Polynomial ideals and classes of finite groups

Serge Bouc

The object of this note is to discuss properties of some polynomials (on a countable set of indeterminates) attached to any finite group, which generalize the Eulerian functions of a group defined by P. Hall ([8]). In particular, I will define some classes of finite groups associated to prime ideals of the polynomial ring, and I will show that each finite group has a unique largest quotient in such a class of groups.

This work is a generalization of the notion of b-group introduced in [2], by a systematic use of the polynomial formalism of section 7.2.5 of [2]. For the reader's convenience however, this paper is self-contained, and the proofs of the results already stated in [2] are included.

1. The polynomial ring

(1.1) Notation: I will consider the (countable) set S of isomorphism classes of finite (non-trivial) simple groups, and the polynomial ring over S

$$\mathcal{R} = \mathbb{Z}[(X_S)_{S \in \mathcal{S}}]$$

In other words, the ring \mathcal{R} is the algebra over \mathbb{Z} of the Grothendieck *monoid* of the category of finite groups.

(1.2) Notation: If p is a prime number, and S is the isomorphism class of the cyclic group C_p of order p, I denote by X_p the variable X_S of \mathcal{R} .

It is convenient to turn \mathcal{R} into a \mathbb{R} -graded ring by setting

$$\deg(X_S) = \log|S|$$

If G is a finite group, then I define the monomial $P(G) \in \mathcal{R}$ by

$$P(G) = \prod_{S \in \mathcal{S}} X_S^{\nu_S(G)}$$

where for each finite simple group S, the integer $\nu_S(G)$ is the multiplicity of S as a composition factor of G. In particular P(1) = 1 and $P(S) = X_S$ if $S \in S$. Note that with this definition, the degree of P(G) is equal to $\log |G|$, for any finite group G.

I denote by $\tilde{P}(G)$ the polynomial obtained from P(G) by Möbius inversion on the poset of subgroups of G, i.e.

$$\tilde{P}(G) = \sum_{H \le G} \mu(H, G) P(H)$$

where the notation $H \leq G$ means that H is a subgroup of G, and $\mu(H, G)$ is the Möbius function of the poset of subgroups of G. The monomial of highest degree in the expression of $\tilde{P}(G)$ corresponds to the subgroup H = G, and the coefficient $\mu(G,G)$ is equal to 1. Thus

(1.3)
$$\deg(\tilde{P}(G)) = \log|G|$$

Finally, if N is a normal subgroup of G, I define

$$Q_{G,N} = \sum_{\substack{H \le G \\ HN = G}} \mu(H,G) P(H \cap N)$$

This is a generalization of the previous formula, since $Q_{G,G} = \tilde{P}(G)$. On the other hand $Q_{G,1} = 1$ for any G. The terms of highest degree in $Q_{G,N}$ correspond to subgroups H such that $H \cap N = N$ and HN = G. Hence the only possible subgroup is H = G, and again the coefficient of $P(H \cap N) = P(N)$ is equal to 1. Thus

(1.4)
$$\deg(Q_{G,N}) = \log|N|$$

The polynomials P(G), $\tilde{P}(G)$, and $Q_{G,N}$ are invariant under group isomorphism: if $\varphi : G \to G'$ is an isomorphism, then obviously P(G) = P(G'), $\tilde{P}(G) = \tilde{P}(G')$, and $Q_{G,N} = Q_{G',\varphi(N)}$.

(1.5) **Remark:** The Eulerian function of the group G, defined by Hall ([8]), is the function $\phi(G, s)$ defined for a complex number s by

$$\phi(G,s) = \sum_{H \leq G} \mu(H,G) |H|^s$$

Hence it is the evaluation of the polynomial $\tilde{P}(G)$ when X_S is replaced by $|S|^s$, for all $S \in S$. The name "Eulerian" comes from the fact that when s is a positive integer, the value $\phi(G, s)$ is the number of sequences of s elements of G which generate G.

The polynomials P(G) and $Q_{G,N}$ are also closely related to the *probabilistic* zeta function and its relative version, studied by K. Brown in [4]. The value $\zeta(G, s)$ of this zeta function at a complex number s is given by

$$1/\zeta(G,s) = \frac{\phi(G,s)}{|G|^s} = \sum_{H \le G} \frac{\mu(G,H)}{|G:H|^s}$$

(Brown's notation for $1/\zeta(G, s)$ is P(G, s), but it is a bit confusing here, and I prefer to use another symbol).

Hence the value $\zeta(G, s)|G|^{-s}$ can also be recovered from $1/\tilde{P}(G)$ by replacing each variable X_S by $|S|^s$.

(1.6) **Remark:** Let \mathcal{D} denote the ring of Dirichlet polynomials over \mathbb{Z} , i.e. the ring of finite linear combinations with coefficients in \mathbb{Z} of functions $s \mapsto n^{-s}$ from \mathbb{C} to \mathbb{C} , for $n \in \mathbb{N} - \{0\}$. It is clear that the map sending $X_S \in \mathcal{R}$ for $S \in \mathcal{S}$ to the map $s \mapsto |S|^{-s}$ induces a surjective ring homomorphism from \mathcal{R} to \mathcal{D} .

On the other hand, the decomposition of an integer $n \in \mathbb{N} - \{0\}$ as a product of prime factors yields an isomorphism from \mathcal{D} to the algebra \mathcal{R}' over \mathbb{Z} of the multiplicative monoid $\mathbb{N} - \{0\}$, sending the function $s \mapsto n^{-s}$ to $\prod_{p \in \mathcal{P}} Y_p^{v_p(n)}$, where \mathcal{P} is the set of prime numbers and $v_p(n)$ is the *p*-valuation of *n*, for $p \in \mathcal{P}$, and Y_p is the image of the prime *p* in \mathcal{R}' .

Hence the ring \mathcal{D} is isomorphic to the quotient of \mathcal{R} by the ideal generated by the elements $X_S - \prod_{p \in \mathcal{P}} X_p^{v_p(|S|)}$, for all non-abelian simple groups S.

The fundamental properties of the polynomial P(G), $\tilde{P}(G)$, and $Q_{G,N}$ are given in the following lemma:

(1.7) Lemma: [[2] Lemme 19] The G be a finite group, let N be a normal subgroup of G, and let R be a subgroup of G containing N. Then

(1.8)
$$P(G) = P(G/N)P(N)$$

(1.9)
$$\sum_{\substack{H \le G \\ HN=R}} \mu(H,G)P(H) = \mu(R,G)P(R/N)Q_{G,N}$$

(1.10)
$$\sum_{\substack{H \le G \\ HN = R}} \mu(H, G) P(H \cap N) = \mu(R, G) Q_{G,N}$$

(1.11)
$$\tilde{P}(G) = \tilde{P}(G/N)Q_{G,N}$$

Proof: The first equality is a trivial consequence of the definition, since the multiplicity of the simple group S as a composition factor of G is the sum of its multiplicities as a composition factor of N and G/N.

