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1 Introduction

Let p be a prime number, and O be a complete discrete valuation ring of
characteristic 0 whith residue field of characteristic p. Let G be a finite group,
and denote by µO(G) the Mackey algebra of G over O (see [8] for definition).

Formulae for the primitive idempotents in the center of µO(G) have been
given by Yoshida (and slightly corrected by Oda [7]). However, those formu-
lae are expressed in terms of ordinary irreducible characters of the centralizers
of subgroups of G. The aim of this article is to state explicit formulae for
the block idempotents of µO(G), in terms of the blocks of the group algebra
OG.

The proof uses the natural ring homomorphism from the crossed Burnside
ring Bc

O(G) to the center of the Mackey algebra, and a description of the
prime spectrum and block idempotents of Bc

O(G).
The paper is organized as follows : section 2 is an exposition of definitions

and basic results on the crossed Burnside ring. Section 3 describes the prime
spectrum and p-blocks of this ring. Section 4 recalls the basic definitions on
Mackey functors, and uses the action of the crossed Burnside ring to state
explicit formulae for the block idempotents of the p-local Mackey algebra.
Section 5 exposes some consequences on Mackey functors that follow from
these formulae. In particular, one can show that a block b of G and the
corresponding block bµ of the Mackey algebra have the same defect groups.
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2 The crossed Burnside ring

Most of the definitions and results of this section have already been discussed
by Yoshida ([9]). However, they are still unpublished, or not currently avail-
able in published form. This is the reason for exposing this material here.

2.1 Definition

Let G be a finite group, and denote by Gc the set G, on which G acts by
conjugation. The category G-set↓Gc of crossed G-sets is the category of G-
sets over Gc : a crossed G-set (X,α) is a a pair consisting of a finite G-set
X (i.e. a finite set with a left G-action), together with a map of G-sets α
from X to Gc, and a morphism of crossed G-sets from (X,α) to (Y, β) is a
morphism of G-sets ϕ from X to Y such that β ◦ ϕ = α.

There is an obvious notion of disjoint union of crossed G-sets, and the
crossed Burnside group Bc(G) is defined as the Grothendieck group of the
category of crossedG-sets, for relation given by disjoint union decomposition :
let I be the set of isomorphism classes of crossed G-sets, and denote by [X,α]
the isomorphism class of the crossed G-set (X,α). Then

Bc(G) = ZI/ < [X t Y, α t β]− [X,α]− [Y, β]> .

Let B denote the (ordinary) Burnside Mackey functor for G (see [3] or [1]
Section 2.4 for definition). It follows from [1] Proposition 2.4.2 that Bc(G) is
isomorphic (as a Z-module) to the evaluation B(Gc) of the Mackey functor
B at the G-set Gc.

If (X,α) and (Y, β) are crossed G-set, then their product is the crossed
G-set (X × Y, α.β), where X × Y is the direct product of X and Y , with
diagonal G-action, and α.β is the map from X × Y to Gc defined by

(α.β)(x, y) = α(x)β(y) .

This product on crossed G-sets clearly commutes with disjoint unions, hence
it gives a product on Bc(G). This turns Bc(G) into a ring. The identity
element of this ring is [•, u•], where • is a G-set of cardinality one, and the
map u• sends the unique element of • to the identity element of the group G.

The ring Bc(G) is commutative : the map

(x, y) ∈ X × Y 7→ (α(x)y, x) ∈ Y ×X

is an isomorphism from (X × Y, α.β) to (Y ×X, β.α) in G-set↓Gc , because
for all (x, y) ∈ X × Y

β
(
α(x)y

)
α(x) = α(x)β(y)α(x)−1α(x) = α(x)β(y) .
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More generally, if R is a commutative ring, denote by Bc
R(G) the tensor

product of Bc(G) with R over Z

Bc
R(G) = R⊗Z Bc(G) .

It is an R-algebra. Similarly, denote by BR(G) the (ordinary) Burnside
algebra of G over R.

Lemma 2.1.1: If X is a finite G-set, denote by uX the map from X to G
sending every element to 1 ∈ G. Then the correspondence X 7→ (X, uX)
extends linearly to a ring homomorphism from BR(G) to Bc

R(G), which pre-
serves identity elements.

Proof: This amounts to checking that if X and Y are finite G-sets, then the
product (X × Y, uX .uY ) is isomorphic to (X × Y, uX×Y ), which is straight-
forward. Moreover the trivial G-set is mapped to (•, u•).

2.2 Characterization of crossed G-sets

A crossed G-set (X,α) is called transitive if the G-set X is. In this case, let x
be any element of X, denote by H the stabilizer of x in G, and set a = α(x).
Then a lies in the centralizer CG(H) of H in G. Define the map ma from
G/H to Gc byma(gH) = ga, where ga = gag−1. Then (G/H,ma) is a crossed
G-set, and the map gH 7→ gx from G/H to X is clearly an isomorphism of
crossed G-sets from (G/H,ma) to (X,α).

Conversely, if H is any subgroup of G, and if a ∈ CG(H), then (G/H,ma)
is a transitive crossed G-set. If K is a subgroup of G, and b ∈ CG(K), then
the crossed G-sets (G/H,ma) and (G/K,mb) are isomorphic if and only if
there exists an element g ∈ G such that gH = K and ga = b.

Notation 2.2.1: I will denote by sG the set of subgroups of G. If X is a
G-set and H ∈ sG, I denote by XH the set of fixed points of H on X. Let
PG denote the set of pairs (H, a) consisting of a subgroup H of G and and
element a of CG(H). The group G acts by conjugation on sG and PG, and
I denote by [sG] (resp. [PG]) a set of representative of G-orbits on sG (resp.
on PG). If (H, a) ∈ PG, I denote by [H, a]G the isomorphism class of the
crossed G-set (G/H,ma).

Now if (X,α) is any crossed G-set, choose a set S of representatives of the
orbits of G on X. Then the map from

⊔
s∈S G/Gs to X sending gGs to gs

is clearly an isomorphism in G-set↓Gc from
⊔

s∈S(G/Gs,mα(s)) to X. Thus
any crossed G-set is isomorphic to a disjoint union of transitive ones.
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Lemma 2.2.2: Let (X,α) and (Y, β) be crossed G-sets. Then the following
are equivalent:

1. The crossed G-sets (X,α) and (Y, β) are isomorphic.

2. For any crossed G-set (Z, γ)

|HomG-set↓Gc

(
(Z, γ), (X,α)

)
| = |HomG-set↓Gc

(
(Z, γ), (Y, β)

)
| .

3. For any (H, a) ∈ [PG]

|α−1(a)H | = |β−1(a)H | .

Proof: Clearly 1) implies 2). Moreover 2) implies 3) since for any crossed
G-set X

|HomG-set↓Gc

(
(G/H,ma), (X,α)

)
| = |α−1(a)H | .

To show that 3) implies 1), I can replace (X,α) and (Y, β) by isomorphic
crossed G-sets, i.e. suppose that

(X,α) =
⊔

(K,b)∈[PG]

uK,b(G/K,mb) (Y, β) =
⊔

(K,b)∈[PG]

vK,b(G/K,mb)

where uK,b and vK,b are natural integers, and the notation uK,b(G/K,mb)
means a disjoint union of uK,b copies of (G/K,mb). Notice that if p = (H, a)
and q = (K, b) are elements of PG, then

|HomG-set↓Gc

(
(G/H,ma), (G/K,mb)

)
| = |{g ∈ G/K | Hg ⊆ K, ag = b}| .

Denote by M(p, q) this number. Condition 3) implies that∑
q∈[PG]

uqM(p, q) =
∑

q∈[PG]

vqM(p, q)

for all p ∈ [PG]. It follows that the sequence (uq − vq)q∈[PG] is in the kernel
of the square matrix M(p, q)p,q∈[PG]. Now with suitable ordering of [PG], this
matrix is upper triangular. The diagonal coefficient M(p, p) for p = (H, a)
is equal to

M(p, p) = |{g ∈ NG(H)/H | ga = a}| = |NG(H) ∩ CG(a) : H|

This is non-zero, and M is non singular. Thus uK,b = vK,b for any (K, b) in
[PG]. Hence (X,α) and (Y, β) are isomorphic.

