The p-blocks of the Mackey algebra

Serge Bouc

Institut de Mathématiques de Jussieu
Université Paris 7-Denis Diderot, 75251, Paris Cedex 05, France
email: bouc@math.jussieu. fr

Abstract: Let p be a prime number. This paper describes the primitive idempotents
and prime spectrum of the crossed Burnside algebra of a finite group over a p-local ring.
The main application is a formula for the block idempotents of the p-local Mackey algebra
of the group, in terms of the corresponding blocks of the group algebra.

Mathematics Subject Classification (2000): 19A22 20C20

Keywords: crossed Burnside rings prime spectrum Mackey functors blocks

1 Introduction

Let p be a prime number, and O be a complete discrete valuation ring of
characteristic 0 whith residue field of characteristic p. Let G be a finite group,
and denote by 110(G) the Mackey algebra of G over O (see [8] for definition).

Formulae for the primitive idempotents in the center of o (G) have been
given by Yoshida (and slightly corrected by Oda [7]). However, those formu-
lae are expressed in terms of ordinary irreducible characters of the centralizers
of subgroups of G. The aim of this article is to state explicit formulae for
the block idempotents of 1o (G), in terms of the blocks of the group algebra
OG.

The proof uses the natural ring homomorphism from the crossed Burnside
ring BG(G) to the center of the Mackey algebra, and a description of the
prime spectrum and block idempotents of Bg(G).

The paper is organized as follows : section 2 is an exposition of definitions
and basic results on the crossed Burnside ring. Section 3 describes the prime
spectrum and p-blocks of this ring. Section 4 recalls the basic definitions on
Mackey functors, and uses the action of the crossed Burnside ring to state
explicit formulae for the block idempotents of the p-local Mackey algebra.
Section 5 exposes some consequences on Mackey functors that follow from
these formulae. In particular, one can show that a block b of G and the
corresponding block b* of the Mackey algebra have the same defect groups.



2 The crossed Burnside ring

Most of the definitions and results of this section have already been discussed
by Yoshida ([9]). However, they are still unpublished, or not currently avail-
able in published form. This is the reason for exposing this material here.

2.1 Definition

Let GG be a finite group, and denote by G¢ the set G, on which G acts by
conjugation. The category G-setlqge of crossed G-sets is the category of G-
sets over G¢ : a crossed G-set (X, ) is a a pair consisting of a finite G-set
X (i.e. a finite set with a left G-action), together with a map of G-sets «
from X to G°, and a morphism of crossed G-sets from (X, «a) to (Y, /) is a
morphism of G-sets ¢ from X to Y such that oy = a.

There is an obvious notion of disjoint union of crossed G-sets, and the
crossed Burnside group B¢(G) is defined as the Grothendieck group of the
category of crossed G-sets, for relation given by disjoint union decomposition :
let Z be the set of isomorphism classes of crossed G-sets, and denote by [X, o]
the isomorphism class of the crossed G-set (X, ). Then

B(G)=7Z"/ <[XuY,aUf] - [X,ao - [Y,5]>

Let B denote the (ordinary) Burnside Mackey functor for G (see [3] or [1]
Section 2.4 for definition). It follows from [1] Proposition 2.4.2 that B¢(G) is
isomorphic (as a Z-module) to the evaluation B(G°) of the Mackey functor
B at the G-set G°.

If (X,a) and (Y, ) are crossed G-set, then their product is the crossed
G-set (X x Y,a.3), where X x Y is the direct product of X and Y, with
diagonal G-action, and «.f is the map from X x Y to G¢ defined by

(a.B)(z,y) = a(x)B(y)

This product on crossed G-sets clearly commutes with disjoint unions, hence

it gives a product on B°(G). This turns B°(G) into a ring. The identity

element of this ring is [e, u,], where o is a G-set of cardinality one, and the

map u, sends the unique element of e to the identity element of the group G.
The ring B¢(G) is commutative : the map

(r,y) e X XY = (a(z)y,z) €Y x X

is an isomorphism from (X x Y, a.5) to (Y x X, f.a) in G-set|ge, because
for all (z,y) € X xY

B(a(@)y)al@) = a(@)By)a@) " al@) = a()B(y)
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More generally, if R is a commutative ring, denote by Bf(G) the tensor
product of B¢(G) with R over Z

BS(G) = R &y B(G)

It is an R-algebra. Similarly, denote by Bgr(G) the (ordinary) Burnside
algebra of G over R.

Lemma 2.1.1: If X is a finite G-set, denote by ux the map from X to G
sending every element to 1 € G. Then the correspondence X — (X, ux)
extends linearly to a ring homomorphism from Br(G) to B%(G), which pre-
serves identity elements.

Proof: This amounts to checking that if X and Y are finite G-sets, then the
product (X X Y, ux.uy) is isomorphic to (X X Y, uxxy), which is straight-
forward. Moreover the trivial G-set is mapped to (e, u,). 0

2.2 Characterization of crossed (G-sets

A crossed G-set (X, «) is called transitive if the G-set X is. In this case, let
be any element of X, denote by H the stabilizer of z in G, and set a = a(z).
Then a lies in the centralizer C(H) of H in G. Define the map m, from
G/H to G¢ by m,(gH) = %a, where Ya = gag~'. Then (G/H,m,) is a crossed
G-set, and the map gH +— gx from G/H to X is clearly an isomorphism of
crossed G-sets from (G/H,m,) to (X, a).

Conversely, if H is any subgroup of G, and if a € Cg(H ), then (G/H,m,)
is a transitive crossed G-set. If K is a subgroup of G, and b € Cg(K), then
the crossed G-sets (G/H,m,) and (G/K,m;) are isomorphic if and only if
there exists an element g € G such that YH = K and 9a = b.

Notation 2.2.1: [ will denote by sg the set of subgroups of G. If X is a
G-set and H € sq, I denote by X! the set of fived points of H on X. Let
P denote the set of pairs (H,a) consisting of a subgroup H of G and and
element a of Cq(H). The group G acts by conjugation on sg and Pg, and
I denote by [sg] (resp. [Pg|) a set of representative of G-orbits on sg (resp.
on Pg). If (H,a) € Pg, I denote by [H,a|g the isomorphism class of the
crossed G-set (G/H,m,).

Now if (X, a) is any crossed G-set, choose a set S of representatives of the
orbits of G on X. Then the map from | |, ¢ G/G, to X sending gG to gs
is clearly an isomorphism in G-setlqe from | |, o(G/G, mq(s)) to X. Thus
any crossed G-set is isomorphic to a disjoint union of transitive ones.



