
Title : Gluing endo-permutation modules

Author : Serge Bouc.

Address : CNRS - UMR 6140 - LAMFA, Université de Picardie - Jules Verne, 33,
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1. Introduction

The classification of all endo-permutation modules for finite p-groups has been com-
pleted recently, thanks to the work of several authors (see in particular [1], [11], [12],
[5], [3]). This paper addresses the question of gluing arbitrary endo-permutation mod-
ules, and it is intended to be a complement to our previous joint work with Jacques
Thévenaz ([7]), where the case of torsion endo-permutation modules was handled.

The gluing problem is the following : let p be an odd prime, let P be a finite p-
group, and let k be a field of characteristic p. If v is an element of the Dade group
D(P ) of endo-permutation kP -modules, and if Q is a non trivial subgroup of P , denote
by vQ the image of v by the deflation-restriction map DefresP

NP (Q)/Q. Then the vQ’s
are subject to some obvious compatibility conditions. Conversely, if Q is a non-trivial
subgroup of P , let uQ be an element of the Dade group Dk

(
NP (Q)/Q

)
, and assume

that these compatibility conditions between the uQ’s are fulfilled. Is there an element
u ∈ D(P ) such that for any non trivial subgroup Q of P

DefresP
NP (Q)/Q(u) = uQ ?

Such an element u is called a solution to the gluing problem for the gluing data (uQ)1<Q≤P .
When P is abelian, the gluing problem was completely solved by Puig [16] (see also

Lemma 2.3 below), and he used the result to construct suitable stable equivalences
between blocks.

The main result of the present paper is that if p is an odd prime, and if P is a finite
p-group, then there exists an exact sequence of abelian groups

0 −→ T (P ) −→ D(P ) −→ lim←−
1<Q≤P

D
(
NP (Q)/Q

) hP−→ H1
(A≥2(P ),Z

)(P )
,
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where D(P ) is the Dade group of P and T (P ) is the subgroup of endo-trivial modules.
Here lim←−

1<Q≤P

D
(
NP (Q)/Q

)
is the group of gluing data for P , i.e. the group of sequences

of compatible elements in the Dade groups D
(
NP (Q)/Q

)
for non trivial subgroups

Q of P . The poset A≥2(P ) is the set of elementary abelian subgroups of rank at
least 2 of P , ordered by inclusion. The group H1

(A≥2(P ),Z
)(P ) is the subgroup of

H1
(A≥2(P ),Z

)
consisting of classes of P -invariant 1-cocycles.

The main consequence of this result is that if H1
(A≥2(P ),Z

)
= {0}, then the

gluing problem always has a solution. Unfortunately, the map hP is not surjective in
general, so when H1

(A≥2(P ),Z
) 6= {0}, not much can be said at the time for the

gluing problem. In Section 6, the example of the extraspecial group of order p5 and
exponent p is described in details. In this case, the group H1

(A≥2(P ),Z
)(P ) is a free

group of rank p4, and the image of hP has finite index in this group. In particular it is
non zero, and the gluing problem does not always have a solution.

It could be true in general that hP always has finite cokernel, and this would be
enough to show that if H1

(A≥2(P ),Z
)(P ) 6= {0}, then the image of hP is non zero,

hence that the gluing problem does not always have a solution : it is known indeed that
the group H1

(A≥2(P ),Z
)(P ) is a free abelian group, since the poset A≥2(P ) has the

homotopy type of a wedge of spheres (see [8]).

1.1. Notation. Throughout this paper, the symbol p denotes an odd prime number,
and P denotes a finite p-group. Inclusion of subgroups will be denoted by ≤, and strict
inclusion by <. Inclusion up to P -conjugation will be denoted by ≤P .

A section (T, S) of P is a pair of subgroups of P with S E T . The factor group T/S
is the corresponding subquotient of P . If (T, S) is a section of P , then NP (T, S) denotes
NP (T ) ∩NP (S).

A class Y of p-groups is said to be closed under taking subquotients if for any Y ∈ Y
and any section (T, S) of Y , any group isomorphic to T/S belongs to Y. If Y is such
a class, and P is a finite p-group, let Y(P ) be the set of sections (T, S) of P such that
T/S ∈ Y.

The symbol Xp3 denotes an extraspecial p-group of order p3 and exponent p. The
symbol X3 denotes the class of p-groups which are either elementary abelian of rank at
most 3, or isomorphic to Xp3 . Thus, the symbol X3(P ) denotes the set of sections (T, S)
of P such that T/S is elementary abelian of rank at most 3, or isomorphic to Xp3 . Let
moreover E]

2(P ) denote the set of sections (T, S) of P such that T/S ∼= (Z/pZ)2.
If P is a finite p-group, and k is a field of characteristic p, let D(P ) denote the Dade

group of endo-permutation kP -modules. The field k does not appear in this notation,
because it turns out that D(P ) is independent of k, at least when p is odd (see [3]
Theorem 9.5 for details).

When (T, S) is a section of P , there is a deflation-restriction map DefresP
T/S :

D(P ) → D(T/S), which is the group homomorphism obtained by composing the re-
striction map ResP

T : D(P ) → D(T ), followed by the deflation map DefTT/S : D(T ) →
D(T/S).

Recall that if X is a finite P -set, there is a corresponding element ΩX of the Dade
group of P , called the syzygy of the trivial module relative to X (or the X-relative
syzygy for short) : it is defined as the class of the kernel of the augmentation map
kX → k when this does make sense, and by 0 otherwise (see e.g. [2] for details). When
X is the set P itself, on which P acts by multiplication, the corresponding element will
be denoted by ΩP/1 or ΩP .
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1.2. Contents. This paper is organized as follows :

• In Section 2, I state the main theorem (Theorem 2.15), and this requires in par-
ticular the definition of some objects and maps between them.

• Section 3 recalls some notation on biset functors, forgetful functors between cat-
egories of biset functors, and corresponding adjoint functors.

• Section 4 is devoted to the main tool (Theorem 4.5) used in the proof of Theo-
rem 2.15, namely a characterization by linear equations of the image of the group
2D(P ) by the deflation-restriction maps to all subquotients T/S of P which are el-
ementary abelian of rank 2. This characterization may be a result of independent
interest.

• Section 5 exposes the proof of Theorem 2.15.

• Finally, Section 6 focuses on the example of the extraspecial p-group of order p5

and exponent p : the reason for choosing this particular group is twofold : it is
is one of the smallest p-groups P for which H1

(A≥2(P ),Z
) 6= {0}, and moreover

the Dade group of this p-group is rather well known, thanks to our joint work
with Nadia Mazza ([5]).

2. Statement of the main theorem

2.1. Notation. If P is a finite p-group, then A≥2(P ) denotes the poset of elementary
abelian subgroups of P of rank at least 2. Let A=2(P ) denote the set of elementary
abelian subgroups of rank 2 of P .

Recall that if the p-rank of P is at least equal to 3, then all the elementary abelian
subgroup of P of rank at least 3 are in the same connected component of A≥2(P ). This
component is called the big component. It is obviously invariant under P -conjugation.
Each of the other connected components, if there are any, consists of a single maximal
elementary abelian subgroup of rank 2.

2.2. Notation. Denote by lim←−
1<Q≤P

D
(
NP (Q)/Q

)
the set of sequences (uQ)1<Q≤P ,

indexed by non trivial subgroups of P , where uQ ∈ D
(
NP (Q)/Q

)
, such that :

• If x ∈ P , then xuQ = u xQ.

• If Q E R, then DefresNP (Q)/Q
NP (Q,R)/RuQ = ResNP (R)/R

NP (Q,R)/RuR.

Denote by rP : D(P ) → lim←−
1<Q≤P

D
(
NP (Q)/Q

)
the map sending v ∈ D(P ) to the

sequence (DefresP
NP (Q)/Qv)1<Q≤P .