Corollary 2.2.3: The elements [H, a]G, for (H, a) ∈ [PG], form a basis of
Bc(G) over Z.

4



2.3 Brauer morphisms

Let K be a subgroup of G, and let CG(K) be the centralizer of K in G.
Denote by (X,α) 7→ (XK , αK) the fixed points functor from G-set↓Gc to
CG(K)-set↓CG(K)c , where XK is viewed as a CG(K)-set, and αK is the map
XK → (Gc)K = CG(K)c induced by α.

This functor induces a map BrK , called the Brauer morphism, from

Bc
R(G) to Bc

R

(
CG(K)

)
, defined by linearity from BrK([X,α]) = [XK , αK ],

which is clearly a ring homomorphism, which preserves identity elements.
If (X,α) is a crossed G-set, let sG(X,α) denote the element of the center

ZRG of the group algebra RG of G over R defined by

sG(X,α) =
∑
x∈X

α(x)

This clearly induces a morphism of R-algebras, still denoted by sG, from
Bc

R(G) to ZRG, which preserves identity elements.

Notation 2.3.1: If H is a subgroup of G, then I denote by zH the ring
homomorphism sCG(H) ◦BrH from Bc

R(G) to ZRCG(H).

Thus if (X,α) is a crossed G-set, then

zH([X,α]) =
∑
x∈XH

α(x) =
∑

g∈CG(H)

|α−1(g)H |g .

Lemma 2.3.2: If R is torsion free, then the ring homomorphism

ΘR =
∏

H∈[sG]

zH : Bc
R(G) →

∏
H∈[sG]

ZRCG(H)

is injective.

Proof: Clearly ΘR is a ring homomorphism. The injectivity assertion is just
a reformulation of lemma 2.2.2 : if u =

∑
(H,a)∈[PG] rH,a[H, a]G is a non-zero

element the kernel of ΘR, let K be a subgroup of G maximal such that there
exists (K, b) ∈ [PG] with rK,b 6= 0. Now

zK(u) =
∑

a∈CG(K)
a mod.NG(K)

rK,a

∑
g∈NG(K)/K

ga =
∑

a∈CG(K)

rK,a|NG(K)∩CG(a) : K|a = 0

Since R is torsion free, it follows that rK,a = 0 for all a ∈ CG(K). This
contradiction proves the lemma.
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The previous lemma can be considered from a slightly different point of
view : let Gc denote the set G, on which G acts by conjugation. There is an
isomorphism of G-sets

Gc ∼=
⊔

g∈[G]

G/CG(g)

where [G] is a set of representatives of conjugacy classes of G. Since Bc(G)
is the value of the Burnside Mackey functor B at Gc, it follows that there is
an isomorphism of Z-modules

Bc(G) ∼=
⊕
g∈[G]

B
(
CG(g)

)

sending the crossed G-set (X,α) to the sequence
(
α−1(g)

)
g∈[G]

. The inverse

isomorphism sends the element CG(g)/L of B
(
CG(g)

)
to [L, g]G.

Now for any finite group H, it follows from Burnside’s theorem (see [3]
Theorem 2.3.2) that there is an injective morphism

φH : B(H) →
∏

K∈[sH ]

Z (2.3.3)

defined by linearity by mapping the H-set X to the sequence (|XK |)K∈[sH ].
Hence there is an injective morphism of Z-modules

Bc(G) →
∏
g∈[G]

∏
∈[sCG(g)]

Z ∼=
∏

(H,g)∈[PG]

Z

sending the crossed G-set (X,α) to the sequence (|α−1(g)H |)(H,g)∈[PG]. Now
there is an isomorphism∏

(H,g)∈[PG]

Z ∼=
∏

H∈[sG]

ZZCG(H) .

This gives the injective map

ΘZ : Bc(G) →
∏

H∈[sG]

ZZCG(H)

and the map ΘR of lemma 2.3.2 is obtained by tensoring this map with R,
which is a flat Z-module if R is torsion free. As a consequence :
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Proposition 2.3.4: Let K be a field of characteristic 0. Then the map

ΨK :
∏
H⊆G

zH : Bc
K(G) →

(∏
H⊆G

ZKCG(H)

)G

is an isomorphism of K-algebras. The inverse isomorphism maps the se-
quence (zH)H⊆G to

1

|G|
∑

(L,g)∈PG

L⊆H⊆CG(g)

|L|µ(L,H)zH(g)[L, g]G

where µ(L,H) denotes the Möbius function of the poset of subgroups of G,
and zH(g) denotes the coefficient of g in zH .

Proof: The map ΨK is injective by lemma 2.3.2, and its image is contained
in (∏

H⊆G

ZKCG(H)

)G

∼=
∏

H∈[sG]

(
KCG(H)

)NG(H)

.

Now this K-vector space has the same (finite) dimension as Bc
K(G), namely

the cardinality of [PG]. The first assertion follows.
To build the inverse map, note that for any finite group G, the Burnside

algebra BK(G) is a split semi-simple commutative K-algebra. The primi-
tive idempotents of BK(G) have been determined by Gluck ([5]). They are
indexed by the (conjugacy classes of) subgroups of the group G. The idem-
potent eGH indexed by H is equal to (see [3] Theorem 3.3.2)

eGH =
1

|NG(H)|
∑
L⊆H

|L|µ(L,H) G/L . (2.3.5)

This idempotent is characterized by the fact that for any X ∈ BK(G), one
has that

X.eGH = |XH |eGH . (2.3.6)

It follows in particular that

X =
∑

H∈[sG]

X.eGH =
∑

H∈[sG]

|XH |eGH =
1

|G|
∑

L⊆H⊆G

|L|µ(L,H)|XH |G/L .

Now if (X,α) is a crossed G-set, the corresponding element (zH)H⊆G is de-
fined by

zH(g) = |α−1(g)H |

7



thus

α−1(g) =
1

|CG(g)|
∑

L⊆H⊆CG(g)

|L|µ(L,H)zH(g) CG(g)/L

in B
(
CG(g)

)
, and the second assertion follows.

Remark 2.3.7: Proposition 2.3.4 can be used to show that Bc
K(G) is a semi-

simple (commutative) algebra (split when K is big enough), and to state
explicit formulae for its primitive idempotents. Those formulae are due to
Yoshida.

It is possible to characterize the image of the above map ΘZ :

Proposition 2.3.8: If (H, g) ∈ PG, and if K is a subgroup of CG(g), set

ng(H,K) = |{x ∈ NG(H) ∩ CG(g)/H | <H, x>=CG(g) K}|

where <H, x> is the subgroup of G generated by H and x, and the notation
<H, x>=CG(g) K means that <H, x> and K are conjugate by an element
of CG(g).

For H ∈ [sG], let zH =
∑

g∈CG(H) zH(g)g be an element of ZZCG(H). Then

the sequence (zH)H∈[sG] belongs to the image of ΘZ if and only if for any H
in [sG] the following two conditions hold :

1. The element zH is invariant by NG(H).

2. For any g ∈ CG(H), the sum
∑

K∈[sCG(g)]
ng(H,K)zK(g) is a multiple

of |NG(H) ∩ CG(g) : H|.

Proof: This follows from a theorem of Dress ([4], or [3] Theorem 3.2.1),
characterizing the image of the map φH defined in (2.3.3): giving an ele-
ment zH in (ZCG(H))NG(H), for H ∈ [sG] is equivalent to giving integers
zH(g), for (H, g) ∈ [PG]. Now for a fixed g ∈ G, the sequence of integers
(zH(g))H∈[sCG(g)] is in the image of φCG(g) if and only if condition 2) holds.

3 The prime spectrum of Bc
R(G)

3.1 Prime spectrum

Lemma 3.1.1: The Krull dimension of the ring Bc
R(G) is equal to the Krull

dimension of R.
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Proof: Indeed, the ring Bc
R(G) is an extension of R, and it is a finitely

generated (free) R-module. Hence it is integral over R. Thus dimBc
R(G) =

dimR.