Lemma 2.2.2: Let (X, «) and (Y, ) be crossed G-sets. Then the following
are equivalent:

1. The crossed G-sets (X, a) and (Y, 3) are isomorphic.

2. For any crossed G-set (Z,7)

[Homg sty ((Z:7): (X, ) )| = [Homg get, . ((Z.7), (V. 5) )

3. For any (H,a) € [Pg]
o™ )| = |87 (a)"]

Proof: Clearly 1) implies 2). Moreover 2) implies 3) since for any crossed
G-set X

Homg-set,.. ((G/H.ma), (X, )| = o~ ()"
To show that 3) implies 1), I can replace (X, a) and (Y, ) by isomorphic
crossed G-sets, i.e. suppose that
(X,0)= || wxe(G/K,m) (VB = || oka(G/K,m)
(K:b)€[Pg] (Kb)e[Pc]

where ug, and vk, are natural integers, and the notation ug ,(G/K,my)
means a disjoint union of ug, copies of (G/K,m;). Notice that if p = (H, a)
and ¢ = (K, b) are elements of Pg, then

[Homg, get,. ((G/H, ma), (G/K, mb))| ={9eG/K|H'CK, a=b}|
Denote by M (p, q) this number. Condition 3) implies that

> uMp.g) = > v,M(p,q)

9€[Pg] q€[Pg]

for all p € [Pg]. It follows that the sequence (uq — vq)4erpy) is in the kernel
of the square matrix M (p, q)p qcips]- Now with suitable ordering of [P¢], this
matrix is upper triangular. The diagonal coefficient M (p,p) for p = (H,a)
is equal to

M(p,p) = {g € No(H)/H | *a = a}| = [No(H) N Cq(a) : H|

This is non-zero, and M is non singular. Thus ug, = vk, for any (K, b) in
[Pg]. Hence (X, «) and (Y, 3) are isomorphic. u|

Corollary 2.2.3: The elements [H,alg, for (H,a) € [Pg], form a basis of
B¢(G) over Z.



2.3 Brauer morphisms

Let K be a subgroup of GG, and let Cy(K) be the centralizer of K in G.
Denote by (X, a) — (X% o) the fixed points functor from G-setlge to
Ca(K)-setlogr)e, where XX is viewed as a Cg(K)-set, and o€ is the map
XE — (G9)K = Cq(K)° induced by a.

This functor induces a map Brg, called the Brauer morphism, from
B4(G) to BS (C’G(K)), defined by linearity from Brg([X,a]) = [XX, o],
which is clearly a ring homomorphism, which preserves identity elements.

If (X, ) is a crossed G-set, let s¢(X, ) denote the element of the center
Z RG of the group algebra RG of G over R defined by

sa(X, a) = Z a(x)

This clearly induces a morphism of R-algebras, still denoted by sg, from
B%(G) to ZRG, which preserves identity elements.

Notation 2.3.1: If H is a subgroup of G, then I denote by zy the ring
homomorphism sc,my © Bry from Bg(G) to ZRCq(H).

Thus if (X, «) is a crossed G-set, then

w([X,a])= Y alr)= Y la'(9)"g

zeXH g€Cq(H)
Lemma 2.3.2: If R is torsion free, then the ring homomorphism
Or= [] 2zun:Bu@G) — ][] ZRCa(H)
He[sq] Helsq)

1S 1njective.
Proof: Clearly O is a ring homomorphism. The injectivity assertion is just
a reformulation of lemma 2.2.2 1 if u = 3~y ) cpy THalH, Al 18 a non-zero

element the kernel of Og, let K be a subgroup of G maximal such that there
exists (K,b) € [Pg| with rx;, # 0. Now

zi(u) = Z TK.a Z Ja = Z k.o Na(K)NCgq(a) : Kla=0
aeCq(K) gENg(K)/K acCq(K)
a mod.Ng(K)

Since R is torsion free, it follows that rx, = 0 for all @ € Cg(K). This
contradiction proves the lemma. a



The previous lemma can be considered from a slightly different point of
view : let G¢ denote the set GG, on which G acts by conjugation. There is an
isomorphism of G-sets

G = | | G/Caly)

9€[G]

where [G] is a set of representatives of conjugacy classes of G. Since B¢(G)
is the value of the Burnside Mackey functor B at G, it follows that there is
an isomorphism of Z-modules

B(G) = €D B(Cely)

sending the crossed G-set (X, «) to the sequence (ofl(g)> a The inverse
g€|G

isomorphism sends the element C¢(g)/L of B <Cg(g)> to [L, gla-

Now for any finite group H, it follows from Burnside’s theorem (see [3]
Theorem 2.3.2) that there is an injective morphism

¢n:BH)— [] z (2.3.3)

KE[SH]

defined by linearity by mapping the H-set X to the sequence (|X*|)xes,-
Hence there is an injective morphism of Z-modules

@G =] Il z= [ =z

9€[G] €lsc 4 (g)] (H,9)€[Pc]

sending the crossed G-set (X, a) to the sequence (|a™(9)"|)(m,g)epe]- Now
there is an isomorphism

[T z= [] 2zca(m)

(H.9)€[P¢] Helsca]

This gives the injective map

6z : B(G) — ] 2zCa(H)

He[sq]

and the map O of lemma 2.3.2 is obtained by tensoring this map with R,
which is a flat Z-module if R is torsion free. As a consequence :



Proposition 2.3.4: Let K be a field of characteristic 0. Then the map

G
U [ 2 : B(G) — <H ZKCG(H)>

HCG HCG

is an isomorphism of K-algebras. The inverse isomorphism maps the se-
quence (zg)uca to

% S ILI(L, H)zn ()L, g)e

| | (L,Q)GPG
LCHCCg(g)

where (L, H) denotes the Mdébius function of the poset of subgroups of G,
and zy(g) denotes the coefficient of g in zy.

Proof: The map U is injective by lemma 2.3.2, and its image is contained

in
(H ZKCG ) H <KCG )NG(H)
HCG Helsg]

Now this K-vector space has the same (finite) dimension as B (G), namely
the cardinality of [Pg]. The first assertion follows.

To build the inverse map, note that for any finite group G, the Burnside
algebra Bg(G) is a split semi-simple commutative K-algebra. The primi-
tive idempotents of By (G) have been determined by Gluck ([5]). They are
indexed by the (conjugacy classes of) subgroups of the group G. The idem-
potent €% indexed by H is equal to (see [3] Theorem 3.3.2)

e = ’Nl( il Z|L|;LLH) G/L . (2.3.5)

This idempotent is characterized by the fact that for any X € Bg(G), one
has that
X6 = |XHeS . (2.3.6)

It follows in particular that
Yo Y X Y NG S e
Helsq] Helsq] LCHCG

Now if (X, «) is a crossed G-set, the corresponding element (zy)pce is de-
fined by

zi(g) = o' (g
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thus

_ 1
o Mg) =17 D Ll H)za(g) Cole)/ L
€69l LeicZar
in B (C’G(g)), and the second assertion follows. 0

Remark 2.3.7: Proposition 2.5.4 can be used to show that B, (G) is a semi-
simple (commutative) algebra (split when K is big enough), and to state

explicit formulae for its primitive idempotents. Those formulae are due to
Yoshida.