If E is an abelian p-group, denote by σE the map lim←−
1<F≤E

D(E/F )→ D(E) defined

by
σE(u) = −

∑

1<F≤E

µ(1, F )InfEE/FuF ,

where µ is the Möbius function of the poset of subgroups of P .
It has been shown by Puig ([15] 2.1.2) that the kernel of rP is equal to the group

T (P ) of endo-trival modules. Moreover, when E is an abelian group, the map rE is
surjective ([16] Proposition 3.6). More precisely :
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2.3. Lemma. Let E be an abelian p-group. Then σE is a section of rE, i.e. rEσE is
equal to the identity map of lim←−

1<F≤E

D(E/F ).

Proof. Let 1 < G ≤ E. Then

DefEE/GσE(u) = −
∑

1<F≤E

µ(1, F )DefEE/GInfGE/FuF

= −
∑

1<F≤E

µ(1, F )InfE/G
E/FGDefE/F

E/FGuF

= −
∑

1<F≤E

µ(1, F )InfE/G
E/FGuFG

= −
∑

G≤R≤E

( ∑

1<F≤R
FG=R

µ(1, F )
)
InfE/G

E/RuR .

Now if G < R ∑

1<F≤R

FG=R

µ(1, F ) =
∑

1≤F≤R

FG=R

µ(1, F ) ,

and this is equal to zero, by a classical combinatorial lemma, since G 6= 1. And if
G = R ∑

1<F≤R

FG=R

µ(1, F ) = −µ(1,1) +
∑

1≤F≤R

µ(1, F ) = −1 .

Thus DefEE/GσE(u) = InfE/G
E/GuG = uG, as was to be shown.

2.4. Lemma. Let E be an elementary abelian group of rank at least 2. Then the map rE
is surjective, and its kernel is the free abelian group of rank one generated by ΩE/1.
Proof. The kernel of rE is the group T (E) of endo-trivial modules. Since E is ele-
mentary abelian, this group is free of rank one, generated by ΩE/1, by Dade’s Theorem
([13] [14]). The surjectivity of rE follows from Lemma 2.3.

2.5. Restriction and conjugation. The following construction has been introduced
in [7], for the torsion subgroup of the Dade group, but it works as well for the whole Dade
group : let P be a finite p-group, andH be a subgroup of P . If u ∈ lim←−

1<Q≤P

D
(
NP (Q)/Q

)
,

then the sequence (vQ)1<Q≤H defined by

vQ = ResNG(Q)/Q
NH(Q)/QuQ

is an element of lim←−
1<Q≤H

D
(
NH(Q)/Q

)
, denoted by ResP

Hu. The map u 7→ ResP
Hu

is a linear map lim←−
1<Q≤P

D
(
NP (Q)/Q

)
to lim←−

1<Q≤Q

D
(
NQ(Q)/Q

)
. The following is the

analogue of Lemma 2.4 of [7] :
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2.6. Lemma. Let H be a subgroup of P . The diagram

D(P )
rP−−−−−→ lim←−

1<Q≤P

D
(
NP (Q)/Q

)

ResP
H

y

y ResP
H

D(H) −−−−−→
rH

lim←−
1<Q≤H

D
(
NH(Q)/Q

)

is commutative.
Proof. This is straightforward.

Similarly, if x ∈ P , denote by cx,H : D(H) → D(xH) the conjugation by x,
sending v to xv. If u ∈ lim←−

1<Q≤H

D
(
NH(Q)/Q

)
, then the sequence (vR)1<R≤ xH de-

fined by vR = cx,Rx(uRx) is an element of lim←−
1<R≤ xH

D
(
N xH(R)/R

)
, that will be de-

noted by xu. The assignment u 7→ xu is a linear map from lim←−
1<Q≤H

D
(
NH(Q)/Q

)
to

lim←−
1<R≤ xH

D
(
N xH(R)/R

)
, also denoted by cx,H . Then :

2.7. Lemma. Let H be a subgroup of P , and let E be an abelian subgroup of P . The
following diagrams are commutative :

D(H)
rH //

cx,H

²²

lim←−
1<Q≤H

D
(
NH(Q)/Q

)

cx,H

²²
D(xH)

r xH // lim←−
1<R≤ xH

D
(
N xH(R)/R

)

D(E)

cx,E

²²

lim←−
1<R≤E

D(E/R)

cx,E

²²

σEoo

D(xE) lim←−
1<R≤ xE

D(E/R)
σ xEoo

Proof. This is also straightforward.

2.8. Construction of a map. Let E and F be elements of A≥2(P ) such that E < F .
If v ∈ lim←−

1<Q≤P

D
(
NP (Q)/Q

)
, consider the element

dE,F = ResF
EσF ResP

F v − σEResP
Ev

of D(E). Then by Lemma 2.4 and Lemma 2.3

rE(dE,F ) = rEResF
EσF ResP

F v − rEσEResP
Ev

= ResF
ErFσF ResP

F v − rEσEResP
Ev

= ResF
EResP

F v − ResP
Ev = 0 .

By Lemma 2.4, there exists a unique integer wE,F such that

dE,F = wE,F · ΩE/1 .
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If x ∈ P , then it is clear from Lemma 2.7 that xdE,F = d xE, xF , and it follows that
w xE, xF = wE,F . Moreover, if E,F,G ∈ A≥2(P ) with E < F < G, then

dE,F + ResF
EdF,G = dE,G ,

hence wE,F + wF,G = wE,G. In other words the function sending the pair (E,F ) of
elements of A≥2(P ), with E < F , to wE,F , is a P -invariant 1-cocycle on A≥2(P ), with
values in Z :

2.9. Notation. Let P be a finite p-group. A P -invariant 1-cocycle on A≥2(P ), with
values in Z, is a function sending a pair (E,F ) of elements of A≥2(P ), with E < F , to
an integer wE,F , with the following two properties :

1. If x ∈ P and E < F in A≥2(P ), then w xE, xF = wE,F .

2. If E < F < G in A≥2(P ), then wE,F + wF,G = wE,G.

The set
(
Z1

(A≥2(P )
))P

of P -invariants 1-cocycles is a group for addition of functions.

Denote by
(
B1

(A≥2(P )
))P

the subgroup of
(
Z1

(A≥2(P )
))P

consisting of cocy-
cles w for which there exists a P -invariant function E 7→ mE from A≥2(P ) to Z such
that

∀E < F ∈ A≥2(P ), wE,F = mF −mE .

Denote by H1
(A≥2(P ),Z

)(P ) the factor group
(
Z1

(A≥2(P )
))P

/
(
B1

(A≥2(P )
))P

2.10. Remark: One can show that the group
(
B1

(A≥2(P )
))P

is also equal to the set

of elements w of
(
Z1

(A≥2(P )
))P

for which there exists a (not necessarily P -invariant)
function E 7→ mE such that wE,F = mF − mE for any E < F in A≥2(P ). This
is because if E < F in A≥2(P ), then E and F are the “big component”, which is
P -invariant. Since w is P -invariant, it follows that the function

x ∈ P 7→ m xE −mE

does not depend on the choice of E, and that it is a group homomorphism from P to Z
(i.e. an element of H1(P,Z)). There are no non zero such homomorphisms, so m is
actually P -invariant.

2.11. Remark: On the other hand, one can consider the ordinary first cohomology
groupH1

(A≥2(P ),Z
)

ofA≥2(P ) over Z, which is defined similarly toH1
(A≥2(P ),Z

)(P ),
but forgetting all conditions of P -invariance. Then the group P acts on H1

(A≥2(P ),Z
)
,

and it follows from Remark 2.10 that H1
(A≥2(P ),Z

)(P ) is a subgroup of the group

H1
(A≥2(P ),Z

)P of P -invariant elements in H1
(A≥2(P ),Z

)
. It might happen however

that this inclusion is proper : an argument similar to the one used in Remark 2.10
yields an element in H2(P,Z), and this group need not be zero.