Lemma 3.1.2: If R is torsion free, then the map ΘR induces a surjection

Spec(ΘR) : Spec
( ∏

H∈[sG]

ZRCG(H)
)
→ Spec

(
Bc

R(G)
)

.

Proof: Here again, the ring C =
∏

H∈[sG]ZRCG(H) is an extension of

Bc
R(G). Moreover, it is a finitely generated R-module, hence also a finitely

generated Bc
R(G)-module. Thus C is integral over Bc

R(G), and ΘR induces a
surjective maps on the spectra.

Notation 3.1.3: If p is a prime ideal of R, denote by k(p) the field of frac-
tions of R/p. Denote by ϕp the canonical morphism from ZRG to Zk(p)G.
If b is a block of k(p)G, set

Ip,b = {u ∈ ZRG | ϕp(u)b ∈ J
(
Zk(p)Gb

)
}

(where J
(
Zk(p)Gb

)
denotes the Jacobson radical of the algebra Zk(p)Gb).

It is an ideal of ZRG.

Lemma 3.1.4: Let p (resp. p′) denote a prime ideal of R, and b (resp. b′)
denote a block of k(p)G (resp. k(p′)G). Then :

1. The ideal Ip,b is a prime ideal of ZRG. Conversely, if I is a prime
ideal of ZRG, there exist a unique prime ideal p of R and a unique
block b of k(p)G such that I = Ip,b.

2. If Ip,b ⊆ Ip′,b′, then p ⊆ p′. If moreover p = p′, then b = b′.

3. If p ⊆ p′, and if the block b is given, then there exists a block b′ such
that Ip,b ⊆ Ip′,b′.

4. If p ⊆ p′, and if the block b′ is given, then there exists a block b such
that Ip,b ⊆ Ip′,b′.

Proof: Clearly Ip,b is the kernel of the canonical morphism

ZRG
ϕp→ Zk(p)G

b→ Zk(p)Gb → Zk(p)Gb/J
(
Zk(p)Gb

)
9



Since the ring on the right hand side is a field, it follows that Ip,b is a prime
ideal of ZRG.

The map u : r ∈ R 7→ r.1 ∈ ZRG is an injective ring homomorphism.
Thus ZRG is an extension ring of R. If I is a prime ideal in ZRG, then
p = I ∩R is a prime ideal of R. Moreover

ZpG = pZRG ⊆ I .

Let π denote the projection map ZRG → ZRG/I, and i : ZRG/I → K
denote the embedding of ZRG/I in its field of fractions K. The kernel of
the map ρ = i ◦ π ◦ u : R → K is equal to p. Hence ρ factors through the
canonical map λp : R → k(p). Hence there is a map θ : Zk(p)G → K and a
commutative square

ZRG
π−−−−→ ZRG/I

ϕp

y y i

Zk(p)G −−−−→
θ

K

.

The ideal I is the kernel of the map θ◦ϕp, hence it is the inverse image under
ϕp of the prime ideal θ−1(0) of Zk(p)G. This ring has dimension zero. Hence
there exists a primitive idempotent b of Zk(p)G (i.e. a block of k(p)G) such

that θ−1(0) = J
(
Zk(p)Gb

)
+
∑
b′ 6=b

Zk(p)Gb′ (where b′ denotes a block of kG).

Hence I = Ip,b.
Finally if p′ is a prime ideal of R, and b′ is a block of k(p′)G such that

Ip,b ⊆ Ip′,b′ , then
p = R ∩ Ip,b ⊆ R ∩ Ip′,b′ = p′ .

Suppose moreover that p = p′. The idempotent b can be written

b =
∑
g∈G

(rg/sg)g

where rg ∈ R/p, and sg ∈ R/p− {0}, for g ∈ G. There is an element s ∈ R
which maps to

∏
g∈G sg in R/p, and there is an element v ∈ ZRG such that

ϕp(v) = λp(s)b .

It follows that v − s.1 ∈ Ip,b = Ip′,b′ . Thus ϕp(v − s.1)b′ is nilpotent. But if
b′ 6= b, then

ϕp(v − s.1)b′ = λp(s)bb
′ − λp(s)b

′ = −λp(s)b
′ .
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This cannot be nilpotent since λp(s) is non-zero in k(p). Thus b = b′. This
completes the proof of assertions 1) and 2).

Assertion 3) is nothing but the going up theorem, which holds between
R and ZRG because ZRG is free as an R-module, hence flat over R (see [6]
Theorem 9.5).

Similarly, assertion 4) is the going down theorem, which holds between
R and ZRG because ZRG is a finitely generated R-module, hence integral
over R (see [6] Theorem 9.4).

Notation 3.1.5: If H is a subgroup of G, if p is a prime ideal of R, and if
b is a block of k(p)CG(H), I set

IH,p,b = z−1
H (Ip,b) .

It is a prime ideal of Bc
R(G).

Corollary 3.1.6: If R is torsion free, and if I is a prime ideal of Bc
R(G),

then there exists a subgroup H of G, a prime ideal p of R, and a block b of
k(p)CG(H), such that I = IH,p,b.

3.2 p-blocks

Notation 3.2.1: From now on, the letter O will denote a complete discrete
valuation ring of characteristic 0, with maximal ideal π, with residue field k
of characteristic p > 0, and field of fractions K, which will be supposed big
enough (i.e. K contains the |G|th roots of unity). I denote by x 7→ x the
reduction morphism from O to k, or from OG to kG.

If H is a group of order dividing |G|, the group algebra KG is split and
semi-simple. If χ is an ordinary irreducible character of H, I denote by eχ
the corresponding block of KH, and by ωχ the morphism from ZOH to O
mapping u to χ(u)/χ(1).

I will say that χ is in the block e (or belongs to the block e) of kH if e
acts as identity morphism on a reduction of a simple module affording the
character χ, or equivalently, if there is a block E of ZOH such that eχ.E = eχ
and E = e.

If P is a p-subgroup of G, I denote by brP the Brauer morphism from ZkG
to ZkCG(P ), which is the k-linear map sending x ∈ G to itself if x ∈ CG(P ),
and to 0 otherwise.

A Brauer pair (P, e) is a pair consisting of a p-subgroup P of G, and a
block e of the algebra kCG(P ). If b is a block of kG, the Brauer pair (P, e)
is a b-Brauer pair if e.brP (b) = e.

11



For the remainder of this section, the ring R will be equal to O. The prim-
itive idempotents of the Burnside algebra BO(G) follow from a theorem of
Dress ([4] or [3] Corollary 3.3.6). They are indexed by the (conjugacy classes
of) p-perfect subgroups of G. The idempotent fG

H indexed by the p-perfect
subgroup H of G is equal to the sum of the idempotents eGK (see equation
2.3.5) for which Op(K) is conjugate to H, each taken once (i.e. K is taken
once up to conjugation in G). In particular

fG
1 =

∑
P∈sp(G)/G

eGP (3.2.2)

where sp(G) is the set of p-subgroups of G. The corresponding block
BO(G)fG

1 of the Burnside algebra is the O-submodule generated by the G-
sets G/P , for P ∈ sp(G).

Now the algebra homomorphism β : BO(G) → Bc
O(G) of lemma 2.1.1

provides a decomposition of unity in Bc
O(G) as a sum of orthogonal idem-

potents β(fG
H ), for p-perfect subgroups H of G, up to conjugation. These

idempotents are no longer primitive, and in this section I will show how the
idempotent β(fG

1 ) splits as a sum of primitive idempotents of Bc
O(G).

Notation 3.2.3: I will denote by A(G) the O-algebra Bc
O(G)β(fG

1 ), and by
A(G) the k-algebra k ⊗O A(G). The algebra A(G) will be called the p-local
crossed Burnside algebra (over O).

Proposition 3.2.4: 1. The map

ΨO =
∏

P∈sp(G)

zP : A(G) →

 ∏
P∈sp(G)

ZOCG(P )

G

is an injective map of O-algebras, which preserves identity elements,
and induces an isomorphism of K-algebras

ΨK : K ⊗O A(G) ∼=

 ∏
P∈sp(G)

ZKCG(P )

G

.

