Polynomial ideals and classes of finite groups

Serge Bouc

The object of this note is to discuss properties of some polynomials (on a
countable set of indeterminates) attached to any finite group, which generalize
the Eulerian functions of a group defined by P. Hall ([8]). In particular, T will
define some classes of finite groups associated to prime ideals of the polynomial
ring, and I will show that each finite group has a unique largest quotient in such
a class of groups.

This work is a generalization of the notion of b-group introduced in [2], by
a systematic use of the polynomial formalism of section 7.2.5 of [2]. For the
reader’s convenience however, this paper is self-contained, and the proofs of the
results already stated in [2] are included.

1. The polynomial ring

(1.1) Notation: I will consider the (countable) set S of isomorphism classes
of finite (non-trivial) simple groups, and the polynomial ring over S

R =7Z[(Xs)ses]

In other words, the ring R is the algebra over Z of the Grothendieck monoid
of the category of finite groups.

(1.2) Notation: If p is a prime number, and S is the isomorphism class of
the cyclic group C), of order p, I denote by X, the variable Xs of R.

It is convenient to turn R into a R-graded ring by setting
deg(Xs) = log|S]|
If G is a finite group, then I define the monomial P(G) € R by

P(G) = H ng(G)
SeS

where for each finite simple group S, the integer vg(G) is the multiplicity of S
as a composition factor of G. In particular P(1) =1 and P(S) = Xgif S € S.
Note that with this definition, the degree of P(G) is equal to log |G|, for any
finite group G.

I denote by P(G) the polynomial obtained from P(G) by Mobius inversion
on the poset of subgroups of G, i.e.

P(G) = Y u(H,G)PH)

H<G

where the notation H < G means that H is a subgroup of G, and u(H, Q) is
the Mdbius function of the poset of subgroups of G. The monomial of highest



degree in the expression of P(G) corresponds to the subgroup H = G, and the
coefficient p(G, G) is equal to 1. Thus

(1.3) deg(P(G)) = log |G
Finally, if N is a normal subgroup of G, I define

Qa,N = Z u(H,G)P(HNN)
H<G
HN=G

This is a generalization of the previous formula, since Qg,¢ = P(G). On the
other hand Q.1 = 1 for any G. The terms of highest degree in Qg n correspond
to subgroups H such that HN N = N and HN = G. Hence the only possible
subgroup is H = G, and again the coefficient of P(H N N) = P(N) is equal
to 1. Thus

(1.4) deg(Qg,n) = log|N]|

The polynomials P(G), P(G), and Qg n are invariant under group isomor-
phism: if ¢ : G — G’ is an isomorphism, then obviously P(G) = P(G'),
P(G) = P(G"), and Qa,n = Qv p(v)-

(1.5) Remark: The Eulerian function of the group G, defined by Hall ([8]), is
the function ¢(G, s) defined for a complex number s by

$(G,s) = > u(H,G)|H|*

H<G

Hence it is the evaluation of the polynomial P(G) when X is replaced by |S|?,
for all S € S. The name “Eulerian” comes from the fact that when s is a
positive integer, the value ¢(G, s) is the number of sequences of s elements of
G which generate G.

The polynomials P(G) and Qg,n are also closely related to the probabilistic
zeta function and its relative version, studied by K. Brown in [4]. The value
C(G, s) of this zeta function at a complex number s is given by

B(G,5) _ <~ p(G.H)

H<G

(Brown’s notation for 1/{(G, s) is P(G, s), but it is a bit confusing here, and I
prefer to use another symbol).

Hence the value ¢(G, 5)|G|~* can also be recovered from 1/ P(G) by replacing
each variable Xg by |S|®.

(1.6) Remark: Let D denote the ring of Dirichlet polynomials over Z, i.e. the
ring of finite linear combinations with coefficients in Z of functions s +— n~*
from C to C, for n € N — {0}. It is clear that the map sending Xs € R for
S € S to the map s — |S|~* induces a surjective ring homomorphism from R
to D.

On the other hand, the decomposition of an integer n € N— {0} as a product
of prime factors yields an isomorphism from D to the algebra R' over Z of the



multiplicative monoid N — {0}, sending the function s = n™" to [] ¢ VAR

where P is the set of prime numbers and v,(n) is the p-valuation of n, for p € P,
and Y}, is the image of the prime p in R'.
Hence the ring D is isomorphic to the quotient of R by the ideal generated

by the elements Xg — [] X;’p(lsn, for all non-abelian simple groups S.

pEP

The fundamental properties of the polynomial P(G), P(G), and Q¢ N are
given in the following lemma:

(1.7) Lemma: [[2] Lemme 19] The G be a finite group, let N be a normal
subgroup of G, and let R be a subgroup of G containing N. Then

(1.8) P(G) = P(G/N)P(N)
(1.9) > w(H,G)P(H) = u(R,G)P(R/N)Qq,~
SR
(1.10) > w(H,G)P(HNN) = u(R,G)Qa,n
SR
(1.11) P(G) = P(G/N)Qa,n

Proof: The first equality is a trivial consequence of the definition, since the
multiplicity of the simple group S as a composition factor of G is the sum of its
multiplicities as a composition factor of N and G/N.

