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Abstract. The group D(P) of all endo-permutation modules for a finite p-group P is a finitely generated abelian group.
We prove that its torsion-free rank is equal to the number of conjugacy classes of non-cyclic subgroups of P . We also obtain
partial results on its torsion subgroup. We determine next the structure of Q@D (—) viewed as a functor, which turns out to
be a simple functor Sg g, indexed by the elementary group E of order p> and the trivial Out(E)-module Q. Finally we
describe a rather strange exact sequence relating Q®D(P), Q®B(P), and Q®R(P), where B(P) is the Burnside ring and
R(P) is the Grothendieck ring of QP-modules.
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Introduction

Endo-permutation modules for p-groups are ubiquitous in the p-modular representation theory of finite
groups. They appear as sources of simple modules for p-soluble groups (see Section 30 in [Thl]), in Puig’s
description of the source algebra of a nilpotent block (see [Pul] or Section 50 in [Th1]), and also in the local
analysis of Morita or derived equivalences between blocks [Pu3]. So they are fundamental objects which
need to be fully understood, the final goal being the complete classification of endo-permutation modules.
This paper is a contribution to this classification program.

Recall that if P is a p-group and if k is a field of characteristic p, then a kP-module M is an
endo-permutation module if Endg(M) is a permutation kP-module. One is particularly interested in in-
decomposable endo-permutation modules with vertex P . Twenty years ago, in his seminal papers on
endo-permutation modules [Da2, Da3], E.C. Dade introduced most of the basic techniques and defined the
group D(P) = Dg(P) of endo-permutation kP-modules, which we call the Dade group of P . This can be
viewed either as a group of equivalence classes of suitable endo-permutation modules (with multiplication
induced by tensor product) or as the group of indecomposable endo-permutation kP-modules with vertex P

(because there is one such indecomposable module in each equivalence class, up to isomorphism).
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Dade classified all endo-permutation modules when P is abelian and described explicitly the structure
of D(P) in that case. Shortly afterwards, L. Puig proved that D(P) is always finitely generated (but his
paper [Pu2] only appeared in 1990). So we have

D(P)=7Z"@ D'(P), with D'(P) finite.

The question of finding the torsion-free rank r and describing the torsion subgroup D'(P) remained com-

pletely open in general. Our first result gives an answer to the first question.

Theorem A. The torsion-free rank of the Dade group D(P) is equal to the number of conjugacy classes

of non-cyclic subgroups of P .

In fact we define a natural map ¢ : Q ®z D(P) — Q" which we prove to be an isomorphism, and by means
of the inverse of ¢ we produce an explicit basis of Q ®z D(P) . One of the main ingredients (which follows

from deep results of Carlson, Dade, and Puig) is the injectivity of the restriction-deflation map

Qez D(P) — [[ Qe D(E),

where E runs over all elementary abelian sections of P of rank 2, together with the fact that Q®zD(E) = Q
by Dade’s classification in the abelian case. Another main ingredient is tensor induction, a tool which is
well adapted because endo-permutation modules behave nicely with respect to tensor products. This tool
was first considered by Puig [Pu4] who used it to show that sources of simple modules for p-soluble groups
always lie in the torsion subgroup of the Dade group.

One is also particularly interested in the torsion subgroup D'(P). Indeed the naturally occuring
endo-permutation modules mentioned in the first paragraph define interesting elements of D(P) which are
actually expected to lie in D*(P). The cyclic group €, of order p plays a crucial role here (at least for p
odd), because D(C,) = Z/2Z. Unfortunately, one does not know if the restriction-deflation map

vp: D'(P) — ] D(C)

is injective, where C' runs over all cyclic sections of P of order p. If it were so, we could determine D*(P)
by methods analogous to those used for Theorem A. Thus we simply bypass the difficulty by taking the
quotient Df(P) = D!(P)/Ker(yp) . This quotient can be explicitly described:

Theorem B. If p is odd, the group ﬁ(P) is isomorphic to the direct sum of s copies of Z /27, where

s is the number of conjugacy classes of non-trivial cyclic subgroups of P .

We also obtain explicit generators for W(P) . It is our hope that ¥p is actually injective when p is odd.
This question was mentioned to us several years ago by J.F. Carlson and J.L. Alperin. If the answer was
positive, Theorem B would completely describe D!(P) and would also imply that every torsion element
of D(P) has order 2 (i.e. is self-dual). This is a non-trivial fact which would be very interesting to obtain.