2. The algebra A(G) is the O-submodule of Bc
O(G) with basis the set of

elements [P, x]G of [PG] for which P is a p-group.

Proof: If X is a G-set and if H is a subgroup of G

(zH ◦ β)(X) = zH([X, uX ]) =
∑
x∈XH

uX(x) = |XH |.1 ∈ ZRCG(H)
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where uX is defined in lemma 2.1.1. It follows from equations 2.3.6 and 3.2.2
that (zH ◦ β)(fG

1 ) = 0 if H is not a p-group, and that (zH ◦ β)(fG
1 ) = 1 ∈

ZRCG(H) otherwise. Now the map ΨO is just the restriction to A(G) of the
map ΘO of lemma 2.3.2, hence it is injective. This proves the first part of
assertion 1).

The previous argument actually shows that if P is a p-group and if x is
an element of CG(P ), then

zH

(
[P, x]Gβ(f

G
1 )
)
=

{
0 if H is not a p-group
zH([P, x]G) otherwise

In both cases zH

(
[P, x]Gβ(f

G
1 )
)
= zH([P, x]G), thus [P, x]Gβ(f

G
1 ) = [P, x]G

by lemma 2.3.2. In other words [P, x]G ∈ A(G) if P is a p-group. Conversely
β(fG

1 ) is a linear combination with coefficients in O of pairs [P, x]G of PG

for which P is a p-group, and these linear combinations clearly form an
ideal of Bc

O(G). Assertion 2) follows. The second part of assertion 1) also
follows, since ΨK is an injective map of K-vector spaces of the same (finite)
dimension.

Remark 3.2.5: Assertion 2) means that A(G) is generated over O by the
images of the crossed G-sets (X,α) for which the stabilizer in G of any ele-
ment of X is a p-group.

Notation 3.2.6: If P is a p-subgroup of G denote by zP the map A(G) →
ZkCG(G) such that the square

A(G)
zP−−−−→ ZOCG(P )y y

A(G) −−−−→
zP

ZkCG(P )

is commutative, where the vertical arrows are the reduction maps.

Lemma 3.2.7: For any p-subgroup P of G

zP = brP ◦ z1

Proof: Indeed, if v is the image of the crossed G-set (X,α) in A(G), then

z1(v) =
∑
x∈X

α(x) =
∑
g∈G

|α−1(g)|g ∈ ZkG
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whereas

zP (v) =
∑
x∈XP

α(x) =
∑

g∈CG(P )

|α−1(g)P |g ∈ ZkCG(P )

and the lemma follows since |α−1(g)| = |α−1(g)P | in k for any p-subgroup
P of CG(g) : this is because k has characteritic p, and because |α−1(g)| and
|α−1(g)P | are congruent modulo p, since P is a p-group.

The following theorem describes the prime spectrum of A(G), which is
a ring of dimension 1 by lemma 3.1.1. If I is a prime ideal of A(G), and
q ∈ {0, p}, I will say that I has co-characteristic q if the ring A(G)/I has
characteristic q :

Theorem 3.2.8: Denote by b a block of kG, by P (resp P ′) a p-subgroup of
G, by χ (resp. χ′) an irreducible character of CG(P ) (resp. CG(P

′)), and by
e a block of kCG(P ). Let I be a prime ideal of A(G).

1. The following are equivalent :

(a) The ideal I has co-characteristic 0.

(b) The ideal I is a minimal prime ideal.

(c) There exist a p-subgroup P of G and an irreducible character χ of
CG(P ) such that I = IP,0,eχ.

2. The following are equivalent :

(a) The ideal I has co-characteristic p.

(b) The ideal I is a maximal prime ideal.

(c) There exist a p-subgroup P of G and a block e of kCG(P ) such
that I = IP,π,e.

3. The ideal IP,0,eχ is contained in IP ′,0,eχ′ if and only if the pairs (P, eχ)
and (P ′, eχ′) are conjugate in G. In this case moreover IP,0,eχ = IP ′,0,eχ′ .

4. The ideal IP,0,eχ is contained in IP,π,e if and only if the character χ
belongs to the block e. In this case, the inclusion is strict.

5. The ideal I1,π,b is contained in IP,π,e if and only if (P, e) is a b-Brauer
pair, i.e. if e.brP (b) = e. In this case moreover I1,π,b = IP,π,e.
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6. The connected components of Spec
(
A(G)

)
are in one to one corre-

spondence with the blocks of kG. The component Cb associated to the
block b consists of the unique maximal prime ideal I1,π,b, and of the
ideals IP,0,eχ, where P is a p-subgroup of G, and χ is an irreducible
character of CG(P ) belonging to a block e of CG(P ) such that (P, e) is
a b-Brauer pair.

Proof: By corollary 3.1.6, any prime ideal I of A(G), which is also a prime
ideal of Bc

O(G), is equal to some ideal IH,p,b, for a subgroup H of G, a prime
ideal p of O (hence p = 0 or p = π), and a block b of k(p)CG(H) (i.e. a
block eχ of KCG(H) corresponding to an irreducible character χ if p = 0, or
a block b of kCG(H) if p = π). The ideal IH,p,b is an ideal of A(G) if and
only if β(fG

1 ) /∈ IH,p,b, or equivalently if H is a p-group.
Now the ideal IH,p,b has co-characteristic 0 if p = 0, and p if p = π. In

particular, the ideals IH,0,eχ and IH,π,b are distinct. By the last two assertions
of lemma 3.1.4, any ideal IH,π,b contains an ideal IH,0,eχ , and any ideal IH,0,eχ

is contained in an ideal IH,π,b. It follows that the minimal primes of A(G)
are the ideals IP,0,eχ , for p-subgroups P of G, whereas the maximal primes
are the ideals IP,π,b. This proves assertions 1) and 2) of the theorem.

Now
IP,0,eχ = {u ∈ A(G) | ωχ ◦ zP (u) = 0}

It follows that IP,0,eχ = IP ′,0,eχ′ if the pairs (P, eχ) and (P ′, eχ′) are conjugate.
Conversely, if IP,0,eχ ⊆ IP ′,0,eχ′ , then IP,0,eχ = IP ′,0,eχ′ since both are minimal

prime ideals. Let f denote the idempotent of
(∏

Q∈sp(G)ZKCG(Q)
)G

with

Q-component equal to the sum of idempotents eθ for which (Q, eθ) is G-
conjugate to (P, eχ). Let F = Ψ−1

K (f) be the corresponding idempotent of
Bc

K(G). Then there is a non-zero integer m such that mF lies in BO(G).
Moreover zQ(mF ) = 0 if Q is not conjugate to P in G, and zP (mF ) is m
times the sum of the different conjugates of eχ under NG(P ). In particular
mF is not in IP,0,eχ , hence not in IP ′,0,eχ′ . It follows that ωχ′ ◦ zP ′(mF ) 6= 0.
In particular P ′ is conjugate to P , and I can suppose P = P ′. Now there is
a conjugate of eχ under NG(P ) which is not in the kernel of ωχ′ . Hence eχ
and eχ′ are conjugate under NG(P ). This proves assertion 3).

The ideal IP,0,eχ is contained in the ideal IP,π,e if and only if the ideal I0,eχ
of ZOCG(P ) is contained in the ideal Iπ,e. Now

I0,eχ = {u ∈ ZOCG(P ) | ωχ(u) = 0} .

On the other hand, if θ is any character in the block e, then

Iπ,e = {u ∈ ZOCG(P ) | ωθ(u) = 0} .
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It follows that I0,eχ ⊆ Iπ,e if χ belongs to e. Conversely, if I0,eχ ⊆ Iπ,e, then
let E be the block of OCG(P ) containing χ. Then ωχ(1 − E) = 0, hence

ωθ(1− E) = 0 for any character θ in e. Thus ωθ(E) = 1, and e = E. Hence
χ is in e, proving assertion 4).