For the second one, by Crapo complementation formula (see [6] Theorem 3 and Theorem 5, or [5] pp. 420-421), for $H \leq G$

$$\mu(H,G) = \sum_{\substack{H \leq K \leq G \\ K N = G \\ K \cap HN = H}} \mu(H,K)\mu(K,G) = \sum_{\substack{H \leq K \leq G \\ K N = G \\ K \cap HN = H}} \mu(HN,G)\mu(K,G)$$

Now if $N \leq R \leq G$, the conditions KN = G, $K \cap HN = H$ and HN = R are equivalent to KN = G and $H = K \cap R$. This gives

$$\sum_{\substack{H \leq G \\ HN=R}} \mu(H,G)P(H) = \sum_{\substack{K \leq G \\ KN=G}} \mu(R,G)\mu(K,G)P(K \cap R)$$
$$= \mu(R,G) \sum_{\substack{K \leq G \\ KN=G}} \mu(K,G)P(K \cap R)$$

Moreover $(K \cap R)N = R$, thus $R/N \simeq (K \cap R)/(K \cap N)$, and

$$P(K \cap R) = P(R/N)P(K \cap N)$$

It follows that for $N \leq R \leq G$

$$\sum_{\substack{H \leq G \\ HN = R}} \mu(H,G) P(H) = \mu(R,G) P(R/N) \sum_{\substack{K \leq G \\ KN = G}} \mu(K,G) P(K \cap N)$$

and equality 1.9 follows. Equality 1.10 is a consequence, since if HN = R, then $P(H) = P(R/N)P(H \cap N)$.

Since moreover $\mu(R,G) = \mu(R/N,G/N)$, the summation of 1.9 for subgroups R with $N \leq R \leq G$ gives

$$\tilde{P}(G) = \sum_{N \le R \le G} \mu(R, G) P(R/N) Q_{G,N} = \tilde{P}(G/N) Q_{G,N}$$

as was to be shown.

(1.12) Corollary: If M and N are normal subgroups of G such that $G/M \simeq G/N$, then $Q_{G,M} = Q_{G,N}$.

Proof: Indeed by 1.11 $Q_{G,N} = \tilde{P}(G)/\tilde{P}(G/N)$.

2. The polynomials $\tilde{P}(G)$

In view of 1.11, it is natural to ask when the polynomial \tilde{P} is irreducible:

(2.1) **Proposition:** Let G be a finite group. Then \tilde{P} is irreducible if and only if G is simple.

Proof: Let S be a simple group. Then

$$\tilde{P}(S) = X_S + R$$

where R is a polynomial in the variables X_T , for simple groups T not isomorphic to S. Hence $\tilde{P}(S)$ is irreducible.

Conversely, if G is a finite group and $\tilde{P}(G)$ is irreducible, let N be a normal subgroup of G. Then by 1.11 one of the polynomial $\tilde{P}(G/N)$ or $Q_{G,N}$ has degree 0. By 1.3 and 1.4, it follows that N = G or N = 1. Hence G is simple. \square

(2.2) Notation: If N is a normal subgroup of G, I denote by $K_G(N)$ the set of complements of N in G, i.e.

$$K_G(N) = \{ L \le G \mid LN = G, \ L \cap N = 1 \}$$

If M and N are normal subgroups of G, I denote by $K_G(M,N)$ the set of subgroups of G which are complements of M and N, i.e.

$$K_G(M,N) = K_G(M) \cap K_G(N)$$

(2.3) Proposition: Let G be a finite group, and N be a minimal (non-trivial) abelian normal subgroup of G, isomorphic to $(C_p)^n$, for p prime and n > 0. Then

$$Q_{G,N} = X_p^n - |K_G(N)|$$

Proof: Let H be a subgroup of G such that HN = G. Then $H \cap N$ is normalized by H, and by N since N is abelian. Hence either $H \cap N = N$, and then H = G, or $H \cap N = 1$, and $H \in K_G(N)$. In this case H is a maximal subgroup of G, and $\mu(H, G) = -1$. The proposition follows.

(2.4) Corollary:

1. Let G be a solvable finite group, and

$$1 = N_{-1} < N_0 < N_1 < \ldots < N_k = G$$

be a chief series for G. Then for $0 \leq i \leq k$, there exist a prime number p_i and a positive integer n_i such that $N_i/N_{i-1} \simeq (C_{p_i})^{n_i}$. Denote by m_i the number of complements of N_i/N_{i-1} in the group G/N_{i-1} . Then

(2.5)
$$\tilde{P}(G) = \prod_{i=0}^{k} (X_{p_i}^{n_i} - m_i)$$

2. Conversely, if G is a finite group, and if there exists an integer k, if there exist prime numbers p_i and integers m_i , for $0 \le i \le k$ such that 2.5 holds, then G is solvable.

Proof: Assertion 1) follows from an obvious induction argument. For assertion 2), suppose that G is a finite group such that 2.5 holds. Then the monomial of highest degree in $\tilde{P}(G)$, which is equal to P(G), is the product $\prod_{i=0}^{k} X_{p_i}^{n_i}$. This means that all the composition factors of G are cyclic, i.e. that G is solvable.

(2.6) **Remark:** Corollary 2.4 can be viewed as a generalization of the Eulerian product formula obtained by Gaschütz ([7]) for the zeta function of a solvable group (see also [1]). It should also be compared with the following question, cited by Brown (Question 1 of [4]):

Question: If G is a finite group such that $\zeta(G, s)$ has an Euler product expansion with factors of the form $\frac{1}{1-c_i q_i^{-s}}$, is G solvable?