2.12. Notation. Let P be a finite p-group. Denote by

hP : lim←−
1<Q≤P

D
(
NP (Q)/Q

)→ H1
(A≥2(P ),Z

)(P )
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the map sending v ∈ lim←−
1<Q≤P

D
(
NP (Q)/Q

)
to the class of the 1-cocycle w defined by the

following equality, for E < F in A≥2(P ) :

(2.13) wE,F · ΩE/1 = ResF
EσF ResP

F v − σEResP
Ev .

2.14. Proposition. Let P be a finite p-group. Then hP is a group homomorphism,
and the composition

D(P ) rP−→ lim←−
1<Q≤P

D
(
NP (Q)/Q

) hP−→ H1
(A≥2(P ),Z

)(P )

is equal to 0.
Proof. Clearly, the definition of hP implies that it is a group homomorphism. Observe
next that for any E ∈ A≥2(P ), since rEσE is the identity map, the image of the map
σErE − IdD(E) is contained in the kernel of rE . By Lemma 2.4, it follows that there is
a unique linear form sE on D(E), with values in Z, such that

σErE(u) = u+ sE(u) · ΩE/1 ,

for any u ∈ D(E). By Lemma 2.7, this definition clearly implies that if x ∈ P , then
s xE(xu) = sE(u), for any u ∈ D(E).

Now if E < F in A≥2(P ), and if v = rP (t), for t ∈ D(P ), Equation 2.13 becomes

wE,F · ΩE/1 = ResF
EσF ResP

F rP (t)− σEResP
ErP (t)

= ResF
EσF rF ResP

F t− σErEResP
Et (by Lemma 2.6)

= ResF
E

(
ResP

F t+ sF (ResP
F t) · ΩF/1

)− (
ResP

Et+ sE(ResP
Et) · ΩE/1

)

=
(
sF (ResP

F t)− sE(ResP
Et)

) · ΩE/1 .

Setting mE = sE(ResP
Et), for E ∈ A≥2(P ), yields

wE,F = mF −mE ,

hence w ∈
(
B1

(A≥2(P )
))P

(the P -invariance of m follows easily from the above re-
mark, or from Remark 2.10). Thus hP rP (u) = 0, as was to be shown.

The main theorem of this paper is the following :

2.15. Theorem. Let P be a finite p-group. Then the sequence of abelian groups

0 −→ T (P ) −→ D(P ) rP−→ lim←−
1<Q≤P

D
(
NP (Q)/Q

) hP−→ H1
(A≥2(P ),Z

)(P )

is exact.
The key point in this theorem is to show that the kernel of hP is equal to the image

of rP . This will be done in two steps : first take an element u ∈ Ker hP , and show that
2u ∈ rP

(
2D(P )

)
. This amounts to replacing D by 2D, which is easier to handle, since

it is torsion free. Next, write 2u = rP (2v), for some v ∈ D(P ). Then u − rP (v) is an
element in lim←−

1<Q≤P

Dt

(
NP (Q)/Q

)
, and it has been shown in [7] that such a sequence

of compatible torsion elements can always be glued (i.e. it always lies in rP
(
D(P )

)
,

though possibly not in rP
(
Dt(P )

)
).
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3. Biset functors

The main ingredient in the proof of Theorem 2.15 is the formalism of biset functors.
A short exposition of the notation and main results on this subject can be found in
Section 2 of [9], Section 3 of [4], or Section 3 of [3].

Recall in particular that if (T, S) is a section of the group P , and if M is a biset
functor, then the set P/S is a (P, T/S)-biset, and the corresponding induction-inflation
morphism

M(P/S) : M(T/S)→M(P )

is denoted by IndinfPT/S . Similarly, the set S\P is a (T/S, P )-biset, and the correspond-
ing deflation-restriction map

M(S\P ) : M(P )→M(T/S)

is denoted by DefresP
T/S .

This notation was already used for the Dade group, and it is coherent : it was
shown more generally in [6] that, if P and Q are finite p-groups, and U is a finite
(Q,P )-biset, one can define a natural group homomorphism D(U) : D(P ) → D(Q).
This construction yields a structure of biset functor on the correspondence sending a
p-group P to the subgroup DΩ(P ) of D(P ) generated by all the relative syzygies ΩX

obtained for various P -sets X. In the case p 6= 2, it was shown in [3] that D = DΩ, so
D is a biset functor in this case. For p = 2, the biset functor structure on DΩ cannot in
general be extended to the whole of D, because of Frobenius twists (also called Galois
twists) (see [6] or [3] for details).

The following additional notation was introduced in [9] : a class Y of p-groups is
said to be closed under taking subquotients if for any Y ∈ Y and any section (T, S) of Y ,
the corresponding subquotient T/S belongs to Y. If Y is such a class, and P is a finite
p-group, denote by Y(P ) the set of sections (T, S) of P such that T/S ∈ Y. One can
consider biset functors defined only on Y, with values in abelian groups. Let FY be the
category of all such functors, and let F denote the category of functors defined on all
finite p-groups. These categories are abelian categories.

The obvious forgetful functor

OY : F → FY
admits left and right adjoints

LY : FY → F and RY : FY → F ,

whose evaluations can be computed as follows (cf. [9] Theorem 1.2 for details, in
particular on the direct and inverse limits appearing in this statement) :
3.1. Theorem. With the notation above, for any functor M ∈ FY , we have :

LYM(P ) ∼= lim−→
(T,S)∈Y(P )

M(T/S) and RYM(P ) ∼= lim←−
(T,S)∈Y(P )

M(T/S) .

Moreover ([9] Corollary 6.17), for any biset functor M and any p-group P , the unit
map

ηM,P : M(P )→RYOY(P ) = lim←−
(T,S)∈Y(P )

M(T/S)

is given by
ηM,P (u)T,S = DefresP

T/Su ,

for any u ∈M(P ) and any (T, S) ∈ Y(P ).
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4. Image in subquotients of rank two

4.1. Lemma. Let X be a non-empty class of finite p-groups, closed under taking
subquotients. Let A be any abelian group, and denote by B̂ the functor HomZ

(
B(−), A

)
,

where B is the Burnside functor. Then the unit map

β : B̂ →RXOX B̂
is an isomorphism.
Proof. Indeed if P is a p-group, if ϕ ∈ HomZ

(
B(P ), A

)
, if (T, S) is a section of P and

X is a subgroup such that S ≤ X ≤ T , then

(DefresP
T/Sϕ)

(
(T/S)/(X/S)

)
= ϕ

(
IndinfPT/S(T/S)/(X/S)

)
= ϕ(P/X) .

Suppose that ϕ ∈ Ker β. Since the class X is non empty and closed under taking
subquotients, then it contains the trivial group, and for any subgroup X of P , the
section (X,X) is in X (P ). It follows in particular that

0 = (DefresP
X/Xϕ)

(
(X/X)/(X/X)

)
= ϕ(P/X) .

Thus ϕ = 0, and β is injective.
Conversely, let ψ = (ψT,S)(T,S)∈X (P ) be an element of lim←−

X (P )

HomZ
(
B(T/S), A

)
.

Equivalently, for each section (T, S) ∈ X (P ) and each subgroup X with S ≤ X ≤ T ,
we have an element ψT,S

(
(T/S)/(X/S)

)
of A, fulfilling the following two conditions :

i) If x ∈ P , then ψ xT , xS

(
(xT/xS)/(xX/xS)

)
= ψT,S

(
(T/S)/(X/S)

)
.

ii) If (T, S) ∈ X (P ) and (T ′, S′) ∈ X (P ), and if X is a subgroup of P such that
S ≤ S′ ≤ X ≤ T ′ ≤ T , then ψT,S

(
(T/S)/(X/S)

)
= ψT ′,S′

(
(T ′/S′)/(X/S′)

)
.