Let b̂ be a block of OG lifting b (i.e. such that b̂ = b). Write

b̂ =
∑
x∈G

rxx

for coefficients rx ∈ O. Consider

b̃ =
∑
x∈[G]

rx[CG(x), x]G .

If H is any subgroup of G, then

zH(b̃) =
∑
x∈[G]

rx
∑

w∈(G/CG(x))H

wx =
∑

x∈CG(H)

rxx .

The second equality comes from the fact that w ∈ (G/CG(x))
H if and only

if wx ∈ CG(H). Moreover rx = rwx since b̂ is central in OG.
In particular for a p-subgroup P of G

zP (b̃) = brP (b)

Suppose that I1,π,p ⊆ IP,π,e. For any character χ in b

ωχ(z1(1− b̃)) = ωχ(1− b̂) = 1− ωχ(b) = 0

Thus 1− b̃ ∈ I1,π,p. Hence 1− b̃ ∈ IP,π,e, and e.zP (1− b̃) must be nilpotent.
But

e.zP (1− b̃) = e− e.brP (b)

This is nilpotent and idempotent, hence zero.
Conversely, suppose that e = e.brP (b). Then

I1,π,b = {u ∈ Bc
O(G) | z1(u)b is nilpotent}

whereas
IP,π,e = {u ∈ Bc

O(G) | zP (u)e is nilpotent} .

Now if u ∈ I1,π,b

z1(u)b = z1(u)br1(b) = z1(u)z1(b̃) = z1(ub̃) .
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zP (u)e = zP (u)brP (b)e = zP (u)zP (b̃)e = zP (ub̃)e .

Now lemma 3.2.7 shows that I1,π,b ⊆ IP,π,e. Hence I1,π,b = IP,π,e since I1,π,b is
a maximal ideal in A(G). This completes the proof of assertion 5).

Assertion 5) also shows that all the maximal ideals ofA(G) are of the form
I1,π,b, for a suitable bloc b of kG. Now the minimal primes are of the form
IP,0,χ, for a p-subgroup P of G, for an irreducible character χ of CG(P ). This
ideal is contained in IP,π,e for a block e of kCG(P ) if and only if e contains
χ. Moreover IP,π,e is equal to I1,π,b for a block b of kG if and only if (P, e) is
a b-Brauer pair. This shows that each minimal prime ideal is contained in a
unique maximal ideal. Assertion 6) follows, and the proof of theorem 3.2.8
is complete.

Notation 3.2.9: If G is a finite group, if P is a p-subgroup of G, and
b is an idempotent in ZkG, I denote by brOP (b) the unique idempotent in
ZOCG(P ) lifting the idempotent brP (b) of ZkCG(P ). If g ∈ CG(P ), I de-
note by brOP (b)(g) the element of O such that

brOP (b) =
∑

g∈CG(P )

brOP (b)(g) g

Theorem 3.2.10: If b is an idempotent of ZkG, let

bA =
1

|G|
∑
g∈G

Q⊆P∈sp(CG(g))

|Q|µ(Q,P )brOP (b)(g) [Q, g]G

Then bA ∈ A(G), and as b runs through the blocks of kG, the elements bA

run through a complete set of primitive idempotents in A(G).

Proof: The primitive idempotents of the (commutative) ring A(G) are in
one to one correspondence with the connected components of its spectrum,
hence with the blocks of kG by theorem 3.2.8 : if b is a block of kG, then
the idempotent bA corresponding to the component Cb is characterised by the
fact that bA /∈ I for some I ∈ Cb (or equivalently for all I ∈ Cb). It follows
that bA /∈ I1,π,b, but b

A ∈ I1,π,b′ for any block b′ of kG different from b.

Thus ωb

(
z1(b

A)
)
6= 0, but ωb′

(
z1(b

A)
)
= 0 for any block b′ 6= b of kG.

Since z1(b
A) is an idempotent of ZkG, it follows that z1(b

A) = b. Hence
zP (b

A) = brP (b) for any p-subgroup P of G, by lemma 3.2.7. Now zP (b
A)

is an idempotent of ZOCG(P ) lifting brP (b), hence it is equal to brOP (b).
Theorem 3.2.10 now follows from proposition 3.2.4 and from the inversion
formula of proposition 2.3.4.
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Corollary 3.2.11: Let b be an idempotent of ZkG. If Q is a p-subgroup of
G, and g ∈ CG(Q), then∑

Q⊆P∈sp(G)

µ(Q,P )brOP (g) ∈ |NG(Q) ∩ CG(g) : Q|O

Proof: This follows from the following rewriting of the formula in theorem
3.2.10

bA =
∑

(Q,g)∈[PG]
Q⊆P∈sp(CG(g))

µ(Q,P )brOP (b)(g)

|NG(Q) ∩ CG(g) : Q|
[Q, g]G

and from the fact that the elements [Q, g]G, for (Q, g) ∈ [PG] and Q ∈ sp(G),
form a basis of A(G) over O, by proposition 3.2.4.

4 The blocks of the Mackey algebra

4.1 Mackey functors

Let R be a commutative ring, and G be a finite group. There are several
definitions of the notion of Mackey functor for G over R (see [1] Chapter 1
for a summary of these definitions). One of the most conceptual is due to
Dress:

Definition 4.1.1: Let G-set be the category of finite sets with a left G-
action. A Mackey functor for the group G, with values in R-Mod, is a
bivariant functor from G-set to R-Mod, i.e. a pair of functors (M∗,M∗),
with M∗ contravariant and M∗ covariant, which coincide on objects (i.e.
M∗(X) = M∗(X) = M(X) for any G-set X). This bivariant functor is
supposed to have the following two properties:

• If X and Y are G-sets, let iX and iY be the respective injections from
X and Y into X

∐
Y , then the maps M∗(iX)⊕M∗(iY ) and M∗(iX)⊕

M∗(iY ) are mutual inverse R-module isomorphisms between M(X
∐

Y )
and M(X)⊕M(Y ).

• If

T
γ−−−−→ Y

δ

y y α

Z −−−−→
β

X
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is a cartesian (or pull-back) square of G-sets, then M∗(β).M∗(α) =
M∗(δ).M

∗(γ).

A morphism θ from the Mackey functor M to the Mackey functor N is a
natural transformation of bivariant functors, consisting of a morphism θX :
M(X) → N(X) for any G-set X, such that for any morphism of G-sets
f : X → Y , the squares

M(X)
θX−−−−→ N(X)

M∗(f)

y y N∗(f)

M(Y ) −−−−→
θY

N(Y )

M(X)
θX−−−−→ N(X)

M∗(f)

x x N∗(f)

M(Y ) −−−−→
θY

N(Y )

are commutative.

I will denote by MackR(G) the category of Mackey functors for G over R.

4.2 The Mackey algebra

The Mackey algebra µR(G) of R over G was defined by Thévenaz and Webb
([8]) : it is the R-algebra generated by the elements tHK , r

H
K , and cx,H , where

H andK are subgroups of G such thatK ⊆ H, and x ∈ G, with the following
relations:

tHKt
K
L = tHL ∀ L ⊆ K ⊆ H

rKL rHK = rHL ∀ L ⊆ K ⊆ H

cy,xHcx,H = cyx,H ∀ x, y,H

tHH = rHH = ch,H ∀ h,H such that h ∈ H

cx,Ht
H
K = t

xH
xKcx,K ∀ x,K,H such that K ⊆ H

cx,Kr
H
K = r

xH
xKcx,H ∀ x,K,H such that K ⊆ H∑

H

tHH =
∑
H

rHH = 1

rHKt
H
L =

∑
x∈K\H/L

tKK∩xLcx,Kx∩Lr
L
Kx∩L ∀ K ⊆ H ⊇ L

any other product of rKH , tKH and cg,H being zero.
It can be shown from Proposition 3.4 of [8] that the map x ∈ G 7→∑

H⊆G cx,H extends to an injective R-algebra homomorphism from RG to
µR(G), and it is handy to identify G with its image in µR(G) via this map.
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Thévenaz and Webb show that the category of µR(G)-modules is equiv-
alent to the category of Mackey functors for G over R. This equivalence is
build as follows : if K ⊆ H are subgroups of G, denote by pHK : G/K → G/H
the map of G-sets sending xK to xH, for x ∈ G. If g ∈ G, denote by
γg : G/H → G/gH the map sending xH to xg.gH, for x ∈ G. Then if M is
a Mackey functor, the R-module ⊕L⊆GM(L) can be endowed with a µR(G)-
module structure : the generator tHK maps M(L) to 0 if L 6= K, and M(K)
to M(H) via the map M∗(p

H
K). Similarly, the generator rHK maps M(L) to 0

if L 6= H, and M(H) to M(K) via the map M∗(pHK). Finally the generator
cg,H maps M(L) to 0 if L 6= H, and M(H) to M(gH) via the map M∗(γg).