For the second one, by Crapo complementation formula (see [6] Theorem 3
and Theorem 5, or [5] pp. 420-421), for H < G

pH,G) = Y wHKEG= 3  wHNGuK,.G)
H<K<G H<K<G
KN=G KN=G
KNHN=H KNHN=H

Now if N < R < @, the conditions KN =G, KNHN = H and HN = R are
equivalent to KN = G and H = K N R. This gives

Y. WHGPH) = 3 wRGuKGPENR)
H<G K<G
HN=R KN=G
= wR,G) Y wK,G)P(KNR)
K<G
KN=G

Moreover (K N R)N = R, thus R/N ~ (KN R)/(KNN), and

P(KNR) =P(R/N)P(KNN)



It follows that for N < R < G

> wH,G)P(H) = uw(R,G)P(R/N) > u(K,G)P(KNN)
HNSR v

and equality 1.9 follows. Equality 1.10 is a consequence, since if HN = R, then
P(H) = P(R/N)P(HN N).

Since moreover u(R,G) = p(R/N,G/N), the summation of 1.9 for sub-
groups R with N < R < G gives

P@G)= ) u(R,G)P(R/N)Qc N =P(G/N)Qc.N
N<R<G
as was to be shown. 0

(1.12) Corollary: If M and N are normal subgroups of G such that G/M ~
G/N, then Qa,m = Qa,N-
Proof: Indeed by 1.11 Qg n = P(G)/P(G/N). 0

2. The polynomials P(G)

In view of 1.11, it is natural to ask when the polynomial P is irreducible:

(2.1) Proposition: Let G be a finite group. Then P is irreducible if and only
if G is simple.
Proof: Let S be a simple group. Then

P(S)=Xs+R

where R is a polynomial in the variables X, for simple groups T not isomorphic
to S. Hence P(S) is irreducible.

Conversely, if G is a finite group and P(G) is irreducible, let N be a normal
subgroup of G. Then by 1.11 one of the polynomial P(G/N) or Qg n has
degree 0. By 1.3 and 1.4, it follows that N = G or N = 1. Hence G is simple. []

(2.2) Notation: If N is a normal subgroup of G, I denote by Kg(N) the set
of complements of N in G, i.e.

Kg(N)={L<G|LN =G, LON =1}

If M and N are normal subgroups of G, I denote by Kg(M,N) the set of
subgroups of G which are complements of M and N, i.e.

Kg(M,N) = Kg(M) N Kg(N)



(2.3) Proposition: Let G be a finite group, and N be a minimal (non-trivial)
abelian normal subgroup of G, isomorphic to (Cp)", for p prime and n > 0.
Then

Qa,n = X — |Ka(N)|

Proof: Let H be a subgroup of G such that HN = G. Then HNN is normalized
by H, and by N since N is abelian. Hence either HNN = N, and then H = G,
or HNN =1, and H € Kg(N). In this case H is a maximal subgroup of G,
and u(H,G) = —1. The proposition follows. 0

(2.4) Corollary:
1. Let G be a solvable finite group, and

1=N_1<Ng<N<...<Np=G

be a chief series for G. Then for 0 < i < k, there exist a prime number
pi and a positive integer n; such that N;/N;_1 ~ (Cp,)™. Denote by m;
the number of complements of N;/N;_1 in the group G/N;_1. Then

k
(2:5) P(G) = [[ (x5 —my)

=0

2. Conversely, if G is a finite group, and if there exists an integer k, if there
exist prime numbers p; and integers m;, for 0 < i < k such that 2.5 holds,
then G is solvable.

Proof: Assertion 1) follows from an obvious induction argument. For asser-
tion 2), suppose that G is a finite group such that 2.5 holds. Then the monomial
of highest degree in P(G), which is equal to P(G), is the product Hf:o Xpi.
This means that all the composition factors of G are cyclic, i.e. that G is
solvable. 0

(2.6) Remark: Corollary 2.4 can be viewed as a generalization of the Eulerian
product formula obtained by Gaschiitz ([7]) for the zeta function of a solvable
group (see also [1]). It should also be compared with the following question,
cited by Brown (Question 1 of [4]):

Question: If G is a finite group such that ((G, s) has an Euler product expansion
with factors of the form #, is G solvable?