3. The two normal subgroups formula

(3.1) Proposition: [[2] Lemme 20] Let G be a finite group. If N and M are normal subgroups of G then

$$Q_{G,N} = \sum_{\substack{L \le G \\ LM = LN = G}} \mu(L,G) P(L \cap M \cap N) Q_{G/M,(L \cap N)M/M}$$

Proof: By definition

$$Q_{G,N} = \sum_{\substack{H \le G \\ HN = G}} \mu(H,G) P(H \cap N)$$

As noted above

$$\mu(H,G) = \sum_{\substack{H \le L \le G \\ LM = G \\ L \cap HM = H}} \mu(H,L)\mu(L,G)$$

This gives

$$Q_{G,N} = \sum_{\substack{H \le G \\ HN = G}} \sum_{\substack{H \le L \le G \\ L \cap HM = H}} \mu(H,L)\mu(L,G)P(H \cap N)$$

Now the conditions

$$HN = G$$
 $H \le L$ $LM = G$ $L \cap HM = H$

are equivalent to the conditions

$$LM = LN = G$$
 $H \le L$ $H(L \cap N) = L$ $H \ge L \cap M$

It follows that

$$Q_{G,N} = \sum_{\substack{L \leq G \\ LM = LN = G}} \mu(L,G) \sum_{\substack{H \leq L \\ H \geq L \cap M \\ H(L \cap N) = L}} \mu(H,L)P(H \cap N)$$

The inner summation is equivalent to a sum over subgroups $K = H/(L \cap M)$ of $\overline{L} = L/(L \cap M)$ such that $K.J = \overline{L}$, where J denotes the normal subgroup $(L \cap N)(L \cap M)/(L \cap M)$ of \overline{L} .

Moreover since HN = G

$$P(H \cap N) = P(H)P(N)/P(G) = P(K)P(N)P(L \cap M)/P(G)$$

$$= \frac{P(K \cap J)P(\overline{L})}{P(J)}P(N)P(L \cap M)/P(G)$$

$$= \frac{P(K \cap J)P(L)P(N)}{P(J)P(G)}$$

$$= \frac{P(K \cap J)P(L \cap N)}{P(L \cap N/L \cap N \cap M)}$$

$$= P(K \cap J)P(L \cap M \cap N)$$

Thus

$$Q_{G,N} = \sum_{\substack{L \leq G \\ LM = LN = G}} \mu(L,G) P(L \cap M \cap N) \sum_{\substack{K \leq \overline{L} \\ KJ = \overline{L}}} \mu(K,\overline{L}) P(K \cap J)$$
$$= \sum_{\substack{L \leq G \\ LM = LN = G}} \mu(L,G) P(L \cap M \cap N) Q_{\overline{L},J}$$

The formula follows, since $\overline{L} \simeq G/M$, and since the image of J under this isomorphism is $(L \cap N)M/M$.

(3.2) Corollary: If $M \leq N$, then

$$Q_{G,N} = Q_{G,M} Q_{G/M,N/M}$$

Proof: This follows from the fact that if LM = G and if $M \leq N$, then $(L \cap N)M = N$. This corollary has also an obvious direct proof, using 1.11.

4. *I*-groups

One of the methods used in [2] was to replace each variable X_S by |S|, and to look whether the resulting number $Q_{G,N}$ is zero. This can be generalized by considering an ideal \mathcal{I} of \mathcal{R} , and looking whether $Q_{G,N}$ is in \mathcal{I} or not.

(4.1) Convention: In the sequel, the expression "the group H is a quotient of the group G" means that H is isomorphic to a factor group of G.

(4.2) **Definition:** Let \mathcal{I} be an ideal of \mathcal{R} . A finite group G is called an \mathcal{I} -group if for any non-trivial normal subgroup N of G, the polynomial $Q_{G,N}$ belongs to \mathcal{I} .

(4.3) **Proposition:** Let G be a finite group, and \mathcal{I} be an ideal of \mathcal{R} . If M and N are normal subgroups of G, and if G/M is an \mathcal{I} -group, then

$$Q_{G,N} \equiv \sum_{\substack{L \leq G \\ LM \equiv LN = G \\ L \cap N \leq L \cap M}} \mu(L,G) P(L \cap N) \quad (\textit{mod. I})$$

In particular, if $Q_{G,N} \notin \mathcal{I}$, then G/M is a quotient of G/N.

Proof: The first assertion follows from proposition 3.1, and from the definition of an \mathcal{I} -group. Now if $Q_{G,N} \notin \mathcal{I}$, then there exists a subgroup L of G such that LM = LN = G and $L \cap N \leq L \cap M$. Now $G/M \simeq L/(L \cap M)$ is a quotient of $G/N \simeq L/(L \cap N)$.

(4.4) **Proposition:** Let G be a finite group, and \mathcal{I} be a prime ideal of \mathcal{R} . There exists a factor group $\beta_{\mathcal{I}}(G)$ of G, characterized uniquely up to isomorphism by the following properties:

- 1. The group $\beta_{\mathcal{I}}(G)$ is an \mathcal{I} -group.
- 2. If K is a quotient of G, and if K is an \mathcal{I} -group, then K is a quotient of $\beta_{\mathcal{I}}(G)$.

Moreover if N is a normal subgroup of G, then the following conditions are equivalent:

- a) The group $\beta_{\mathcal{I}}(G)$ is a quotient of G/N.
- b) $\beta_{\mathcal{I}}(G/N) \simeq \beta_{\mathcal{I}}(G)$.
- c) $Q_{G,N} \notin \mathcal{I}$.

Proof: Properties 1) and 2) clearly show that the group $\beta_{\mathcal{I}}(G)$ is unique up to isomorphism, if it exists.

Let M be a normal subgroup of G, maximal subject to $Q_{G,M} \notin \mathcal{I}$. Then by Corollary 3.2, if N is a normal subgroup of G strictly containing M

$$Q_{G,N} = Q_{G,M} Q_{G/M,N/M} \in \mathcal{I}$$

Since $Q_{G,M} \notin \mathcal{I}$ and since \mathcal{I} is prime, it follows that $Q_{G/M,N/M} \in \mathcal{I}$. This holds for any non-trivial normal subgroup N/M of G/M, hence G/M is an \mathcal{I} -group.

By Proposition 4.3, since $Q_{G,M} \notin \mathcal{I}$, it follows that any \mathcal{I} -group which is a quotient of G is a quotient of G/M. Thus $\beta_{\mathcal{I}}(G) = G/M$ has properties 1) and 2).

Note that by construction, and by 1.12, if M is a normal subgroup of G such that $G/M \simeq \beta_{\mathcal{I}}(G)$, then $Q_{G,M} \notin \mathcal{I}$.

Now if N is a normal subgroup of G, then the group $\beta_{\mathcal{I}}(G/N)$ is an \mathcal{I} -group, which is quotient of G/N, hence of G. Thus $\beta_{\mathcal{I}}(G/N)$ is always a quotient of $\beta_{\mathcal{I}}(G)$.

If a) holds, then $\beta_{\mathcal{I}}(G)$ is an \mathcal{I} -group, which is a quotient of G/N. Hence $\beta_{\mathcal{I}}(G)$ is a quotient of $\beta_{\mathcal{I}}(G/N)$, and b) holds.

