¢, of OX being given by c;(y) = « for y € X. The map b is defined
by b(f) = Zx,yEX vg g for f € Endp (OX) with matrix f;, in basis X, and b(1) =
- ZxEX z.

Since C' is a complex of free @-modules, the homology of Endp (C) is concentrated
in the middle term, and isomorphic to Endp (2x).

Now the map a has a section s, defined by s(f) =" cx fe 2% for f € Endo(0X),
and s = 0 on O. The map b has a section ¢ defined by ¢(z) = (J5,0) € Endo (X) & O,
where d, is the endomorphism of OX defined by 0 (y) = 5 yz for y € X. Hence C' is
an endo-split permutation resolution of Qx. 0

(2.3.8) Corollary: Let M be an O-projective finitely generated OG-module. If Endo (M)
1s a direct summand of a permutation OG-module, then Endp (QX(M)) 1s a direct
summand of a permutation OG-module.

Proof: As I already noted above Qx (M) ~ Qx ® M since M is flat over O. Moreover
since Qx and M are O-projective and finitely generated, so is Qx (M). Now for any
finitely generated projective O-module M, and any OG-module N, the linear map from
M @ N* to Homp (N, M) sending m® f, for m € M and f € N* to the homomorphism
from N to M defined by u — f(u)m, for v € M, is an isomorphism of abelian groups

(see [7] prop 2.29). In case M and N are OG-modules, this map is an isomorphism of
OG-modules. Tt follows that Qx (M)* ~ Q% ® M*, and also that

Endo (QX (M))

1

Qx (M) ® Qx (M)
~ Qx QM M*
Ende (Qx) ® Endo (M)

1

is the tensor product of two direct summands of permutation modules. Hence it is a
direct summand of permutation module. 0

3. The Dade group

From now on, following [15], I will suppose that the ring @ is a complete noetherian
local ring with residue field k of characteristic p > 0. Any direct summand of an O-free
finitely generated O-module is O-free. If G is a finite group, then an OG-lattice is by
definition an O-free finitely generated OG-module. Krull-Schmidt theorem holds for
OG-lattices. If M is an indecomposable OG-lattice, then a verter of M is a minimal
subgroup P of G such that M is G/P-projective. It is unique up to conjugation in G,
and it is a p-group.



3.1. Capped modules and permutation algebras

I will recall first some definitions and facts from Dade’s paper [9]:

(3.1.1) Definition: Let P be a p-group. An OP-lattice M is called an endo-permu-
tation lattice if Endo (M) is a permutation OP-module, i.e. if it admits a P-invariant
O-basis.

An endo-permutation OP-lattice M s said to be capped if it has some non-zero
indecomposable direct summand with vertex P. Such a direct summand is unique up to
isomorphism, and is called a cap of M, and denoted by cap(M).

Two capped endo-permutation OG-lattices M and N are said to be equivalent if
cap(M) ~ cap(N). This is equivalent to saying that O is a direct summand of M @ N*.

Tensor product over O induces a group structure on the set of equivalence classes
of capped endo-permutation lattices called the Dade group of capped endo-permutation
OP-lattices, denoted by D, (P) (see [15] Remark 5.29.6).

If M is an endo-permutation O P-lattice, then A = Ende (M) is an O-simple algebra,
i.e. it is isomorphic to a matrix algebra M, (O) for some n (see [15] 1.7). Thus it is
a permutation O-simple P-algebra. Moreover M is capped if and only if the Brauer
quotient A[P] is non-zero (see [15] 5.28). This leads to the following definition:

(3.1.2) Definition: [see [15] 5.29] An O-simple permutation P-algebra such that
A[P] # 0 is called a Dade P-algebra (over O).

A Dade P-algebra is called neutral if there exists a permutation O P-lattice M hav-
ing O as a direct summand, such that A ~ Endo (M) as P-algebra.

Two Dade P-algebras A and B are called similar if A ® B°P s neutral.

Tensor product of algebras induces a group structure on the set of equivalence classes
of Dade P-algebras for this relation. This group is the Dade group of P, and is denoted
by Do (P). When the residue field k is algebraically closed, the natural group homomor-
phism D}, (P) — Do (P) mapping a capped OP-lattice to its endomorphism algebra
is surjective (and even split see [15] Remark 5.29.6). The kernel is isomorphic to the
group of one-dimensional characters of P (i.e. group homomorphisms from P to the
multiplicative group of units of @). In particular if O = k is algebraically closed, then
the groups D}, (P) and Do (P) are isomorphic.

3.2. Relative syzygies in the Dade group

Let P be a p-group. If X is a non-empty finite P-set, lemma 2.3.3 shows that there
is an isomorphism of O P-lattices

Qx Q%) dO0X B 0X ~0a (0X ® 0X)
Taking Brauer quotients gives
(3.2.1) (Qx ® Q) [Pl & k(XP) & k(XP) ~ k@ (k(XP) ® k(XP))
It follows that the dimension over k of (2x ® Q% )[P] is
|XPPP = 21XP ]+ 1= (X7 - 1)

This formula leads to the following:



(3.2.2) Definition: [ will say that a non-empty finite P-set X is a Dade P-set if
Endo (2x) is a Dade P-algebra, or equivalently, if P does not admit a single fized point
on X (ie. if X¥ is empty or if | XT| > 1).

(3.2.3) Notation: If P is a p-group, and X is a Dade P-set, I will denote by Qx the
image of Endp (QX(O)) in the Dade group Do (P).

The following is elementary:
(3.2.4) Lemma: Let P be a p-group, and X be a Dade P-set.

1 IfXT 40, then Qx = 0 in Do (P).

2. If p# 2 and if Qx = 0 in Do(P), then X¥ # 0.

Proof: If P has a fixed point on X, then the sequence
0= Qx 20X 500

is split (mapping 1 € O to = € OX, for = € X¥| is a section of ¢). Thus Qx is a
direct summand of OX, hence it is a permutation module, since P is a p-group. Hence
QX =0in Do(P)

Conversely, if Qx = 0 in Do (P), then there is a finite P-set Y such that Y #  and
Qx (0) 2 Qx (0)* ~ OY @ OY as P-algebras. It follows in particular that (| X|—1)? =
|Y'|?, for dimension reasons. Thus |X| = 1+ |Y|, since X is non-empty. Now if X* = 0,
equation 3.2.1 gives

EYP xyP)y~k
hence |YP| = 1. It follows that |Y| is congruent to 1 modulo p, thus |X| is congruent
to 2 modulo p. Thus 2 = |X| = |X¥| = 0 modulo p, hence p = 2. 0

(3.2.5) Remark: Assertion 2) is false if p = 2: the Dade group Do (P) of the cyclic
group P of order 2 is trivial, thus Qp;; = 0, but P has no fixed points on P/1.

The first assertion of the previous lemma leads to the following

(3.2.6) Convention: If X is a finite P-set such that X # (, T will set Qx = 0 in
Do (P). With this convention, the element Qx of Do (P) is defined for any non-empty
finite P-set X.

One could also define Qy = 0 in D (P), since it is the only reasonable value for it.
However, to avoid too many special cases in the proofs, I will not define Qy in this
paper.

(3.2.7) Lemma: Let P be a p-group. If X and Y are non-empty finite P-sets such that
for any subgroup Q of P, the set X% is non-empty if and only if Y9 is non-empty, then
QX = Qy n Do(P)

Proof: The hypothesis on X and Y is equivalent to say that there is a morphism of
P-sets from X to Y and a morphism of P-sets from Y to X. Now if X # ), then
YP £, and then Qx = Qy = 0in Do (P). And if X¥ = Y =, in the sequence

0—=Qy - 0Y -0—=0

the middle term is O X-projective by corollary 2.2.4, because is it QY -projective, and
the right hand side morphism is O X-split by corollary 2.1.5, because it is OY -split. By
Shanuel’s lemma, there is an isomorphism of O P-modules

Qx dOY ~Qy & OX



As X¥ = YP = (), the cap of Qx must be a direct summand of Qy, since @X has no
direct summand with vertex P. Hence cap(Qx) = cap(Qy) in this case, and Qx = Qy
n Do (P) a

(3.2.8) Lemma: Let P be a p-group, let X be a non-empty finite P-set, and

0=-W-—-0X -V =0

be an X-split exact sequence of O P-lattices. Then:

1. The lattice V 1s an endo-permutation OP-lattice if and only if W is an endo-
permutation OP-lattice.

2. If XP =0, then V is a capped endo-permutation O P-lattice if and only if W is a
capped endo-permutation O P-lattice.

3. If V and W are capped endo-permutation OP-lattices, then

W=Qx+V in Do(P)

Proof: Tensoring the exact sequence of the lemma with W* gives an exact sequence
0=>WeaW" 2 0XeaW" VoW =0

Dualizing the sequence of the lemma, and tensoring next with V', gives the exact se-
quence

0=VRV 2 VRO0X VW =0

Now by Shanuel’s lemma
(3.2.9) WaW e (VeoX)~ (Ve Ve (0X o W)
Since the sequence of the lemma is X-split, there is moreover an isomorphism
OXR0X ~(0XoW)® (0X®V)
which gives also, since (OX @ W)* ~ 0X @ W*
0XR0X ~(0X W) (0X V™)
It follows that
WeoW e (00X V)s(0XeV )~ (Ve V) e (0X @ 0X)
Hence W @ W* is a permutation lattice if V ® V* is. Similarly
WeaW" e (0Xe0X)~(VeaV ) e (0XeoW") e (0X W)

and V ® V* is a permutation lattice if W @ W* is. This proves assertion 1).
If XP =0, then the lattices OX, OX @ W* and OX ® V have no direct summand
with vertex P. Equation 3.2.9 shows that

(WeW"[P]~(VaV")P]

Thus V has a direct summand of vertex P if and only if W does. This proves 2).
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If V and W are capped, there are two cases: suppose first that X # . In this
case V is a direct summand of OX ® V', hence of OX ® OX. If V is capped, then
cap(V) is a permutation lattice of vertex P, hence isomorphic to @. Now W is also a
direct summand of OX ® W, hence of OX ® OX. It follows that V = W =Qx =0 in
Do (P), and the formula of assertion 3) holds.

And if XP = §, the exact sequence

0=-QxQV 20XV =V =0
and Shanuel’s lemma give
Wa(0XeV)~(QxoV)s0X

This shows that the cap of W is a direct summand of Qx ® V| since OX has no direct
summand with vertex P. Hence W = Qx ® V in the Dade group of P, as was to be
shown. 0

4. Functorial properties of relative syzygies

4.1. Restriction, inflation, isomorphisms

(4.1.1) Lemma: Let P and Q be p-groups, and let f : P — @ be a group homomor-
phism. If M is an OQ-lattice (resp. if X is a Q-set), denote by Resy M (resp. ResyX )
the O P-lattice obtained by restriction along f. Then if X s a non-empty finite Q)-set,
there 1s an isomorphism of OP-lattices

ReszX >~ QRest

Proof: Since Res; OX ~ ORes; X, the restriction along f of the exact sequence
0=-Qx 20X 500

is the exact sequence

0 — Res;Qx — ORes; X 5 O — 0
and the lemma follows. 0
(4.1.2) Corollary:

1. Let Q@ C P be p-groups. If X is a non-empty finite P-set, then there is an
1somorphism of OQ-lattices

RGSSQX ~ QResSX
2. Let Q<P be p-groups. If X is a non-empty finite P/Q-set, then there is an
1somorphism of O P-lattices

IanP;/QQX ~ QIl’lfP

proX

3. Let ¢ : P = @ be a group isomorphism. If X is a non-empty finite P-set, then
there is an tsomorphism of OQ-modules
(QX)LP = QX«P

where (Qx ), (resp. X, ) denotes the module Qx (resp. the set X) on which Q

acts via @1,
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4.2. Deflation

Let @ <P be p-groups. One can define a deflation operation Defg/Q : Do (P) —
Dy (P/Q) (called slash construction by Dade), in the following way: if M is a capped
endo-permutation @ P-module, then the Brauer quotient Endp (M)[Q] is a Dade P/Q-
algebra over k, associated to an endo-permutation k(P/Q)-module Defg/QM. This
construction is compatible with the equivalence relation defining the Dade group.

