Green functors

Recall that the letter R denotes a commutative and associative ring with
unit, and G denotes a finite group.

1. Two equivalent definitions

There are (at least) two equivalent definitions of Green functors for G
over R.

1.1. Using the poset of subgroups of GG. This definition of Green func-
tors uses the poset of subgroups of G. It goes back to Green ([7])

Definition 1.1.1 : A Green functor A for G over R is a Mackey functor for
G over R, together with an R-algebra structure on A(H), for each subgroup H
of G. The Mackey structure and the algebras structures have to be compatible
in the following sense :

e If HC K are subgroups of G, and if x € G, the maps r% and c, p
are maps of R-algebras.

e (Frobenius relations) If H C K are subgroups of G, if a € A(H) and
be A(K), then

(i) =t ((rhb)a)  (ha)p =t (a(rfD))

A morphism of Green functors f : A — B is a morphism of Mackey functors
such that for each subgroup H of G, the map fy : A(H) — B(H) is a map
of R-algebras.

Remark 1.1.2 : The R-algebras considered here are always supposed unital,
and the maps of R-algebras must preserve identity elements.



1.2. Using the category of G-sets. The following definition of Green
functors ([3] Section 2.2) is analogous to the Dress definition of Mackey func-
tors.

Definition 1.2.1 : A Green functor A for G over R is a Mackey functor
for G over R endowed for any G-sets X and Y with bilinear maps

AX)x AY) - A(X xY)

denoted by (a,b) — a X b which are bifunctorial, associative, and unitary, in
the following sense:

e (Bifunctoriality) If f : X — X" and g : Y — Y' are morphisms of
G'-sets, then the squares

AX) x A(Y) —2 A(X xY)
A.(f) x Aug) l l A(f x g)
AX) X A(Y') —— AXxY)
AX)x A(Y) —=5 AX xY)
A°(f) x A*(g) T ] A(f x g)
AX) X AY) —— AXx V")

are commutative.
o (Associativity) If X, Y and Z are G-sets, then the square

AX) x A(Y) x A(z) 40X )4y oay x 2)
(x) x Idacz) J X

AX xY) x A(Z) T) AX XY x Z)

is commutative, up to identifications (X X Y) x Z ~ X XY X Z ~
X x (Y x Z).

e (Unitarity) If e denotes the G-set with one element, there ezists an
element €4 € A(e®) such that for any G-set X and for any a € A(X)

A.(px)(a xea) =a= A.(gx)(ea X a)

denoting by px (resp. qx) the (bijective) projection from X x e (resp.
from e x X ) to X.



If A and B are Green functors for the group G, a morphism of Green functors
f A — B is a morphism of Mackey functors such that for any G-sets X
and Y, the square

AX) x AY) —=5 A(X xY)
fX X le fX><Y
B(X) x B(Y) —— B(XxY)

1s commutative. The composition of morphisms of Green functors is the com-
position of morphisms of Mackey functors. The category of Green functors
for G over R is denoted by Greeng(G).

Remark 1.2.2 : The most concise way to express this definition (Street
[9]) uses the monoidal structures on G-set and R-Mod, given respectively by
direct product of G-sets and tensor product of R-modules. More precisely,
let C' : G-set X G-set — G-set denote the direct product functor, and 7T :
R-Mod x R-Mod — R-Mod denote the tensor product functor. A Green
functor for G over R is just a Mackey functor for G over R, viewed as a
bivariant functor from G-set to RG-Mod, which is monoidal, i.e. endowed
with a natural transformation 7o A — A o C of bivariant functors, which
has to be compatible with the various isomorphisms corresponding to the
associativity and unit objects of the monoidal structures.