If b) holds, and if M/N is a normal subgroup of G/N such that

$$(G/N)/(M/N) \simeq \beta_{\mathcal{I}}(G/N)$$

then $G/M \simeq \beta_{\mathcal{I}}(G/N) \simeq \beta_{\mathcal{I}}(G)$. Hence as noted above $Q_{G,M} \notin \mathcal{I}$, and since $Q_{G,M}$ is a multiple of $Q_{G,N}$, it follows that $Q_{G,N} \notin \mathcal{I}$. Hence c) holds.

If c) holds, then by proposition 4.3 the group $\beta_{\mathcal{I}}(G)$ is a quotient of G/N, and a) holds.

There are generally several normal subgroups M of G such that $G/M \simeq \beta_{\mathcal{I}}(G)$. They are related as follows:

(4.5) **Proposition:** Let G be a finite group, and \mathcal{I} be a prime ideal of \mathcal{R} . Let M and N be normal subgroups of G such that

$$G/M \simeq G/N \simeq \beta_{\mathcal{I}}(G)$$

Let $]M \cap N, M[^G$ denote the poset of normal subgroups of G which contain strictly $M \cap N$ and are strictly contained in M, and let $n_G(M, N)$ denote its reduced Euler-Poincaré characteristic (with the convention $n_G(M, N) = 1$ if M = N). Then:

1. There exists an automorphism θ of the group $G/M \cap N$ such that

$$\theta(M/M \cap N) = N/M \cap N$$

Hence the posets $]M \cap N, M[^G \text{ and }]M \cap N, N[^G \text{ are isomorphic, and in particular } n_G(M, N) = n_G(N, M).$

2. The group $M/M \cap N \simeq N/M \cap N$ is isomorphic to a direct product of simple groups.

3.
$$Q_{G,N} \equiv Q_{G,M\cap N} n_G(M,N) |K_{G/M\cap N}(M/M\cap N, N/M\cap N)| \quad (mod. \ \mathcal{I}).$$

Proof: Since $Q_{G,N} = Q_{G,M\cap N}Q_{G/M\cap N,N/M\cap N}$ by Corollary 3.2, replacing G by $G/M\cap N$ shows that it suffices to consider the case $M\cap N = 1$. In this case the groups M and N centralize each other.

By proposition 4.3, since moreover $G/M \simeq G/N$ implies $L \cap M = L \cap N$ whenever LM = LN = G and $L \cap N \leq L \cap M$

$$Q_{G,N} \equiv \sum_{\substack{L \leq G \\ LM = LN = G \\ L \cap M = L \cap N = 1}} \mu(L,G) \pmod{\mathcal{I}}$$

In other words

$$Q_{G,N} \equiv \sum_{L \in K_G(M,N)} \mu(L,G) \pmod{\mathcal{I}}$$

Since $Q_{G,N} \notin \mathcal{I}$, this shows in particular that $K_G(M,N) \neq \emptyset$.

Now fix $L \in K_G(M, N)$, and define a map ϕ from M to N by $\phi(m) = n$ if $mn \in L$. This is well defined since $L \in K_G(M, N)$. Moreover if m and m' are in M, and if $n = \phi(m)$ and $n' = \phi(m')$, then

$$mnm'n' = mm'nn' \in L$$

since M and N commute. This shows that $\phi(mm') = nn'$, hence ϕ is a group homomorphism from M to N. By symmetry, the map ψ from N to M defined by $\psi(n) = m$ if $nm \in L$ is also a group homomorphism, which is clearly the inverse of ϕ , since M and N commute. Moreover the maps ϕ and ψ are clearly L equivariant.

Now define a map $\theta: G \to G$ by

$$\theta(ml) = \phi(m)l \qquad \forall m \in M, \ \forall l \in L$$

Then for m, m' in M and l, l' in L

$$\theta(mlm'l') = \theta(m.^{l}m'.ll') = \phi(m).^{l}\phi(m').ll' = \phi(m)l\phi(m')l' = \theta(ml)\theta(m'l')$$

This shows that θ is a group homomorphism, which is clearly an automorphism of G.

By construction $\theta(M) = N$, thus θ induces an isomorphism of posets from $]1, M[^G$ to $]1, N[^G$, and $n_G(M, N) = n_G(N, M)$. This shows assertion 1).

Now the maps

$$X \in [1, N]^L \mapsto LX \in [L, G] \qquad Y \in [L, G] \mapsto Y \cap N \in [1, N]^L$$

are inverse isomorphisms of posets. Moreover $[1, N]^L = [1, N]^{LM} = [1, N]^G$ since M and N commute. Thus $\mu(L, G)$ is equal to the reduced Euler-Poincaré characteristic of the poset $]1, N[^G = [1, N]^G - \{1, N\}$, and this does not depend on the choice of L in $K_G(M, N)$. Thus

$$Q_{G,N} \equiv \tilde{\chi}(]1, N[^G)|K_G(M,N)| \pmod{\mathcal{I}}$$

and this proves assertion 3).

Since $Q_{G,N} \notin \mathcal{I}$, it follows from Crapo complementation formula that every normal subgroup of G contained in N has a complement in N, invariant by G. This can only happen if N is a direct product of simple groups, and this completes the proof of the proposition.

(4.6) Example: The case of *b*-groups discussed in [2] corresponds to the ideal \mathcal{I} generated by all $X_S - |S|$, for $S \in S$. In this case if *G* is a *p*-group, then $\beta_{\mathcal{I}}(G)$ is trivial if *G* is cyclic, and isomorphic to $(C_p)^2$ otherwise. This follows from Proposition 14 of [2], but I will give another more general proof here in Corollary 7.4.

If $\Phi(G)$ is the Frattini subgroup of G, and if the order of $G/\Phi(G)$ is at least p^3 , then there are several normal subgroups N of G such that $G/N \simeq (C_p)^2$, but all those subgroups contain $\Phi(G)$, and are conjugate by the automorphism group of $G/\Phi(G)$.

5. Example: the ideal of valuation

(5.1) Notation: I denote by \mathcal{V} the ideal of \mathcal{R} generated by all X_S , for $S \in \mathcal{S}$.

In other words, the ideal \mathcal{V} is the ideal of polynomial with constant term equal to zero. Clearly the quotient ring \mathcal{R}/\mathcal{V} is isomorphic to \mathbb{Z} , thus \mathcal{V} is a prime ideal.