Comparison of equality in lemma 2.3.3 and equation 3.2.1 suggests the following;:

(4.2.1) Lemma: Let Q<P be p-groups, and X be a non-empty finite P-set.
1. If X9 =0, then Def,,Qx = 0 in Di(P/Q).
2. If X9 # 0, then Defp,oQx = Qxo in Dx(P/Q)

Proof: Note first that Qx in the left hand side is in Do (P), whereas Qxo in the right
hand side is in D (P/Q). Actually for this lemma, I can suppose O = k.
If XP # 0, then (X9)P/Q £ §, and there is nothing to prove. Now if X9 = §,
lemma 2.3.3 shows that (Qx ® Q%)[Q] ~ k as P/Q-algebras, and assertion 1) follows.
Finally if X* = (§, by lemma 2.3.7, the complex

(4.2.2) 0= kX -5 Endy (kX) ®k—5 kX =0

is a split complex of k P-modules. Now (kX)[Q] ~ k(X ?) and since kX is a permutation
module

(Endk(kX)) [Q] ~ End, (k(XQ))
The Brauer quotient at @ of 4.2.2 is the split complex of k(P/Q)-modules

0 k(x9) T Bnd (k(x9)) @ k " r(x9) >0

with homology concentrated in the middle term. This homology can be viewed either
as (Endk(Qx))[Q] or as Endg(Qxe). Hence those two algebras are isomorphic as
(P/Q)-algebras, and the lemma follows. O

5. Tensor induction

5.1. The formula for tensor induction

The previous lemmas describe the action of four of the five functorial operations
on the Dade group. The only missing one is tensor induction, and this section will be
devoted to the proof of the corresponding theorem. First I need some notation:

(5.1.1) Notation: Let P be a group. I denote by sp the set of conjugacy classes of
subgroups of P. It is ordered by the following relation: if C and C' are elements of sp,
then C <p C" if there exists Q € C and Q' € C' such that Q C @Q’. I denote by up the
Mobius function of the poset sp.

If Q is a subgroup of P, I denote by Q its conjugacy class in P, viewed as an element
of sp. If Q and Q' are subgroups of P, the notation Q <p Q' means that some conjugate
of Q in P is contained in Q', or equivalently, that Q <p Q'. In this case, I will write
1p(Q, Q) instead of up(@, Q).

Finally, I denote by [sp] a set of representatives of sp.
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(5.1.2) Theorem: Let Q C P be p-groups. Let X be a non-empty finite QQ-set. Then
in the Dade group Do (P)

TengQx = Y pe(U,V) {a e V\P/Q| XV £ 0} Qpjv
U,VE[SP]
U<pV

I will prove this theorem by induction on |P : @|. There will be three steps: first the
case P = @, then the inductive step when |P : Q| > p?, and finally the case |P : Q| = p.

5.2. The case P =(Q

This case is an easy consequence of the following lemma, due to J. Thévenaz:

(5.2.1) Lemma: [Thévenaz] Let P be a p-group. If X and Y are non-empty finite
P-sets, then
Qxuy + Qxxy = Qx + Qy in Do(P)

Proof: Note first that the formula holds if X # {: in this case Qx = 0, and Qx,y = 0.
Moreover there exists a morphism of P-sets from X xY to Y (the projection), and from
Y to X x Y (mapping y € Y to (z,y), for a given z € X¥). Thus Qy = Qyyx, and
the formula holds. Hence I can assume X¥ = Y = {§ by symmetry.

Let C denote the complex 0 - OX — O — 0, and similarly let D denote the
complex 0 = OY — O — 0. The tensor product of those complexes is the complex

0-0XR0OY - 0Xp0Y -0 —=0

which is isomorphic to the complex
0—0X xY) -5 0(XUuY)—50—0

where a is defined by a(z,y) = —y € O(XUY) forz € X and y € Y, and b is defined
by b(z) =b(y) =1 forz e X and y € Y.

Since C' and D are complexes of free O-modules, with homology concentrated in one
degree, equal to Qx and Qy respectively, the only non-zero homology group of C'® D
is the kernel of @, and it is isomorphic to Qx ® Qy. Now the kernel of b is Qx,y, and
there is an exact sequence

(5.2.2) 0—Qx ®Qy — O(X xY) 5 Qxuy —0

Now the map a is (X x Y)-split: if (2o, yo) is given in X x Y, define a map o, y, from
QXuy to O(X X Y) by

Uxoyyo(z Qg+ Z 6@/3/) = Z ax($¢y0) - Z ﬁy(-TO;y) - Z ax(l‘o,yo)

zeX yey rzeX yey zeX

The element erx ax$+zy5y Byyis in Qxyy if and only if erx g +Zer By =0
Now

aoo’xu,yu(z (Yx.l‘—l—z ﬁyy) = Z (Yx;l‘—}—z ﬁyy_z Az Yo _Z 6@/'170_2 ax(l‘o—yo)

rzeX yey rzeX yey rzeX yey rzeX
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Hence 04, 4, is a section of a, and the map (2o, yo) — 04y y, 18 clearly a map of P-sets
from X x Y to Sec(a).
Now it follows from lemma 3.2.8 that in Do (P)

Qx + Qv = Qxxy + Qxuy

as was to be shown. 0

In the case P = @, the equality to prove in theorem 5.1.2 takes the form of the
following lemma:

(5.2.3) Lemma: Let P be a p-group and X be a non-empty finite P-set. Then in
Do (P)

(524) QX = Z /JP(U, V)QP/U
U,VE[SP]
U<pV
XV £0

Proof: Suppose first that X is isomorphic to a disjoint union of copies of a single
transitive P-set, isomorphic to P/S for some subgroup S of P. Then XV is non-empty
if and only if V' <p S. The sum in the right hand side of 5.2.4 is

Z ,UP(U; V)QP/U

UVelsp]
U<pV<pS

Now for a given U € sp, the sum for V in the “interval” [U,S] of sp of up(U, V) is zero
if U # S, by definition of the Mobius function on sp, and it is equal to 1 otherwise.
The only term left in the previous sum is obtained for U/ = S, hence the sum is equal
to Qp;s. On the other hand Qx = Qp;s in this case, by lemma 3.2.7. Thus formula
5.2.4 holds in this case.

For the general case, denote by Q% the right hand side of 5.2.4. Clearly Q% only
depends on the set

F(X) = {Q & [sp] | X2 £ 0}

and by lemma 3.2.7 the same is true for Qx. I will prove that Qx = Q% by induction
on the cardinality of F'(X).

If this cardinality is equal to 1, then P acts freely on X, hence X is a union of copies
of P/1, and Qx = Q% in this case.

If |F(X)| > 1, choose a maximal element @ of F(X). Then up to isomorphism, the
set X can be written as Y U Z, where Z is a non-empty union of copies of P/@Q, and Y
is a set such that Y@ = {J.

If Y = (), then X = Z is a union of copies of P/@, and the formula holds in this
case.

Now if Y # 0, it is clear that |F(Y)| < |F(X)| since F(Y) C F(X) and Q €
F(X)-F(Y). Similarly F(YxZ) C F(Y) and |F(YxZ)| < |F(X)]|. Hence formula 5.2.4
holds for Y and Y x Z by induction hypothesis. It also holds for Z since 7 is isomorphic
to a union of copies of P/@Q. Now by lemma 5.2.1

Qx =Qy +Qz — Qyxz
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It follows that
(5.2.5) Qx =Qy +9% — Qy g
For a subgroup V' of P set
Yy = Z pe(U,V)Qpu
UE[SP]
U<pV

With this notation

- 3w

VeF(X

and equality 5.2.5 becomes
z: Yv + 2: Yy — z: Yy
VEF(Y) VEF(Z) VEF(YXZ)
Since F'(Y x Z) = F(Y) N F(Z), this is also
Qx = E Yv
VEF(Y)UF(Z)
and since F(Y)U F(Z) = F(Y U Z) = F(X), this gives finally
_ Y mew
VEFR(X)

This completes the proof of lemma 5.2.3. 0

5.3. The inductive step |P: Q| > p?

Suppose that formula of theorem 5.1.2 holds for all p-groups @’ C P’ with index
|[P": Q'] < |P: Q| Choose a subgroup S such that @ C S C P, the inclusions being
proper ones. This is possible if |P : Q| > p?.

By induction hypothesis

TendQx = > us(U, V) [{a € V\S/Q | XV £ 0}] Q50
U,VE[Ss]
U<sV

in Do (S). Taking tensor induction up to P gives

TenpQx = > ps(U,V) {a € VAS/Q | XYM £ 6}| Ten§ Qsyur
U, Ve[ss]
U<sV

since tensor induction is transitive. Since |P : S| < |P : @], by induction hypothesis

Ten§Qsp = > pp(A,B)|{be B\P/S | (S/UYB"S £ 0| Qpa
A,BE[SP]
A<pB

15



Thus

TenSQX: Z wus (U, V) Z Z up(A, B) Z Qpja

U Ve[ss] a€V\S/Q A Be[sp] bEB\P/S
U<sV XVNQ4p A<pB B’nS<sU

Changing the order of summations gives

TengQX: Z up(A, B) E Z Z Z ps(U, V) | Q2p/a

A Beg[sp] beB\P/SVe[ss] aeV\5/Q Ugl[ss]
A<pB XVNQ4p B*nS<sULsV

The inner summation on U is zero unless V =g B® N S. Tt follows that

TengQX: Z up(A, B) Z Z 1| Qp/a
A ,Be[sp] bEB\P/S 4eB*nS\5/Q
A<pB X(ans)"nQ;é@

Now (B*NS)*N@Q = B*NSNQ = B*NQ. Moreover, when b runs through B\P/S
and a runs through B® N S\S/Q, the element ¢ = ba runs through B\ P/Q. Hence

TenfyQx = Y. wp(AB)( > 1)Qpa
A,B€[sp] ceB\P/Q
A<pB X BNz

and finally

TenhQx = > pp(A, B) |[{c€ B\P/Q | X" £ 0}| Qp/a
A,Be[sp]
A<pB

which completes the proof of the inductive step. 0

5.4. The case |P: Q| =p

(a) The case X9 # 0. If X9 # (), the formula to check is the following

0= > wup(UV)IP:VQ|
U,VE[SP]
U<pV

The right hand side is also

S= > wpUVIPpu+ > pe(U, V)
UVelsr] UVelsr]
U<v<Q USVEQ
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since either V C Q or VQ = P. As Qp,p = 0, I can fix a subgroup U # P and look at

the sum on V

E ﬂP(U¢ V) =0= Z ﬂP(U¢ V) + Z /LP(U¢ V)
VeElsp] VElsp] Velsp]
U<pV<P U<pV<Q U<pVZQ
It follows that
S= Y (p— Dup(U,V)Qpw

UE[SP] VVE[SP]
U#P U<pV<Q

The sum on V is zero if U # @. Finally
S=(p-1)2p/q

Then either p is odd, and this is zero since Qp;q = Infg/QQ(p/Q)/(Q/Q) has order 2 in
Do (P), or p=2and Qp/q = 0, since it is inflated from Do (P/Q) = 0. In both cases,
the formula holds.

(b) The case X9 = (. 1 denote by C the complex 0 — OX — @ — 0, where O is in
degree 0 and OX is in degree 1. It is a complex of O-free OQ-modules. I consider next
the tensor induced complex 1" = TengC (see [2] section 4.1): for this, I choose a total
ordering of a set [P/Q)] of representatives of P/@}. Now the module 7} is isomorphic to

- @ ©0x)°
AC[P/Q]
|Al=4

It can also be viewed as the free O-module with basis the set of pairs (A, ¢), where A
is a subset of cardinality j of [P/Q] and ¢ is a map from A to X, or equivalently as the
free O-module with basis the pairs (4, ¢), where A is a subset of P such that AQ = A
and |A/Q| = j, and ¢ is a Q-invariant map from A to X.