It is possible to characterize the image of the above map Oz :

Proposition 2.3.8: If (H,g) € Pg, and if K is a subgroup of Cg(g), set
ng(H, K) = {z € Na(H) N Ca(g)/H | <H,z>=cq4(9) K}

where < H, x> 1is the subgroup of G generated by H and x, and the notation
< H,v>=c,g K means that < H,z> and K are conjugate by an element

of Cal(g)-
For H € [sg|, let zu = 37 copmy #1(9)g be an element of ZZCq(H). Then

the sequence (zm)mejse) belongs to the image of Oy if and only if for any H
in [sq] the following two conditions hold :

1. The element zy is invariant by Ng(H).

2. For any g € Ca(H), the sum ) e, . ) ng(H, K)zk(g) is a multiple
alg
of INc(H) N Cg(g) : H|.

Proof: This follows from a theorem of Dress ([4], or [3] Theorem 3.2.1),
characterizing the image of the map ¢y defined in (2.3.3): giving an ele-
ment zy in (ZOg(H))NeH) for H € [s¢g] is equivalent to giving integers
zu(g), for (H,g) € [Pg|. Now for a fixed g € G, the sequence of integers
(21(9)) Helscy, ) 15 in the image of ¢ () if and only if condition 2) holds. 0

3 The prime spectrum of B}(G)

3.1 Prime spectrum

Lemma 3.1.1: The Krull dimension of the ring B4(G) is equal to the Krull
dimension of R.



Proof: Indeed, the ring B§(G) is an extension of R, and it is a finitely
generated (free) R-module. Hence it is integral over R. Thus dim B§,(G) =
dim R. 0

Lemma 3.1.2: If R is torsion free, then the map ©r induces a surjection

Spec(Or) : Spec( H ZRCg(H)> — Spec(BE(G))

HE[SG]

Proof: Here again, the ring C' = [y, ZRCc(H) is an extension of
B%(G). Moreover, it is a finitely generated R-module, hence also a finitely
generated B%(G)-module. Thus C'is integral over B%(G), and ©p induces a
surjective maps on the spectra. a

Notation 3.1.3: If p is a prime ideal of R, denote by k(p) the field of frac-
tions of R/p. Denote by ¢, the canonical morphism from ZRG to Zk(p)G.
If b is a block of k(p)G, set

Iy = {u € ZRG | py(u)b € J(Zk(p)Gb)}

(where J(Zk(p)Gb) denotes the Jacobson radical of the algebra Zk(p)Gb).
It is an ideal of ZRG.

Lemma 3.1.4: Let p (resp. p’) denote a prime ideal of R, and b (resp. b')
denote a block of k(p)G (resp. k(p')G). Then :

1. The ideal I,y is a prime ideal of ZRG. Conversely, if I is a prime
wdeal of ZRG, there exist a unique prime ideal p of R and a unique

block b of k(p)G such that I = I,.
2. If Iy, € Iy, then p C p'. If moreover p =p’, then b=10".

3. If p Cp', and if the block b is given, then there exists a block b’ such
that ]th g _[p/7b/.

4. If p C 9/, and if the block b is given, then there exists a block b such
that [va g [p/,b’-

Proof: Clearly I, is the kernel of the canonical morphism

ZRG A Zk(p)G S Zk(p)Gb — Zk(p)Gb/J(Zk:(p)Gb)
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Since the ring on the right hand side is a field, it follows that I, is a prime
ideal of ZRG.

The map u : r € R — r.1 € ZRG is an injective ring homomorphism.
Thus ZRG is an extension ring of R. If I is a prime ideal in ZRG, then
p=1NRis a prime ideal of R. Moreover

ZpG =pZRG C 1T

Let 7 denote the projection map ZRG — ZRG/I, and i : ZRG/I — K
denote the embedding of ZRG/I in its field of fractions K. The kernel of
the map p =iomowu: R — K is equal to p. Hence p factors through the
canonical map A, : R — k(p). Hence there is a map 6 : Zk(p)G — K and a
commutative square

ZRG —I— ZRG/I

| I

Zk(p)G T> K

The ideal I is the kernel of the map 6o ,, hence it is the inverse image under
¢y of the prime ideal #71(0) of Zk(p)G. This ring has dimension zero. Hence
there exists a primitive idempotent b of Zk(p)G (i.e. a block of k(p)G) such
that 6-(0) = J(Zk(p)Gb) + S Zk(p)GY (where i denotes a block of kG).
b#b

Hence I = I,,.

Finally if p’ is a prime ideal of R, and ¥’ is a block of k(p’)G such that
-[p,b g ]P/7b’7 then

p = lep,b g Rm[p/7b/ :p/

Suppose moreover that p = p’. The idempotent b can be written

b= Z(Tg/sgm

geG

where r, € R/p, and s, € R/p — {0}, for g € G. There is an element s € R
which maps to [[ . sy in R/p, and there is an element v € ZRG such that

It follows that v — s.1 € I, = Iy . Thus @u(v — s.1)0 is nilpotent. But if
b # b, then

wp(v — s.1)b = A(5)D0 — Ap(5)0 = —Ap()b'
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This cannot be nilpotent since A,(s) is non-zero in k(p). Thus b = b'. This
completes the proof of assertions 1) and 2).

Assertion 3) is nothing but the going up theorem, which holds between
R and ZRG because ZRG is free as an R-module, hence flat over R (see [6]
Theorem 9.5).

Similarly, assertion 4) is the going down theorem, which holds between
R and ZRG because ZRG is a finitely generated R-module, hence integral
over R (see [6] Theorem 9.4). 0

Notation 3.1.5: If H is a subgroup of G, if p is a prime ideal of R, and if
b is a block of k(p)Cq(H), I set

Lirps = 2y (Ips)
It is a prime ideal of BG(G).

Corollary 3.1.6: If R is torsion free, and if I is a prime ideal of B4(G),
then there exists a subgroup H of G, a prime ideal p of R, and a block b of
k(p)Cq(H), such that I = Iy .

3.2 p-blocks

Notation 3.2.1: From now on, the letter O will denote a complete discrete
valuation ring of characteristic 0, with mazimal ideal 7, with residue field k
of characteristic p > 0, and field of fractions K, which will be supposed big
enough (i.e. K contains the |G|™ roots of unity). I denote by x — T the
reduction morphism from O to k, or from OG to kG.

If H is a group of order dividing |G|, the group algebra KG is split and
semi-simple. If x is an ordinary irreducible character of H, I denote by e,
the corresponding block of KH, and by w, the morphism from ZOH to O
mapping u to x(u)/x(1).

I will say that x is in the block e (or belongs to the block e) of kH if e
acts as identity morphism on a reduction of a simple module affording the

character x, or equivalently, if there is a block E of ZOH such thate,.F = e,
and E = e.

If P is a p-subgroup of G, I denote by brp the Brauer morphism from ZkG
to ZkCq(P), which is the k-linear map sending x € G to itself if v € Cq(P),
and to 0 otherwise.