1.3. Equivalence of the definitions.

e [1 — 2] If Ais a Green functor for the first definition, recall that the
corresponding Mackey functor in the sense of Dress is defined for a finite
G-set X by

A = (8 4G

zeX
If Y is another finite G-set, define a product map A(X)x A(Y) — A(X xY)
in the following way : if u = (uy)zex € A(X) and v = (vy)yey € A(Y), then
the product u x v is defined by

G
(U X V)gy = ng,y (U:c)TGz,y (vy)

forz € X and y € Y, where G, = G; N G,. The identity element ¢ of A is
the identity element of the algebra A(G) = A(e).



e [2 — 1] If A is a Green functor in the second sense, then recall that A(H)
is defined by A(H) = A(G/H) for a subgroup H of G. Then the product
A(H) x A(H) — A(H) is defined by

a.b= A*(ég/H)(U, X b) s

where ¢/ is the diagonal inclusion G/H — (G/H) x (G/H). The identity
element 5 of A(H) is equal to r§e, where ¢ is the identity element of A.

2. Examples

2.1. Representations rings. The representation groups associated to sub-
groups of G have generally a natural ring structure, for which they can be
viewed as Green functors :

o If k is a field, then the tensor product of RH-modules (over k) induces a
ring structure on Ry(H), for H C G. The identity element is the image of
the trivial module £. One can check that Rj is a Green functor for G over Z.

o If H is a subgroup of G, then the direct product of H-sets gives a ring
structure on the Burnside group B(H). Its identity element is the image
of the trivial H-set o. This endows the Burnside functor B with a Green
functor structure.

Recall that if X is a finite G-set, then B(X) is the Grothendieck group
of the category of finite G-sets over X. If Y is another finite G-set, then
the product B(X) x B(Y) — B(X x Y) is induced by the obvious product
sending a G-set U over X and a G-set V over Y to their direct product U x V'
over X X Y.

More generally, the functor RB is a Green functor for G over R. It is an
initial object in the category Greeng(G).

2.2. Cohomology rings. Let K be a subgroup of G. The cup product in
cohomology defines a ring structure on

H®(K,R)= & H'(K,R) ,
=0

for which H®(—, R) becomes a Green functor. The subfunctor H°(—, R) is
also a Green functor, usually denoted by F'Pr. More generally, if A is a
G-algebra over R, the functor F'P4 is a Green functor for G over R.



3. Modules over a Green functor

Green functors can be viewed as generalized R-algebras : a Green functor
for the trivial group over R is nothing but an R-algebra. Similarly, there are
(at least) two equivalent definitions of the notion of module over a Green
functor :

3.1. Using the poset of subgroups of G.

Definition 3.1.1 : Let A be a Green functor for G over R. A module M
over A (or an A-module) is a Mackey functor for G over R, together with a
structure of A(H)-module on M(H), for each subgroup H of G. The Mackey
structure and the module structures have to be compatible in the following
sense :

e If HC K are subgroups of G, and if x € G, then

Va € A(K),Ym € M(K), r&(am) = rE(a)rE (m)

Va € A(H),VYa € M(H), ¢y u(am) = cgu(a)cym(m)

e (Frobenius relations) If H C K are subgroups of G, then

VanA(K),¥m € M(H), a(tEm) = tg((rga)m) ,

Va € A(H),Ym € M(K), (tha)m =5 (a(rﬁm))

A morphism of A-modules Green functors f : M — N s a morphism of
Mackey functors such that for each subgroup H of G, the map fy : M(H) —
N(H) is a map of A(H)-modules.

3.2. Using the category of G-sets.

Definition 3.2.1 : A module M over the Green functor A for G over R is a
Mackey functor for G over R, endowed for any G-sets X and Y with bilinear
maps

AX)x M(Y) = M(X xY)

denoted by (a,m) — a X m which are bifunctorial, associative, and unitary,
in the following sense:



e (Bifunctoriality) If f : X — X" and g : Y — Y are morphisms of
G-sets, then the squares

AX)x M(Y) —2— M(X xY)
A X M.(0) | [T
AX) X MY') —— M(X xY)
AX)x MY) —25 M(X xY)
()| [ %)
A(X")y x M(Y") — M(X'xY")

are commutative.

o (Associativity) If X, Y and Z are G-sets, then the square

ACX) x AY) x M(7) 40X ) oy x 2)
(x)xIdA(Z)l l X

AX xY)x M(Z) T) M(X XY x Z)

is commutative, up to identifications (X X Y) X Z ~ X XY X Z ~
X x (Y x Z).

e (Unitarity) For any G-set X and for any m € M(X)
Ai(gx)(eaxm)=m

denoting by qx the (bijective) projection from e x X to X.
A morphism of A-modules f : M — N s a morphism of Mackey functors

such that for any G-sets X and Y, the square
AX)x M(Y) —2— M(X xY)

Idxfyl JfXxY
A(X) x N(Y) T) N(X xY)

1s commutative. The composition of morphisms of A-modules is the composi-

tion of morphisms of Mackey functors. The category of A-modules is denoted
by A-Mod.