The action of g € P on Tj is given by

9-(A,0) = (A, 9) (94, 9¢)
where g is the function from gA to X defined by
(9¢)(a) = ¢(9™"a)
and (A4, g) is a sign, defined by

E(A,g) = (_1)|{(ayb)E[A/Q]2|a<67 ga>gb}|

where [A/Q)] is the set of elements of [P/@Q)] representing elements of A, and the notation
ga > gb means that this inequality holds between the representatives of ga and gb in
[P/Q].

Therefore the module 7} is isomorphic as an O P-module to

@ IndII;A OHomg (A%, X)
ACP

AQ=A,|A/Q|=]
A mod. P
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where P4 denotes the stabilizer of A in P, and O°Homg (AP, X) is the free O-module
with basis the set of )-invariant maps from A to X, on which the element ¢ € P4 acts
by
9-(A,9) = e(A, 9)(A, 9¢)
and (A, g) is the signature of ¢ acting on A/Q). Note that if p is odd, this signature is
always +1, since cycles of odd length are even. If p = 2 and O has characteristic 2, this
sign is also +1=-1. Finally, if j # p, then P4 is a proper subgroup of P, containing @,
hence equal to @, and P4 acts trivially on A/Q since @ < P. The only case where signs
do appear is the case j = p = 2 and O has characteristic different from 2. All other
modules T} are permutation modules.
The differential d; : T; — T;_1 is given on the element (A4, ¢), for A = a; QU. . .Ua;Q

with a; € [P/Q] for 1 < i < j such that a1 < as < ... < a;, by

J

4 ((4,9) = Y (-1 (A-aQ, ¢auc)
=1

Since C'is a complex of free J-modules, with homology concentrated in degree one,
isomorphic to Qx, the complex 7" has its homology concentrated in degree p. This
homology group is ‘almost’ isomorphic to TengQX: if p = 2 and O has characteristic
different from 2, one has to take the sign into account: the element g of P acts on the
module 7, = (0X)®? as it acts on Teng(’)X, up to a sign which is the signature of the
permutation induced by g on the cosets P/@, equal to 1 if g € @ and to -1if ¢ & Q.

Let j be an integer, with 1 < j < p. I will denote by Z; the set of pairs (4, ¢), where
A is a subset of P such that AQ = A and |4/Q| = j, and ¢ € Homg (AP, X). The set
Z; is a P-set, and the previous remarks show that 7; is isomorphic to the permutation
module OZ; if ¢ < p. In particular the module 7; is Z; projective.

(5.4.1) Lemma: The differential d; : T; — T;_1 is Z;-split if i < p and i < j.
Proof: I will fix (4, ) € Z;, where the set A is written as
A=aiQU...Uaq;Q with VI, 1<I<j, @ €[P/Q], a1 <as<...<aj

I define a map 6; from T;_; to T; in the following way: if (B,v) € Z;_1, where B can
be written as

B=bQU...Ub_1Q with VI, 1<I<i—1 b €[P/Q], by <bs<...<bi_,

denote by g the least integer ! such that a; ¢ B. Such an integer exists since i — 1 < j.
Set I(B) = {a1,...,a15-1}, and denote by rp the least integer r such that a;, < b, (or
rp =i if a;, > b, for all r). Now I set

o:((B.) = D (DTN (BUWLQ, Ik, vlv)

UCI(B)

where [p, Y]y is the map from B U a;,@Q to X defined by

_ [ W(e) ifceB-UQ
[‘Paw]U(c)_{ 50(6) ifCEUQI—lalBQ

The map 6; in invariant under the action of the stabilizer P4 ,y of (4, ¢) in P: indeed,
since ¢ < p, the stabilizer of A is equal to @, and P4 ) is the set of elements ¢ of ()

such that
pla) = ol a) = ¢ (als™)") = 4°¢(a)
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for all a € A. In other words

Pa,p)y = Naea"Qu(a)

It acts trivially on P/Q. Thus if ¢ € P4 ), then ¢~ 'C = C for any subset C of P such
that CQ = C, and

Z (_1)|U|+TB_1q(B Uag Q, [‘10, q_lw]U)
UCI(B)

= > ()TN BUa,Q.qle, ¢ W)

UCI(B)

q0; ((q_lB, q_lw))

Moreover

ley =4(e) ifee B-UQ

gle, ¢ Wu(e) =l g Wl (g™le) = { (q_l?)(q; o(c) ifcc UQUai,Q

p(g~'e)

It follows that 6; is Pra, - -invariant.
I will show that d;0; + 6;_1d;_1 = Idp,_,. First

a0 ((B,v) = > ()P (B U@L, [p o)

UCI(B)
and moreover
7‘}3—1
di(BUaLQ, [p,vlv) = Y (1) ((BUa,Q)—bn@, fmu )+
m=1

+(=1)"2 (B, fu)+

L3 (B U@, Q)=bnQ, fn)

m=rg

where f,  denotes the restriction of [p, ¥]y to BU a;,Q —b,Q, and fy is the map
equal to ¥ on B—UQ and to ¢ on UQ.
Finally this gives
4:0;((B,v)) = 51 + S + Ss

where S7, So and Ss are given by

7‘31

Z 3 (e ((BU Q) ~bnQ, o)

UCI(B

Sy = Z (_1)|U|+7'B+7'B(B’fU)

UCI(B)

Z Z |U|+TB+m 1((B|—IalBQ)_meafm,U)

UCI(B)m=rp
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On the other hand
i-1
Oi_1d;i_1 ((B, 1/})) =0;_1 ( Z (1) (B-bnQ, 1/)|B—me))
m=1
To compute 8;_1 ((B—me, 1/)|3_me)), I must distinguish the case b, € A and m <

rg — 1, the case b,, ¢ A and m < rg — 1, and the case m > rp.

If m <rp—1and by = a,, then lp,,¢o = n and I(B—0,Q) = {a1,...,an_1}.
Moreover 7p_p,, ¢ = m since by, 41 is the least element of (B—b,,Q)/Q greater than a,,
and the m'”" element of (B—b,,Q)/Q . In this case (B—b,Q)Ua,Q = B and

01 ((B=bn@ ¥ipsn0)) = . (“D)VH(B g, 0)

UC{ai,...,an-1}

where g, ¢ is equal to ¥ on B—(UQ Ua,Q) and to ¢ on UQ U a,Q.
Ifm<rg—1andb, ¢ A, then lpy, g = Ip and I(B—b,Q) = I(B). Moreover
rB-b,,Q = B — 1. In this case

92’-1((3—me,1/)|3—me)) = Z (=1)lVl+ra ((B U alBQ)—me,hm,U)

UCI(B)

where h,, 7 is the map equal to ¢ on (BUa;,Q)—(b,QUUQ) and to ¢ on a;, QUUQ.
If m > rp, then again g, = {p and I(B—b,, Q) = I(B). Moreover 75, 0 = g,
and

01 (B=bn@¥ips,0)) = 3 (=D (BU@Q)~bm Q. hn o)
UCI(B)

with the same notation.
Finally, this gives
O;_1d;_1 ((B; 1/))) =51+ 5+ S;

where S7, S and S§ are given by

si= ) Y (FyrHIEmN(B g, )

1<m<rp—1UC{ai,....an-1}
bp=a, €A

S= Y Y ()T (BUa,Q)—bnQ o)

1<m<rg—1UCI(B)
b A

Sé = Z Z m_1+|U|+rB_1((BualBQ)_me:hm,U)
rg<m<i—1UCI(B
Replacing U by U U {a, }, the double summation in S§ can also be written
si= Y, (DYITNBfu)
0£UCI(B)

It follows in particular that the only non-zero term in Ss 4+ S is obtained in Sy for
U =10, thus
S+ 81 = (=1)°(B, fy) = (B,¥)
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Now the double summation in S; looks like the double summation in S%: both are
indexed by a subset U of I(B) and an integer m such that 1 < m < rp — 1. In S},
I require moreover that b,, ¢ A. Apart from this, the general term of S; is

(_1yUH¢B+m((BLJWBQ)—th,ﬁ%U)

whereas the general term of S} is

(=)= (B U ai, Q)=bnQ, huno )

Both maps f, v and h, p are equal to ¢ on the set (B U a;,Q)—(b,Q U UQ) and to
¢ on the set (a;, QUUQ)—b,Q. Hence the corresponding terms vanish. The only left
terms in Sy 4+ S} are the terms of Sy for which b, € A. Thus

Si+S= Y 3 () (BUa,Q)=bnQ. fnv)

UCI(B) 1<m<rp-1
bn€A

Switching the summation gives

Si+sy= Z |U|+rB+m((BI_IalBQ)—me,fmU)

1<m<rp—1 UCI
bn€EA

Now for a given m and a given b,, € A, the summation on U can be split as
E: (_1ﬂUH¢B+m<(BLMMBQ)—an,ﬁmU)+

UCI(B)
b €U

+ Z D4 (B U a1, Q) b, v

UCI(B
bom eU

Now every U 3 by, can be written as U’ U {by,}, where U’ & b,,. Moreover the map
fm,ur is equal to ¢ on

(BUa,Q)—(bmQUUQ) = (BUa;,Q)—(bQUU'Q)
and to ¢ on (a;,QUU'Q)—b,Q = (a1, QUUQ)—b, Q. Since moreover |U| = |U'| + 1,
the signs are opposite, and S; + S5 = 0.

Finally the double summation in S5 looks like the summationin S§: both are indexed
by a subset U of I(B) and an integer m > rp. The general term of Ss is

(=) (B U a1, Q) b @, ft)

whereas the general term of S§ is

(—1)" T (B U a1, Q) =6 Q, hun o)

Here again, the maps f,,, v and h,, y are the same. As the signs are opposite, the sum
S3 + 5% is zero.
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This shows finally that
(dif; +0;_1d;_1) ((B; 1/))) =S+ S2+ S35+ 51 + 5+ S5 = (B,¥)

and d;0; + 0;_1d;_1 is the identity map of T;_;. It follows that d; = d; o 0; o d;, as
claimed. 0

Now for 7 < p, there is an exact sequence
0 —s Kerd; — T; ~ 0Z; -2 Kerd; -1 — 0

and for every (A, ¢) € Z;, for j > i, the restriction of 6; to Kerd;_; is a section of d;,
which is invariant under the action of P4 ). By lemma 2.1.2, this means that this
sequence is Z;-split.

Moreover T; ~ OZ; is Z;-projective. Since the stabilizer of (A, ¢) is contained in @,
the group P has no fixed points on Z;. An easy induction using lemma 3.2.8, starting

from the sequence
0—=Kerdi 51Ty =215 ~0 =0

shows that Kerd; is a capped endo-permutation O P-lattice, and that
(5.4.2) Kerd; = Qz, + Kerd;_4
n Do (P) .

At the last stage ¢ = p, there is an exact sequence
(5.4.3) 0= O0° ® TenyQx — T, ~ O° @ Teny OX — Kerd,_; — 0

where O° is the module O on which g € P acts by the sign of the permutation it induces
on P/Q. The module Teng(’)X is the permutation module OZ,, and 7, identifies with
the set of J-equivariant maps from P to X. In particular 7, is Z,-projective.