Condition i) implies in particular that the element ψX,X

(
(X/X)/(X/X)

)
is constant

on the conjugacy class of X in P . Hence we can define an element ϕ ∈ HomZ
(
B(P ), A

)
by setting

ϕ(P/X) = ψX,X

(
(X/X)/(X/X)

)
,

for any subgroup X of P . Now if (T, S) ∈ X (P ) and if S ≤ X ≤ T
(DefresP

T/Sϕ)
(
(T/S)/(X/S)

)
= ϕ(P/X) = ψX,X

(
(X/X)/(X/X)

)

= (DefresT/S
X/XψT,S)

(
(X/X)/(X/X)

)

= ψT,S

(
IndinfT/S

(T/S)/(X/X)(X/X)/(X/X)
)

= ψT,S

(
(T/S)/(X/S)

)
.

Thus DefresP
T/Sϕ = ψT,S for any (T, S) ∈ X (P ). Equivalently β(ϕ) = ψ, so β is

surjective, hence it is an isomorphism.

4.2. Lemma. When p is odd, the map

ε =
∏

(T,S)∈X3(P )

DefresP
T/S : 2D(P ) −→ lim←−

(T,S)∈X3(P )

2D(T/S)

is an isomorphism.
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Proof. Consider the short exact sequence of p-biset functors

0→ 2D → D → F2D → 0 .

Applying the functor lim←−
X3(P )

yields the bottom line of the following commutative diagram

with exact lines

(4.3) 0 // 2D(P ) //

ε

²²

D(P ) //

δ

²²

F2D(P )

γ

²²

// 0

0 // lim←−
X3(P )

2D // lim←−
X3(P )

D // lim←−
X3(P )

F2D

where the map δ is an isomorphism, by Theorem 1.1 of [9]. Moreover, by Corollary 1.5
of [10], there is an exact sequence of p-biset functors

0→ B× → F2B
∗ → F2D

Ω → 0 ,

where B× is the functor of units of the Burnside ring, which is isomorphic to the
constant functor ΓF2 for p odd. Moreover DΩ = D in this case. Applying the functor
lim←−
X3(P )

to this sequence yields the bottom line of the following commutative diagram

with exact lines

(4.4) 0 // F2
//

α

²²

F2B
∗(P ) //

β

²²

F2D(P )

γ

²²

// 0

0 // lim←−
X3(P )

ΓF2 // lim←−
X3(P )

F2B
∗ // lim←−

X3(P )

F2D

Since F2B
∗ is naturally isomorphic to HomZ

(
B(−),F2

)
, the map β is an isomorphism,

by Lemma 4.1. Now the group lim←−
X3(P )

ΓF2 is the set of sequences (uT,S)(T,S)∈X3(P )

fulfilling the two following conditions :

i) If (T, S) ∈ X3(P ) and x ∈ P , then u xT , xS = uT,S .

ii) If (T, S) ∈ X3(P ) and (T ′, S′) ∈ X3(P ) are such that S ≤ S′ ≤ T ′ ≤ T , then
uT,S = uT ′,S′ .

Applying this for the case T ′ = S′ = S, and next for the case T = T ′ = S′, it follows
that uT,S = uS,S = uT,T for any (T, S) ∈ X3(P ). Thus uT,T = uS,S if T/S ∈ X3.
Since X3 contains the cyclic group of order p, and since P is a p-group, it follows that
uT,T = u1,1 for any subgroup T of P . Hence uT,S is constant, and the map α is an
isomorphism.

Now the Snake’s Lemma, applied to Diagram 4.4, shows that the map γ is injective.
And another application of this Lemma to Diagram 4.3 shows that the map ε is an
isomorphism.

Recall that if E is an elementary abelian group of rank 2, then 2D(E) is free of rank
one, generated by 2ΩE/1. Thus if u ∈ 2D(P ), and if (T, S) ∈ E]

2(P ), then DefresP
T/Su

is a multiple of 2ΩT/S . The following theorem characterizes the sequences of integers
(vT,S)(T,S)∈E]

2(P ) which can be obtained that way from an element of 2D(P ) :
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4.5. Theorem. Let P be a p-group (with p > 2). The map

DP : 2D(P )→
∏

(T,S)∈E]
2(P )

Z

sending an element u ∈ 2D(P ) to the sequence DP (u)T,S of integers defined by

DefresP
T/S(u) = DP (u)T,S · 2ΩT/S ,

is injective, and its image is equal to the set of sequences (vT,S)(T,S)∈E]
2(P ) fulfilling the

following conditions :

1. If (T, S) ∈ E]
2(P ) and x ∈ P , then vT,S = v xT , xS.

2. If (T, S) and (T ′, S) are in E]
2(P ), if T ′ ≤ NP (T ), and TT ′/S ∼= (Z/pZ)3, then

vT,S +
∑

S<X<T

vTT ′,X = vT ′,S +
∑

S<X<T ′
vTT ′,X .

3. If (T, S) and (T ′, S) are in E]
2(P ), if T ′ ≤ NP (T ), and TT ′/S ∼= Xp3 , then

vT,S ≡ vT ′,S (mod p) .

Proof. Let u ∈ Ker DP . Then DefresP
T/Su = 0 for any (T, S) ∈ E]

2(P ). Moreover
DefresP

T/Su ∈ 2D(Z/pZ) = {0} when (T, S) is a section of P with T/S ∼= Z/pZ. The
detection theorem of Carlson and Thévenaz ([11] Theorem 13.1) shows that u = 0.
Hence DP is injective.

Now Condition 1 of Theorem 4.5 holds obviously for the elements of the image of DP .
To check that Conditions 2 and 3 also hold, suppose that (T, S), (T ′, S) ∈ E]

2(P ), with
T ′ ≤ NP (T ) and |TT ′ : P | = p3, and observe that setting R = TT ′, the diagram

D(P )
DP //

DefresP

R/S

²²

∏

(T ′′,S′′)∈E]
2(P )

Z

πR,S

²²
D(R/S)

DP //
∏

(T ′′/S,S′′/S)∈E]
2(R/S)

Z

is commutative, where πR,S is the projection map obtained by identifying sections
(T ′′, S′′) of P such that S ≤ S′′ ≤ T ′′ ≤ R with sections (T ′′/S, S′′/S) of R/S. This
shows that it is enough to suppose that the group P is either elementary abelian of
rank 3, or isomorphic to Xp3 . These special cases are detailed below.

To prove that conversely, Conditions 1, 2, and 3 characterize the image of DP ,
observe first that by Theorem 1.1 of [9], the map

∏

(T,S)

DefresP
T/S : D(P ) −→ lim←−

(T,S)

D(T/S)

is an isomorphism, where T/S runs through all sections of P which are either elementary
abelian p-groups of rank ≤ 3 or extraspecial groups of order p3 and exponent p.

11



Suppose that Theorem 4.5 is true when P is elementary abelian of rank at most 3,
or extraspecial of exponent p. Let P be an arbitrary p-group, and consider a sequence
v = (vT,S)(T,S)∈E]

2(P ) fulfilling the conditions of Theorem 4.5.
If (V,U) ∈ X3(P ), then the correspondence (T, S) 7→ (T/U, S/U) is a one to one

correspondence between the set of elements (T, S) of E]
2(P ) such that U ≤ S ≤ T ≤ V ,

and E]
2(V/U). Through this bijection, the sequence of integers vT,S , for U ≤ S ≤ T ≤ V ,

yields a sequence of integers fulfilling the conditions of Theorem 4.5 for the group V/U ,
hence an element in the image of the map DV/U . In other words, there is a unique
element wV,U ∈ 2D(V/U) such that

DefresV/U
T/SwV,U = vT,S · 2ΩT/S ,

for all (T, S) ∈ E]
2(P ) with U ≤ S ≤ T ≤ V .

Now the uniqueness of wV,U shows that w xV , xU = xwV,U for any x ∈ P , and that
DefresV/U

V ′/U ′wV,U = wV ′,U ′ whenever (V,U) and (V ′, U ′) are in X3(P ) and U ≤ U ′ ≤
V ′ ≤ V . In other words, the sequence (wV,U )(V,U)∈X3(P ) is an element of lim←−

X3(P )

2D. By

Lemma 4.2, there exists an element t ∈ 2D(P ) such that

wV,U = DefresP
V/U t ,

for any (V,U) ∈ X3(P ). Then obviously DP (t) = v, and v lies in the image of DP , as
was to be shown.