—Cq



3. The two normal subgroups formula

(3.1) Proposition: [[2] Lemme 20] Let G be a finite group. If N and M are
normal subgroups of G then

Qon= Y, wL,GPLNMNN)Qe/mLonym/m
L<G
LM=LN=G

Proof: By definition

Qon= Y, wHGPHNN)
H<G
HN=G

As noted above

H<L<G
LM=G
LNHM=H

This gives
Qon= > wH,L)WL,G)P(HNN)

H<G  H<L<G
HN=G LM=G
LNHM=H

Now the conditions
HN =G H<LL LM =G LNHM =H
are equivalent to the conditions
LM =LN=@G H<L H(LNN)=L H>LNM
It follows that
Qow= > wLZ6 S wHILPEN)

L<G H<L
LM=LN=G H>LNM
H(LNN)=L

The inner summation is equivalent to a sum over subgroups K = H/(L N M)
of L = L/(L N M) such that K.J = L, where J denotes the normal subgroup
(LNN)Y(LNM)/(LNM) of L.

Moreover since HN = G

P(HNN) = P(H)P(N)/P(G) =P(K)P(N)P(LNM)/P(G)
- Jﬁ%%ﬂJme@nMymm
P(K N J)P(L)P(N)
P(J)P(G)
P(KNJ)P(LNN)
P(LNN/LNANN M)
= P(KNnJ)P(LNMNN)




Thus

Qan = > wWIL,GPLNMNN) Y wK,LP(KN.J)
L<G K<L
LM=LN=G KJ—T
= > wWIL,GPLNMON)Q;L,
L<a
LM=LN=G

The formula follows, since L ~ G/M, and since the image of J under this
isomorphism is (LN N)M /M. 0

(3.2) Corollary: If M < N, then

Qe N = Qae,MQa/m,N/M

Proof: This follows from the fact that if LM = G and if M < N, then
(LN N)M = N. This corollary has also an obvious direct proof, using 1.11. [

4. Z-groups

One of the methods used in [2] was to replace each variable Xg by |S|, and
to look whether the resulting number ()¢, n is zero. This can be generalized by
considering an ideal Z of R, and looking whether Q¢ n is in Z or not.

(4.1) Convention: In the sequel, the expression “the group H is a quotient
of the group G” means that H is isomorphic to a factor group of G.

(4.2) Definition: Let Z be an ideal of R. A finite group G is called an
Z-group if for any non-trivial normal subgroup N of G, the polynomial Qg N
belongs to T.

(4.3) Proposition: Let G be a finite group, and I be an ideal of R. If M and
N are normal subgroups of G, and if G/M is an T-group, then

Qax= Y WIGPELAN) (mod.1)
L<G
LM=LN=G
LAN<LNM

In particular, if Qa,n ¢ I, then G/M is a quotient of G/N.

Proof: The first assertion follows from proposition 3.1, and from the definition
of an Z-group. Now if Q¢ n ¢ Z, then there exists a subgroup L of G such that
LM =LN=Gand LNN<LNM. Now G/M ~ L/(LN M) is a quotient of
G/N ~ L/(LNN). 0



(4.4) Proposition: Let G be a finite group, and T be a prime ideal of R. There
exists a factor group Bz(G) of G, characterized uniquely up to isomorphism by
the following properties:

1. The group Bz(G) is an Z-group.
2. If K is a quotient of G, and if K is an T-group, then K is a quotient
of Bz(G).
Moreover if N is a normal subgroup of G, then the following conditions are
equivalent:

a) The group Bz(QG) is a quotient of G/N.
b) Bz(G/N) = pz(G).
C) QG,N ¢I

Proof: Properties 1) and 2) clearly show that the group 8z(G) is unique up to
isomorphism, if it exists.

Let M be a normal subgroup of G, maximal subject to Qg,m ¢ Z. Then by
Corollary 3.2, if N is a normal subgroup of G strictly containing M

Qae,N = Qa,mQa/mn/m €L

Since Qg,ar ¢ T and since 7 is prime, it follows that Q¢ /ar,n/ar € Z. This holds
for any non-trivial normal subgroup N/M of G/M, hence G/M is an Z-group.

By Proposition 4.3, since Qg ,m ¢ Z, it follows that any Z-group which is
a quotient of G is a quotient of G/M. Thus f7(G) = G/M has properties 1)
and 2).

Note that by construction, and by 1.12, if M is a normal subgroup of G such
that G/M ~ B7(G), then Qg m ¢ I.