The submodule T, = O0° ® TengQX of T,, can be viewed as the set of linear combi-

nations
5 o
PEZp

such that for all ¢ € [P/Q] and all @-invariant maps p from P —a@ to X, the sum of
the coefficients A, corresponding to those ¢’s for which ¢p_,q = p is zero.
Now the inclusion T; — T, is Z,-split: if ¢ € 7, is given, define a map 0 from 7,
to 1 by
o)=Y (=D)p¢lu
UC[P/Q]

where [p, ]y is the map equal to ¢ on P—UQ, and to ¢ on UQ. The element (1) is
in 7, for if a € [P/Q] is given, and if a ¢ U, the maps [, ¥]v and [¢, ¥]yu{q) have the
same restriction to P—a(, and their coefficients in the expression of #(¢) are opposite.
Let g be an element of the stabilizer of ¢ in P, and let ¢, be the signature of the
permutation it induces on P/Q. Then g maps the element ¢ of T, to £4(g.¢), and

Oegg) = Y (=1)Ieglp, gvlu

Ucp/Ql

It is clear moreover that

[, 9-¥]v = 9w, 9-¢]v = g([p, ¥]g-1v)
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so that replacing U by ¢~ 'U in the summation gives

Oeggt) = Y (D) eggllp, ¥lg-w) =g > (=1)e, ¢lv = gb(v)
vCiPrQl UCIP/Ql

Hence 4 is invariant by the stabilizer of . Moreover, it is a section of the inclusion of
1y into T,: indeed if f = ZwEZp Ayt is an element of 77, then

05 =3 2 Y D)eylu

Yez, UC[P/Q]

The coefficient pj, of a given h € Z, in this summation is equal to

=30 (=073 A

Ucs weRy

where S is the set of elements a of [P/Q)] for which ¢(a) = h(a), and Ry is the set of
elements ¢ of Z, which coincide with h on P-UQ.
Now if U # 0, the sum of coefficients Ay for ¢ in Ry is zero: indeed, if a € U is

given, this sum is equal to
> X N

g€Eaq,u,n YEZ,
'¢)|P—aQ:g|P—aQ
where F, yj is the set of -equivariant maps from P—a@) to X which coincide with A
on P—UQ. The inner sum is zero if f € TI;. Thus in the expression of py, the only
terms left correspond to U = @), and Ry = {h}. Hence pp = Ay for all h, and 0(f) = f

if feT!.
P
This shows that the inclusion of Té into 7}, is Z,-split, and completes the proof of
lemma 5.4.1. 0

(¢) End of the proof of theorem 5.1.2 in the case |P : Q| = p. An element ¢ € Z, is
fixed by P if

w(gah) = h™¢(a)

for all g,a € P and h € Q. Since P is transitive on P, this implies ¢(a) = 9(1) for all
a € P, and finding such an element is equivalent to choosing (1) € X?. As this set is
empty by assumption, it follows that Zf = 0.

Now tensoring sequence 5.4.3 with O° gives the sequence

0— TengQX — Teng(’)Zp — O0° @ Kerd,_1 — 0

This is still a Z,-split exact sequence. Lemma 3.2.8 shows that TengQX is a capped
O P-lattice, and that

(5.4.4) TengQx = Qz, + Kerd,_;

in Do (P), since Kerd,_1 and O° @ Kerd,_; have the same image in that group.
Summarizing the successive equalities 5.4.2 and 5.4.4 gives finally the following ex-
pression for TeIﬂQ3 Qx in Do (P)

TGHSQX = QZp + QZp—l 4+ ...+ QZl
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Now by lemma 5.2.3, for each i € {1,...,p}

Qz.= Y wp(U,V)Qpu
U,VE[SP]
U<pV
zY £0

The set Z) is non-empty if and only if there exists a subset A of P such that VAQ = A
and |A/Q| =1, and a map ¢ : A — X such that

b(vag) = ¢~ ¢ (a)

forallveV,a€ A, and ¢ € Q. If i < p, this implies V C @ (otherwise V@ = P, and
A =VAQ = AVQ = AP = P), and it is equivalent to find an element ¥(a) € XV"
for each a € A/Q. Thus Z} is non-empty if V C @ and if there are at least i cosets
a@ in P/Q such that XV" # (. Note that aQ = VaQ and P/Q = V\P/Q in this
case. Similarly V® = V? N Q. Hence there are at least ¢ double cosets Va@ such that
XVine £y

If i = p, then Z;/ is non-empty if there is a map ¢ from P to X such that ¢¥(vaq) =
g 1Y(a) forv € V,a € P,and ¢ € Q. If V C Q, the result is the same as before:
such an element ¢ exists if and only if for all @ € P, the set XV is non-empty, or
equivalently, if there are p double cosets Va@ such that XV £ §.

And if V € @, then VQ = P, and such a ¢ is defined by (1), which must be such
that ¢=1¢(1) = ¢(1) for ¢ € Q whenever there is an element v € V with vg = 1. In
other words ¢(1) € XV0Q and the set Z;/ is non-empty if and only if XV "9 is. Note
that |[V\P/Q| = 1 in this case.

Those remarks show that in Do (P)

P
TengQX :Z Z ,uP(U, V)QP/U—I- Z /LP(U, V)QP/U

i=1 U, Velsp] U, Ve[sp]
U<pV<Q U<PVLQ
|E(V,Q,X)|>1 |[E(V,Q,X)|=1

where E(V, @, X) is the set of double cosets Va@ in P such that XV""9 £ (. Switching
the summations on ¢ and U, V gives

TenyQx = Y |EV,Q, X)up(UV)Qpw+ Y, pp(U,V)Qpu

U, Velsp] U Velsp]
U<pV<Q U<PVLQ
|[E(V,Q,X)|=1

This second sum is also equal to

> IE(V,Q,X)|ur (U, V)P0
U,VE[SP]
U<pVZQ

since when V' £ @, there is only one double coset Va@. Finally, this gives

TenSQX: E |E(V;Q:X)|,UP(U:V)QP/U
U,VE[SP]
U<pV

and this completes the proof of the case |P : Q| = p, and the proof of theorem 5.1.2. 1
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6. Some elements in the Dade group

(6.0.1) Notation: [ denote by D (P) the subgroup of Do (P) generated by the relative
syzygies x , for non-empty finite P-sets X.

Note that the reduction morphism De (P) — Dy (P) restricts to an isomorphism
DE(P) ~ DY(P), since it is always injective, and since the element Qx of D$}(P) is the
reduction of the element Qx of D&(P). Moreover corollary 4.1.2 and theorem 5.1.2 show
that the operations of restriction, inflation, group isomorphism, and tensor induction
preserve Dg. Lemma 4.2.1 shows that deflation maps Dg to D,?. This could be used
to define a deflation map from DZ(P) to DE(P/Q)).

6.1. Linear relations in the Dade group

(6.1.1) Proposition: Let P be a p-group. Then for any subgroup @ of P, for any finite
P-set X, and any finite QQ-set Y, the following equalities hold in Do (P)

(6.1.2) 0= > up(U,V)|V\P/Q|Qpw
U,VE[SP]
U<pV
(6.1.3) TenfQy = — Y pp(U,V) [{ae V\P/Q| YV "9 =0} Qp/v
U,VE[SP]
U<pV
(614) QX = — Z ,uP(U, V)QP/U
U,VE[SP]
U<pV
xV=p

Proof: Equation 6.1.2 follows from the special case X? # ) of theorem 5.1.2, which
gives
TengQx =0 = 2: up (U, V) [VAP/Q| Qpju

U,VE[SP]
U<pV

Now if Y is any @-set, this formula and theorem 5.1.2 show that Teng Qy can also be
written as

TenhQy =— Y pp(U,V) Hae VAP/Q| YV " =0} Qpjv
U,VE[SP]
U<pV

and in the special case P = @, this gives for any P-set X
Qx =— Y pe(U,V)Qpu
U Ve[sp]
U<pV

xV=p

completing the proof. 0
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6.2. The element A(P)

(6.2.1) Notation: If P is a p-group, I denote by M (P) the disjoint union of the P-sets
P/Q, when @ runs through the set of mazimal proper subgroups of P, i.e. the set of
subgroups of P of index p. I denote by

A(P) = QM(p)

the corresponding relative syzygy in Do (P).
I denote by D5 (P) the subgroup of Do (P) generated by all the elements TengA(Q),
when @ runs through the subgroups of P.

(6.2.2) Remark: It is clear by construction that every proper subgroup of P has fixed
points on M (P). By lemma 3.2.4 and corollary 4.1.2, this shows that the restriction of
A(P) to any proper subgroup of P is zero.

Similarly, if @ is a normal subgroup of P, then the set M (P)? identifies with the
set M(P/Q). By lemma 4.2.1, this shows that Defllz/QA(P) = A(P/Q).

Finally, it is clear that if ¢ : P — P’ is a group isomorphism, then the image of
A(P) by ¢ in Do (P) is equal to A(P'), since ¢ induces an isomorphism from M (P)
to M(P').

(6.2.3) Proposition: Let P be a p-group. Then
A(P) ==Y u(U,P)Qpu
UcP

where p(U, P) is the Mébius function of the poset of subgroups of P.

Proof: Formula 6.1.4 gives

AP)== Y up(U V)
U,VE[SP]
U<pV
M(P)V =p

Now M(P)V is empty if and only if V = P, and
A(P)== > up(U, P)Qpu
UE[SP]

But pp (U, P) is the reduced Euler-Poincaré characteristic of the “interval” 1U, P[p of
classes of proper subgroups of P which are strictly greater than U in sp. If U does not
contain the Frattini subgroup ®(P) of P, this set is contractible, via the maps

Vs V.O(P) — U.®(P)

Now it suffices to sum over the classes of subgroups U containing ®(P). Such subgroups
are normal in P, and U, P[p is isomorphic to the ordinary poset U, P[ of proper
subgroups of P containing U as a proper subgroup. This poset has Euler-Poincaré

characteristic u(U, P) equal to (—1)"]9(75) if P/U is of order p". If U 2 ®(P), the poset
JU, P[ is contractible, by the same argument as above. Finally

A(P) ==Y u(U,P)Qpu
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as was to be shown. 0

(6.2.4) Remark: It is clear from the definition that the Frattini subgroup of P acts
trivially on M (P), and the element A(P) should be inflated from the quotient P/®(P).
This is indeed the case, since if u(U, P) # 0, then U D ®(P), and Qp,y is inflated from
P/®(P). This shows in particular that if p = 2 and P is cyclic, then A(P) = 0, since
Do (Z.)2Z) = 0.

(6.2.5) Corollary: The element A(P) has infinite order in Do (P) if P is not cyclic,
it has order 2 if p is odd and P is cyclic and non-trivial, and it is zero if P is trivial or
cyclic of even order.

Proof: Since the natural reduction morphism Do (P) — Dy (P) is injective (see [15]
Proposition (29.4)), and since the reduction of Qx € Do (P) is Qx € Di(P), it suffices
to consider the case O = k. Now A(P) = Infg/q)(P)A<P/<I>(P)), and deflation is a
section of inflation. In particular, inflation is injective, and it suffices to consider the
case where P is elementary abelian.

In this case, the elements Qp/q, for P/@Q not cyclic, are linearly independent in
Dy (P), by a theorem of Dade ([10]). In particular if P is not cyclic, the element Qp/q
has infinite order, and it has order 2 if P is cyclic of order p > 2.

Now the element 2A(P) is a linear combination of elements Qp,q, for P/@Q non-
cyclic, and the coefficient of Qp/; is equal to 2u(1, P), which is non-zero. Thus if P is
not cyclic, the element A(P) has infinite order.

And if P is cyclic of order p > 3, then A(P) = Qp/; has order 2. Finally, if | P| < 2,
then Dg(P) is the trivial group. 0

6.3. Characterization

The element A(P) is always inflated from P/®(P). When P is elementary abelian,
it can be characterized as follows:

(6.3.1) Proposition: Let P be an elementary abelian p-group. Then:
1. There is a unique element A(P) in DE(P) such that

A(P) = pA(P)
2. Let D, (P) denote the subgroup of Do(P) defined by

Do(P) = ﬂ KerResg
Qcr

where Q runs through the proper subgroups of P. Then Dg(P) is the subgroup of
Do (P) generated by A(P).

Proof: Assertion 1) is a consequence of the expression of A(P) given in proposition
6.2.3:
A(P) == U, P)Qpu
ucp

Since Qp,p is zero, the summation runs through proper subgroups U of P. If U has

index p” in P, with n > 2, then the coefficient u(U, P) = (—1)"p(2) of Qpyy is a
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multiple of p. And if |P : U| = p, then the element Qp;y has order 2 in Do (P) if
p is odd, or it is zero if p = 2. In any case it is equal to pQp,y. The existence of

A(P) follows. The unicity is also clear, since Do (P) has no p-torsion if P is elementary
abelian (even for p = 2, since Do (P) is torsion free in this case). Assertion 1) follows.