3.3. Examples.

e Let V be an RG-module. Then the functor F' Py is a module over the Green
functor F'Pg. More generally, if | € N, the cohomology functor H'(—, V') and
the homology functor H;(—, V') are F'Pg-modules.

Conversely, it has been observed by Puig that the F' Pgr-modules can be
characterized among the Mackey functor over R as the cohomological Mackey

functors (recall that it means that t£r% is equal to the multiplication by the

index |K : H|, for any subgroups H C K of G).

e Let M and N be Mackey functors for G over R. If X is a finite G-set,
define
H(M, N)(X) = HomMackR(G) (M, Nx)

This definition can be extended to give a natural Mackey functor structure
on H(M,N). In the case M = N, there is similarly a natural Green functor
structure on H (M, M). If A is any Green functor for G over R, it is equivalent
to give M a structure of A-module, or to give a morphism of Green functors
A — H(M, M) ([3] 2.1.2).

Since the Green functor RB is an initial object in the category Greeng(G),
it follows that the category of Mackey functors for G over R is equivalent to
the category of RB-modules.

e The previous example shows that the category Mackg(G) admits an inter-
nal Hom construction. There is also an internal tensor product in Mackg(G) :
if M and N are Mackey functors for G over R, this construction gives another
Mackey functor M®N for G over R. The value of M@N at the finite G-set
X can be defined as

(M&N)(X) = M ®,,) Nx

where M is the pg(G)-module associated to M, viewed as a right pg(G)-
module using the anti-automorphism of the Mackey algebra.
This construction is functorial in M and N, and there is an adjunction

Homuack () (M&N, P) = Homuacin(c) (N, H(M, P))

e If A is a Green functor for G over R, the opposite Green functor A is
the Mackey functor A, equipped with the opposite product x°, defined for
finite G-sets X and Y by

Yz

Va € A(X),Vb € A(Y), a x” b = A, (miy> (bxa) |

)
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where (ié) is the map from Y x X to X x Y sending (y, ) to (z,y). The

identity element of A% is the identity element of A.

There is an obvious notion of right module over a Green functor, and the
category of right modules over A is equivalent to the category of left modules
over A%,

If A and B are Green functors for G over R, there is also an obvious
notion of (A, B)-bimodule, or A-module-B. Moreover the tensor product
A® B has a natural structure of Green functor, with canonical Green func-
tor homomorphisms A — A®B® and B®” — A®B, and the category of
A-modules-B is equivalent to the category of A®B°P-modules.

e Let A be a Green functor. Then A is an A-module-A. If M is an A-module,
and if X is a finite G-set, there is a natural structure of A-module on the
Dress construction Mx. This gives an endofunctor of the category A-Mod,
which is self adjoint. Moreover, if M is an A-module, then

HOIHA_Mod(AX,M) = M(X)

In particular the modules Ax are projective A-modules, and the module Aq
is a progenerator of the category A-Mod.

4. Associated categories and algebras

4.1. The category associated to a Green functor. Let A be a Green
functor for G over R. Let C4 denote the following category :
e The objects of C4 are the finite G-sets.

e If X and Y are finite G-sets, then

Home, (X,Y) = A(Y x X)

e If X, Y and Z are finite G-sets, then the composition of the morphisms
feAY xX)and g € A(ZxY)inCy is the element go f of A(Z x X)
defined by

25T Z,Y,Y,T

gof=a.(C)a (1) oxn) .

where (Zgw) is the map from Z x Y x X to Z x X sending (z,y, )

to (z,2), and (?) is the map from Z xY x X to ZxY x Y x X

sY5Y,

sending (z,y,z) to (2,¥,y,7).



e The identity morphism of the finite G-set X is the element
A (1)x ()

of A(X x X), where (i) is the diagonal inclusion from X to X x X

and (9 is the unique map from X to the trivial G-set e.