Now if N is a normal subgroup of G, then the group 8z(G/N) is an Z-group,
which is quotient of G/N, hence of G. Thus §7(G/N) is always a quotient of
82(G).

If a) holds, then 8z(G) is an Z-group, which is a quotient of G/N. Hence
Bz(G) is a quotient of Bz(G/N), and b) holds.

If b) holds, and if M/N is a normal subgroup of G/N such that

(G/N)/(M/N) =~ Bz(G/N)

then G/M ~ (7(G/N) ~ 7(G). Hence as noted above Qg,»r ¢ Z, and since
Q¢,m is a multiple of Qg N, it follows that Qg ,~ ¢ Z. Hence c) holds.

If ¢) holds, then by proposition 4.3 the group 8z(G) is a quotient of G/N,
and a) holds. 0

There are generally several normal subgroups M of G such that G/M ~
Bz(GQ). They are related as follows:

(4.5) Proposition: Let G be a finite group, and T be a prime ideal of R. Let
M and N be normal subgroups of G such that

G/M ~ G/N =~ (z(G)

Let]MNN, M[% denote the poset of normal subgroups of G which contain strictly
M N N and are strictly contained in M, and let ng(M,N) denote its reduced
Euler-Poincaré characteristic (with the convention ng(M,N) =114 M = N).
Then:



1. There exists an automorphism 6 of the group G/M N N such that
O(M/MNN)=N/MNN

Hence the posets ]M NN, M[% and |M N N, N[ are isomorphic, and in
particular ng(M,N) = ng(N, M).

2. The group M/M NN ~ N/M N N is isomorphic to a direct product of
simple groups.

3. QG,N = QG,MQNTLg(M,NHKg/MQN(M/M ﬂN,N/Mﬂ N)| (mod. I).

Proof: Since Qg N = Qa,MnNQa/mnN,N/mnN by Corollary 3.2, replacing G
by G/M N N shows that it suffices to consider the case M NN = 1. In this case
the groups M and N centralize each other.

By proposition 4.3, since moreover G/M ~ G/N implies LN M =LNN
whenever LM = LN =G and LNN<LNM

Qa,N = Z w(L,G) (mod.Z)

LG
LM=LN=G
LNM=LNN=1

In other words
Qan= >, wL,G) (mod. T)
LeKg(M,N)
Since Qa,n ¢ Z, this shows in particular that Kg(M,N) # 0.
Now fix L € Kg(M,N), and define a map ¢ from M to N by ¢(m) = n if
mn € L. This is well defined since L € Kg(M, N). Moreover if m and m’ are
in M, and if n = ¢(m) and n' = ¢(m'), then

mnm'n’ = mm'nn’ € L

since M and N commute. This shows that ¢(mm') = nn', hence ¢ is a group
homomorphism from M to N. By symmetry, the map ¢ from N to M defined
by ¥(n) = m if nm € L is also a group homomorphism, which is clearly the
inverse of ¢, since M and N commute. Moreover the maps ¢ and v are clearly
L equivariant.

Now define a map 0 : G — G by

0(ml) = ¢p(m)l VYme M,VleL
Then for m, m' in M and [, ' in L
B(mlm'l") = O(m.tm' 1l") = p(m).Lp(m").1l' = p(m)lp(m")' = §(ml)B(m'l")

This shows that 8 is a group homomorphism, which is clearly an automorphism
of G.

By construction (M) = N, thus § induces an isomorphism of posets from
11, M[% to ]1,N[%, and ng(M,N) = ng(N, M). This shows assertion 1).

Now the maps

X € [1,N}* = LX € [L,G] Y €[L,G]=»YNN €[1,N*

are inverse isomorphisms of posets. Moreover [1, N]Y = [1,N]fM = [1, N]¢
since M and N commute. Thus u(L,G) is equal to the reduced Euler-Poincaré



characteristic of the poset ]1, N[¢= [1,N]% — {1, N}, and this does not depend
on the choice of L in Kg(M,N). Thus

Qc,n = X(I1, N[®)|Ka(M,N)| (mod. T)

and this proves assertion 3).

Since Qa,n ¢ Z, it follows from Crapo complementation formula that ev-
ery normal subgroup of G contained in N has a complement in N, invariant
by G. This can only happen if N is a direct product of simple groups, and this
completes the proof of the proposition. 0

(4.6) Example: The case of b-groups discussed in [2] corresponds to the ideal 7
generated by all Xg — |S|, for S € S. In this case if G is a p-group, then
Bz(G) is trivial if G is cyclic, and isomorphic to (Cp)? otherwise. This follows
from Proposition 14 of [2], but I will give another more general proof here in
Corollary 7.4.