Now for assertion 2), first observe that A(P) is an element of D, (P): indeed, by
remark 6.2.2, for any proper subgroup @ of P

pReSSA(P) = RGSSA(P) =0
Since Do (Q) has no p-torsion by Dade’s theorem, it follows that
RGSSA(P) =0

as required. R
I will prove that A(P) is a generator of D, (P) by induction on |P|. First observe
that if @ and R are subgroups of P, then by corollary 4.1.2

RespQp/q = Qrestp/o
Since moreover Resh P/Q is a union of |P : QR| copies of R/RN Q, it follows that
RGSEQP/Q = QR/ROQ

Now by Dade’s theorem (see [10]), the elements Qp/q for Q@ C P generate Do (P). An
element u = ZQCP nQQp/q is in Dy (P) if and only if for any proper subgroup R of P

0= Z nQQR/RnQ
Qcr

Moreover the elements Qp/g, for R/S non-cyclic, are linearly independent in Do (P),
and the elements Qg g, for |R/S| = p, are elements of order 2 if p is odd, and indepen-
dent over 5. If p = 2, these elements are equal to zero.

It follows that v € D, (P) if and only if for any pair of subgroups S C R C P (with
proper inclusions)

=0 it |R/S| > p?
(6.3.2) > ”Q{ =0 mod. 2 if |R/S|=p>2
QCP
QNR=5
If |P| < 2, then Do(P) = 0 and there is nothing to prove. If |P| = p > 2, then
Do (P) = Do (P) = Z/2Z, and there is nothing to prove. If |P| = 4, then D, (P) =
Do (P) is isomorphic to Z, generated by

1 =~ A(P) = ~A(P)

If |P| = p? > 4, then condition 6.3.2 for a given subgroup R of index p in P and S = {1}
gives
ny + Z ng =0 mod. 2

|Ql=p
Q#R

which is equivalent to
ng =nj + E ng mod. 2
|Ql=p
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Hence npg is independent of R modulo 2, equal to m, say. Therefore
m=n;+(p+1)m=n; mod. 2

Finally u is in D, (P) if and only if it can be written

u=n1(Qpy + E Qp/q) = n1(Qpj1 — E Qp/q)
|P:Q|=p |P:Q|=p

But ~
A(P)=-Qpn+ Y, g
|P:Q|=p
hence assertion 2) holds in this case.
The last special case is |P| = p®. For any subgroup R of index p in P, condition
6.3.2 for S =1 gives

(6.3.3) ni+ Y ng=0
Ql=p
QZR

Summing these relations for subgroups R containing a given subgroup Qo of order p
of P gives

(p+ Dny + Z png =0
|Ql=p
Q#Q,

Adding ng, to both sides gives

(p+Dni+ Y png =ng,
|Ql=p
The left hand side is independent of Qg, thus ng, is independent of (g, and equal to

m, say. Equation 6.3.3 gives
ny+p’m =0

Thus nq = —p?m. If p = 2, then

u = m(—pQQP/l + Z QP/Q) = —mA(P)
|Ql=p

since Qp/r = 0 for |P : R| = 2. Thus I can suppose p odd.
In this case for a subgroup R of index p in P, containing a subgroup S of order p,
condition 6.3.2 gives
ns + E ng =0 mod. 2
|Ql=p*
QDS
Q#R

Adding ng to both sides gives also, since ng = m

(6.3.4) m + Z ng =ng mod. 2

|Ql=p*
QDS
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It follows that g = > ng is independent modulo 2 of S, since for two distinct
IQl=p?
QDS

subgroups S and S’ of order p

ZS =MNg s —m= lils mod. 2

Let [ denote this common value. Equation 6.3.4 shows then that ng is independent
of R modulo 2, and that

m+(p+1)l=m=ng mod. 2

thus also ng = —m modulo 2. Finally

u= —p2me/1 +m Z Qpjg —m Z Qp/r = —mA(P)
|Ql=p |R|=p>

and assertion 2) holds.

For the general case |P| = p? > p*, I observe first that if Q and R are subgroups
of P, then by lemma 4.2.1 DefngQp/Q is equal to zero if R € @, and to Q(p/Rr)/(qQ/R)
if R C Q. Since moreover

Def%

Q/RResg = ResP/RDefg/R

QIR
it follows that Deffi/Ru €D, (P/R) ifu€ Dp(P). But if u= )" ngQp/q, then
Qcr
Defp/ptt = Y, nQQp/m)/(Q/R)

RCQCP

If R is non-trivial, then by induction hypothesis, there is an integer mpg depending only
on R such that Defg/Ru = ZEA(P/R), i.e. after inflating to P

mp
Z nQQP/QIT Z @, P)Qpyq

RCQCP RCQCP

It follows that if |P/Q| > p?, then ng = %M(Q,P), and this equality is only a
congruence modulo 2 if |P/@Q| = p > 2. This must hold whenever R is a non-trivial
subgroup of Q. Thus if R C R’ are non-trivial subgroups of index at least p? in P, then

mp

mp
nRr = _N(Rlap) = —/L(R/:P)
p p
thus mr = mps since p(R', P) # 0. Since the poset of non-trivial subgroups of index
at least p? is connected if |P| > p*, the value of mpg is constant on this poset, equal

to m, say. Moreover, if () is a subgroup of index p > 2 in P, containing a non-trivial
subgroup R of index at least p?, then

ng = T/,L(Q,P) mod. 2
p
Hence there is an integer m such that for any non-trivial subgroup @ of P

ng = %ﬂ(Q,P)
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this equality being replaced by a congruence modulo 2 if |P: Q| = p > 2.
Now fix a subgroup R of index p in P. Condition 6.3.2 for S = {1} means that

ny + Z ng =20
|Ql=p
QZR

Thus m
ny = — Z _IU(QJP)

|Ql=p
QZR

Now if P has order p?, there are p~! subgroups @ of order p not contained in R, and
for each of them p(Q, P) = (—1)d_1p(d;1). It follows that

ny = _%(_1)d_1pd_1p(d;1) = (—l)d%p(g) = %y(l,P)

Thus ng = %,u(Q, P) for any subgroup @ of P, and
m ~
u= > —u(@Q,P)Qpjg = —mA(P)
QCP

This completes the proof. 0

It is convenient to extend the definition of A(P) to arbitrary p-groups, as follows:

(6.3.5) Notation: If P is a (non necessarily elementary abelian) p-group, I denote by
A(P) the element of DX(P) defined by

A(P) = Inffi/@(P)A(P/q)(P))

6.4. Linear independence
The elements TengA(Q) are almost linearly independent in the Dade group:

(6.4.1) Proposition: Let P be a p-group. For Q € [sp], let ng € Z, such that
(6.4.2) > neTengA(Q) =0
QE[sp]

in Do (P). Then
1. If Q is not cyclic, then ng = 0.
2. If Q 1s cyclic, non-trivial, and if p is odd, then ng € 27Z.

Proof: Let R be a maximal element of [sp] such that ng # 0. By Mackey’s formula,
the restriction of 6.4.2 to R is

Z Z nQTengnxQxResngA(Q) =0
Qe[splzeR\P/Q
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Since the restriction of A(Q) to any proper subgroup of @ is zero, the only terms left
correspond to R C (). But if ) is not equal to R”, then ng = 0 by maximality of R.
Finally, this gives

nR|Np(R) : R|A(R) =0
Thus A(R) is a torsion element in Do (R). This can only happen if R is cyclic, by
corollary 6.2.5. This shows 1).

Now ng = 0 if @ is not cyclic. Let R be a maximal subgroup of P such that
ng ¢ 27. The same argument shows that

nR|Np(R) : Rl € 27
If p is odd, this gives ng € 27 as required. 0
(6.4.3) Remark: Assertion 2) is definitely wrong if p = 2: recall that A(Q) = 0if @ is

cyclic and p = 2!

(6.4.4) Corollary: Let P be a p-group. Denote by nc(P) the number of conjugacy
classes of non-cyclic subgroups of P, and by &é(P) the number of conjugacy classes of
non-trivial cyclic subgroups of P. Then:

1. If p is odd i
D5 (P) ~ 72WP) g (7 )22)%F)

2. Ifp=2
D5 (P) ~ z"<P)

6.5. Generation

The following proposition shows that up to a power of p, any relative syzygy is a
linear combination of elements TengA(R), for subgroups R of P:

(6.5.1) Proposition: Let P be a p-group, and X be a non-empty P-set. Then

[PIOx =— > |RIu(R,Q)Teny A(Q)
RCQCP
XE2£0

Proof: Let Ex denote the right hand side of the equality of the proposition, i.e.

Ex=— Y [Rlp(R Q)TengA(Q)
RCQCP
XP2p

Let @ be a subgroup of P. Then by formula 6.1.3

TengAQ)=— > pp(U,V) {ae V\P/Q | M(Q)V""? = 0}| Qp/v
U Ve[sp]
U<pV
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Now M(Q)VGOQ = () is equivalent to @ C V¢, and in this case V.a.Q = V.%Q.a = V.a.
Hence, summing now for @ € P/V instead of a € V\ P gives

(6.5.2) Ten{A(Q) = — > e (U, V)Qpu
U,VE[SP]
U<pV
a€P/V, QCV

Suppose first that X is isomorphic to a disjoint union of a single transitive P-set P/S
for some subgroup S of P. Then X% is non-empty if and only if (P/S)® is, and

Ex=Epis=— Y. |R[u(R, Q)TenfA(Q)
RCQCP
(P/S)7#8

Now (P/S)® +# ) is equivalent to R <p S. Using equation 6.5.2
Ex= Y [RuRQ) Y up(U,V)Quw
RCQCP U, Velsr]
R<pS U<pV
a€P/V,QCV

Changing the order of summations gives

Ex= Y wp(UV) Y, D IRl X wuRQ))Qwu

UVelsp] a€P/V RCP RCQCavV
U<pV R<pS

The inner summation on @ is zero unless R = *V. Since R <p S, this gives

Ex= Y, wp(UV)P/VIVIQpuw =IPl Y, wp(U,V)Qpu
U,Ve[sp] U, Ve[sp]
U<pV<pS U<pV<pS

Now the summation on V for a given U is zero, unless U =p S, hence
Ex =|PQps

Moreover Qx = Qp;s in this case, by lemma 3.2.7. Hence the formula of the proposition
holds if X is isomorphic to a union of copies of a single transitive P-set.

As in the proof of lemma 5.2.3, the proof of the general case of the proposition can
be completed by induction on the cardinality of the set

F(X)={Q € [sp] | X? # 0}

Clearly, both sides of the equality of the proposition depend only on F(X).

If |F(X)| =1, then P acts freely on X, and X is a disjoint union of copies of P/1.
The formula holds in this case. And if |F(X)| > 1, choose a maximal element S of
F(X). Then X can be written as a disjoint union Y U Z, where Z is a disjoint union of
copies of P/S, and Y = 0).

If Y = 0, then X = Z is a union of copies of P/S, and the formula holds. And if
Y # 0, then by lemma 5.2.1

Qx = Qy +Qz — Qyxz
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But |F(Y)] < |F(X)] since F(Y) C F(X) and S € F(X)—F(Y). Similarly since
F(Y x Z) C F(Y), I have |[F(Y x Z)| < |F(Y)| < |F(X)|. By induction hypothesis,
the proposition holds for Y and Y x Z. It also holds for Z since Z is a union of copies
of P/Q. Thus

|PIQx = By + Ez — Eyxz
But as at the end of proof of lemma 5.2.3, the right hand side is equal to Fy,z = Ex,
and this completes the proof. 0

The following special case seems of interest (see remark (4.14) of [5]):
(6.5.3) Corollary: Let P be a p-group. Then in Do (P)

|PIQpp== Y [VIp(V)Teny A(V)
VEay(P)
where a,(P) is the set of non-trivial elementary abelian p-groups of P.