A Brauer pair (P,e) is a pair consisting of a p-subgroup P of G, and a
block e of the algebra kCo(P). If b is a block of kG, the Brauer pair (P,e)
is a b-Brauer pair if e.brp(b) = e.
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For the remainder of this section, the ring R will be equal to O. The prim-
itive idempotents of the Burnside algebra Bp(G) follow from a theorem of
Dress ([4] or [3] Corollary 3.3.6). They are indexed by the (conjugacy classes
of ) p-perfect subgroups of G. The idempotent f§ indexed by the p-perfect
subgroup H of G is equal to the sum of the idempotents % (see equation
2.3.5) for which OP(K) is conjugate to H, each taken once (i.e. K is taken
once up to conjugation in (). In particular

=Y (3.2.2)

Pes,(G)/G

where s (G) is the set of p-subgroups of G. The corresponding block
Bo(G) fle of the Burnside algebra is the O-submodule generated by the G-
sets G/ P, for P € 5,(G).

Now the algebra homomorphism 8 : Bo(G) — B§(G) of lemma 2.1.1
provides a decomposition of unity in B (G) as a sum of orthogonal idem-
potents B(fS), for p-perfect subgroups H of G, up to conjugation. These
idempotents are no longer primitive, and in this section I will show how the
idempotent B(fF) splits as a sum of primitive idempotents of BS(G).

Notation 3.2.3: [ will denote by A(G) the O-algebra BE(G)B(fE), and by

A(G) the k-algebra k @0 A(G). The algebra A(G) will be called the p-local

crossed Burnside algebra (over O).

Proposition 3.2.4: 1. The map

G

Pés, (G) Pés, (G)

is an injective map of O-algebras, which preserves identity elements,
and induces an isomorphism of K-algebras

U K®o AG) = | [] ZKCa(P)

Pes,(G)

2. The algebra A(G) is the O-submodule of B (G) with basis the set of
elements [P, x]q of [Pg] for which P is a p-group.

Proof: If X is a G-set and if H is a subgroup of GG

(211 0 B)(X) = zu([X,ux]) = Y ux(zx) = |X"|.1 € ZRCq(H)

xeXH
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where uy is defined in lemma 2.1.1. It follows from equations 2.3.6 and 3.2.2
that (25 o B)(fE) = 0 if H is not a p-group, and that (25 o B)(fE) =1 €
ZRCq(H) otherwise. Now the map W is just the restriction to A(G) of the
map Op of lemma 2.3.2, hence it is injective. This proves the first part of
assertion 1).

The previous argument actually shows that if P is a p-group and if x is
an element of Cg(P), then

] 0 if H is not a p-group
ZH<[P’ ﬂGﬁ(flG)) a { zu ([P, x]g) otherwise
In both cases zH([P, x]gﬂ(flG)> = zu([P, z]c), thus [P, z]cB(f{) = [P, z]q

by lemma 2.3.2. In other words [P, z]¢ € A(G) if P is a p-group. Conversely
B(fE) is a linear combination with coefficients in O of pairs [P, z]q of Pg
for which P is a p-group, and these linear combinations clearly form an
ideal of B (G). Assertion 2) follows. The second part of assertion 1) also
follows, since W is an injective map of K-vector spaces of the same (finite)
dimension. O

Remark 3.2.5: Assertion 2) means that A(G) is generated over O by the
images of the crossed G-sets (X, a) for which the stabilizer in G of any ele-
ment of X is a p-group.

Notation 3.2.6: If P is a p-subgroup of G denote by Zp the map A(G) —
ZkCq(Q) such that the square

AG) —22 20C(P)

| l

AG) —— ZkCq(P)

Zp

1s commutative, where the vertical arrows are the reduction maps.
Lemma 3.2.7: For any p-subgroup P of G

Zp=brpoz;
Proof: Indeed, if v is the image of the crossed G-set (X, a) in A(G), then

21(v) =) a(@) =) la(g)lg € ZkG

zeX geG
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whereas

()= ) al@)= ) la"(9)"lg € ZkCo(P)

zexP 9€Cq(P)

and the lemma follows since |a~!(g)| = |a~1(g)?| in k for any p-subgroup
P of Cg(g) : this is because k has characteritic p, and because |a~!(g)| and
la™1(g)"| are congruent modulo p, since P is a p-group. 0

The following theorem describes the prime spectrum of A(G), which is
a ring of dimension 1 by lemma 3.1.1. If [ is a prime ideal of A(G), and
q € {0,p}, I will say that I has co-characteristic ¢ if the ring A(G)/I has
characteristic ¢ :

Theorem 3.2.8: Denote by b a block of kG, by P (resp P') a p-subgroup of
G, by x (resp. X') an irreducible character of Ca(P) (resp. Ca(P')), and by
e a block of kCq(P). Let I be a prime ideal of A(G).

1. The following are equivalent :

(a) The ideal I has co-characteristic 0.

(b) The ideal I is a minimal prime ideal.

(¢) There exist a p-subgroup P of G and an irreducible character x of
Cq(P) such that I = Ipg,., .

2. The following are equivalent :

(a) The ideal I has co-characteristic p.

(b) The ideal I is a mazximal prime ideal.

(c) There exist a p-subgroup P of G and a block e of kCg(P) such
that I = Ip..

3. The ideal Ipge, is contained in Ipoe if and only if the pairs (P, e,)
and (P', e,r) are conjugate in G. In this case moreover Ipge, = Iprge. -

4. The ideal Ipgp, is contained in Ipy. if and only if the character x
belongs to the block e. In this case, the inclusion is strict.

5. The ideal I is contained in Ip. . if and only if (P, e) is a b-Brauer
pair, i.e. if ebrp(b) = e. In this case moreover I, = Ipr.e.
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6. The connected components of Spec(.A(G)) are 1n one to one corre-

spondence with the blocks of kG. The component C, associated to the
block b consists of the unique maximal prime ideal I rp, and of the
ideals Ipg., , where P is a p-subgroup of G, and x is an irreducible
character of Cq(P) belonging to a block e of Cq(P) such that (P, e) is

a b-Brauer pair.

Proof: By corollary 3.1.6, any prime ideal I of A(G), which is also a prime
ideal of BG(G), is equal to some ideal Ip 5, for a subgroup H of G, a prime
ideal p of O (hence p = 0 or p = 7), and a block b of k(p)Cq(H) (ie. a
block e, of KCq(H) corresponding to an irreducible character x if p = 0, or
a block b of kCq(H) if p = m). The ideal Iy, is an ideal of A(G) if and
only if B(fF) & I s, or equivalently if H is a p-group.

Now the ideal I, has co-characteristic 0 if p = 0, and p if p = 7. In
particular, the ideals I, and Iy, are distinct. By the last two assertions
of lemma 3.1.4, any ideal Iy - j contains an ideal I, , and any ideal Iy,
is contained in an ideal I ;. It follows that the minimal primes of A(G)
are the ideals Ipg., , for p-subgroups P of GG, whereas the maximal primes
are the ideals Ip, . This proves assertions 1) and 2) of the theorem.