So the only thing left to check is that Theorem 4.5 holds when P is elementary
abelian of rank at most 3, or isomorphic to Xp3 . This is a case by case verification,
using the following lemma :

4.6. Lemma. Let P be a finite p-group, and X be a finite P -set.

1. If T/S is a section of P , then

DefresP
T/SΩX = ΩXS ,

where XS denotes the set of fixed points of S on X, viewed as a T/S-set.

2. If moreover (T, S) ∈ E]
2(P ), then

DefresP
T/S(2ΩX) =

( ∑

S≤V≤T
XV 6=∅

µ(S, V )
)
2ΩT/S .

In other words DP (2ΩX)T,S =
∑

S≤V≤T
XV 6=∅

µ(S, V ).

Proof. Assertion 1 follows from Section 4 of [2]. For Assertion 2, note that by Asser-
tion 1 and Lemma 5.2.3 of [2], since T/S is abelian,

DefresP
T/S2ΩX =

∑

S≤U≤V≤T

XV 6=∅

µ(U, V ) · 2ΩT/U ,

and that 2ΩT/U = 0 in D(T/S) unless U = S.
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Now there are four cases :

• If |P | ≤ p, there is nothing to do, since the map DP is an isomorphism {0} → {0}.
• If P ∼= (Z/pZ)2, then 2D(P ) ∼= Z, and E]

2(P ) = {(P,1)}. In this case, there is
no condition on the image of DP , and DP is an isomorphism Z → Z. So Theorem 4.5
holds in this case.

• If P ∼= (Z/pZ)3, then E]
2(P ) consists of p2 + p+ 1 sections (P,R), for |R| = p, and

p2 + p+ 1 sections (Q,1), for |Q| = p2. The group 2D(P ) is a free abelian group, with
basis

{2ΩP/1} t {2ΩP/R | |R| = p} .
The following arrays gives the values of the sequence v = DP (u) for the element u in
its first column on the left :

vP,R vQ,1

2ΩP/1 0 1

2ΩP/R′

{
0 if R′ 6= R
1 if R′ = R

{
0 if R′ < Q
1 if R′ 6< Q

The image of the element u = m1 · 2ΩP/1 +
∑

|R′|=p

mR′ · 2ΩP/R′ by the map DP is equal

to the sequence v = (vT,S), where

(4.7) vP,R = mR vQ,1 = m1 +
∑

R 6<Q

mR

If Q 6= Q′ are subgroups of order p2 of P , then QQ′ = P , and

vQ,1 +
∑

1<X<Q

vP,X = m1 +
∑

|X|=p

mX = vQ′,1 +
∑

1<X<Q′
vP,X ,

so Condition 2 of 4.5 holds for the sections (Q,1) and (Q′,1) of P . Since P is abelian,
Conditions 1 and 3 of 4.5 are obviously satisfied.

Conversely, suppose that Condition 2 hold for a sequence v = (vT,S)(T,S)∈E]
2(P ).

This sequence is in the image of DP if and only if there exist integers m1, mR′ , for
|R′| = p, such that 4.7 hold.

The first equation gives mR = vP,R, and then the second one gives

m1 = vQ,1 −
∑

R 6<Q

vP,R .

This is consistent if the right hand side does not depend on Q, i.e. if for any subgroups
Q 6= Q′ of order p2 of P

vQ,1 −
∑

R 6<Q

vP,R = vQ′,1 −
∑

R 6<Q′
vP,R ,

or equivalently
vQ,1 +

∑

R<Q

vP,R = vQ′,1 +
∑

R<Q′
vP,R .

This is precisely Condition 2 of 4.5 for the section (Q,1) and (Q′,1), since QQ′ = P in
this case. Thus Theorem 4.5 holds for P ∼= (Z/pZ)3.
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• If P ∼= Xp3 , then E]
2(P ) consists of the section (P,Z), where Z is the centre of P ,

and of p+ 1 sections (Q,1), where Q is a subgroup of index p in P . The group D(P ) is
equal to DΩ(P ), since p 6= 2, so it is generated by the elements ΩP/1, ΩP/X , for |X| = p,
and ΩP/Q, for |Q| = p2, which have order 2 in D(P ). Thus 2D(P ) is generated by the
elements 2ΩP/1 and 2ΩP/X , for |X| = p. The following array gives the values of the
sequence v = DP (u) for the element u in its first column on the left, where R denotes
a non central subgroup of order p of P :

vP,Z vQ,1

2ΩP/1 0 1
2ΩP/Z 1 0

2ΩP/R 0
{

1 if R 6< Q
1− p if R < Q

The values in this table can be computed using Lemma 4.6 : for example

ResP
Q2ΩP/R =

( ∑

1≤V≤Q

V≤P R

µ(1, V )
)
2ΩQ/1 .

If R � Q, then there is only one term in the summation, for V = 1, and µ(1, V ) = 1 in
this case. And if R ≤ Q, then there are p additional terms, obtained for the p distinct
conjugates V of R in P , and µ(1, V ) = −1 for each of them. This gives the value 1− p
in this case.

Now if u = m1 · 2ΩP/1 +mZ · 2ΩP/Z +
∑
[R]

mR · 2ΩP/R (where the brackets around R

mean that R runs through a set of representatives of conjugacy classes of non central
subgroups of order p of P ), then the sequence v = DP (u) is given by :

(4.8) vP,Z = mZ vQ,1 = m1 +
∑

[R]6<Q

mR + (1− p)
∑

[R]<Q

mR ,

The second equation is equivalent to

(4.9) vQ,1 = m1 +
∑

[R]

mR − p
∑

[R]<Q

mR .

It follows that vQ,1 ≡ vQ′,1 (mod p), for any subgroups Q and Q′ of order p2 in P . This
shows that Condition 3 of 4.5 holds for the sections (Q,1) and (Q′,1) of P . Condition 2
is obviously satisfied in this case, since P has no subquotient isomorphic to (Z/pZ)3.

Suppose now conversely that a sequence v = (vT,S)(T,S)∈E]
2(P ) is given, and that

Conditions 1 and 3 of 4.5 hold. Then v lies in the image of DP if and only if there exist
integers m1, mZ , mR (invariant by P -conjugation), such that Equations 4.8 hold.

The first equation in 4.8 gives mZ = vP,Z , and the second one gives

m1 − vQ,1 +
∑

[R]

mR = p
∑

[R]<Q

mR .

All subgroups of order p of Q different from Z are conjugate in P . Denoting by RQ one
of them, this equation becomes

(4.10) m1 − vQ,1 +
∑

[R]

mR = pmRQ .
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Summing this relation over Q yields

(p+ 1)m1 −
∑

Q

vQ,1 + (p+ 1)
∑

[R]

mR = p
∑

[R]

mR ,

thus ∑

[R]

mR =
∑

Q

vQ,1 − (p+ 1)m1 .

Now 4.10 yields
pmRQ =

∑

Q′ 6=Q

vQ′,1 − pm1 .

By Condition 3, the sum
∑

Q′ 6=Q

vQ′,1 is congruent to pvQ,1 modulo p, i.e. to 0. Since

Q = RQZ, this gives finally

mR =
1
p
(

∑

Q′ 6=RZ

vQ′,1)−m1 .

Conversely, if this holds for any R, then equation 4.9 holds : indeed, in this case
∑

[R]

mR =
∑

Q

vQ,1 − (p+ 1)m1 ,

thus

m1 +
∑

[R]

mR − p
∑

[R]<Q

mR = m1 +
∑

Q

vQ,1 − (p+ 1)m1 − pmRQ

=
∑

Q

vQ,1 − pm1 − (
∑

Q′ 6=Q

vQ′,1) + pm1

= vQ,1 .