Proof: This is just the case X = P/1 of the proposition. Then XY # @ implies
U = {1}, and then g(1,V) # 0 implies that V is elementary abelian. 0

7. Structure of Dp(P): partial results

7.1. Elementary abelian sections

The elements TengA(Q) of section 6.2 provide tools to study the structure of Do (P)
as abelian group. Unfortunately, they are not enough to elucidate this structure com-
pletely. The main problem here is the same problem we already encountered with
J. Thévenaz in [5]: we have almost no information on the subgroup Ko (P) of Do (P)
defined hereafter:

(7.1.1) Notation: Let P be a p-group. If R4@Q) are subgroups of P, I will say that
Q/R is a section of P. I will denote by DefresS/R the map from Do (P) to Di(Q/R)
defined by

Defresg/R = Defg/R ° ResﬂeD

Similarly, I will denote by Teninfg/R the map from Do (Q/R) to Do(P) defined by

s R
Tenme/R = TenQ o Infg/R

I denote by Ko(P) the intersection of the kernel of the maps Defresg associated to
elementary abelian sections FE of P.

Recall from [5] that K (P) is a finite subgroup of Dy (P). Clearly for any elementary
abelian section E of P, the diagram

Do(P) —— Dy (P)
Defresg [ Defresg

where the horizontal map p is the reduction morphism, is commutative. Hence p maps
Ko (P) in K (P). Since p is injective, it follows that Ko (P) is a subgroup of Ky (P),
hence it is a finite group. Actually Kj(P) is conjecturally zero if p is odd (and it is
known to be non-zero in some cases if p = 2).
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7.2. Connection with the Burnside ring
In [5], we showed that there is an exact sequence
0+ QDg(P) - QB(P)— QRg(P) =0

where B(P) is the Burnside ring of P, and Rg(P) the ring of rational representations
of P. This sequence is moreover functorial in P, in the sense of [3]. In particular the
inclusion Q Dg(P) — QB(P) is compatible with restriction to subgroups, and changes
tensor induction into ordinary induction of P-sets. The image of this inclusion is the
subspace generated by the idempotents 65 of B(P) indexed by non-cyclic subgroups @
of P.

It is easy to see that the subspace of elements u € Q B(P) such that Resgu =0 for
any proper subgroup @ of P is generated by the idempotent eg. Thus the image of
A(P) in QB(P) should be proportional to eb.

Now the expression of eg is

€p

|1?| S 1QIu(Q. PYP/Q

QCP

(7.2.1) Lemma: The element pek lies in B(P), i.e. for all Q C P, the expression
L@ P)

|P:Q
Proof: Indeed, in the expression of e, the only non-zero terms correspond to sub-
groups @ containing ®(P). Now if @ D ®(P) is such that |P: Q| = p*

15 an inleger.

@ p) = 1) = )

Pl
If k=0o0rk > 3, then (’;)—kzo, and if £k = 1 or kK = 2, it is equal to -1. Thus
p%u(Q, P) is always an integer, and the lemma follows. O

Since multiplication by P/Q in B(P) is restriction Resg followed by induction Indg,
this lemma shows that it should be of interest to consider the following operation:

(7.2.2) Notation: Let P be a p-group. I denote by tp the endomorphism of Do (P)

defined by
_ N Pu(@,P)
& Pql
QCP 1P
If R is a subgroup of P, I denote by (R, P) the integer defined by

o pu(S, P)
o(R, P) = |P :S]
SCR

Teng Resg

Note that a(R,P) = 0 if R 2 ®(P), and that (R, P) = a(R/CD(P),P/CD(P))

otherwise.
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(7.2.3) Lemma: Let P be a p-group.
1. If R is a subgroup of P, then

7p(Qp/r) = —a(R, P)A(P)

2. The image of D (P) by tp is equal to the subgroup of Do (P) generated by A(P).
Proof: If R is a subgroup of P, then

pu(Q, P)

P P
WTGHQRGSQQP/R

p(Qp/R) =
QCP

By corollary 4.1.2 and theorem 5.1.2
TenfResoQpr = Y pp(U,V) Ha € VAP/Q| (P/R)V'"? # 0} Qpju

U,VE[SP]
U<pV

Thus 7p(Qp/g) is expressed as a double summation. Summing first on U and V', next
on @) gives

o Qep) = Y. el V)BR, V)

U,VE[SP]
U<pV
where G(R, V) is defined by
p
s vy = ¥ 2 fee Qv ng <p 1)
Qcp '
This is also equal to
pu(Q, P) QN Ve
BIRVY= D 55 ar D S
ZPal & e
QNVe<pR
Thus
plS|
BRV)= V] > w@ P
a€P QCP
S<pR Qnva=s
It is well known that the sum on @ is zero if V* # P i.e. if V # P. Moreover if V = P
plS| PH(S, P)
acP 5<pR
5<pR

Note that u(S, P) is zero if S 2 ®(P). And if S D ®(P), then SaP,and S <p Ris
equivalent to S C R. This gives finally

S p
s p) = 3 M) —atw )
SCR :

Moreover

7p(Qp/r) = (R, P) Y up(U, P)Qpu
UE[SP]
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But as I already mentioned in the proof of proposition 6.2.3, the coefficient up (U, P) is
equal to p(U, P). Thus
7p(Qp/r) = —a(R, P)A(P)
and assertion 1) follows.
It remains to check that A(P) isin 7p (Dg (P)): but the element A(P) isin Dg (P)

and

|(PQ:’£|)TengResgA(P) = pA(P) = A(P)

(7.2.4) mp(A(P)) =p
ocrp

since the restriction of A(P) to any proper subgroup of P is zero. Assertion 2) follows. 0

(7.2.5) Corollary: Let P be an elementary abelian p-group. There erists a well defined
linear form Ap from Do (P) to Z if |P| > p?, or to Z/2Z if |P| = p > 2, such that for
any element u of Do (P)

p(u) = Ap(u)A(P)

Proof: This is clear since if P is abelian, then Do (P) = DZ(P), and since A(P) has
infinite order if P is non-cyclic, and order 2 if P is cyclic of order p > 2. 0

With this definition, lemma 7.2.3 shows that Ap(Qp;r) = —a(R, P). More gener-
ally:

(7.2.6) Proposition: Let P be an elementary abelian p-group (of order at least 3) and
X be a non-empty finite P-set. Then

pu(Q, P)

S T

QCP
XQ#£p

Proof: By lemma 5.2.3, and since P is abelian

Qx= > pU, V)

UCVCP
XV £0
Thus
pu(W, P)
Ap (€ = - UV LI S
UCVCP WCU
XV #0
pu(W, P)
= - _— uv
> Pl > wUv)
WCVCP WCUCV
XV £0
The sum on U is zero, unless W = V', and the proposition follows. 0

Though it is not really necessary, I would like to indicate how to compute the integers
a(R, P). By the above remarks, it suffices to consider the case where P is elementary
abelian:
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(7.2.7) Lemma: Let P be an elementary abelian p-group, and R be a subgroup of P.

Then
_ PU(R, P)

a(R, P) = meﬂ

where mp g is defined as in lemme 16 of [3] by

1
mP,R:m Z | X|u(X, P)
X.R=P
Let |P| = p? and |R| = p".
o Ifd=1, thena(R,P)=—-1ifr=0and a«(R,P)=p—1ifr=1.
o Ifd>2, thena(R,P)=0ifr>d—1 and

d—r—1

a(R, P) = (=1 p(" ) (1 = p ) (1 - ptB) (1t
if r <d-—2.

Proof: By definition

a(R,P) = %52'5'”(5’ P)

By classical formulae, if S C R, then pu(S, P) can be computed as

u(S, P) = Z (S, R/)/L(R/,P)

R'NnR=S
R R=P
This gives
P pu(RR,P) 1
ok P) =L 3wk, P, P)rA R = (AL LS p)
1P| o p |P: Bl “|P| o5 p

And the first formula holds. The other ones are a consequence of the computation of
mp g (see formula (4.8) of [5]):

o If r =0, then mp g = 1.
e Ifd=r=1,thenmpr=1-1/p.
o Ifd>2 then mpr=0ifr>d—-1, and

mpr=(1-p"?)(1-p" %) .. .(1-p"")

ifr<d—2.

Moreover if |P| = p? and |R| = p”, then pu(R,P)

d—r—1
|P:R| )

(~1)t-rp(T

O

(7.2.8) Remark: Note that in the case d = 1 the value Ap(Qp/g) is the image of
a(R, P) in Z/2Z. Hence it is equal to 1 if R = 1, and to 0 if R = P since p is odd in
this case. This is consistent with the equality Qp;p = 0.
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(7.2.9) Lemma: An element u of Do (P) lies in Ko (P) if and only if for any subgroup
Q of P
TQ/¢(Q)(Defresg/q>(Q)u) =0

Proof: One way is obvious. Now if TQ/¢(Q)(DefresS/q,(Q)u) = 0 for any subgroup

of P, I will prove by induction on |@]| that Defresg/(p(Q)u = 0, and the lemma will
follow, since for any elementary abelian section E = @/R of P

Defresg = Defij o Defresg/q)(Q)

The result is clear if |@Q] = 1. If it holds for groups of order less than |Q|, set v =
Defresg/q)(Q)u. Let R be a subgroup of @ of index p. Then R D ®(@Q), and

Resg?q)E %v = Defqu)E %DefresR/q)( ru=70

since |R| < |@|. This shows that v € D, (Q/@( )) Hence there exists an integer m
such that v = mA (Q/@(Q)) Now

0= T@/@(Q)(Defresg/¢(Q)u) = 19/2(Q) (mA (Q/@(Q))) =mA (Q/@(Q)) = pv

Thus v = 0 as required, since Do (Q/@(Q)) has no p-torsion. 0

7.3. Tensor induction and 7p

In the Burnside ring, there is a Frobenius formula
X Ind§y = Indf) ((ResX).v )

In particular in Q B(P), the product of ef with any element induced from a proper
subgroup of P is zero. Hence it should be possible to prove the following:

(7.3.1) Lemma: Let P be a p-group, and @ be a proper subgroup of P. Then

TP oTeng =0

Proof: Let u € Do (@). Then

pu(R, P)

PR TenﬁResETengu

TP (Tengu) =
RCP

Applying Mackey’s formula gives

Pu(R P) P
TenQu Z R Z TeanzQ’”Res%mQu
RCP : c€R\P/Q
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Moreover
Tenﬁan‘”Resngu = ‘”Tenng Resngu = Tenng Resgmqu
since P acts trivially on Do (P). Moreover if p(R, P) # 0 then R D P and R<4 P. Thus

pu(R, P)

Tp(Tengu) = ﬁu’ : R.Q|Ten£nQReS%nQu
RCP '
(R,P)|RN
Z pal ) Q|T HEOQResgnQu
Ach Q)

Grouping together the terms for which RN @ is a given subgroup S of @) gives

plS| PRes?
Tp(Tengu): E — g (R, P))Teng Resg u
ng|Q|( Ach )
RNQ=S

If @ is a proper subgroup of P, then the sum on R is zero, and the lemma follows. []

7.4. Some subgroups of Do (P)

Lemma 7.2.9 leads to the following:

(7.4.1) Lemma: Let P be a p-group and u be an element of Do(P). Then u lies in
D5 (P) + Ko (P) if and only if for any subgroup R of P there is an integer ng such
that

Tryo(r)(Defresgjoryu) = nrp |Np(R) : R| A(R/@(H))

Proof: The element u lies in D5 (P) + Ko (P) if and only if there exists integers ng
for subgroups @ of P such that

Z nQTenSA(Q) € Ko(P)
QE[sp]

It is equivalent to require that for any subgroup R of P

(7.4.2) Defresg/q)(R)u = Defresg/q)(m Z nQTengA(Q) € Ko (P)
QE[sP]

Let S be any normal subgroup of R. Then by Mackey’s formula
DefresE/STengA(Q) = Defg/SRengengA(Q)