If ®(G) is the Frattini subgroup of G, and if the order of G/®(G) is at
least p3, then there are several normal subgroups N of G such that G/N =~ (C,)?,
but all those subgroups contain ®(G), and are conjugate by the automorphism
group of G/®(QG).

5. Example: the ideal of valuation

(5.1) Notation: I denote by V the ideal of R generated by all Xg, for S € S.

In other words, the ideal V is the ideal of polynomial with constant term
equal to zero. Clearly the quotient ring R/V is isomorphic to Z, thus V is a
prime ideal.

By definition, if NV is a normal subgroup of the finite group G, then

Qon= Y wL,G)PLNN)
L<@
LN=G

In this sum, the monomial P(LN N) is in V, unless LN N = 1. Tt follows that

Qa,nN = Z w(L,G) (mod. V)

LeKg(N)

If N is a minimal normal subgroup of G, and if N is abelian, then by Proposi-
tion 2.3
QG,N = —|KG'(N)| (mod V)

In particular Q¢ N € V if and only if Kg(N) = (. This is equivalent to requiring
N to be contained in each maximal subgroup L of G, i.e. N to be contained in

3(G).

(5.2) Notation: If G is a finite group, I denote by M(G) the subgroup gener-
ated by all minimal normal subgroups of G.

10



(5.3) Proposition: Let G be a solvable finite group. Then G is a V-group if
and only if M(G) < (G).
Proof: This follows clearly from the previous discussion. 0

(5.4) Remark: If G is an arbitrary finite group, and if M(G) < ®(G), then G
is a V-group, but the converse is false in general: for example, a simple group
S is a V-group if and only if u(1,S5) = 0. This happens for instance if S is the
simple group of order 168. Still M(S) = S is not contained in ®(S) = 1.

This remark and Proposition 4.4 suggest the following variation:

(5.5) Notation: I denote by A the ideal of R generated by all X, for p prime.

Clearly R /A is isomorphic to the ring Z[(Xs)scso] of polynomials on the set
8P of isomorphism classes of non—abelian simple groups. Hence A is a prime
ideal of R.

(5.6) Proposition: Let G be a finite group. Then G is an A-group if and
only if M(G) < ®(Q).

Proof: If M(G) < ®(G), since ®(G) is nilpotent, all minimal normal subgroups
of G are abelian, and have no complement in G. If N is a minimal normal sub-
group of G, isomorphic to (C,)™, for a prime number p and a positive integer n,
then by Proposition 2.3

QG,N = X;} — |Kg(N)| = X;} eA

Hence G is an A-group.
Conversely, if G is an A-group and N is a minimal normal abelian subgroup
of G, isomorphic to (C,)™, then

Qa.n = X7 — |[Kg(N)| = -|Kg(N)| (mod. A)

Thus Qg,~ € A if and only if Kg(N) = 0, or equivalently since N is abelian, if
N < 9(G).

Now suppose N is a non-abelian minimal normal subgroup of G. Then
N ~ S™, for some non-abelian simple group S and some positive integer n. But

Qon= Y wHGPHNN)
H<G
HN=G

and the term of highest degree in this expression is obtained for H = G, and
it is equal to P(N) = Xg. But the ideal A consists of linear combinations of
monomials [[g.g Xg° for which the exponent as is positive at least for one
abelian simple group S (i.e. the monomials in which some variable X, for p
prime appears). This shows that Qg,~ cannot belong to A if N is non-abelian.

Hence all the minimal normal subgroups of G are abelian, and it follows that
M(G) < ®(G), as was to be shown. 0

(5.7) Corollary: Let G be a finite group. Then there exists a factor group H
of G, characterized uniquely up to isomorphism by the following properties:

1. M(H) < &(H).

11



2. If K = G/N is a quotient of G such that M(K) < ®(K), and if M <G is
such that G/M ~ H, then there exists a subgroup L of G with

LM =LN=G LNM<LLNN

and in particular K is a quotient of H.

Proof: Of course H = 84(G). O

(5.8) Example: When G is a p-group, for some prime p, it is possible to describe
explicitly the quotient 8y (G) = BA(G). Indeed, this quotient is obtained by
considering a normal subgroup N of G, maximal subject to Qg.n ¢ V. With
the notation of Proposition 2.4, if

1=N_1<Ng<...<N.=G@G

is a chief series for G, and if N = Ny, for —1 <1 < k, then

l l
Qa.n = P(G)/P(G/N) = [J (X} — ms) = (-1)'+! H m; (mod. V)

=0

Thus N is a maximal normal subgroup such that all the m;’s are non-zero. In
particular, every minimal normal subgroup of G contained in N must have a
complement in G, hence in N. It follows that N is elementary abelian, and
G-semi-simple. Hence N is central.