Thus 4.9 holds, and Theorem 4.5 also, when P = Xp3 .

5. Proof of Theorem 2.15

Let P be a finite p-group. Clearly T (P ) is the kernel of rP , and Im rP ≤ Ker hP ,
by Proposition 2.14. So the only thing to show is that this inclusion is an equality.

Let u ∈ Ker hP . It means that there exists a P -invariant function E 7→ mE from
A≥2(P ) to Z such that for any E < F in A≥2(P )

wE,F = mE −mF ,

where the integer wE,F is defined by the equality

wE,F · ΩE/1 = ResF
EσF ResP

Fu− σEResP
Eu .

In other words

ResF
E(mF · ΩF/1 + σF ResP

Fu) = mE · ΩE/1 + σEResP
Eu .
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Set wE = mE ·ΩE/1 +σEResP
Eu, for E ∈ A≥2(P ). Then ResF

EwF = wE , for any E < F
in A≥2(P ), and x(wE) = w xE for any x ∈ P and E ∈ A≥2(P ). Moreover , for any
E ∈ A≥2(P )

rE(wE) = rEσEResP
Eu = ResP

Eu ,

since rE(ΩE/1) = 0, and since σE is a section of rE . It means that for any subgroup
Y 6= 1 of E

DefEE/Y wE = ResNP (Y )/Y
E/Y uY .

If (T, S) ∈ E]
2(P ), define an integer vT,S by

(5.1)

{
ResNP (S)/S

T/S (2uS) = vT,S · 2ΩT/S if S 6= 1
2wT = vT,1 · 2ΩT/1 if S = 1

This sequence of integers (vT,S)(T,S)∈E]
2(P ) satisfies some of the conditions of Theo-

rem 4.5. Indeed :
• If x ∈ P and (T, S) ∈ E]

2(P ), then v xT , xS = vT,S : this is because x(wE) = w xE

for any E ∈ A≥2(P ), and because x(uQ) = u xQ for any subgroup Q 6= 1 of P . Thus
Condition 1 of Theorem 4.5 holds.
• Suppose that (T, S) and (T ′, S) are elements of E]

2(P ) such that T ≤ NP (T ′).
There are two cases to consider :

(a) If S 6= 1, then for any section (V,U) ∈ E]
2

(
NP (S)/S

)

vV,U · ΩV/U = ResNP (U)/U
V/U (2uU )

= ResNP (S,U)/U
V/U ResNP (U)/U

NP (S,U)/U (2uU )

= ResNP (S,U)/U
V/U DefresNP (S)/S

NP (S,U)/U (2uS)

= DefresNP (S)/S
V/U (2uS) .

It follows that the sequence (vV,U )
(V,U)∈E]

2

(
NP (S)/S

) is equal to DNP (S)/S(2uS),

hence it is in the image of the map DNP (S)/S . Thus if TT ′/S ∼= (Z/pZ)3, then
Condition 2 of Theorem 4.5 holds for the sections (T, S) and (T ′, S) of NP (S)/S.
And if TT ′/S ∼= Xp3 , then Condition 3 of Theorem 4.5 holds, for a similar reason.

(b) If S = 1, then set F = TT ′. If F ∼= (Z/pZ)3, then consider a section (V,U) ∈
E]
2(F ). If U = 1, then

DefresF
V/U2wF = ResF

V 2wF = 2wV = vV,1 · 2ΩV/1 .

And if U 6= 1, then

DefresF
V/U2wF = ResF/U

V/UDefFF/U2wF

= ResF/U
V/UResNP (U)/U

F/U 2uU

= ResNP (U)/U
V/U 2uU

= vV,U · 2ΩV/U .

It follows that the sequence (vV,U )(V,U)∈E]
2(F ) is equal to DF (2wF ). In particular,

Condition 2 of Theorem 4.5 is fulfilled for the sections (T,1) and (T ′,1) of F .
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Hence the sequence (vT,S)(T,S)∈E]
2(P ) fulfills all the conditions of Theorem 4.5, except

possibly Condition 3 for sections (T,1) and (T ′,1) such that T ≤ NP (T ′) and TT ′ ∼=
Xp3 . This situation is handled by the following lemma :

5.2. Lemma. Let P be a finite p-group, and (vT,S)(T,S)∈E]
2(P ) be a sequence of integers

such that :

1. If x ∈ P and (T, S) ∈ E]
2(P ), then v xT , xS = vT,S.

2. If (T, S) and (T ′, S) are in E]
2(P ), if T ≤ NP (T ′) and if TT ′/S ∼= (Z/pZ)3, then

vT,S +
∑

S<X<T

vTT ′,X = vT ′,S +
∑

S<X<T ′
vTT ′,X .

3. If S 6= 1, if (T, S) and (T ′, S) are in E]
2(P ), if T ≤ NP (T ′) and if TT ′/S ∼= Xp3 ,

then
vT,S ≡ vT ′,S (mod p) .

Then :

(i) If T, T ′ ∈ A=2(P ), if T and T ′ are in the same connected component of A≥2(P ),
if T ≤ NP (T ′) and TT ′ ∼= Xp3 , then vT,1 ≡ vT ′,1 (mod p).

(ii) There exists a sequence of integers (yT )T∈A=2(P ) such that

(a) If x ∈ P and T ∈ A=2(P ), then y xT = yT .
(b) If T, T ′ ∈ A=2(P ), if T ≤ NP (T ′) and TT ′ ∼= (Z/pZ)3, then yT = yT ′ .
(c) If T, T ′ ∈ A=2(P ), if T ≤ NP (T ′) and TT ′ ∼= Xp3 , then

yT + vT,1 ≡ yT ′ + vT ′,1 (mod p) .

Proof. The proof of Assertion (i) goes by induction on |P |, starting with the case
where P is cyclic, where there is nothing to prove. Assume then that Hypotheses 1),
2), and 3) imply Assertion 1, for any p-group of order strictly smaller than |P |. Let
T and T ′ be elementary abelian subgroups of rank 2 of P , such that T ≤ NP (T ′) and
TT ′ ∼= Xp3 . Set X = TT ′, and denote by Z the centre of X.

If there is a proper subgroup Q of P containing X, and such that T and T ′ are in
the same connected component of A≥2(Q), then vT,1 ≡ vT ′,1 (mod p), by induction,
since Hypotheses 1), 2), and 3) obviously hold for Q is they hold for P . It is the case
in particular if A≥2(Q) is connected.

Suppose that there exists a subgroup C of order p in CP (X), not contained in X
(i.e. different from Z). Then the center T ′′ = C × Z of the subgroup Q = C × X
of P is not cyclic. Hence A≥2(Q) is connected, and Q contains T and T ′. Thus I can
suppose that Q = P , and then T ′′ is equal to the centre of P . It is elementary abelian
of rank 2. Moreover TT ′′ ∼= (Z/pZ)3, since T and T ′′ are elementary abelian of rank 2
and centralize each other, and since T ∩ T ′′ = T ∩X ∩ T ′′ = Z. Hypothesis 2, applied
to the sections (T,1) and (T ′,1) of P yields

(5.3) vT,1 − vT ′′,1 =
∑

1<F<T ′′
vTT ′′,F −

∑

1<F<T

vTT ′′,F .

Now TT ′′ E P since |P : TT ′′| = p, and T E P , since T E X and C ≤ CP (X). Hence P
acts by conjugation on the set of subgroups F such that 1 < F < T , and F = Z is the
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unique fixed point under this action. Now Hypothesis 1 implies that
∑

1<F<T

vTT ′′,F ≡ vTT ′′,Z (mod p) ,

and Equation 5.3 yields

(5.4) vT,1 − vT ′′,1 ≡
∑

1<F<T ′′

F 6=Z

vTT ′′,F (mod p) .

The same argument applies with T ′ instead of T , so

(5.5) vT ′,1 − vT ′′,1 ≡
∑

1<F<T ′′

F 6=Z

vT ′T ′′,F (mod p) .