= E DefE/STenganxRes%mQ A(Q)
z€R\P/Q

Since the restriction of A(Q) to any proper subgroup of @ is zero, this is also

DefresE/STengA(Q): Z Defg/STengyA(Qy)
yeP/R
QVCR
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since obviously A(Q)Y = A(QY). Now the element A(QY) is inflated from QY/®(QY),
thus by corollary (3.11) of [5]

R/S v.5/8 v
Defg/sTengyA(Qy) = TenQ{,‘S/Slsogy/Q/mSDefgy/QynsA(Qy)

(Actually corollary (3.11) of [5] only deals with the case @ = k, but clearly one can
reduce everything from O to k before taking deflations.) Finally by remark 6.2.2 this
gives
Defresg/STengA(Q) = E TenSﬁ?S/SA(Qy.S/S)
yeP/R
QYCR

Suppose now that R2/S is elementary abelian. Applying 7g/s gives by lemma 7.3.1 and
equation 7.2.4

TR/SDefresg/STengA(Q) = Z TR/S (A(R/S)) =p E A(R/S)
yeEP/R yeP/R
QY.S=R QY.S=R

If moreover S = ®(R), this is zero unless @ is a conjugate of R. Finally
(TA3)  ayun Defresham Tenk A(R) = p|Np (R): R A(R/®(R))
Applying this in equation 7.4.2 gives

i/ Defresf ragry (u) = e p | Np(R) : B A(R/(R))

as was to be shown. 0

Of course, this condition is void if |R/®(R)| < 2. Suppose now that u = |P|v,
for v € Do(P). Since the image of Tr/e(r) is generated by A(R/@(R)), and since
m is an integer if R is non-trivial, there is an integer ng such that

1P|

p|NP(R);R|TR/<I>(R) efresp/g(r) (V) = nr (R/ (R))

More precisely, this integer is equal to

1P|

n = -
B pINp(R):R|

AR/ ®(R) (Defresg/q)(R)v)

(this equality being a congruence modulo 2 if R is non-trivial and cyclic of odd order).
These remarks lead to the following notation:

(7.4.4) Notation: Let P be a p-group. I denote by s the set of conjugacy classes of

subgroups R of P such that |R/®(R)| > 3, and by [sp] the set [sp] N sp. [ denote by
Yp the endomorphism of Do (P) defined by

P
vp(v) = ) }W}MARM(R)(Defresgm(R)U)TengA(R)
Re[s%] .
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Note that by definition of A(Q), this is also

P -
(7.4.5) Yp(v) = Z WR%.MAR/MR)(Defresg/q,(R)v)TengA(R)
Re[s] ’

Now by definition of the maps Ar/e(r) and of the elements A(R), this is also

1P| -
vp(v)= > m%mﬂfﬁ/@(mTR/<I>(R)DefreS£/<I>(R)(”)
RE[SP]

(where the summation may run over the set [sp] — {1}). Finally, the map ¢p is equal
to

|Plp(@, R)

. P P
(746) 1/)1;. = Z mTenlan/q,(R)DefresQ/q)(R)
RE[SP]
®(R)CQCR
(7.4.7) vp= Y |QIu(Q, R)Teninfqq g Defresty o
B(R)CQCR

(7.4.8) Proposition: Let P be a p-group. Then

1. The image of Yp is contained in D5 (P).

2. The kernel of ¢p is equal to Ko (P).

3. The image of Yyp — |P|Id is contained in Ko(P).

4. The kernel of Yp — |P|Id contains DE(P).
Proof: Assertion 1) follows from the definition of ¢p. Assertion 2) follows from
lemma 7.2.9, and from proposition 6.4.1 and corollary 7.2.5. Assertion 3) follows from
the proof of lemma 7.4.1 and from the construction of ¢¥p.

For assertion 4), by linearity, it is enough to prove that if X is a non-empty P-set,

then
vp(Qx) = |P|Qx

Now by expression 7.4.5
P -
Yp(Qx) = E |7|.)\R/¢(R)(Defresg/q)(R)QX)TengA(R)
repy VP (R): B

By corollary 4.1.2 and proposition 7.2.6

pu(S, R)
Arfom (Defrest o @x) == 30 Hprer
®(R)CSCR

X520

42



It follows that

1P| Pu(S, ).\ p;
Q = - _— —— " Tenr,A(R
wP( X) Z |NP(R)R| Z |RS| ellp ( )
Re[sh] @(R)CSCR
X5£0
_ 1P| PK
= > |S|pu(S, R)Tenp A(R)
. |Np(R)]|
Re[sp]
®(R)CSCR
X520
= — Y ISIu(S, R)Teng A(R)
SCRCP
EES}
XS£0

since pA(P) = A(P), and since p(S, R) = 0if S 2 ®(R). Now assertion 4) follows from
Proposition 6.5.1, and from the fact that A(R) =0if R € sp — sp. 0
(7.4.9) Proposition: Let P be a p-group. Then:

1. The subgroup Dg(P) is generated by the elements Qp;q, for Q C P.

2. One has |P|DE(P) C D5(P) C DE(P). The quotient group DZ(P)/D5(P) is
finite, with exponent dividing the order of P.

3. One has |P|Do(P) C DA(P) + Ko(P) C D&(P) + Ko(P) C Do(P). The
quotient groups Do (P)/ (Dé(P) + Ko (P)) and Do (P)/ (Dg (P)+ Ko (P)) are
finite, with exponent dividing |P)|.

4. The intersection D5(P)N Ko (P) is zero.

5. The intersection DE(P)N Ko(P) is finite, with exponent dividing the order of P.

6. The torsion part of Do(P) is equal to

DG"* (P) = (Dg)""* (P) & Ko (P)

7. The torsion part of D&(P) has exponent dividing 2|P|.

8. There is an isomorphism

Do (P) ~ D5(P) ® Ko(P)

Proof: Assertion 1) is a trivial consequence of lemma 5.2.3. Assertion 2) follows from
proposition 6.5.1, and from the fact that DS (P) is finitely generated.

Assertion 3) follows from assertions 1) and 3) of proposition 7.4.8.

Now if u € DZ(P) N Ko(P), then ¢p(u) = 0 = |P|u, by assertions 2) and 4) of
proposition 7.4.8. This proves 5), and 4) follows, since moreover D5 (P) has no p-torsion
by corollary 6.4.4.

The restriction of ¢p to the torsion subgroup of Do (P) gives an exact sequence

0— Ko (P) — D™ (P) X2(D5)!"(P)
Moreover, the group (D35)!°"*(P) is a 2-group, which is trivial if p = 2. Now the

restriction of ¥p to this subgroup is equal to |P|Id, and this is always the identity of
(D5)tm*(P). Hence the previous exact sequence is split, and this proves 6).
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If w is a torsion element of Do (P), then 2u is an element of Ko (P), since 2Do (Q)
is a free group if @ is elementary abelian. Thus 2u € DZ(P) N Ko (P), and 2|P|u = 0.

Finally, since the restriction of ¥p to (D5)!°"*(P) is equal to the identity, the map
¥p induces an injection

ip : Do(P)/ ((D§)""*(P) & Ko(P)) = D§(P)/(D§)""*(P)

and the quotient group is finite. This shows that the image of ip is a free Z-module
of rank equal to the number nc(P) of conjugacy classes of non-cyclic subgroups of P.

Thus
Do (P) ~ 7™P) @ (D§)'"* (P) & Ko (P)
proving assertion 8). 0

Proposition 7.4.9 gives a new proof of theorems A and B of [5]:

(7.4.10) Corollary: Let P be a p-group. Then

1. The dimension over Q of QDo (P) is equal to the number of conjugacy classes of
non-cyclic subgroups of P.

2. If p is odd, the quotient of the torsion part of Do (P) by Ko (P) is an Fa-vector
space of dimension equal to the number of conjugacy classes of non-trivial cyclic
subgroups of P.

Proof: Both assertions are clear, since tensoring by @ kills all finite groups. 0

(7.4.11) Remark: Actually, the previous results also provide bases for those vector
spaces: the elements TengA(Q), for non-cyclic elements @ of [sp], form a Q)-basis of

QDo (P). Similarly, the elements TenSA(Q), for non-trivial cyclic elements @ of [sp],
form a basis of the Fy-vector space of assertion 2).

7.5. Inverting p

(7.5.1) Notation: If R is a commutative ring, and P is a p-group, I denote by RDo (P)
the tensor product

RD@(P)IR®Z Do(P)

and similarly I set RD%(P) = R®y DE(P), RD5(P) = R®yz D5(P), and RKo(P) =
R®z Ko(P). If u € Do(P), I denote by u the element 1 @ u of RDo(P), and I still
denote by Resg, Teng, Infg/R, Defg/R, Isogl the R-linear extensions to RDp of the
corresponding operations defined on Do .

(7.5.2) Proposition: Let R be a commutative ring in which p is invertible. Let
Tp = ﬁ’l/}]). Then for u € Do (P)

1 ~
mp(u) = Z %AQ@(Q)(Defresg/q)(Q)u)TengA(Q)
L INP(Q) - Q|
QElsk]
The map wp is an idempotent, with image RD5(P) and kernel RKo(P). Thus

RDo(P) ~ RD5(P) @ RKo(P)
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and this decomposition is functorial in P, in that m1p commutes with restriction, tensor
induction, inflation, deflation, and group isomorphisms.

Proof: This is just a reformulation of proposition 7.4.9: tensoring with R kills all finite
p-groups since p in invertible. Thus

RDo(P) = RD5(P)® RKo(P)

Now 7mp = ﬁlﬁp. Since the image of ¥ p is contained in the kernel of p — |P|Id by

proposition 7.4.8, it follows that ¥% = |P|¢p, hence mp is an idempotent, with image
RD5(P) and kernel RKo (P).

It it easy to see that if ' : Do(P) — Do/ (P’) is one of the operations of the
proposition (note that the ring may change from O to O’ = k in the case of deflation),
then

F(RKO(P)) C RKo(P') and F(RD(%(P)) C RDA.(P')

this last inclusion coming from the equality RD5(P) = RDZ(P), and from corollary
4.1.2 and from theorem 5.1.2. Now if u € RDo (P), then

u=mp(u)+ (1 — wp(u))
is the decomposition of u as sum of an element of RD5 (P) and an element of RKo (P).

Thus
Flu) = F(wp(u)) + F(l - wp(u))

This is the decomposition of F(u) in Do/ (P’) as sum of an element of RD5,(P') and
an element of RKo:(P’). Hence in particular

Tp (F(u)) = F(ﬂp(u))

and I’ commutes with 7p. 0

So there should be formulas expressing the effect of the natural operations on the
elements A(P). The effect of restriction, tensor induction, group isomorphism and
deflation can be deduced from the previous computations. The effect of inflation follows
from the following proposition:

(7.5.3) Proposition: Let P be a p-group and R be a normal subgroup of P. Then

|Plinff pA(P/R) = 3 [UIu(U, V) Tenf A(V)
UCVCP
U R=P

in Do (P).

Proof: Since

it follows from proposition 6.5.1 that

|P[Infp, g A(P/R) = > w(@,P) > |Ulu(U,V)Teny A(V)
RCQCP vcvcer
U<pQ
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Now if u(@, P) # 0, then @ D ®(P), and @ is a normal subgroup of P. Thus U <p @
is equivalent to U C @, and

|PlInfp pA(P/R) = Y |U|u(Q, P)u(U, V) Teny A(V)
RCQCP
UCVCP
vcqQ

Now the sum of u(Q, P) for U.R C @ C P is zero, unless U.R = P. Thus

|Plinff pAP/R)= 3" |UIu(U, V) Tenf A(V)
UCVCP
UR=P

as was to be shown. 0
(7.5.4) Remark: Proposition 7.5.3 shows that the decomposition
DG (P) = (DG)""* (P) & Ko (P)

of proposition 7.4.9 is functorial in P, i.e. that the torsion part of D5(P) is mapped
to itself by tensor induction, restriction, inflation, deflation, and group isomorphism.
If p = 2, there is nothing to prove, since (D5)%"*(P) = 0 in this case. And if p is
odd, the only non trivial fact to check here is that if P/R is cyclic (and non trivial),
then Infllz/RA(P/R) can be expressed as a linear combination of elements Teni, A(V)
corresponding to cyclic subgroups V of P.