Now

Ippe, = {u € A(G) | wy o zp(u) = 0}

It follows that Ipg., = Ipoe,, if the pairs (P, ey) and (P’ e,/ ) are conjugate.
Conversely, if Ipge, C ]P/7075X,, then Ipg. = IP/’()?eX, since both are minimal

G
prime ideals. Let f denote the idempotent of (HQ€§ @) ZKC’G(Q)> with

(Q-component equal to the sum of idempotents ey for which (Q,eq) is G-
conjugate to (P,e,). Let ' = W' (f) be the corresponding idempotent of
BS(G). Then there is a non-zero integer m such that mF lies in Bo(G).
Moreover zo(mF) = 0 if @) is not conjugate to P in G, and zp(mF) is m
times the sum of the different conjugates of e, under Ng(P). In particular
mF is not in Ipg . , hence not in Ip/’07ex/. It follows that wys o zp/(mF') # 0.
In particular P’ is conjugate to P, and I can suppose P = P’. Now there is
a conjugate of e, under Ng(P) which is not in the kernel of w,,. Hence e,
and e, are conjugate under Ng(P). This proves assertion 3).

The ideal Ipg., is contained in the ideal Ip, . if and only if the ideal Io,
of ZOCx(P) is contained in the ideal I, .. Now

Ioe, = {u € Z0Cq(P) | wy(u) =0} .
On the other hand, if § is any character in the block e, then

I;e ={u € ZOCs(P) | wg(u) =0} .
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It follows that Iy, C I . if x belongs to e. Conversely, if Iy, C Ir., then
let E be the block of OC¢(P) containing x. Then w, (1 — E) = 0, hence

wp(1 — E) = 0 for any character 6 in e. Thus ws(F) = 1, and e = E. Hence
X is in e, proving assertion 4).

Let b be a block of OG lifting b (i.e. such that b= b). Write
= e
zeG

for coefficients r, € @. Consider

b= rCa(z) 2la
z€[G]
If H is any subgroup of GG, then

zH(E) = Z Ty Z Yy = Z TyX
z€[G] )

we(G/Cg(x)H zeCa(H

The second equality comes from the fact that w € (G/Cq(x))" if and only
if Yo € Cg(H). Moreover r, = 1w, since b is central in OG.
In particular for a p-subgroup P of G

ZP(IN)) = b?”p(b)

Suppose that [; », C Ipre. For any character y in b

= ~

wy(z1(1 =0)) =wy (1 —=b)=1—-w,(b) =0

Thus 1 —b € I zp. Hence 1 — be Ipre, and e.zp(l — IN)) must be nilpotent.
But -
e.zp(l—=b) =e—e.brp(b)

This is nilpotent and idempotent, hence zero.
Conversely, suppose that e = e.brp(b). Then

I np = {u € B5(G) | 21(u)b is nilpotent }

whereas
Ipre={u € B5(G) | zp(u)e is nilpotent} .

Now if u € Il,fr,b

21 (u)b = 2z (u)bry(b) = 21 (u) 2 (b) = 2 (ub)
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zp(u)e = zp(u)brp(b)e = zp(u)zp(b)e = zp(ub)e

Now lemma 3.2.7 shows that I; . C Ip.. Hence I rp = Ip, . since Iy is
a maximal ideal in A(G). This completes the proof of assertion 5).

Assertion 5) also shows that all the maximal ideals of A(G) are of the form
I 1, for a suitable bloc b of kG. Now the minimal primes are of the form
Ip,y, for a p-subgroup P of G, for an irreducible character x of C(P). This
ideal is contained in Ip, . for a block e of kCq(P) if and only if e contains
X- Moreover Ip, . is equal to I ., for a block b of kG if and only if (P, e) is
a b-Brauer pair. This shows that each minimal prime ideal is contained in a
unique maximal ideal. Assertion 6) follows, and the proof of theorem 3.2.8
is complete. a

Notation 3.2.9: If G is a finite group, if P is a p-subgroup of G, and
b is an idempotent in ZkG, I denote by br8(b) the unique idempotent in
ZOCq(P) lifting the idempotent brp(b) of ZkCq(P). If g € Cq(P), I de-
note by br8(b)(g) the element of O such that

wem) = S wl)(9) 9

g€Cq(P)

Theorem 3.2.10: If b is an idempotent of ZkG, let

Po Y Q@ PIrEb) () [Q. o
QcPes (Colo)

Then b* € A(G), and as b runs through the blocks of kG, the elements b*
run through a complete set of primitive idempotents in A(G).

Proof: The primitive idempotents of the (commutative) ring A(G) are in
one to one correspondence with the connected components of its spectrum,
hence with the blocks of kG by theorem 3.2.8 : if b is a block of kG, then
the idempotent b corresponding to the component C, is characterised by the
fact that b* ¢ I for some I € C, (or equivalently for all I € C,). It follows
that b4 ¢ I, ., but b € I, ;. for any block b’ of kG different from b.

Thus wy (21(b“4)) £ 0, but wy (Zl(bA)) = 0 for any block b # b of kG.
Since z;(b*4) is an idempotent of ZkG, it follows that z;(b*) = b. Hence
zp(b*) = brp(b) for any p-subgroup P of G, by lemma 3.2.7. Now zp(b™)
is an idempotent of ZOCq(P) lifting brp(b), hence it is equal to brg(b).
Theorem 3.2.10 now follows from proposition 3.2.4 and from the inversion
formula of proposition 2.3.4. 0
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Corollary 3.2.11: Let b be an idempotent of ZkG. If Q) is a p-subgroup of
G, and g € Cg(Q), then

> ul@ P)brd(g) € [Na(Q) N Calg) : QIO

QCPes,(G)

Proof: This follows from the following rewriting of the formula in theorem
3.2.10

P)ori(b)(9)
b.A _ Z M(Q> P [Q,Q]G
QCPEs, (Col9)
and from the fact that the elements [@Q, gla, for (Q,g) € [Pg] and Q € s,(G),
form a basis of A(G) over O, by proposition 3.2.4. O

4 The blocks of the Mackey algebra

4.1 Mackey functors

Let R be a commutative ring, and G be a finite group. There are several
definitions of the notion of Mackey functor for G over R (see [1] Chapter 1
for a summary of these definitions). One of the most conceptual is due to
Dress:

Definition 4.1.1: Let G-set be the category of finite sets with a left G-
action. A Mackey functor for the group G, with values in R-Mod, s a
bivariant functor from G-set to R-Mod, i.e. a pair of functors (M*, M,),
with M* contravariant and M, covariant, which coincide on objects (i.e.
M*(X) = MJ(X) = M(X) for any G-set X ). This bivariant functor is
supposed to have the following two properties:

o [f X andY are G-sets, let ix and iy be the respective injections from
X and Y into X [[Y, then the maps M*(ix) ® M*(iy) and M,(ix) &
M, (iy) are mutual inverse R-module isomorphisms between M (X [[Y)

and M(X) & M(Y).

o [f
v

e <
(o}

T
d
A

—
g
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is a cartesian (or pull-back) square of G-sets, then M*(5).M.(a) =
M.(8).M*(7).