By definition, if N is a normal subgroup of the finite group G, then

$$Q_{G,N} = \sum_{\substack{L \leq G \\ LN \equiv G}} \mu(L,G) P(L \cap N)$$

In this sum, the monomial $P(L \cap N)$ is in \mathcal{V} , unless $L \cap N = 1$. It follows that

$$Q_{G,N}\equiv \sum_{L\in K_G(N)}\mu(L,G) \pmod{\mathcal{V}}$$

If N is a minimal normal subgroup of G, and if N is abelian, then by Proposition 2.3

$$Q_{G,N} \equiv -|K_G(N)| \pmod{\mathcal{V}}$$

In particular $Q_{G,N} \in \mathcal{V}$ if and only if $K_G(N) = \emptyset$. This is equivalent to requiring N to be contained in each maximal subgroup L of G, i.e. N to be contained in $\Phi(G)$.

(5.2) Notation: If G is a finite group, I denote by M(G) the subgroup generated by all minimal normal subgroups of G.

(5.3) **Proposition:** Let G be a solvable finite group. Then G is a \mathcal{V} -group if and only if $M(G) \leq \Phi(G)$.

Proof: This follows clearly from the previous discussion.

(5.4) **Remark:** If G is an arbitrary finite group, and if $M(G) \leq \Phi(G)$, then G is a \mathcal{V} -group, but the converse is false in general: for example, a simple group S is a \mathcal{V} -group if and only if $\mu(1, S) = 0$. This happens for instance if S is the simple group of order 168. Still M(S) = S is not contained in $\Phi(S) = 1$.

This remark and Proposition 4.4 suggest the following variation:

(5.5) Notation: I denote by \mathcal{A} the ideal of \mathcal{R} generated by all X_p , for p prime.

Clearly \mathcal{R}/\mathcal{A} is isomorphic to the ring $\mathbb{Z}[(X_S)_{S\in\mathcal{S}^0}]$ of polynomials on the set \mathcal{S}^0 of isomorphism classes of *non-abelian* simple groups. Hence \mathcal{A} is a prime ideal of \mathcal{R} .

(5.6) **Proposition:** Let G be a finite group. Then G is an A-group if and only if $M(G) \leq \Phi(G)$.

Proof: If $M(G) \leq \Phi(G)$, since $\Phi(G)$ is nilpotent, all minimal normal subgroups of G are abelian, and have no complement in G. If N is a minimal normal subgroup of G, isomorphic to $(C_p)^n$, for a prime number p and a positive integer n, then by Proposition 2.3

$$Q_{G,N} = X_p^n - |K_G(N)| = X_p^n \in \mathcal{A}$$

Hence G is an \mathcal{A} -group.

Conversely, if G is an A-group and N is a minimal normal abelian subgroup of G, isomorphic to $(C_p)^n$, then

$$Q_{G,N} = X_p^n - |K_G(N)| \equiv -|K_G(N)| \pmod{\mathcal{A}}$$

Thus $Q_{G,N} \in \mathcal{A}$ if and only if $K_G(N) = \emptyset$, or equivalently since N is abelian, if $N \leq \Phi(G)$.

Now suppose N is a non-abelian minimal normal subgroup of G. Then $N \simeq S^n$, for some non-abelian simple group S and some positive integer n. But

$$Q_{G,N} = \sum_{\substack{H \le G \\ HN = G}} \mu(H,G) P(H \cap N)$$

and the term of highest degree in this expression is obtained for H = G, and it is equal to $P(N) = X_S^n$. But the ideal \mathcal{A} consists of linear combinations of monomials $\prod_{S \in \mathcal{S}} X_S^{\alpha_S}$ for which the exponent α_S is positive at least for one abelian simple group S (i.e. the monomials in which some variable X_p for pprime appears). This shows that $Q_{G,N}$ cannot belong to \mathcal{A} if N is non-abelian.

Hence all the minimal normal subgroups of G are abelian, and it follows that $M(G) \leq \Phi(G)$, as was to be shown.

(5.7) Corollary: Let G be a finite group. Then there exists a factor group H of G, characterized uniquely up to isomorphism by the following properties:

1. $M(H) \le \Phi(H)$.

2. If K = G/N is a quotient of G such that $M(K) \leq \Phi(K)$, and if $M \leq G$ is such that $G/M \simeq H$, then there exists a subgroup L of G with

$$LM = LN = G$$
 $L \cap M < L \cap N$

and in particular K is a quotient of H.

Proof: Of course $H = \beta_{\mathcal{A}}(G)$.

(5.8) Example: When G is a p-group, for some prime p, it is possible to describe explicitly the quotient $\beta_{\mathcal{V}}(G) = \beta_{\mathcal{A}}(G)$. Indeed, this quotient is obtained by considering a normal subgroup N of G, maximal subject to $Q_{G,N} \notin \mathcal{V}$. With the notation of Proposition 2.4, if

$$1 = N_{-1} < N_0 < \ldots < N_k = G$$

is a chief series for G, and if $N = N_l$, for $-1 \le l \le k$, then

$$Q_{G,N} = \tilde{P}(G) / \tilde{P}(G/N) = \prod_{i=0}^{l} (X_p^{n_i} - m_i) \equiv (-1)^{l+1} \prod_{i=0}^{l} m_i \pmod{\mathcal{V}}$$

Thus N is a maximal normal subgroup such that all the m_i 's are non-zero. In particular, every minimal normal subgroup of G contained in N must have a complement in G, hence in N. It follows that N is elementary abelian, and G-semi-simple. Hence N is central.

Moreover if $L_i/N_{i-1} \in K_{G/N_{i-1}}(N_i/N_{i-1})$, for $0 \le i \le l$, then it is easy to see that $L_0 \cap L_1 \cap \ldots \cap L_l$ is a complement of $N_l = N$ in G. Thus G can be split as a direct product

$$G = N \times L$$

Moreover L is a \mathcal{V} -group, thus $M(L) \leq \Phi(L)$. Since L is a p-group, all the minimal normal subgroups of L are central of order p. It follows that no central subgroup of order p can have a complement in L. Hence N is a maximal elementary abelian central subgroup of G having a complement in G, and $\beta_{\mathcal{V}}(G)$ is the quotient of G by its "largest elementary abelian direct summand".

In this case, one can say exactly how many subgroups N such that $G/N \simeq \beta_{\mathcal{V}}(G)$ there are: indeed with the previous notations, the group M(L) is equal to the subgroup $\Omega_1(Z(L))$ generated by the central elements of order p of L. But

$$\Phi(G) = 1 \times \Phi(L)$$

and

(5.9)
$$\Omega_1(Z(G)) = N \times \Omega_1(Z(L))$$

Taking the intersection of those two equations gives

$$\Phi(G) \cap \Omega_1(Z(G)) = 1 \times \Omega_1(Z(L))$$

It follows from 5.9 that N must be a complement of $\Phi(G) \cap \Omega_1(Z(G))$ in $\Omega_1(Z(G))$.