4.3 Action of crossed G-sets

Any crossed G-set gives an endofunctor of the category of Mackey functors
for G over R, and this will lead to a ring homomorphism from Bc

R(G) to
the center ZµR(G) of the Mackey algebra. This action of crossed G-sets on
Mackey functors was already observed by Yoshida.

Let (X,α) be a crossed G-set. If M is any Mackey functor for G over R,
and if Y is a finite G-set, let ζ(X,α)M,Y denote the endomorphism of M(Y )
defined by

ζ(X,α)M,Y = M∗

( x,y
↓

α(x)y

)
M∗

(x,y
↓
y

)
where

( x,y
↓

α(x)y

)
denotes the map from X × Y to Y sending (x, y) to α(x)y,

and
(x,y

↓
y

)
is the projection map from X × Y to Y . This definition extends

the one given by Thévenaz and Webb ([8] Section 9) for the action of B(G)
on Mackey functors.

Proposition 4.3.1: Let (X,α) be a crossed G-set. The the maps ζ(X,α)M,Y

define a natural transformation ζ(X,α) of the identity functor of the category
MackR(G). Moreover, if (Y, β) is another crossed G-set, then

ζ(X,α) + ζ(Y, β) = ζ(X t Y, α t β)

ζ(X,α) ◦ ζ(Y, β) = ζ(X × Y, α.β)

Proof: This amounts to a series of verifications : first the maps ζ(X,α)M,Y

define an endomorphism ζ(X,α)M of the Mackey functor M . It means that
for any morphism of G-sets f : Y → Z, one has that

ζ(X,α)M,Z ◦M∗(f) = M∗(f) ◦ ζ(X,α)M,Y (4.3.2)
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ζ(X,α)M,Y ◦M∗(f) = M∗(f) ◦ ζ(X,α)M,Z (4.3.3)

Equation 4.3.2 reads

M∗

( x,z
↓

α(x)z

)
M∗

(
x,z
↓
z

)
M∗(f) = M∗(f)M∗

( x,y
↓

α(x)y

)
M∗

(x,y
↓
y

)
(4.3.4)

The square

X × Y

(x,y
↓
y

)
−−−−→ Y( x,y

↓
x,f(y)

)y y f

X × Z −−−−→(
x,z
↓
z

) Z

is a cartesian square of G-sets. Hence

M∗
(
x,z
↓
z

)
M∗(f) = M∗

( x,y
↓

x,f(y)

)
M∗

(x,y
↓
y

)
so equation 4.3.4 is equivalent to

M∗

( x,y
↓

α(x)f(y)

)
M∗

(x,y
↓
y

)
= M∗

( x,y
↓

f(α(x)y)

)
M∗

(x,y
↓
y

)
which holds since f is a morphism of G-sets.

Similarly equation 4.3.3 reads

M∗

( x,y
↓

α(x)y

)
M∗

(x,y
↓
y

)
M∗(f) = M∗(f)M∗

( x,z
↓

α(x)z

)
M∗

(
x,z
↓
z

)
(4.3.5)

Similarly the square

X × Y

( x,y
↓

x,f(y)

)
−−−−→ X × Z( x,y

↓
α(x)y

)y y ( x,z
↓

α(x)z

)
Y −−−−→

f
Z

is cartesian, and both sides of equation 4.3.5 are equal to

M∗

( x,y
↓

α(x)y

)
M∗

( x,y
↓

f(y)

)
.
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Hence ζ(X,α)M is an endomorphism of the Mackey functor M , for any M . If
φ : M → N is a morphism of Mackey functors, given by maps φY : M(Y ) →
N(Y ) for any G-set Y , then

ζ(X,α)N,Y ◦ φY = N∗

( x,y
↓

α(x)y

)
◦N∗

(x,y
↓
y

)
◦ φY

= N∗

( x,y
↓

α(x)y

)
◦ φX×Y ◦M∗

(x,y
↓
y

)
(since φ is a morphism of Mackey functors)

= φY ◦M∗

( x,y
↓

α(x)y

)
◦M∗

(x,y
↓
y

)
= φY ◦ ζ(X,α)M,Y .

It follows that the maps ζ(X,α)M define an endomorphism of the identity
functor of MackR(G).

Finally, if (Y, β) is another crossed G-set, then for any Mackey functor
M and any G-set Z, the assertion

ζ(X,α)M,Z + ζ(Y, β)M,Z = ζ(X t Y, α t β)M,Z

follows easily from the first condition in definition 4.1.1. Concerning compo-
sition, one has that

ζ(X,α)M,Z ◦ ζ(Y, β)M,Z = M∗

( x,z
↓

α(x)z

)
M∗

(
x,z
↓
z

)
M∗

( y,z
↓

β(y)z

)
M∗

(
y,z
↓
z

)
.

Now the square

X × Y × Z

(x,y,z
↓
y,z

)
−−−−→ Y × Z( x,y,z

↓
x,β(y)z

)y y ( y,z
↓

β(y)z

)
X × Z −−−−→(

x,z
↓
z

) Z

is cartesian. It follows that

ζ(X,α)M,Z ◦ ζ(Y, β)M,Z = M∗

( x,y,z
↓

α(x)β(y)z

)
M∗

(
x,y,z
↓
z

)
= ζ(X × Y, α.β)M,Z

as was to be shown.

4.4 The center of the Mackey algebra

In any category of modules over a ring A, the natural transformations from
the identity functor to itself identify with the center of A : any element z of
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the center of A defines an endomorphism of any A-module M (by multipli-
cation by z on M), and this gives a natural transformation of the identity
functor of the category of A-modules.

Notation 4.4.1: The ring homomorphism from Bc
R(G) to ZµR(G) following

from proposition 4.3.1 will be still denoted by ζ.

It is given as follows :

Proposition 4.4.2: Let (L, x) ∈ PG. Then

ζ([L, x]G) =
∑
H⊆G

∑
w∈L\G/H

tHLw∩H w−1xw rHLw∩H .

Proof: Let H be a subgroup of G, and M be a Mackey functor for G over R.
The element [L, x]G corresponds to the crossed G-set (G/L,mx). The action
of ζ(G/L,mx) on M(G/H) is defined as

M∗

(
uL,vH

↓
ux.vH

)
M∗

(
uL,vH

↓
vH

)
: M(G/H) → M(G/H) .

This maps factors through M(G/L×G/H), which is isomorphic to⊕
w∈L\G/H

M(G/Lw ∩H)

since the map

g(Lw ∩H) ∈
⊔

w∈L\G/H

G/Lw ∩H 7→ (gw−1L, gH) ∈ G/L×G/H

is an isomorphism of G-sets.
Up to this isomorphism, the map

M∗
(
uL,vH

↓
vH

)
: M(G/H) →

⊕
w∈L\G/H

M(G/Lw ∩H)

is just the map
⊕

w∈L\G/H rHLw∩H , and on the component M(G/Lw ∩H), the

map M∗

(
uL,vH

↓
ux.vH

)
is equal to M∗(φw), where φw

(
g.(Lw ∩ H)

)
= g.w−1xwH.

Hence M∗(φw) = tHLw∩H w−1xw, and the action of ζ([L, x]G) on M(G/H) is
equal to ∑

w∈L\G/H

tHLw∩H w−1xw rHLw∩H .

The proposition follows, taking for M the free Mackey functor µR(G).