A morphism 0 from the Mackey functor M to the Mackey functor N is a
natural transformation of bivariant functors, consisting of a morphism Ox :
M(X) — N(X) for any G-set X, such that for any morphism of G-sets
f: X =Y, the squares

M(X) Ox N(X) M(X) Ox N(X)
| | v M) | [RXE
M(Y) —— N(Y) M(Y) —— N(Y)

are commutative.

I will denote by Mackr(G) the category of Mackey functors for G over R.

4.2 The Mackey algebra

The Mackey algebra ugr(G) of R over G was defined by Thévenaz and Webb
([8]) : it is the R-algebra generated by the elements ¢, rf and ¢, g, where
H and K are subgroups of G such that K C H, and z € GG, with the following

relations:
it =t v LCKCH

rirll=rl VvV LCKCH
CyrHCo H = Cyzir ¥V T,Y, H
th =r® = ¢,y ¥ h, H such that h € H
Comtit = titc, x ¥V o, K, H such that K C H
CI7K7’§ = rigcmﬂ V z, K, H such that K C H

ZtZ:Zngl
H H

Tgtg = Z tﬁﬂzLCagKIF‘ILT%{sz v K g H 2 L
veK\H/L
any other product of 74, t5 and ¢, y being zero.
It can be shown from Proposition 3.4 of [8] that the map z € G —

> Hee Com extends to an injective R-algebra homomorphism from RG to
pur(G), and it is handy to identify G with its image in pug(G) via this map.
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Thévenaz and Webb show that the category of pgr(G)-modules is equiv-
alent to the category of Mackey functors for G over R. This equivalence is
build as follows : if K C H are subgroups of G, denote by p# : G/K — G/H
the map of G-sets sending *K to xH, for x € G. If g € G, denote by
vy : G/H — G/9H the map sending zH to xg.9H, for x € G. Then if M is
a Mackey functor, the R-module @&rcqM (L) can be endowed with a pr(G)-
module structure : the generator 22 maps M (L) to 0 if L # K, and M(K)
to M(H) via the map M, (pff). Similarly, the generator r& maps M(L) to 0
if L # H, and M(H) to M(K) via the map M*(pi). Finally the generator
cg.p maps M (L) to 0if L # H, and M (H) to M(YH) via the map M.(v,).

4.3 Action of crossed (G-sets

Any crossed G-set gives an endofunctor of the category of Mackey functors
for G over R, and this will lead to a ring homomorphism from B%(G) to
the center Zug(G) of the Mackey algebra. This action of crossed G-sets on
Mackey functors was already observed by Yoshida.

Let (X, ) be a crossed G-set. If M is any Mackey functor for G over R,
and if Y is a finite G-set, let (X, )y denote the endomorphism of M(Y')
defined by

neren =3 (1) ()

zy
where (aé)y) denotes the map from X x Y to Y sending (x,y) to a(x)y,

and (xiy> is the projection map from X x Y to Y. This definition extends

v
the one given by Thévenaz and Webb ([8] Section 9) for the action of B(G)
on Mackey functors.

Proposition 4.3.1: Let (X, «) be a crossed G-set. The the maps (X, &)y
define a natural transformation ((X, ) of the identity functor of the category
Mackg(G). Moreover, if (Y, ) is another crossed G-set, then

C(X, ) + (Y, ) = (X LY, all §)
(X, ) o (Y, B) = ((X x Y, a.9)

Proof: This amounts to a series of verifications : first the maps ((X, o)y
define an endomorphism ((X, a)ys of the Mackey functor M. It means that
for any morphism of G-sets f : Y — Z, one has that

(X, a)m,z 0 Mu(f) = M.(f) o (X, a)ary (4.3.2)

20



(X, a)ay o M(f) = M*(f) o C(X, a)nr,z
Equation 4.3.2 reads

T,z

o () o (5) i =t () o ()

o)z a(x)
The square
()
Xxy 25 v
z7y
!
(%f(y) J Jf
XxZ —— 7

so equation 4.3.4 is equivalent to

z,y Y .Y z,y
Mo (udron) M (F) =2 (b)) M (5)
a(z)f(y) Y fla(z)y) Y
which holds since f is a morphism of G-sets.
Similarly equation 4.3.3 reads

M, ( iy ) M (miy> M*(f) = M*(f)M, ( :1) M (ﬁ)

a(r)y Y a(z)

Similarly the square

is cartesian, and both sides of equation 4.3.5 are equal to

T,y T,y
Ve () M (1)
a(z)y f(y)

21
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Hence ((X, a)ys is an endomorphism of the Mackey functor M, for any M. If
¢ : M — N is a morphism of Mackey functors, given by maps ¢y : M(Y) —

N(Y) for any G-set Y, then
T,y T,y
() o () o0
a(z)y Yy

1
(

Ty
+ )O(bXXYOM*(i)
(z)y Yy

((X,a)yyogy = )
7y
)

(since ¢ is a morphism of Mackey functors)

N,

= M <az

M (Yo (7

= e *(a(w)y)o (i)
= ¢y ol(X,)my

It follows that the maps ((X, )y define an endomorphism of the identity
functor of Mackgr(G).

Finally, if (Y, /) is another crossed G-set, then for any Mackey functor
M and any G-set Z, the assertion

(X, )z +CY, B)mz =C(XUY, alpf)uz

follows easily from the first condition in definition 4.1.1. Concerning compo-
sition, one has that

(X, )z 0 (Y, B)arz = M. (;fz) M* (’1) M, ( yi:> A <y¢>

Now the square

is cartesian. It follows that

C(X,a)mz oY, B)mz = M, (

"Evyaz

xT,Y,z
i * _
a(:v)ﬂ(y)z) M < ! ) (X <Y, a.f)uz

as was to be shown. a

4.4 The center of the Mackey algebra

In any category of modules over a ring A, the natural transformations from
the identity functor to itself identify with the center of A : any element z of
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the center of A defines an endomorphism of any A-module M (by multipli-
cation by z on M), and this gives a natural transformation of the identity
functor of the category of A-modules.

Notation 4.4.1: The ring homomorphism from BG(G) to Zur(G) following
from proposition 4.3.1 will be still denoted by (.