Conversely, if N is such a complement, there exists a subgroup K of G, containing $\Phi(G)$, such that $K/\Phi(G)$ is a complement of $N\Phi(G)/\Phi(G)$ in $G/\Phi(G)$, since $G/\Phi(G)$ is elementary abelian. In other words

$$KN = G$$
 $K \cap N\Phi(G) = \Phi(G)$

It follows that $K \cap N \leq N \cap \Phi(G) = 1$, thus K is a complement of N. Clearly now N is G-semi-simple, and it follows that $Q_{G,N} \notin \mathcal{V}$.

Thus the subgroups N such that $G/N \simeq \beta_{\mathcal{I}}(G)$ are exactly the complements of $\Phi(G) \cap \Omega_1(Z(G))$ in $\Omega_1(Z(G))$.

6. Direct products

(6.1) Notation: Let G and H be finite groups. Denote by p_1 and p_2 the projections from $G \times H$ to G and H respectively. If L is a subgroup of $G \times H$, set

$$p_1(L) = \{g \in G \mid \exists h \in H, (g, h) \in L\} \qquad k_1(L) = \{g \in G \mid (g, 1) \in L\}$$
$$p_2(L) = \{h \in H \mid \exists g \in G, (g, h) \in L\} \qquad k_2(L) = \{h \in H \mid (1, h) \in L\}$$

Then $k_i(L) \leq p_i(L)$ for i = 1, 2, and the quotients $q(L) = L/(k_1(L) \times k_2(L))$, $p_1(L)/k_1(L)$ and $p_2(L)/k_2(L)$ are canonically isomorphic.

(6.2) Proposition: Let G and H be finite groups. Then

$$\tilde{P}(G)\tilde{P}(H) = \sum_{\substack{L \le G \times H \\ p_1(L) = G \\ p_2(L) = H}} \tilde{P}(L)$$

Proof: This is a consequence of the definition of the polynomials \tilde{P} by Möbius inversion. Indeed for any finite groups G and H

(6.3)
$$P(G \times H) = \sum_{L \le G \times H} \tilde{P}(L)$$

Now setting

$$\sigma(G, H) = \sum_{\substack{L \le G \times H \\ p_1(L) = G \\ p_2(L) = H}} \tilde{P}(L)$$

the right hand side of equation 6.3 can be written as

$$\sum_{\substack{A \leq G \\ B \leq H}} \sigma(A,B)$$

$$\begin{split} \sum_{\substack{C \leq G \\ D \leq H}} \mu(C,G)\mu(D,H)P(C \times D) &= \sum_{\substack{C \leq G \\ D \leq H}} \sum_{\substack{A \leq C \\ B \leq D}} \mu(C,G)\mu(D,H)\sigma(A,B) \\ &= \sum_{\substack{A \leq G \\ B \leq H}} \Big(\sum_{\substack{A \leq C \leq G \\ B \leq D \leq H}} \mu(C,G)\mu(D,H)\Big)\sigma(A,B) \\ &= \sigma(G,H) \end{split}$$

The proposition follows, since the left hand side is equal to $\tilde{P}(G)\tilde{P}(H)$, because $P(C \times D) = P(C)P(D)$ for any $C \leq G$ and $D \leq H$.

(6.4) Corollary: If G and H have no non-trivial isomorphic factor group, then

$$\tilde{P}(G \times H) = \tilde{P}(G)\tilde{P}(H)$$

Proof: Indeed in this case, the only subgroup L of $G \times H$ such that $p_1(L) = G$ and $p_2(L) = H$ is $G \times H$ itself, since q(L) is a quotient of both G and H, hence it is trivial.

(6.5) Proposition: [2] Lemme 22] Let G and H be finite groups. Then

(6.6)
$$\tilde{P}(G \times H) = \tilde{P}(G)\tilde{P}(H) \sum_{\substack{L \le G \times H \\ p_1(L) = G \\ p_2(L) = H}} \frac{\tilde{\chi}(]1, q(L)[^{q(L)})}{\tilde{P}(q(L))}$$

Proof: Denote by K the group $G \times H$, and by M and N the normal subgroups $G \times 1$ and $1 \times H$ of K. Then by proposition 3.1 since $M \cap N = 1$

$$Q_{K,N} = \sum_{\substack{L \le K \\ LM = LN = K}} \mu(L,K) Q_{K/M,(L \cap N)M/M}$$

The condition LM = LN = K is equivalent to $p_1(L) = G$ and $p_2(L) = H$. In this case moreover, the maps

$$X \in]L, K[\mapsto k_1(X)/k_1(L) \in]1, G/k_1(L)[^G]$$

$$Y/k_1(L) \in]1, G/k_1(L)[^G \mapsto \{(g, h) \in G \times H \mid \exists a \in G, \ (a, h) \in L, \ ga^{-1} \in Y\}$$

are mutual inverse isomorphisms of posets. Since $G/k_1(L) \simeq q(L)$, it follows that $\mu(L,G) = \tilde{\chi}(]1, q(L)[^{q(L)}).$

Moreover

$$Q_{K/M,(L\cap N)M/M} = Q_{L/L\cap M,(L\cap N)(L\cap M)/L\cap M} = \frac{\tilde{P}(L/L\cap M)}{\tilde{P}(L/(L\cap N)(L\cap M))}$$

But $L/L \cap M \simeq K/M \simeq H$ and

$$L/(L \cap N)(L \cap M) = L/k_1(L) \times k_2(L) = q(L)$$

Thus

It follows that

$$Q_{K,N} = \tilde{P}(H) \sum_{\substack{L \le G \times H \\ p_1(L) = G \\ p_2(L) = H}} \frac{\tilde{\chi}(]1, q(L)[^{q(L)})}{\tilde{P}(q(L))}$$

The proposition follows, since $Q_{K,N} = \tilde{P}(K)/\tilde{P}(K/N) = \tilde{P}(K)/\tilde{P}(G)$.

(6.7) Corollary: Let G and H be finite groups, and denote by G_s , H_s and $(G \times H)_s \simeq G_s \times H_s$ the respective largest semi-simple quotients of G, H and $G \times H$. Then

$$\frac{P(G \times H)}{\tilde{P}((G \times H)_s)} = \frac{P(G)}{\tilde{P}(G_s)} \frac{P(H)}{\tilde{P}(H_s)}$$

Proof: The only non-zero terms in the formula 6.6 correspond to subgroups L of $G \times H$ such that q(L) is semi-simple. Moreover since $p_1(L) = G$ and $p_2(L) = H$, the group q(L) is a quotient of G and H. It follows that if M and N are normal subgroups of G and H respectively, such that $G/M \simeq G_s$ and $H/N \simeq H_s$, then $L \ge M \times N$. Then the group $L' = L/M \times N$ is a subgroup of $G_s \times H_s \simeq (G \times H)_s$, and

$$q(L) = L/k_1(L) \times k_2(L) \simeq (L/M \times N)/(k_1(L) \times k_2(L)/M \times N)$$

$$\simeq L'/(k_1(L)/M) \times (k_2(L)/N) = q(L')$$

The corollary follows, since the correspondence $L \mapsto L'$ from

$$\{K \le G \times H \mid p_1(K) = G, p_2(K) = H, K \ge M \times N\}$$

to the set

$$\{K' \le G_s \times H_s \mid p_1(K') = G_s, \ p_2(K') = H_s\}$$

is clearly one to one.