Moreover if L;/N; 1 € Kg/n,_,(Ni/Ni-1), for 0 <i <, then it is easy to
see that Lo N Ly N...N L; is a complement of N; = N in G. Thus G can be
split as a direct product

G=NxL

Moreover L is a V-group, thus M (L) < ®(L). Since L is a p-group, all the
minimal normal subgroups of L are central of order p. It follows that no central
subgroup of order p can have a complement in L. Hence N is a maximal
elementary abelian central subgroup of G having a complement in G, and 8y(G)
is the quotient of G by its “largest elementary abelian direct summand”.

In this case, one can say exactly how many subgroups N such that G/N ~
By (G) there are: indeed with the previous notations, the group M (L) is equal
to the subgroup (Z (L)) generated by the central elements of order p of L.
But

(G) =1x ®(L)

and

(5.9 2 (Z(G)) =N x Qi (Z(L))

Taking the intersection of those two equations gives
®(G) N2 (Z(G)) =1 x Qi (Z(L))

It follows from 5.9 that N must be a complement of ®(G) N Q4 (Z(G)) in
0 (2(0)).
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Conversely, if NV is such a complement, there exists a subgroup K of G, con-
taining ®(G), such that K/®(G) is a complement of N®(G)/®(G) in G/®(G),
since G/®(G) is elementary abelian. In other words

KN =3 KNN®G) = &(G)

It follows that K NN < NN &(G) =1, thus K is a complement of N. Clearly
now N is G-semi-simple, and it follows that Q¢ .~ ¢ V.

Thus the subgroups N such that G/N ~ z(G) are exactly the complements
of ®(G) N1 (Z(G)) in % (Z(G)).

6. Direct products

(6.1) Notation: Let G and H be finite groups. Denote by p; and p, the
projections from G x H to G and H respectively. If L is a subgroup of G x H,
set

pi(L)={9€G|3heH, (g,h) € L} ki(L)={9€G|(g9,1) € L}

p2(L)={he H|3geG, (9,h) € L} ko(L) = {he€ H | (1,h) € L}
Then ki(L) api(L) for i = 1,2, and the quotients q(L) = L/(ki(L) x k2(L)),
p1(L)/k1(L) and p2(L)/k2(L) are canonically isomorphic.

(6.2) Proposition: Let G and H be finite groups. Then

PP = S P
L<GxH
p1(L)=G
pg(L):H

Proof: This is a consequence of the definition of the polynomials P by Mébius
inversion. Indeed for any finite groups G and H

(6.3) P(GxH)= Y  P(L)
L<GxH

Now setting

o(G,H)= Y  P()
L<GxH
p1(L)=G
P2 (L):H

the right hand side of equation 6.3 can be written as

Z (A, B)

A<G
B<H

13



Thus
Z u(C,G)u(D,H)P(C x D) = z z w(C,G)u(D, H)o (A, B)

c<@ C<G A<C
D<H D<H B<D

=Y (X wCEuD )4 B)

The proposition follows, since the left hand side is equal to P(G)P(H), because
P(C x D) = P(C)P(D) for any C < G and D < H. 0

(6.4) Corollary: If G and H have no non-trivial isomorphic factor group, then

P(G x H) = P(G)P(H)

Proof: Indeed in this case, the only subgroup L of G x H such that p; (L) = G
and py(L) = H is G x H itself, since ¢(L) is a quotient of both G and H, hence
it is trivial. 0

(6.5) Proposition: [[2] Lemme 22] Let G and H be finite groups. Then

) x(L, ¢(D)[M)

L<GxH P(q(L))

P1 (L):G
p2(L)=H

(6.6) P(G x H) = P(G)P(H)

Proof: Denote by K the group G x H, and by M and N the normal subgroups
G x1and 1 x H of K. Then by proposition 3.1 since M NN =1

Qr,N = Z w(L, K)QK/M,(LnN)M/M
L<K
LM=LN=K

The condition LM = LN = K is equivalent to p;(L) = G and p2(L) = H. In
this case moreover, the maps

X €]L, K[ ky(X)/ky(L) €]1,G/ki(L)[¢

Y/ki(L) €]1,G/ki (L)~ {(g9,h) € Gx H |Ja € G, (a,h) € L, ga~' €Y}
are mutual inverse isomorphisms of posets. Since G/k1(L) ~ ¢(L), it follows
that u(L,G) = X(]1,¢(L)["™).