Now if 1 < F < T ′′ and F 6= Z, the group P/F has order p3 and exponent p (since P
has exponent p), and it is non abelian (since F 6≤ [P, P ] = Z). Hence P/F ∼= Xp3 .
Since P = (TT ′′)(T ′T ′′), Hypothesis 3, applied to the sections (TT ′′, F ) and (T ′T ′′, F )
yields vTT ′′,F ≡ vT ′T ′′,F (mod p). This shows that the right hand sides of 5.4 and 5.5 are
congruent modulo p. So are the left hand sides, thus vT,1−vT ′′,1 ≡ vT ′,1−vT ′′,1 (mod p),
and vT,1 ≡ vT ′,1 (mod p).

Hence I can suppose that Z is the only subgroup of order p of CP (X). In particular,
the centre of P is cyclic, and Z is the only subgroup of order p in this centre. Moreover,
since T 6= T ′ and T, T ′ are in the same connected component of A≥2(P ), the groups
T and T ′ are not maximal elementary abelian subgroups, thus P has p-rank at least
equal to 3, and T and T ′ are in the big component C of A≥2(P ).

In this case, there is a normal subgroup T0 of P which is elementary abelian of
rank 2, and T0 ∈ C. Moreover T0 > Z.

If T0 6≤ X, then T0 ∩ X = Z. Then |T0X| = p4, and |T0X : X| = p. Thus
T0 normalizes X. Moreover, if Y is a subgroup of index p of X, then Y > Z, and
|T0Y | = p3, thus |T0Y : Y | = p, and T0 normalizes Y . It follows that the image of T0

in the group Out(X) of outer automorphisms of X, which is isomorphic to GL2(Fp), is
a p-subgroup stabilizing every line. So this image is trivial, and T0 acts on X by inner
automorphisms. Let t ∈ T0 − X. Then there exists y ∈ X such that y−1t ∈ CP (X).
In particular y−1t centralizes y, so t centralizes y, and then (y−1t)p = (y−1)ptp = 1.
Moreover y 6= t, since t /∈ X. Hence y−1t has order p. Since Z is the only subgroup of
order p of CP (X), it follows that y−1t ∈ Z, so t ∈ X. This contradiction shows that
T0 ≤ X.

Since the congruences vT,1 ≡ vT0,1 (mod p) and vT ′,1 ≡ vT0,1 (mod p) imply the
congruence vT,1 ≡ vT ′,1 (mod p), it is enough to suppose that T0 = T , thus T E P .
Let F be an elementary abelian subgroup of rank 3 of P containing T ′ : such a subgroup
exists, since T ′ is not a maximal element of A≥2(P ). Set T ′′ = CF (T ). Then |F : T ′′|
divide p, since F/T ′′ is a p-subgroup of Aut(T ) ∼= GL2(Fp). Moreover F 6≤ CP (T ), since
F > T ′. Thus |F : T ′′| = p, and T ′′ ∼= (Z/pZ)2. Moreover T ′ 6= T ′′, since T ′ 6≤ CP (T ),
thus F = T ′T ′′.

Now F centralizes T ′, and normalizes T . Thus F normalizes TT ′ = X. Moreover
F ∩X = T ′, since T ′ ≤ F ∩X, and since F and X are distinct subgroups of order p3

of P , for F is abelian and X is not. Hence |FX : F | = p, so FX normalizes F . Thus X
normalizes F , and X also normalizes CP (T ) since T E P . It follows that X normalizes
F ∩ CP (T ) = CF (T ) = T ′′. Obviously X also normalizes its subgroup T ′.
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Hypothesis 2, applied to the sections (T ′,1) and (T ′′,1) of P , yields

(5.6) vT ′,1 − vT ′′,1 =
∑

1<Y <T ′′
vT ′T ′′,Y −

∑

1<Y <T ′
vT ′T ′′,Y .

Since X normalizes T ′ and T ′′, and since any subgroup of order p normalized by X is
centralized by X, Hypothesis 1 yields

∑

1<Y <T ′′
vT ′T ′′,Y ≡

∑

1<Y <T ′′

Y≤CP (X)

vT ′T ′′,Y (mod p) .

But T ′′ ∩ CP (X) = Z, since Z ≤ T ′′ ∩ CP (X), and since Z is the only subgroup of
order p of CP (X). Thus

(5.7)
∑

1<Y <T ′′
vT ′T ′′,Y ≡ vT ′T ′′,Z (mod p) .

The same argument, applied with T ′ instead of T ′′, since T ′ ∩ CP (X) = Z, yields

(5.8)
∑

1<Y <T ′
vT ′T ′′,Y ≡ vT ′T ′′,Z (mod p) .

Now it follows from 5.6, 5.7 and 5.8 that vT ′,1 − vT ′′,1 ≡ 0 (mod p), i.e.

(5.9) vT ′,1 ≡ vT ′′,1 (mod p) .

Now the group TT ′′ is also elementary abelian of rank 3 : indeed, the group T ′′ cen-
tralizes T , and T ′′ ∩ T = Z since T ′′ ∩ T ≥ Z and T ′′ 6= T for T 6≤ F ≤ CP (T ′). Then
Hypothesis 2, for the sections (T,1) and (T ′′,1), yields

(5.10) vT,1 − vT ′′,1 =
∑

1<Y <T ′′
vTT ′′,Y −

∑

1<Y <T

vTT ′′,Y .

The group X normalizes T and T ′′, and T ∩ CP (X) = Z = T ′′ ∩ CP (X). The same
argument as above yields

(5.11) vT,1 ≡ vT ′′,1 (mod p) .

Thus vT,1 ≡ vT ′,1 (mod p), by 5.9 and 5.11, and this completes the proof of Assertion (i).
For Assertion 2, there is nothing to do if P has no normal subgroup T0

∼= (Z/pZ)2,
since then P is cyclic, and A≥2(P ) = ∅. If P is not cyclic, fix such a normal subgroup
T0 of P , and denote by C the connected component of T0 in A≥2(P ). Thus C is the
big component if P has p-rank at least 3, and C = {T0} otherwise. Define the sequence
(yT )T∈A=2(P ) by

yT =
{

0 if T ∈ C
vT0,1 − vT,1 otherwise

This sequence obviously fulfills Condition (a) of Lemma 5.2, by Hypothesis 1, and
since C is invariant by P -conjugation. Now it T, T ′ ∈ A=2(P ), if T ≤ NP (T ′) and
TT ′ ∼= (Z/pZ)3, it follows that P has p-rank at least 3, that C is the big component,
and that T, T ′ ∈ C. Thus yT = yT ′ = 0, so Condition (b) of Lemma 5.2 holds. Finally,
if T, T ′ ∈ A=2(P ), if T ≤ NP (T ′) and TT ′ ∼= Xp3 , then there are three cases :
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• if T and T ′ are in C, then yT = yT ′ = 0, thus yT + vT,1 = vT,1, and yT ′ + vT ′,1 =
vT ′,1. But vT,1 ≡ vT ′,1 (mod p) in this case, by Assertion 1. Thus Condition (c)
holds in this case.

• if T ∈ C and T ′ /∈ C, then yT + vT,1 = vT,1, and yT ′ + vT ′,1 = vT0,1. But now T
and T0 are both in C, so vT,1 ≡ vT0,1 (mod p) in this case, by Assertion 1. Thus
Condition (c) holds in this case also. The case T /∈ C and T ′ ∈ C is similar.

• if T /∈ C and T ′ /∈ C, then yT + vT,1 = vT0,1 = yT ′ + vT ′,1, so Condition (c) holds
in this case also.