Corollary 6.7 gives a way to compute $\tilde{P}(G \times H)$ knowing $\tilde{P}(G)$, $\tilde{P}(H)$, and the groups G_s and H_s . The following notation will be convenient:

(6.8) Notation: If G and H are finite groups, I denote by s(G, H) the number of surjective group homomorphisms from G to H.

If $n,m\in\mathbb{N},\ I\ set$

$$F(G,n) = \prod_{i=0}^{n-1} \left(\tilde{P}(G) - s(G^i, G) \right)$$
$$B(G,m,n) = \frac{F(G,m+n)}{F(G,m)F(G,n)}$$

Here the letter F stands for "factorial", and the letter B for "binomial". Note that B(G, m, n) is an element of the field of fractions of \mathcal{R} .

(6.9) Proposition:

- 1. If S is a finite simple group and $n \in \mathbb{N}$, then $\tilde{P}(S^n) = F(S,n)$. Moreover $s(S^n, S)$ is equal to $p^n 1$ if $S \simeq C_p$, and to n|Aut(S)| if S is non-abelian.
- 2. Let G and H be finite groups. If $S \in S$, denote by $a_S = \nu_S(G_s)$ and $b_S = \nu_S(H_s)$ the multiplicity of S as a factor of G_s and H_s respectively. Then

$$\tilde{P}(G \times H) = \tilde{P}(G)\tilde{P}(H)\prod_{S \in \mathcal{S}} B(S, a_S, b_S)$$

Proof: The first formula follows from an easy induction argument, using 6.2 or 6.6. Using this, the second formula follows from 6.4 and 6.7.

(6.10) Lemma: Let \mathcal{I} be a prime ideal of \mathcal{R} . If G and H are \mathcal{I} -groups, and if they have no non-trivial isomorphic factor group, then $G \times H$ is an \mathcal{I} -group.

Proof: Since G and H are quotients of $G \times H$, it follows that they are quotients of $\beta_{\mathcal{I}}(G \times H)$. Hence there is a group homomorphism

$$\phi:\beta_{\mathcal{I}}(G\times H)\to G\times H$$

such that $p_1 \circ \phi$ and $p_2 \circ \phi$ are surjective. Let K denote the image of ϕ . Then $p_1(K) = G$ and $p_2(K) = H$. Thus q(K) is a quotient of both G and H, hence it is trivial. It follows that $K = G \times H$, hence $\beta_{\mathcal{I}}(G \times H) \simeq G \times H$. Thus $G \times H$ is an \mathcal{I} -group.

(6.11) **Proposition:** Let \mathcal{I} be a prime ideal of \mathcal{R} , and G and H be finite groups having no non-trivial isomorphic factor group.

1. If $M \triangleleft G$ and $N \triangleleft H$, then

$$Q_{G \times H, M \times N} = Q_{G, M} Q_{H, N}$$

2. Moreover

$$\beta_{\mathcal{I}}(G \times H) \simeq \beta_{\mathcal{I}}(G) \times \beta_{\mathcal{I}}(H)$$

3. The group $G \times H$ is an \mathcal{I} -group if and only if G and H are \mathcal{I} -groups.

Proof: Let M be a normal subgroup of G and N be a normal subgroup of H. Then by Corollary 6.4, since G/M and H/N have no non-trivial isomorphic factor group

$$\tilde{P}(G \times H) = \tilde{P}(G)\tilde{P}(H)
\tilde{P}(G \times H/M \times N) = \tilde{P}(G/M \times H/N)
= \tilde{P}(G/M)\tilde{P}(H/N)$$

Taking the quotient of those equations gives assertion 1)

$$Q_{G \times H, M \times N} = Q_{G, M} Q_{H, N}$$

Clearly $\beta_{\mathcal{I}}(G)$ and $\beta_{\mathcal{I}}(H)$ have no common non-trivial factor group. Hence by Lemma 6.10 $\beta_{\mathcal{I}}(G) \times \beta_{\mathcal{I}}(H)$ is an \mathcal{I} -group, and it is a quotient of $G \times H$. Hence it is a quotient of $\beta_{\mathcal{I}}(G \times H)$. Conversely if $M \leq G$ is such that $G/M \simeq \beta_{\mathcal{I}}(G)$, and $N \leq H$ is such that $H/N \simeq \beta_{\mathcal{I}}(H)$, then $Q_{G,M} \notin \mathcal{I}$ and $Q_{H,N} \notin \mathcal{I}$, thus $Q_{G \times H,M \times N} \notin \mathcal{I}$ by assertion 1) since \mathcal{I} is prime. By Proposition 4.3 the group $\beta_{\mathcal{I}}(G \times H)$ is a quotient of

$$(G \times H)/(M \times N) \simeq \beta_{\mathcal{I}}(G) \times \beta_{\mathcal{I}}(H)$$

Assertion 2) follows.

Finally $G \times H$ is an \mathcal{I} -group if and only if $G \times H = \beta_{\mathcal{I}}(G \times H)$. By assertion 2), this is equivalent to $G = \beta_{\mathcal{I}}(G)$ and $H = \beta_{\mathcal{I}}(H)$, which proves assertion 3).

7. Nilpotent \mathcal{I} -groups

It is possible to describe all the nilpotent \mathcal{I} -groups, when \mathcal{I} is a prime ideal of \mathcal{R} . Since any nilpotent group is isomorphic to the direct product of its Sylow *p*-subgroups, for prime numbers *p*, it follows from proposition 6.11 that a nilpotent group is an \mathcal{I} -group if and only if all its Sylow subgroups are \mathcal{I} -groups. Thus in order to describe the nilpotent \mathcal{I} -groups, it suffices to describe the *p*-groups which are also \mathcal{I} -groups.