Moreover
P(L/LN M)
/(LN N)(LN M)

Qr/m,wnNym/m = QL/LnM (LAN)(LAM)/LOM = P(L

But L/LNM ~ K/M ~ H and
L/(LON)Y(LN M) = L/k(L) x (L) = o(L)
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It follows that

_p X(L gD

p1(L)=G
p2(L)=H

The proposition follows, since Qx n = P(K)/P(K/N) = P(K)/P(G). 0
6.7) Corollary: Let G and H be finite groups, and denote by G5, Hs and

(
(G x H)s ~ G5 x Hy the respective largest semi-simple quotients of G, H and
G x H. Then

P(GxH) _ P(G) P(H)
P((G x H)s)  P(G,) P(Hj)

Proof: The only non-zero terms in the formula 6.6 correspond to subgroups
L of G x H such that ¢(L) is semi-simple. Moreover since p;(L) = G and
p2(L) = H, the group ¢q(L) is a quotient of G and H. It follows that if M and
N are normal subgroups of G and H respectively, such that G/M ~ G, and
H/N ~ Hg, then L > M x N. Then the group L' = L/M x N is a subgroup of
Gs X Hy ~ (G x H), and

¢(L) = L/ki(L) x ka(L) = (L/M x N)/(ky(L) x k2(L)/M x N)
~ L'/ (ki(L)/M) x (ka(L)/N) = (L)

The corollary follows, since the correspondence L — L' from
{K<GxH| pmK)=G, p2(K)=H, K> M x N}

to the set
{Kl <G, x Hy |p1(K') =Gy, p2(KI) = H,}

is clearly one to one. O
Corollary 6.7 gives a way to compute P(G x H) knowing P(G), P(H), and
the groups G; and Hg. The following notation will be convenient:

(6.8) Notation: IfG and H are finite groups, I denote by s(G, H) the number
of surjective group homomorphisms from G to H.
IfnmeN, I set

F(G,n) = 1:[ (P(G) - s(G",G))
B(G.m,n) = F(G,m +n)

F(G,m)F(G,n)

Here the letter F' stands for “factorial”, and the letter B for “binomial”.
Note that B(G,m,n) is an element of the field of fractions of R.
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(6.9) Proposition:

1. If S is a finite simple group and n € N, then P(S™) = F(S,n). Moreover
s(S™, S) is equal to p™ —1 if S =~ C,, and to n|Aut(S)| if S is non-abelian.

2. Let G and H be finite groups. If S € S, denote by as = vs(Gs) and
bs = vs(Hs) the multiplicity of S as a factor of Gs and Hg respectively.
Then

P(G x H) = P(G)P(H) [[ B(S,as, bs)
Ses

Proof: The first formula follows from an easy induction argument, using 6.2 or
6.6. Using this, the second formula follows from 6.4 and 6.7. O

(6.10) Lemma: Let Z be a prime ideal of R. If G and H are I-groups, and if
they have no non-trivial isomorphic factor group, then G x H is an T-group.

Proof: Since G and H are quotients of G x H, it follows that they are quotients
of Bz(G x H). Hence there is a group homomorphism

¢:B7(GxH) = GxH

such that p; o ¢ and ps o ¢ are surjective. Let K denote the image of ¢. Then
p1(K) = G and po(K) = H. Thus ¢(K) is a quotient of both G and H, hence it
is trivial. It follows that K = G x H, hence 87(G x H) ~ G x H. Thus G x H
is an Z-group. d

(6.11) Proposition: Let Z be a prime ideal of R, and G and H be finite groups
having no non-trivial isomorphic factor group.

1. If M <G and N<H, then
QaxHMxN = Qa,mMQa,N

2. Moreover

,BI(G X H) ~ ,BI(G) X ﬁI(H)
3. The group G x H is an Z-group if and only if G and H are I-groups.

Proof: Let M be a normal subgroup of G and N be a normal subgroup of
H. Then by Corollary 6.4, since G/M and H/N have no non-trivial isomorphic
factor group

P(G x H) = P(G)P(H)
P(Gx H/M xN) = P(G/M x H/N)
= P(G/M)P(H/N)

Taking the quotient of those equations gives assertion 1)

Qaxamxn = Qa,mMQuN

Clearly 57(G) and Sz(H) have no common non-trivial factor group. Hence by
Lemma 6.10 8z(G) x Bz(H) is an Z-group, and it is a quotient of G x H. Hence
it is a quotient of fz(G x H).
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Conversely if M <G is such that G/M ~ (37(G), and N aH is such that
H/N ~ ﬂI(H), then QG,M ¢ 7 and QH,N ¢ I, thus QGxH,MxN ¢ T by
assertion 1) since Z is prime. By Proposition 4.3 the group 87(G x H) is a
quotient of

(G x H)/(M x N) ~ B2(G) x Bz(H)
Assertion 2) follows.