It is given as follows :
Proposition 4.4.2: Let (L,z) € Pg. Then

C([L, I]G) - Z Z tg'me U)_ll‘w T[I:Ime

HCG wel\G/H

Proof: Let H be a subgroup of GG, and M be a Mackey functor for G over R.
The element [L, z|g corresponds to the crossed G-set (G/L,m,). The action
of ((G/L,m,) on M(G/H) is defined as
M, (“ZZ) M (“L% H) . M(G/H) — M(G/H)
This maps factors through M(G/L x G/H), which is isomorphic to
D MmG/LnH)
wel\G/H
since the map
gl"nH)e || G/L"NHw~ (gw 'L gH)€G/LxG/H

wel\G/H

is an isomorphism of G-sets.

Up to this isomorphism, the map
ulL,vH

M ( 7 ) . M(G/H) — wELQ\%/HM(G/L“’ N H)

is just the map @,,cr\o/u ri, 1, and on the component M(G/L* N H), the

uL,wH

map M, <u ¢H) is equal to M. (¢y), where ¢, (g.(Lw N H)> = gw lzwH.
Hence M, (¢y) = tH, ., w'zw, and the action of ¢([L,z]¢) on M(G/H) is
equal to
Z tgme w_ll’w TII:Ime
weL\G/H

The proposition follows, taking for M the free Mackey functor ugr(G). 0

Remark 4.4.3: Proposition 4.4.2 shows that the composition o B is equal
to the morphism from the Burnside ring Br(G) to the center of the Mackey
algebra considered in Section 9 of [8].
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4.5 The p-blocks of up(G)

Notation 4.5.1: Let b be an idempotent of ZkG. I denote by b* the central
idempotent of uo(G) defined by

b= ()
I denote by uy(G) the algebra

(CoB)(f1)Ho(G)
This algebra will be called the p-local Mackey algebra.

This notation is consistent with the notation of [2]. It is motivated by Sec-
tions 9 and 10 of [8], in which Thévenaz and Webb show that the category
Mackeo(G) splits as a direct sum of subcategories Macko (G, J), indexed by p-
perfect subgroups J of G (up to G-conjugation) : the category Mackeo (G, J)
consists of jo(G)-modules M such that (¢ o B)(f¥)M = M. In particular,
the category Macke(G, 1) is the category of uy(G)-modules. Moreover, the
category Macke (G, J) is equivalent to Macko (Ng(J)/J, 1).

It follows that studying the p-blocks of pun(G) is equivalent to studying
the p-blocks of the algebras ug, (Ng(H)/H), for p-perfect subgroups H of G.

Theorem 4.5.2: Let b be an idempotent of ZkG. Then

pe Y o S Q@ P ) e

fice 1| QCPes, (H)
z€Cq(P)

The idempotents b, as b runs through the blocks of kG, are a complete set
of primitive idempotents of the center of the p-local Mackey algebra us(G).

Proof: By proposition 4.4.2 and theorem 3.2.10
1 w
e X QM@PRSO0 Y Y s
9eG HCG weQ\G/H
QCPes,(Calg))

Changing the order of summations gives

1
Vo= m Y QHQ PR 0 s e

HCG geq
QCPes,(Ca(9))
weQ\G/H
1 Q"N H §
=G X WKQW(Q,P)brg(b)(g)tgwﬂHg i
HCG gweG
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Summing on Qv, P* and ¢" instead of @), P, w leads to

- @ Z m Z QN H|M(Q,P>brg(b)(9)tgmnggﬂH
ZWEG
Qngegp(Cc(g))

= X X RNHIN@ PR Gnorlon
eG
QgPeg%(Cc(g))

Fix a subgroup H of GG, an element g of GG, and a p-subgroup P of Cg(g).
By classical combinatorial formulae, if R is any subgroup of H N P

(o0 fHNP#P
C;J e, p) _{ p(R, P) otherwise
QNH=R

It follows that

V=S g X IR PR o) e
HCG RCPes,(H)
9€Cq(P)

which states the formula in theorem 4.5.2.

To complete the proof of this theorem, it remains to show that if b is
a block of kG, i.e. a primitive idempotent of ZkG, then b* is a primitive
idempotent of Zuo(G). Suppose that b splits as the sum of two orthogonal
idempotents ¢ and d of Zup(G). Then in particular

tiot =ttt = thett + tidt!

is a decomposition of t1b*t1 as a sum of orthogonal central idempotents in the
algebra t]1u0(G)t1. This algebra is isomorphic to OG (via x € G — t{xt}),
and moreover
ot = tbt]

Indeed if R C H are subgroups of G, and if g € G, then t}.t2gri .11 = 0 in
po(G), unless H is the trivial subgroup of G.

If b is primitive, it follows that one of tict] or tidt} is zero, say ticti. Now
po(G)e is a projective Mackey functor in Mackeo(G, 1) (i.e. a projective

po(G)-module), whose evaluation at the trivial subgroup is equal to

tino(G)e = tictipo(G) =0

It follows that uo(G)c = 0, by Corollary 12.2 of [8]. Hence ¢ = 0, and the
proof is complete. O
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5 Consequences

5.1 Another formula

The following gives another expression for 0*, which may be easier to remem-
ber :
Proposition 5.1.1: If H is a subgroup of G, denote by X — [X] the O-

linear morphism from Bo(G) to po(G) mapping H/L to t¥ri. If b is an
idempotent of ZkG, then

b“—z Z |P|t2 ([eb]brE (b)) ri

HCG’ PES

Proof: Indeed in By (P)

eh = 7 Z QIQ, P) P/Q

QCP

Thus
leh Z QIu(Q, P) thrh

QCP
Now by theorem 4.5.2

b= Z| Z |Q|M(Qap)b7"g(b)(f)tg”g

HCG QCPes
ﬂ?ECG(P)

- S T | T ome o |
HCG Pes,( QCP
xEC’G(P)

= Z Z tﬁ > 1QIMQ, P)torobra(v)(w)z | rp
HCG Pes QCP
IECG(P)

(since Ci(P) C Cu(Q) for Q C P)

- Z Z tp (Z|Q|H(Q7PthQ Z bTP e

HQG’ PEs QCP zeCq(P

as was to be shown. a
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5.2 Residues

Notation 5.2.1: Let M be a Mackey functor for G over R, and H be a
subgroup of G. Then Brauer residue of M at H is defined as

M(H)=M(H)/ )t M(L)

LCH

and the projection M(H) — M(H) is denoted by bry. By duality, the Brauer
co-residue of M at H is defined as

M(H) = () Kerrj ¢ M(H)

LCH

Proposition 5.2.2: Let M be a Mackey functor for G over O, in Macko(G, 1),
and b be a block of kG.

1. If H is a subgroup of G, then M(H) = 0, unless H is a p-group.
Similarly M(H) = 0, unless H is a p-group.

2. If L is a p-subgroup of G, and if m € M(L), then
bri (b*.m) = br€ (b)bry (m)
Similarly, if m € M(L), then

v.m = br?(b)m

3. The following are equivalent :

(a) The block b* acts as the identity of M.

(b) For any p-subgroup P of G, the idempotent brg(b) acts as the
identity of M(P).

(c) For any p-subgroup P of G, the idempotent brS(b) acts as the
identity of M(P).