Proposition 4.1.1 : [[3] 3.3.5] The category of A-modules is equivalent to
the category of R-linear functors from C4 to R-Mod.

4.2. The algebra associated to a Green functor. Since Ag is a pro-
generator of the category A-Mod, it follows that A-Mod is equivalent to the
category of modules over the algebra

pw(A) = Enda-mod(4a)

which is also isomorphic to the algebra Endc, (2) = A(Q x Q). The algebra
u(A) can also be defined by generators and relations using the following
result :

Proposition 4.2.1 : Let A be a Green functor for the group G. Then u(A)
1s isomorphic to the R-algebra defined by the following generators and rela-
tions :

e The generators are:

— The elements t& and ri, for K C H C G.

— The elements ¢z y forx € G and H C G.

— The elements Ak, for K C G and a € A(K).
e The relations are :

— The relations of the Mackey algebra for rit, ti, and ¢y u, i.e.

th =4 =0 yLCKCH
CysHCo,H = Cyn,H VT, Y, H
tg:Tg:Ch,H Vh € H

H H z [
KCz, Ky CokTg = TegCo H VZE,K,H
H __ H __
E ty = E ry =1
H H

H,H K L
rxly, = Z ke 1.Co,KenLT K21, VKCHDL
z€K\H/L

H x

the other products of r&, t& and cq,u being zero.
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— The additional following relations :

/\K,a+/\K,a’ = /\K,a—l—a’; /\K,a/\K,a’ = /\K,aa’ VU,, a € A(K)a VK - G

Mien = 2tk VK CG, 2€R
rEA e = M, @Tx Vo € A(H), VK CHC G
Aty = i kpn@ Yo € AH), VK CHCG
tRAK TR = e Vo€ A(K), VK CHCG
XeH ey 1r(a)Co,H = Co,HAHa VT € G, Va € A(H), VH C G

5. Simple modules and simple Green functors

5.1. Simple modules. The classification and description of simple Mackey
functors can be generalized to an arbitrary Green functor, in the following
form ([3] Chapter 11) :

Notation 5.1.1 : Let A be a Green functor for G over R. If H is a subgroup
of G, denote by A(H) the Brauer quotient of A in H, defined by

A(H) = A(H)/ ) tgA(K)

KCH

and denote by a — a the projection map from A(H) to A(H). This map
induces an R-algebra structure on A(H), together with a natural action of
the group Ng(H). Denote by A(H) the semi-direct product A(H)Q RNg(H).
Let V' be a simple A(H)-module. If X is a finite G-set, then R(X") is a
Ng(H)-module. Set

Suy(X) ~ TT{VG(H) (HomR(R(XH), V))

If f : X = Y is a morphism of finite G-sets, then for o € Sy y(X) and
yeYH set

Suy+(N)@)y) = Y alz)

zeXH
flz)=y

If g : Y — X is a morphism of finite G-sets, then for a € Spy(X) and
yeYH set

Sty (9)(a)(y) = ag(y)
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Finally if a € A(X) and f € Sgv(Y), then define a morphism a x f from
R((X x Y)H) = R(X"T xYH) to V by

(ax z.y) = (Fm)(@ ©1)-£()

where my is the morphism of G-sets from G/H to X defined by my(uH) =
uz.

One can show that these definitions give an A-module structure on Spy.
Moreover :

Proposition 5.1.2 : Let A be a Green functor for the group G.

1. If S s a simple A—moglule, and H is a minimal subgroup for S, then
V = S(H) is a simple A(H)-module, and S is isomorphic to Sy y .

2. Conversely, if H is a subgroup of G, and V is a simple A(H)—module,
then Sy v is a simple A-module, the group H is minimal for Sy v, and
moreover Sy yv(H) ~ V.

3. Let H and K be subgroups of G. If V is a simple A(H)-module, and
if W is a simple A(K)-module, then the modules Suyv and Skw are
isomorphic if and only if the pairs (H,V) and (K,W) are conjugate
under G.