Remark 4.4.3: Proposition 4.4.2 shows that the composition ζ ◦ β is equal
to the morphism from the Burnside ring BR(G) to the center of the Mackey
algebra considered in Section 9 of [8].
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4.5 The p-blocks of µO(G)

Notation 4.5.1: Let b be an idempotent of ZkG. I denote by bµ the central
idempotent of µO(G) defined by

bµ = ζ(bA) .

I denote by µ1
O(G) the algebra

(ζ ◦ β)(fG
1 )µO(G) .

This algebra will be called the p-local Mackey algebra.

This notation is consistent with the notation of [2]. It is motivated by Sec-
tions 9 and 10 of [8], in which Thévenaz and Webb show that the category
MackO(G) splits as a direct sum of subcategoriesMackO(G, J), indexed by p-
perfect subgroups J of G (up to G-conjugation) : the category MackO(G, J)
consists of µO(G)-modules M such that (ζ ◦ β)(fG

J )M = M . In particular,
the category MackO(G, 1) is the category of µ1

O(G)-modules. Moreover, the
category MackO(G, J) is equivalent to MackO (NG(J)/J, 1).

It follows that studying the p-blocks of µO(G) is equivalent to studying
the p-blocks of the algebras µ1

O (NG(H)/H), for p-perfect subgroups H of G.

Theorem 4.5.2: Let b be an idempotent of ZkG. Then

bµ =
∑
H⊆G

1

|H|
∑

Q⊆P∈sp(H)

x∈CG(P )

|Q|µ(Q,P )brOP (b)(x) t
H
Qxr

H
Q .

The idempotents bµ, as b runs through the blocks of kG, are a complete set
of primitive idempotents of the center of the p-local Mackey algebra µ1

O(G).

Proof: By proposition 4.4.2 and theorem 3.2.10

bµ =
1

|G|
∑
g∈G

Q⊆P∈sp(CG(g))

|Q|µ(Q,P )brOP (b)(g)
∑
H⊆G

∑
w∈Q\G/H

tHQw∩Hg
wrHQw∩H .

Changing the order of summations gives

bµ =
1

|G|
∑
H⊆G

∑
g∈G

Q⊆P∈sp(CG(g))

w∈Q\G/H

|Q|µ(Q,P )brOP (b)(g)t
H
Qw∩Hg

wrHQw∩H

=
1

|G|
∑
H⊆G

∑
g,w∈G

Q⊆P∈sp(CG(g))

|Qw ∩H|
|Q||H|

|Q|µ(Q,P )brOP (b)(g)t
H
Qw∩Hg

wrHQw∩H .
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Summing on Qw, Pw and gw instead of Q, P , w leads to

bµ =
1

|G|
∑
H⊆G

1

|H|
∑
g,w∈G

Q⊆P∈sp(CG(g))

|Q ∩H|µ(Q,P )brOP (b)(g)t
H
Q∩Hgr

H
Q∩H

=
∑
H⊆G

1

|H|
∑
g∈G

Q⊆P∈sp(CG(g))

|Q ∩H|µ(Q,P )brOP (b)(g)t
H
Q∩Hgr

H
Q∩H .

Fix a subgroup H of G, an element g of G, and a p-subgroup P of CG(g).
By classical combinatorial formulae, if R is any subgroup of H ∩ P∑

Q⊆P
Q∩H=R

µ(Q,P ) =

{
0 if H ∩ P 6= P
µ(R,P ) otherwise

.

It follows that

bµ =
∑
H⊆G

1

|H|
∑

R⊆P∈sp(H)

g∈CG(P )

|R|µ(R,P )brOP (b)(g)t
H
R gr

H
R

which states the formula in theorem 4.5.2.
To complete the proof of this theorem, it remains to show that if b is

a block of kG, i.e. a primitive idempotent of ZkG, then bµ is a primitive
idempotent of ZµO(G). Suppose that bµ splits as the sum of two orthogonal
idempotents c and d of ZµO(G). Then in particular

t11b
µ = t11b

µt11 = t11ct
1
1 + t11dt

1
1

is a decomposition of t11b
µt11 as a sum of orthogonal central idempotents in the

algebra t11µO(G)t11. This algebra is isomorphic to OG (via x ∈ G 7→ t11xt
1
1),

and moreover
t11b

µt11 = t11bt
1
1 .

Indeed if R ⊆ H are subgroups of G, and if g ∈ G, then t11.t
H
R gr

H
R .t

1
1 = 0 in

µO(G), unless H is the trivial subgroup of G.
If b is primitive, it follows that one of t11ct

1
1 or t

1
1dt

1
1 is zero, say t11ct

1
1. Now

µO(G)c is a projective Mackey functor in MackO(G, 1) (i.e. a projective
µ1
O(G)-module), whose evaluation at the trivial subgroup is equal to

t11µO(G)c = t11ct
1
1µO(G) = 0 .

It follows that µO(G)c = 0, by Corollary 12.2 of [8]. Hence c = 0, and the
proof is complete.
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5 Consequences

5.1 Another formula

The following gives another expression for bµ, which may be easier to remem-
ber :

Proposition 5.1.1: If H is a subgroup of G, denote by X 7→ [X] the O-
linear morphism from BO(G) to µO(G) mapping H/L to tHL r

H
L . If b is an

idempotent of ZkG, then

bµ =
∑
H⊆G

1

|H|
∑

P∈sp(G)

|P |tHP
(
[ePP ]br

O
P (b)

)
rHP .

Proof: Indeed in BK(P )

ePP =
1

|P |
∑
Q⊆P

|Q|µ(Q,P ) P/Q .

Thus

[ePP ] =
1

|P |
∑
Q⊆P

|Q|µ(Q,P ) tPQr
P
Q .

Now by theorem 4.5.2

bµ =
∑
H⊆G

1

|H|
∑

Q⊆P∈sp(H)

x∈CG(P )

|Q|µ(Q,P )brOP (b)(x) t
H
Qxr

H
Q

=
∑
H⊆G

1

|H|
∑

P∈sp(H)

tHP

 ∑
Q⊆P

x∈CG(P )

|Q|µ(Q,P )tPQbr
O
P (b)(x)xr

P
Q

 rHP

=
∑
H⊆G

1

|H|
∑

P∈sp(H)

tHP

 ∑
Q⊆P

x∈CG(P )

|Q|µ(Q,P )tPQr
P
Qbr

O
P (b)(x)x

 rHP

(since CG(P ) ⊆ CG(Q) for Q ⊆ P )

=
∑
H⊆G

1

|H|
∑

P∈sp(H)

tHP

(
∑
Q⊆P

|Q|µ(Q,P )tPQr
P
Q)(

∑
x∈CG(P )

brOP (b)(x)x)

 rHP

as was to be shown.
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5.2 Residues

Notation 5.2.1: Let M be a Mackey functor for G over R, and H be a
subgroup of G. Then Brauer residue of M at H is defined as

M(H) = M(H)/
∑
L⊂H

tHLM(L)

and the projection M(H) → M(H) is denoted by brH . By duality, the Brauer
co-residue of M at H is defined as

M(H) =
⋂
L⊂H

Ker rHL ⊂ M(H)

Proposition 5.2.2: LetM be a Mackey functor for G over O, in MackO(G, 1),
and b be a block of kG.

1. If H is a subgroup of G, then M(H) = 0, unless H is a p-group.
Similarly M(H) = 0, unless H is a p-group.

2. If L is a p-subgroup of G, and if m ∈ M(L), then

brL(b
µ.m) = brOL (b)brL(m)

Similarly, if m ∈ M(L), then

bµ.m = brOL (b)m

3. The following are equivalent :

(a) The block bµ acts as the identity of M .

(b) For any p-subgroup P of G, the idempotent brOP (b) acts as the
identity of M(P ).

(c) For any p-subgroup P of G, the idempotent brOP (b) acts as the
identity of M(P ).