Proof: The first assertion follows from the fact that (¢ o 8)(f) acts as the
identity of M if M is in Macko(G,1). Moreover, the action of this idem-
potent on M (H) is a linear combination with coefficients in O of elements
tirf for p-subgroups P of H.

For assertion 2, observe that b* acts on M (L) via

1
bﬁzm > 1QIu(Q, PYbrE(b)(x)tgars
QCPCL
xGCG(P)
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Thus if m € M(L)

1
Wim=— Y Q@ P)bra(b)(z)thzrgm
L]
QCPCL
z€Cq(P)

In this summation, all the terms are traces from proper subgroups of L,
except those for which () = P = L. This gives :

bri(bim) = br( Z brQ (b)(x)x.m) = brp(brS (bym) = brd (b)bry, (m)
x€Cq(L)

Similarly, if m € M(L), then all proper restrictions of m are zero, hence

brom = Z brQ (b)(z)x.m = brd (bym
z€Cq(L)
as was to be shown.

For assertion 3), suppose first that b* acts as the identity of M. Then by
assertion 2), the idempotent br?(b) acts as the identity of M (L) and M (L),
for any p-subgroup L of G. Thus assertion (a) implies (b) and (c).

Conversely, suppose that (b) holds. Then in particular 0" acts as the
identity of M(1) = M(1). By induction on the order of the subgroup H of
G, this shows that b* acts as the identity of M (H) : let m € M(H). If H is
not a p-group, then by assertion 1) bry(m) = 0, and m can be written

m = Z tme
LCH
for proper subgroups L of H and elements m; € M(L). Now by induction
vom = by Z tHmyp = Z th(Wmy) = Z timy, =m

LCH LCH LCH

And if H is a p-subgroup of G, then by assertion (b)
m — b'.m € Ker bry

Hence

m—b'm = E tHmy
LCH

for proper subgroups L of H and elements mj € M(L). Now

vem — (b)2m =m — b'.m

28



by the same argument as above. Hence b*.m = m, and (b) implies (a).

Similarly if (c) holds, then in particular b* acts as the identity of M(1) =
M (1). By induction on the order of the subgroup H of G, this shows that
b acts as the identity of M(H) : let m € M(H). If H is not a p-group,
then m is a linear combination of traces from proper subgroups of H, hence
b*.m = m by induction. And if H is a p-subgroup of G, then by induction
for any proper subgroup L of H

ri(bm) = ri(Vy.m) =V orfm = rim
This shows that m — b*.m € M(L). Now (c) implies that
m—b'm="b(m—0b'm)=0'm—b'.m=0
thus m = b*.m, as was to be shown. 0

Corollary 5.2.3: Let M be a Mackey functor in Macko(G,1). If M is
indecomposable, and if there is a p-subgroup P such that M(P) # 0 and
Cq(P) acts trivially on M(P) (resp. M(P) # 0 and Cq(P) acts trivially on
M(P)), then M is in the principal block of Macko(G,1).

Proof: Since M is indecomposable, there is a block b of kG such that b*
acts as the identity of M. Hence br9(b) acts as the identity of M (P), for
any p-subgroup P of G. Moreover, since C(P) acts trivially on M (P), the
action of br®(b) on M(P) is multiplication by the sum > weCo(P) br8(b)(x),
which is zero if b is not the principal block of kG : indeed if e = ZIECG( p) €
is any block of OCq(P), then the sum > - p) € is equal to 1 or 0, ac-
cording to the fact that e is the principal block of OCg(P) or not. And by
Brauer’s Third Main Theorem, the principal block of OC¢(P) appears in the
decomposition of br8(b) if and only if b is the principal block of OG. The
argument is the same with M (P). 0

Remark 5.2.4: This corollary shows in particular that if M is an indecom-
posable Mackey functor in Macko(G, 1), and if Co(P) acts trivially on M (P)
for any p-subgroup P of G, then M s in the principal block of Macko(G,1).

5.3 The defect of a block of un(G)

In [1] Chapter 12, it is shown that there exists a natural Green functor for
G whose evaluation at G is isomorphic to the center of the Mackey algebra.
This functor is denoted by (g, and its value at the G-set X is the set

CB (X) = HomFunct (I, IX)
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of natural transformations from the identity functor Z on the category of
Mackey functors to the endofunctor Zx on this category, mapping the Mackey
functor M to its Dress construction My, defined on the G-set Y by

Mx(Y) = MY x X)

This functor (g has also been considered by Oda (the functor 7 of [7]) from
a different point of view. The equivalence of those two points of view follows
from Proposition 12.2.8 of [1] : the value of (5 at a subgroup H of G is the
set of sequences (zr,), indexed by the subgroups L of H, such that

2 € truo(G)tE tézL = thé eré = rézL T2 = ZaL,T

for any subgroups @ C L of H and any x € H. The isomorphism (5(G) =
Z110(G) is obtained by mapping the sequence (z1)rcq to the element >, . 2.

Also recall from Proposition 12.2.8 of [1] that if Q is a subgroup of G,
and (z1)rcg is an element of (5(Q), then for any subgroup H of G, the
component of tg(z) at the subgroup H is equal to

G H -1 H
tQ<Z)H = Z thme szwermeH
weQ\G/H

If g € Cq(Q), one can define an element z(Q), g) of (5(Q) by setting, for any
subgroup L of ()

Z(Q> g)L = tﬁgrf

Let b be a block of kG, with defect group D. With the previous notation,
the expression of 0* given in proposition 4.5.2 can be written as

1
Vet 2 Q@ PIrEe)9)6Q )
QQPC@(T,(?)
geCq (P

The summation can be restricted to p-subgroups P of G for which br@(b) # 0.
Such subgroups are all contained in D up to G-conjugation. It follows that

b € t5¢s(D)

Definition 5.3.1: A defect group of the block b € Zup(G) = (5(G) is a
subgroup E of G, minimal subject to the condition

b € t5Cp(E)

30



The following argument is then classical : if D is any subgroup of G such
that b € t5(z(D), then

o= () € (tEC(E))(I5Ca(D) S Y tGnepCa(ENTD)
z€E\G/D

and by Rosenberg’s lemma and primitivity of b, there exists x € G such
that £ C*D. In particular E is unique up to G-conjugation.

Proposition 5.3.2: Let b be a block of kG, with defect group D. Then D is
also a defect group of b*.

Proof: Let FE be a defect of b*. The above argument shows that F is
contained in D up to G-conjugation. The reverse inclusion has been proved
by Oda ([7] Theorem 6). It also follows from the following fact : if b* = t%(c),
for ¢ € (g(E), then

("), = tiTrg(cl)r% € tiTrg(OG)Er%

where Tr$ is the relative trace map. Since moreover (b*); = tibr?(b)ri, it
follows that the block b° = brP(b) lifting b to OG belongs to Tr%(OG)E.
Hence D is contained in £ up to G-conjugation. O
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