(7.1) **Proposition:** Let \mathcal{I} be a prime ideal of \mathcal{R} , let p be a prime number, and let G be a finite p-group. Then:

- 1. If G is elementary abelian of order p^n , then G is an \mathcal{I} -group if and only if n = 0 or $n \ge 1$ and $X_p p^{n-1} \in \mathcal{I}$.
- 2. If G is not elementary abelian, then G is an \mathcal{I} -group if and only if $X_p \in \mathcal{I}$ and one of the following holds:
 - (a) $p \in \mathcal{I}$.
 - (b) $\Omega_1(Z(G)) \leq \Phi(G)$, or equivalently, the group G cannot be written $G \simeq C_p \times H$, for some finite group H.

Proof: Suppose G is non-trivial, and let N be a minimal normal subgroup of G. Then N is central of order p, and

$$Q_{G,N} = X_p - |K_G(N)|$$

since any proper subgroup L of G such that LN = G is a complement of G, and L is a maximal subgroup of G in this case.

Suppose that G is elementary abelian of order p^n . If n = 0, then G is trivial and G is an \mathcal{I} -group. If n > 1, and if N is a subgroup of G of order p, then

$$Q_{G,N} = X_p - p^{n-1}$$

since there are p^{n-1} complements of N in G. This proves assertion 1).

If G is not elementary abelian, then there exists a central subgroup N of G of order p contained in $\Phi(G)$. If N is such a subgroup, then $K_G(N) = \emptyset$, and

Now if M is a central subgroup of G of order p, and $M \not\leq \Phi(G)$, then

(7.3)
$$Q_{G,N} = X_p - |K_G(M)|$$

Moreover in this case $K_G(M) \neq \emptyset$, thus there exists a group H such that $G \simeq M \times H$, and

$$|K_G(M)| = |\operatorname{Hom}(H, M)|$$

is a power of p, and different from 1 since H is non trivial (if H = 1, then G has order p and G is elementary abelian).

Hence if G is an \mathcal{I} -group, then $X_p \in \mathcal{I}$ by 7.2. Now if $\Omega_1(Z(G)) \not\leq \Phi(G)$, it follows from 7.3 that $|K_G(M)| \in \mathcal{I}$. This is a power of p, different from 1, thus $p \in \mathcal{I}$ since \mathcal{I} is prime.

Conversely, if $X_p \in \mathcal{I}$ and $p \in \mathcal{I}$, then clearly $Q_{G,N} \in \mathcal{I}$ by 7.2 and 7.3 for any central subgroup N of order p of G. Then G is an \mathcal{I} -group.

And if $X_p \in \mathcal{I}$ and $\Omega_1(Z(G)) \leq \Phi(G)$, then any central subgroup N of order p of G is contained in $\Phi(G)$, hence $Q_{G,N} \in \mathcal{I}$ by 7.2. Thus G is an \mathcal{I} -group, and this completes the proof of the proposition.

Proposition 7.1 can be reformulated as follows:

(7.4) Corollary: Let \mathcal{I} be a prime ideal of \mathcal{R} , let p be a prime number, and let G be a finite p-group. Then:

- If $X_p \in \mathcal{I}$ and $p \in \mathcal{I}$, then G is an \mathcal{I} -group if and only if $G \not\simeq C_p$.
- If $X_p \in \mathcal{I}$ and $p \notin \mathcal{I}$, then G is an \mathcal{I} -group if and only if $\Omega_1(Z(G)) \leq \Phi(G)$.
- If $X_p \notin \mathcal{I}$, then let $h, k \in \mathbb{N} \cup \{\infty\}$ defined by

$$\begin{aligned} h &= & \inf \left\{ l \in \mathbb{N} \mid X_p - p^l \in \mathcal{I} \right\} \\ k &= & \inf \left\{ l \in \mathbb{N} - \{0\} \mid 1 - p^l \in \mathcal{I} \right\} \end{aligned}$$

Then G is an \mathcal{I} -group if and only if G is elementary abelian of order p^n with n = 0, or $n \equiv h + 1$ (k) if $h \neq \infty$ and $k \neq \infty$, or n = h + 1 if $h \neq \infty$ and $k = \infty$.

Proof: Indeed, if $X_p \in \mathcal{I}$ and $p \in \mathcal{I}$, then by Proposition 7.1, the only case where G is not an \mathcal{I} -group is the case $G \simeq C_p$.

If $X_p \in \mathcal{I}$ and if a non-trivial elementary abelian *p*-group of order p^n is an \mathcal{I} -group, then $p^{n-1} \in \mathcal{I}$, hence $1 \in \mathcal{I}$ or $p \in \mathcal{I}$. Thus if $p \notin \mathcal{I}$, then no non-trivial elementary abelian *p*-group can be an \mathcal{I} -group, and *G* is an \mathcal{I} -group if and only if $\Omega_1(\mathcal{I}(G)) \leq \Phi(G)$.

Finally if $X_p \notin \mathcal{I}$, then G is an \mathcal{I} -group if and only if G is elementary abelian of order p^n with n = 0 or $n \ge 1$ and $X_p - p^{n-1} \in \mathcal{I}$. This cannot happen if $h = \infty$, and if $h \in \mathbb{N}$, this is equivalent to

$$p^h-p^{n-1}=p^h(1-p^{n-h-1})\in\mathcal{I}$$

But $p^h \notin \mathcal{I}$, since otherwise $X_p = (X_p - p^h) + p^h \in \mathcal{I}$, and this is equivalent to $1 - p^{n-h-1} \in \mathcal{I}$, or $n \equiv h+1$ (k), which has to be viewed as an equality if $k = \infty$.

(7.5) **Remark:** The last case of Corollary 7.4 should be compared with Theorem 8.2 of [3], which deals with "b-groups in characteristic q", i.e. with the case where \mathcal{I} is generated by a prime number $q \neq p$ (or q = 0), and by $X_S - |S|$, for all simple groups S.

References

- S. Bouc. Homologie de certains ensembles ordonnés. C. R. Acad. Sc. Paris, t.299(2):9–12, 1984. Série I.
- [2] S. Bouc. Foncteurs d'ensembles munis d'une double action. J. of Algebra, 183(0238):664-736, 1996.
- [3] S. Bouc and J. Thévenaz. The group of endo-permutation modules. *Invent. Math.*, 1998. To appear.
- [4] K. Brown. The coset poset and the probabilistic zeta function of a finite group. Preprint, 1999.
- [5] K. Brown and J. Thévenaz. A generalization of Sylow's third theorem. Journal of Algebra, 115:414-430, 1988.
- [6] H. Crapo. The Möbius function of a lattice. J. Comb. Theory., 1:126–131, 1966.
- [7] W. Gaschütz. Die Eulersche Funktion endlicher auflösbarer Gruppen. Illinois J. Math., 3:469–476, 1959.
- [8] P. Hall. The Eulerian functions of a group. Quart. J. Math., 7:134–151, 1936.