Finally Gx H is an Z-group if and only if GX H = f7(Gx H). By assertion 2),

this is equivalent to G = §z(G) and H = Bz (H), which proves assertion 3). [

7. Nilpotent Z-groups

It is possible to describe all the nilpotent Z-groups, when 7 is a prime ideal
of R. Since any nilpotent group is isomorphic to the direct product of its
Sylow p-subgroups, for prime numbers p, it follows from proposition 6.11 that
a nilpotent group is an Z-group if and only if all its Sylow subgroups are Z-
groups. Thus in order to describe the nilpotent Z-groups, it suffices to describe
the p-groups which are also Z-groups.

(7.1) Proposition: Let T be a prime ideal of R, let p be a prime number, and
let G be a finite p-group. Then:

1. If G is elementary abelian of order p™, then G is an Z-group if and only
ifn=00rn>1and X, —p" ' €T

2. If G is not elementary abelian, then G is an T-group if and only if X, € T
and one of the following holds:

(a) peT.
(b) Ql (Z G)) < ®(Q), or equivalently, the group G cannot be written
G~C,xH, f r some finite group H.

Proof: Suppose G is non-trivial, and let N be a minimal normal subgroup
of G. Then N is central of order p, and

QG’,N = Xp - |KG(N)|

since any proper subgroup L of G such that LN = G is a complement of G, and
L is a maximal subgroup of G in this case.

Suppose that G is elementary abelian of order p™. If n = 0, then G is trivial
and G is an Z-group. If n > 1, and if N is a subgroup of G of order p, then

QanN=Xp,—p"?

since there are p"~! complements of N in G. This proves assertion 1).
If G is not elementary abelian, then there exists a central subgroup N of G
of order p contained in ®(G). If N is such a subgroup, then Kg(N) = 0, and

(7.2) Qan=X

Now if M is a central subgroup of G of order p, and M £ &(G), then

(7.3) Qa.N =X, — |Kg(M)|
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Moreover in this case Kg(M) # 0, thus there exists a group H such that
G~M x H, and
|Kq(M)| = [Hom(H, M)|

is a power of p, and different from 1 since H is non trivial (if H = 1, then G
has order p and G is elementary abelian).

Hence if G is an Z-group, then X, € 7 by 7.2. Now if Q1 (Z(GQ)) £ ®(G), it
follows from 7.3 that |Ke(M)| € Z. This is a power of p, different from 1, thus
p € 7T since 7 is prime.

Conversely, if X, € Z and p € 7, then clearly Qg,~ € Z by 7.2 and 7.3 for
any central subgroup N of order p of G. Then G is an Z-group.

And if X, € 7 and O, (Z(G)) < ®(G), then any central subgroup N of
order p of G is contained in ®(G), hence Qg,n € Z by 7.2. Thus G is an
Z-group, and this completes the proof of the proposition. 0

Proposition 7.1 can be reformulated as follows:

(7.4) Corollary: Let Z be a prime ideal of R, let p be a prime number, and let
G be a finite p-group. Then:

o If X, €T and p € Z, then G is an Z-group if and only if G % Cp.
e IfX, €T andp ¢ T, then G is an I-group if and only if O (Z(G)) < ®(G).
o If X, ¢TI, then let h,k € NU{oo} defined by

h = Inf{leN|X,-p €T}
k Inf{leN—-{0}|1-p' €1}

Then G is an T-group if and only if G is elementary abelian of order p™
withn =0, orn=h+1 (k) if h# o0 and k # oo, orn=h+1if h# o0
and k = oo.

Proof: Indeed, if X;, € 7 and p € Z, then by Proposition 7.1, the only case
where G is not an Z-group is the case G ~ C),.

If X, € 7 and if a non-trivial elementary abelian p-group of order p” is an
T-group, then p" ! € 7, hence 1 € Zor p € Z. Thus if p ¢ Z, then no non-trivial
elementary abelian p-group can be an Z-group, and G is an Z-group if and only
if 91 (Z(G)) < ®(G).

Finally if X, ¢ 7, then G is an Z-group if and only if G is elementary abelian
of order p" with n = 0 or n > 1 and X, — p"~' € Z. This cannot happen if
h = oo, and if h € N, this is equivalent to

ph _pn—l — ph(l _pn—h—l) el

But p" ¢ Z, since otherwise X, = (X, — p") + p" € Z, and this is equivalent
to1—p" "1 €T orn=h+1(k), which has to be viewed as an equality if
k = oo. O

(7.5) Remark: The last case of Corollary 7.4 should be compared with Theo-
rem 8.2 of [3], which deals with “b-groups in characteristic ¢”, i.e. with the case
where 7 is generated by a prime number ¢ # p (or ¢ = 0), and by Xg — |S|, for
all simple groups S.
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