Proof: The first assertion follows from the fact that (ζ ◦ β)(fG
1 ) acts as the

identity of M if M is in MackO(G, 1). Moreover, the action of this idem-
potent on M(H) is a linear combination with coefficients in O of elements
tHP r

H
P , for p-subgroups P of H.
For assertion 2, observe that bµ acts on M(L) via

bµL =
1

|L|
∑

Q⊆P⊆L
x∈CG(P )

|Q|µ(Q,P )brOP (b)(x)t
L
Qxr

L
Q .
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Thus if m ∈ M(L)

bµLm =
1

|L|
∑

Q⊆P⊆L
x∈CG(P )

|Q|µ(Q,P )brOP (b)(x)t
L
Qxr

L
Qm .

In this summation, all the terms are traces from proper subgroups of L,
except those for which Q = P = L. This gives :

brL(b
µ
Lm) = brL(

∑
x∈CG(L)

brOL (b)(x)x.m) = brL(br
O
L (b)m) = brOL (b)brL(m) .

Similarly, if m ∈ M(L), then all proper restrictions of m are zero, hence

bµL.m =
∑

x∈CG(L)

brOL (b)(x)x.m = brOL (b)m

as was to be shown.
For assertion 3), suppose first that bµ acts as the identity of M . Then by

assertion 2), the idempotent brOL (b) acts as the identity of M(L) and M(L),
for any p-subgroup L of G. Thus assertion (a) implies (b) and (c).

Conversely, suppose that (b) holds. Then in particular bµ acts as the
identity of M(1) = M(1). By induction on the order of the subgroup H of
G, this shows that bµ acts as the identity of M(H) : let m ∈ M(H). If H is
not a p-group, then by assertion 1) brH(m) = 0, and m can be written

m =
∑
L⊂H

tHLmL

for proper subgroups L of H and elements mL ∈ M(L). Now by induction

bµ.m = bµH
∑
L⊂H

tHLmL =
∑
L⊂H

tHL (b
µ
LmL) =

∑
L⊂H

tHLmL = m .

And if H is a p-subgroup of G, then by assertion (b)

m− bµ.m ∈ Ker brH .

Hence
m− bµ.m =

∑
L⊂H

tHLmL

for proper subgroups L of H and elements mL ∈ M(L). Now

bµ.m− (bµ)2.m = m− bµ.m
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by the same argument as above. Hence bµ.m = m, and (b) implies (a).
Similarly if (c) holds, then in particular bµ acts as the identity of M(1) =

M(1). By induction on the order of the subgroup H of G, this shows that
bµ acts as the identity of M(H) : let m ∈ M(H). If H is not a p-group,
then m is a linear combination of traces from proper subgroups of H, hence
bµ.m = m by induction. And if H is a p-subgroup of G, then by induction
for any proper subgroup L of H

rHL (b
µ.m) = rHL (b

µ
H .m) = bµL.r

H
L m = rHL m

This shows that m− bµ.m ∈ M(L). Now (c) implies that

m− bµ.m = bµ(m− bµ.m) = bµ.m− bµ.m = 0

thus m = bµ.m, as was to be shown.

Corollary 5.2.3: Let M be a Mackey functor in MackO(G, 1). If M is
indecomposable, and if there is a p-subgroup P such that M(P ) 6= 0 and
CG(P ) acts trivially on M(P ) (resp. M(P ) 6= 0 and CG(P ) acts trivially on
M(P )), then M is in the principal block of MackO(G, 1).

Proof: Since M is indecomposable, there is a block b of kG such that bµ

acts as the identity of M . Hence brOP (b) acts as the identity of M(P ), for
any p-subgroup P of G. Moreover, since CG(P ) acts trivially on M(P ), the
action of brOP (b) on M(P ) is multiplication by the sum

∑
x∈CG(P ) br

O
P (b)(x),

which is zero if b is not the principal block of kG : indeed if e =
∑

x∈CG(P ) exx

is any block of OCG(P ), then the sum
∑

x∈CG(P ) ex is equal to 1 or 0, ac-

cording to the fact that e is the principal block of OCG(P ) or not. And by
Brauer’s Third Main Theorem, the principal block of OCG(P ) appears in the
decomposition of brOP (b) if and only if b is the principal block of OG. The
argument is the same with M(P ).

Remark 5.2.4: This corollary shows in particular that if M is an indecom-
posable Mackey functor in MackO(G, 1), and if CG(P ) acts trivially on M(P )
for any p-subgroup P of G, then M is in the principal block of MackO(G, 1).

5.3 The defect of a block of µO(G)

In [1] Chapter 12, it is shown that there exists a natural Green functor for
G whose evaluation at G is isomorphic to the center of the Mackey algebra.
This functor is denoted by ζB, and its value at the G-set X is the set

ζB(X) = HomFunct(I, IX)
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of natural transformations from the identity functor I on the category of
Mackey functors to the endofunctor IX on this category, mapping the Mackey
functor M to its Dress construction MX , defined on the G-set Y by

MX(Y ) = M(Y ×X) .

This functor ζB has also been considered by Oda (the functor T of [7]) from
a different point of view. The equivalence of those two points of view follows
from Proposition 12.2.8 of [1] : the value of ζB at a subgroup H of G is the
set of sequences (zL), indexed by the subgroups L of H, such that

zL ∈ tLLµO(G)tLL tLQzL = zQt
L
Q zQr

L
Q = rLQzL xzL = z xLx

for any subgroups Q ⊆ L of H and any x ∈ H. The isomorphism ζB(G) ∼=
ZµO(G) is obtained by mapping the sequence (zL)L⊆G to the element

∑
L⊆G zL.

Also recall from Proposition 12.2.8 of [1] that if Q is a subgroup of G,
and (zL)L⊆Q is an element of ζB(Q), then for any subgroup H of G, the
component of tGQ(z) at the subgroup H is equal to

tGQ(z)H =
∑

w∈Q\G/H

tHQw∩Hw
−1zQ∩wHwr

H
Qw∩H .

If g ∈ CG(Q), one can define an element z(Q, g) of ζB(Q) by setting, for any
subgroup L of Q

z(Q, g)L = tLLgr
L
L .

Let b be a block of kG, with defect group D. With the previous notation,
the expression of bµ given in proposition 4.5.2 can be written as

bµ =
1

|G|
∑

Q⊆P∈sp(G)

g∈CG(P )

|Q|µ(Q,P )brOP (b)(g)t
G
Qz(Q, g) .

The summation can be restricted to p-subgroups P of G for which brOP (b) 6= 0.
Such subgroups are all contained in D up to G-conjugation. It follows that

bµ ∈ tGDζB(D) .

Definition 5.3.1: A defect group of the block bµ ∈ ZµO(G) = ζB(G) is a
subgroup E of G, minimal subject to the condition

bµ ∈ tGEζB(E) .
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The following argument is then classical : if D is any subgroup of G such
that bµ ∈ tGDζB(D), then

bµ = (bµ)2 ∈ (tGEζB(E))(tGDζB(D)) ⊆
∑

x∈E\G/D

tGE∩xDζB(E ∩ xD)

and by Rosenberg’s lemma and primitivity of bµ, there exists x ∈ G such
that E ⊆ xD. In particular E is unique up to G-conjugation.

Proposition 5.3.2: Let b be a block of kG, with defect group D. Then D is
also a defect group of bµ.

Proof: Let E be a defect of bµ. The above argument shows that E is
contained in D up to G-conjugation. The reverse inclusion has been proved
by Oda ([7] Theorem 6). It also follows from the following fact : if bµ = tGE(c),
for c ∈ ζB(E), then

(bµ)1 = t11Tr
G
E(c1)r

1
1 ∈ t11Tr

G
E(OG)Er11

where TrGE is the relative trace map. Since moreover (bµ)1 = t11br
O
1 (b)r

1
1, it

follows that the block bO = brO1 (b) lifting b to OG belongs to TrGE(OG)E.
Hence D is contained in E up to G-conjugation.
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[8] J. Thévenaz and P. Webb. The structure of Mackey functors. Trans.
Amer. Math. Soc., 347(6):1865–1961, June 1995.

[9] T. Yoshida. Talk at the AMS Conference on Group Representations and
Topology. Seattle, 1996.

32