This completes the proof of Lemma 5.2.
End of the proof of Theorem 2.15 : In the beginning of the proof of Theorem 2.15,
I started with an element u ∈ lim←−

1<Q≤P

D
(
NP (Q)/Q

)
such that hP (u) = 0. From this

data, in 5.1, I built a sequence of integers (vT,S)(T,S)∈E]
2(P ) fulfilling Hypothesis 1, 2

and 3 of Lemma 5.2. Let (yT )T∈A=2(P ) denote the sequence of integers provided by this
lemma, and define a new sequence of integers (v′T,S)(T,S)∈E]

2(P ) by

v′T,S =
{

vT,S if S 6= 1
yT + vT,S if S = 1 .

Then this sequence fulfills Conditions 1, 2, and 3 of Theorem 4.5 : indeed, the new
sequence is clearly invariant by conjugation, so Condition 1 is fulfilled. Conditions 2
and 3 for sections (T, S) and (T ′, S) with S 6= 1 are obviously fulfilled, since they are
for the sequence (vT,S), and since vT,S = v′T,S when S 6= 1.

Now if T, T ′ ∈ A=2(P ), if T ≤ NP (T ′) and TT ′ ∼= (Z/pZ)3, then T and T ′ are in
the same connected component of A≥2(P ), and yT = yT ′ . Thus

v′T,1 +
∑

1<Y <T

v′TT ′,Y = yT + vT,1 +
∑

1<Y <T

vTT ′,Y

= yT ′ + vT ′,1 +
∑

1<Y <T ′
vTT ′,Y

= v′T ′,1 +
∑

1<Y <T ′
v′TT ′,Y ,

so Condition 2 is fulfilled.
Finally if T, T ′ ∈ A=2(P ), if T ≤ NP (T ′) and TT ′ ∼= Xp3 , then

v′T,1 = yT + vT,1 ≡ yT ′ + vT ′,1 (mod p) ,

hence Condition 3 is fulfilled, since yT ′ + vT ′,1 = v′T ′,1.
By Theorem 4.5, there exists n ∈ D(P ) such that DP (2n) = (v′T,S). In other words,

for any (T, S) ∈ E]
2(P )

DefresP
T/S(2n) = v′T,S · 2ΩT/S .

Thus if S 6= 1

DefresP
T/S(2n) = vT,S · 2ΩT/S = ResNP (S)/S

T/S (2uS) .
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Set tS = DefresP
NP (S)/S(2n)− 2uS . Now for any (V,U) ∈ E]

2

(
NP (S)/S

)

DefresNP (S)/S
V/U (tS) = DefresP

V/U (2n)−DefresNP (S)/S
V/U (2uS)

= DefresP
V/U (2n)− ResNP (S,U)/U

V/U DefresNP (S)/S
NP (S,U)/U (2uS)

= DefresP
V/U (2n)− ResNP (S,U)/U

V/U ResNP (U)/U
NP (S,U)/U (2uU )

= DefresP
V/U (2n)− ResNP (U)/U

V/U (2uU ) = 0 .

It follows that tS is a torsion element of D
(
NP (S)/S

)
, which is also in 2D

(
NP (S)/S

)
.

Since the latter is torsion free, it follows that tS = 0, i.e. that 2uS = DefresP
NP (S)/S(2n),

for any S 6= 1. Equivalently 2u = rP (2n), or 2
(
u− rP (n)

)
= 0.

Now u− rP (n) is an element of lim←−
1<Q≤P

Dtors

(
NP (Q)/Q

)
. By Proposition 5.5 of [7],

there exists an element m ∈ D(P ) such that rP (m) = u − rP (n). It follows that
u = rP (m+ n), as was to be shown. This completes the proof of Theorem 2.15.

6. Example : the group Xp5

Let P be an extraspecial group of order p5 and exponent p. The centre Z of P
is cyclic of order p, and it is equal to the Frattini subgroup of P . The commutator
P ×P → Z induces a non degenerate symplectic Fp-valued scalar product on the factor
group E = P/Z ∼= (Fp)4, and the map Q 7→ Q/Z is a poset isomorphism from the poset
of elementary abelian subgroups of P strictly containing Z to the poset E of non zero

totally isotropic subspaces of E. There are e = p4 − 1
p− 1 isotropic lines in E, and the

same number of totally isotropic 2-dimensional subspaces. It follows that |E| is equal
to 2e.

There is a commutative diagram

D(P/Z) ∼=
d // lim←−

Q≥Z

D(P/Q)

0 // T (P ) // D(P )
rP //

DefP

P/Z

OO

lim←−
1<Q≤P

D
(
NP (Q)/Q

) hP //

π

OO

H1
(A≥2(P ),Z

)(P )

In this diagram, the group lim←−
Q≥Z

D(P/Q) is the group of sequences (uQ)Z≤Q≤P , where

uQ ∈ D(P/Q) (note that Q E P if Q ≥ Z), such that

∀R ≥ Q ≥ Z, DefP/Q
P/RuQ = uR ,

and the map π is the projection map on the components Q ≥ Z. The map d is the
product of the deflation maps DefP/Z

P/Q, for Q ≥ Z. It is an isomorphism, since the
sequence (uQ)Q≥Z , where uQ ∈ D(P/Q), is in the group lim←−

Q≥Z

D(P/Q) if and only if

uQ = DefP/Z
P/QuZ for any Q ≥ Z.
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The kernel of the map DefPP/Z is the set of faithful elements of D(P ), and it was
denoted by ∂D(P ) in [5]. It was shown in that paper (Theorem 9.1) that

∂D(P ) ∼= Z2e ⊕ Z/2Z .
The kernel of π consists of the sequences (uQ)1<Q≤P in lim←−

1<Q≤P

D
(
NP (Q)/Q

)
for which

uQ = 0 if Q ≥ Z. It was shown in [5] that this is also the group lim←−
1<Q≤P

Q∩Z=1

∂D
(
NP (Q)/Q

)
.

All these facts show that there is an exact sequence

(6.1) 0 −→ T (P ) −→ ∂D(P ) rP−→ lim←−
1<Q≤P

Q∩Z=1

∂D
(
NP (Q)/Q

) hP−→ H1
(A≥2(P ),Z

)(P )
,

where rP and hP are the restrictions of the previously defined maps with the same
names to the corresponding subgroups.

If Q is a subgroup of P such that Q ∩ Z = 1, then Q is elementary abelian of
rank at most 2 (see [5] for details). If Q has order p, then NP (Q)/Q ∼= Xp3 , thus
∂D

(
NP (Q)/Q

) ∼= Zp+1⊕Z/2Z ([5] Theorem 9.1 or Section 11). If Q has order p2, then
NP (Q)/Q ∼= Z/pZ, thus ∂D

(
NP (Q)/Q

) ∼= Z/2Z.
It follows easily that the group lim←−

1<Q≤P

Q∩Z=1

∂D
(
NP (Q)/Q

)
has free rank at least equal

to e(p+ 1), since it contains the group
⊕
|Q|=p
Q6=Z

2∂D
(
NP (Q)/Q

)
.

Now the group T (P ) is free of rank one, generated by ΩP/1, by Corollary 1.3 of [11],

and the group H1
(A≥2(P ),Z

)(P ) is isomorphic to H1(E ,Z). An easy computation,
using e.g. Section 6 of [5], shows that this group is free of rank p4.

Now the free rank of the image of hP in the exact sequence 6.1 is at least equal to

1− 2e+ e(p+ 1) = 1 + e(p− 1) = p4 ,

and since this is equal to the free rank of H1
(A≥2(P ),Z

)(P ), it follows that the free rank
of the image of hP is actually equal to p4, and that the free rank of lim←−

1<Q≤P

Q∩Z=1

∂D
(
NP (Q)/Q

)

is equal to e(p+ 1).
Moreover the map hP has finite cokernel, and this shows that in this case, the gluing

problem does not always have a solution.

6.2. Remark: In this case, a precise description of the map hP shows that its cokernel
is a non trivial finite p-group.

6.3. Aknowledgements: I wish to thank Nadia Mazza and Jacques Thévenaz for
careful reading of an early version of this paper, and for many suggestions, comments,
and stimulating discussions about it.
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