Since A(P/R) has order 2 in this case, proposition 7.5.3 gives

Infp rA(P/R) = Y |Ulp(U,V)Teny A(V)
UCVCP
UR=P

The coefficient of Ten‘I;A(V) in the right hand side is zero if V.R # P, and otherwise
it is equal to

S U, V) = [Vimyvar
UCv
U.(VNR)=P

But if V.R = P, the group V/V N R is cyclic, isomorphic to P/R. Then the constant
my,vnr is zero if V' is non cyclic, as I already recalled in the proof of lemma 7.2.7. And
if V' is cyclic (hence non trivial since V.R = P), then myyvar = 1if VN R # V, and
myyv = 1 —1/p. Since moreover Teni, A(V) has order 2 in this case, this gives

Infp gk A(P/R) = > Teny, A(V)
VCP
V cyclic, V£P
V.R=P

as claimed.

7.6. Back to the Burnside ring

The linear forms Ag lead to a more explicit version of the functorial morphism
QDy — QB. Recall the following notation from [3] page 704, or lemma 4.7 of [5]:
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(7.6.1) Notation: If P is a finite group, there is a constant m(P) € QQ such that if N
is a mazimal normal subgroup such that mpn # 0, then mp y = m(P). Moreover, if
M is a normal subgroup of P such that mp y # 0, then

mpy = (P
o m(P/M)

In the case of a p-group P, the constant m(P) can be computed as follows:
o If P = {1}, then m(P) = 1.

e If P is cyclic and non-trivial, then m(P) =1—1/p.

o If |[P/®(P)| = p?, with d > 2, then

m(P)=(1-p)(1-p%)...(1-p*?)

(7.6.2) Proposition: Let P be a p-group. Define a morphism ap from QDg(P) to
QB(P) by

ap(u) = Z /\Q/q,(Q)(Defresg/Q(Q)u)m(Q) 65
Q€[sp]

Q non—cyclic

Then there is an exact sequence
0—QDk(P) 25 QB(P) 25 QRg(P) — 0

(where xp is the character map), which is functorial with respect to P, i.e. it is com-
patible with restriction, induction, deflation, inflation, and group isomorphisms.

Proof: We showed in [5] (theorem D) that such an exact sequence of functors exists.
Moreover

QDo(P) ~QD5(P) ~ QD2(P)

has a (Q-basis consisting of the elements TengA(Q), for non-cyclic @ € [sp].
Since A(P) is the only element, up to a scalar, in the intersection of the kernels of
the maps Resg for @ C P (@ # P), the map ap must send A(P) to some multiple

vpeb of el Then by functoriality, it must send TengA(Q) to

Yolndfed = 7oINp(Q) : Qleh

By functoriality again, it must map Defllz/RA(P) = A(P/R) to

Defp p(vpel) = mp rypep) g

for any normal subgroup R of P. It follows that yp/p = mpryp. Now if P is non-
cyclic the constant mp g is non-zero if and only if P/R is non-cyclic, and in this case
mpr = m(P)/m(P/R). This shows that ypm(P) is independent of the non-cyclic
group P, and I can suppose it is equal to p. Now the proposition follows from assertion 3)
of proposition 7.4.8, since QKo (P) = 0. 0
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8. Some torsion elements in D%(P)

8.1. Which relative syzygies are torsion elements

The following proposition characterizes the P-sets X such that Qx is a torsion
element in Dp(P). In the case of a transitive P-set X, implication 1) = 2) was
originally a question of J. Thévenaz:

(8.1.1) Proposition: Let P be a p-group, and X be a P-set. Then the following are
equivalent:

1. The element Qx is a torsion element in Do (P).

2. There exists a normal subgroup N of P such that P/N is cyclic or generalized
quaternion, and such that N D P, for all x € X, with equality for some z € X.
Moreover in this case Qx = Qp/n.

Before proving this proposition, let me state an equivalent condition to assertion 1.
First some notation:

(8.1.2) Notation: If X is a P-set, I denote by Fx the set of elements g € P such that
X9 £ 0.
If A is a subset of P, I denote by /A the set of elements g € P such that g* € A.

(8.1.3) Lemma: Let P be a p-group, and X be a P-set. Then the following are equiv-
alent:

1. The element Qx is a torsion element in Do (P).
2. Let W be any subgroup of P. Then

o IfW C Fx, the set XV is non-empty.
o IfW & Fx, then p|W N Fx|=|WnN ¢Fx|

Proof: By proposition 6.5.1

[PIx == Y |RIu(R,Q)TengA(Q)
RCQCP
XE 20

Now Qx is a torsion element if and only if |P|Qx is. Since A(Q) is a torsion element if
@ is cyclic, this is equivalent to saying that there exists a positive integer n such that

0=n Y |R|u(R,Q)TengA(Q)
RCQCP
XFz0
Q non—cyclic
By proposition 6.4.1, this is equivalent to requiring that for any non-cyclic subgroup @
of P, the integer
ng= Y IRIuR Q)
RCQ
xXF2p
is zero. On the other hand, if @ is cyclic, then the set of subgroups of @ is totally
ordered, and there is a biggest subgroup Ry of @ such that Xfo £ (). There are three

cases!:
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e Either Ry = @, or equivalently X% # (§, then

ng= > |RuR,Q) = > uRQ) =e¢(Ql
fisQ <x>xgeggQ

where ¢ is the Euler function.

e Either Ry = ®(Q) # @, and in this case

ng = |Ro|u(Ro, Q) = —|Ro| = —|QI/p

e Either Ry is a proper subgroup of ®(Q), and ng = 0 in this case.

Let W be an arbitrary subgroup of P. Then, by Mobius inversion, requiring that the
ng’s have some prescribed values, depending on @, is equivalent to requiring that the
sum of ng’s for subgroups @ of W have prescribed values, depending on W. Now
summing the ng’s for @ C W gives

done= Y, [Ru®RQ)
QCw RCQCW
xXF2p
and the sum on @ is equal to zero if R # W, and equal to 1 otherwise. Thus
Z . 0 if X% =40
"o = [W| otherwise
QCw

But this is also the sum of ng’s for cyclic subgroups @ of W, i.e.

el > el

QEW QEW
Q cyclic Q cyclic
X920 X :(D?qu)(Q)

Since ¢(|Q]) is the number of generators of @, the first sum is also

> 1= |WnFx|
geEW
X920

where Fx is the set of elements g € P such that X9 # §).

Now a cyclic subgroup @ of W such that X9 = # X2(@) is a subgroup generated
by an element g of W such that ¢ ¢ Fix, but g € Fx, and @ admits |g| — |g|/p such
generators. Hence the second sum is equal to

Z lgl/p WY Fx|—|WnNFx|

)Igl—lgl/p_ p—1

geE(Wn Y Fx )—(WnFx
This gives

IWNYFx|—|WnNFx|  plWnFx|—|Wn x|
p—1 B p—1

> ng=|Wnrx|-
Qcw
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Finally, the element Qx is a torsion element if and only if for any subgroup W of P

514 pWAFx| - WndFx| [0 it XV =0
o T | |W] otherwise

p—1
If W C Fx, then W C ¢/Fx, and the left hand side of equation 8.1.4 is equal to |W|.
In particular it is non-zero, and X" must be non-empty. Thus
(8.1.5) WCFx=>3xeX WCP
On the other hand, if W ¢ Fx, then in particular X" = (). Hence
(8.1.6) W ¢ Fx = p|W N Fx|=|Wn /Fx]|

This completes the proof of the lemma. 0

Condition 8.1.6 alone implies that F'x is a normal subgroup of P:

(8.1.7) Lemma: Let P be a p-group. Let A be a normal subset of P, containing I,
such that for any subgroup W of P

W g A= |Wn Al =p/WwnA

Then A is a normal subgroup of P.

Proof: 1 first prove by induction on |W| that if W is a cyclic subgroup of P, then
W N A is a subgroup of W. The result is true if W = {1}, since 1 € A. Thus I can
suppose that W is a non-trivial cyclic subgroup of P, and by induction ®(WW) N A is a
subgroup of ®(W). Moreover

WNYA={geW | e Ay ={geW |4 € d(W)n A}

since g7 € ®(W) for all g € P. But the set of elements g of W such that g” belongs to
the proper subgroup ®(W) N A of W is a subgroup of W, of order p|®(1W) N A|. Then
either W C A, and there is nothing to prove, or by assumption

W N Al = p|W N A| = p|®(W)N A

Since WN A D ®(W) N A, it follows that W N A = ®(W) N A is a subgroup of W, as
required.

It follows that if @ € A, then the subgroup generated by a is contained in A. In
particular if @ € A, then a? € A. Equivalently A C ¥/A.

Now I will prove the lemma by induction on |P|. If P = {1}, the result holds since
1 € A. Suppose that the result holds for all proper subgroups of P. If P’ is such a
subgroup, set A’ = P’ N A. This is a normal subset of P’, containing 1. Moreover, if
W' is a subgroup of P’, not contained in A’, then W’ is a subgroup of P, not contained
in A. Denote by /A’ the set of elements g' of P’ such that ¢’? € A’. Then

YA = PN YA

Thus
W'n YA = W n YA =p|W nAl=p/W' nA



By induction hypothesis A’ = P’ N A is a subgroup of P.

Let H be a subgroup of index p of P, such that N = H N A has maximal cardinality.
Then N is a normal subgroup of P, since it is a subgroup by the previous argument,
and it 1s also a normal subset of P.

Suppose that A € H, and choose a € A—H. Then let W =<a, N >.

If W # P, then W N A is a subgroup of P. Since W is generated by elements of A,
this shows that W C A. Let H' be a subgroup of index p of P, containing W. Such a
subgroup exists since W # P. Then H’' N A contains W, and W contains strictly N,
since a ¢ H. This contradicts the assumption on H.

Thus W= <a, N> =P, and then P/N is cyclic, generated by the image of a. In
particular it admits a unique subgroup of index p, generated by the image of a?. Since
H/N has index p in P/N, it follows that H = <a? , N>. Now H is generated by
elements of A, and H N A is a subgroup of P. Thus H C A. This implies in particular
that P = ¥/A, since g € H for all g € P. Hence either A = P, or |P| = p|PNA| = p|A|.
In this case |A| = |H|, thus A = H. In both cases A is a subgroup of P.

Now if A C H, then HN A = A is a subgroup of P, and the lemma follows. 0

8.2. Proof of proposition 8.1.1

Suppose that Qx is a torsion element. By the previous lemmas, the set N = Fx
is a subgroup of P, contained in Fx. Thus X~ # ), by 8.1.5, and there is an element
xz € X such that N C P, hence N = F,. It follows that N 2 P, for all y € X, and
that Qx = Qp,n by lemma 3.2.7.

Now if W/N is a non-trivial elementary abelian subgroup of P/N

[W|=|WnYN|=p/WnN|=p|N|

thus |W/N| = p. The group P/N has p-rank at most 1, hence it is cyclic or generalized
quaternion. This shows that 1) implies 2).

Conversely if N is a normal subgroup of P such that P/N is cyclic or generalized
quaternion, then it it well known that Qp,5 has order

e 1if P/N is trivial or of order 2.

e 2if P/N is cyclic of order at least 3.

e 4if P/N is generalized quaternion.
Thus 2) implies 1), and the proof is complete. 0
(8.2.1) Remark: One can check easily that the conditions of lemma 8.1.3 hold for
X = P/N, if P/N is cyclic or generalized quaternion: indeed in this case, the group
P/N has a unique subgroup M/N of order p, if it is non trivial. Then clearly YN =M.

If W is a subgroup of P not contained in N, then W.N contains M, and M =
N.(WnNM). Thus [M||WNN|=|N||Wn M|, or

WNYN|=|WnM|=pWnN|

This can be viewed as a new proof of the fact that Qp is a torsion element if P is
quaternion. This is not a new proof for the case of cyclic groups, since it requires
Dade’s theorem.
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