5.2. Simple Green functors. A simple Green functor is a Green functor
A for G over R, such that A is simple as A-module-A (or A® A°’-module).
This is equivalent to requiring that A has no non-trivial functorial two-sided
ideal, in the sense of Thévenaz ([10]). The simple Green functors can be
described using the following result (for details, see [3] 11.5) :

Proposition 5.2.1 : [Thévenaz [10] Theorem 12.11]

1. Let A be a simple Green functor for G. Then there exists a subgroup
M of G, a normal subgroup H of M, and a simple algebra S on which
M/H acts projectively, such that

A ~ Ind§;Infy ; F Ps

The triple (M, H, S) is unique up to conjugation by G (and up to iso-
morphism of M/H-algebras for S ).

2. Conversely, if HAM are subgroups of G, if S is a simple algebra on
which M/H acts projectively, then Indf,[Inf%/HFPg 1s a simple Green
functor.
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6. An example of related construction

6.1. Crossed G-monoids.

Definition 6.1.1 : A G-monoid is a monoid endowed with a left G-action
by monoid automorphisms. A G-monoid which is a group s called a G-group.

A morphism of G-monoids is a G-equivariant monoid homomorphism.

Example 6.1.2 : Denote by G¢ the set G on which the group G acts by
conjugation. Then the multiplication map G¢ x G¢ — G° endows G¢ with a
structure of G-group. More generally, if N is a normal subgroup of GG, then
G acts on N by conjugation, and N is a G-group for this action.

Definition 6.1.3 : A crossed G-monoid is a pair (I', ), where T is a G-
monoid, and ¢ : ' — G° is a morphism of G-monoids. A morphism 0 :
(T, ) = (I, ¢) of crossed G-monoids is a morphism of G-monoids 0 : ' —
I such that ¢’ o 0 = .

6.2. Associated Green functors.

Proposition 6.2.1 : [[4],[1]]Let (T',¢) be a crossed G-monoid. If A is a
Green functor for G over R, let Ar denote the Mackey functor obtained by
the Dress construction from the G-set I'. If X and Y are finite G-set, define
a product map Xy : Ar(X) Qg Ar(Y) = Ap(X xY) by

7,9,y
7

VaEAp(X),VbEAF(Y),a®bl—>apr:A*< )(aXb) s

z,0(7)y, 17’

where < o ) 15 the map from X xI' XY XTI to X XY XTI sending

(7)Y
(x,7,y,7) to (x,0(7)y,vY')- Let moreover e 4, denote the element A, <11> (€a)
r
of A(T') = Ar(e), where (i) is the map sending the unique element of e to
the identity element of I.
Then Ar is a Green functor for G over R, and the correspondence A — Ar
is an endo-functor of the category Greeng(QG).
In particular, the evaluation Ar(e) = A(T') of Ar at the trivial G-set is
an R-algebra. One can express the product formula for this algebra in the
G
decomposition A(I") = < Dyer A(Gv))
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Proposition 6.2.2 : Let a and b be elements of A(T'). Then for v € T, the
v component of a Xt b is given by

§ : G o G
(a Xr b)')’ = tG:,B (Tga’ﬂaa.rczﬁb/j)
(0,8)€G,\TXT
af=y

6.3. Examples.

e Let B denote the Burnside Green functor, and let I' = G°. Then the ring
B(I') = B(G°) is called the crossed Burnside ring. It is the Grothendieck
ring of the monoidal category of crossed G-sets, i.e. G-sets over G¢. This
ring has been studied by Yoshida (see also [2])

e Let A denote the cohomology Green functor H®(—, R), and let I' = G*.
Then one can show that the algebra A(I') is isomorphic to the Hochschild
cohomology algebra of the group algebra RG'. In this case, the above product
formula has been conjectured by Cibils ([5]) and Cibils and Solotar ([6]), and
proved by Siegel and Witherspoon ([8]).

e (Cibils) Let A denote the Grothendieck ring of the category of finitely
generated RG-modules, for relations given by direct sum decompositions. If
I' = G°, then the ring A(T") is isomorphic to the Grothendieck ring of Hopf
bimodules for the Hopf algebra RG.
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