It is known that the situation is more complicated when p = 2. First of all D(C4) is trivial (so one
expects instead that D(Cy4) = Z/27Z should play a role), but there are also unexpected endo-permutation
modules for the quaternion groups (see [Dal]). For instance D(Qs) = Z/2Z ® Z/AZ & Z. Thus the

assumption in Theorem B cannot be removed.



Our methods can also be used to analyse the subgroup T'(P) consisting of the endo-trivial modules,
that is, indecomposable kP-modules M such that Endg(M) = k & (free). Those modules also play an
important role in modular representation theory, for instance in self-equivalences of stable module categories
(see [Li] and [CR]). We prove a theorem analogous to Theorem A, which gives the torsion-free rank of T'(P);
this is a recent unpublished theorem of J.L. Alperin but our proof is different (we use tensor induction
instead of relative syzygies). In contrast, in analogy with Theorem B, one only has a nearly trivial statement
concerning the torsion subgroup of T(P).

Our analysis of D(P) takes place in a functorial framework. We view D(—) as a functor defined on the
category of all finite p-groups, the morphisms being compositions of five types of basic morphisms, namely
restriction to a subgroup, tensor induction to an overgroup, inflation from a quotient group, deflation to a
quotient group (this is Dade’s construction of slash modules), and isomorphisms. The necessary machinery
for dealing with such functors was introduced in [Bol]. Our original proofs of Theorems A and B used
heavily this functorial theory (and in particular some non-trivial results of [Bol]), but a more elementary
approach emerged later from the functorial point of view. For the convenience of the reader, we first give
here these non-functorial proofs (Sections 4 and 6). The only result from [Bol] which we need is a technical
lemma on the Mobius function.

However, the functorial approach yields more and we use it in the second part of the paper. The basic
functorial constructions are already introduced in Sections 2 and 3, but the more difficult functorial results
only appear in the last five sections. For technical reasons, the Dade group D(P) does not in general give
rise to a functor in the sense of [Bol], but Q ®z D(P) and W(P) do. Recall that simple functors Sy v
over a field K are parametrized by pairs (H,V) where H is a finite group (a p-group in our situation)
and V is a simple K[Out(H)]-module.

Theorem C. The functor () ®z D is simple. More precisely, it is isomorphic to Sg g, where FE is

elementary abelian of rank 2 and () is the trivial module.

Our fourth main result asserts that there is an exact sequence relating the Dade group D(P), the
Burnside ring B(P), and the Grothendieck ring Rg(P) of QP-modules. The composition factors of the
Burnside functor @ ®z B(—) were analysed in [Bol] (for the category of all finite groups). For functors
defined only on p-groups, we prove a similar result for K ®z B, where K is a field of characteristic different
from p (see Section 8). When K = (), there are just two composition factors Si g and Sgq, fitting in a

non-split exact sequence of functors
0—S5e0—Q®zB—S5190—0.

But in fact 519 =2 Q®z Rg and Sg,g = Q ®z D by Theorem C. Thus we obtain the following result.

Theorem D. There is an exact sequence of functors
0—Q®zD-50Q0zB - Qe Ry —0,

where ¢ is the natural homomorphism mapping a P-set to the corresponding permutation (Q P-module.

We also give an explicit description of the map « on a basis of QD(P), for every p-group P.

When p is odd, there are analogous results for the functor ﬁ(—) appearing in Theorem B. We prove
that it is a simple functor over the field [F5 , isomorphic to Sc, r,. Moreover, there is an exact sequence of
functors

0 — D! — Fy ®3 Rg 28 Ty, — 0,

where 'y, denotes the constant functor with values Fs .



1. The Dade group

We first recall some standard facts concerning endo-permutation modules and the Dade group. Details can
be found in Dade’s original paper [Da2] or in Sections 28-29 of [Th]. Let k be a field of characteristic p
and let P be a finite p-group. An endo-permutation kP-module M is said to be capped if M has at least
one indecomposable direct summand with vertex P . By assumption, the P-algebra A = Endg(M) has a
P-invariant basis X and the condition that M be capped is equivalent to the requirement that the Brauer
quotient A[P] = AP/ ZQ<P AS is non-zero, or equivalently that X has at least one P-fixed point (because
A[P] has basis X ). The endo-permutation modules we shall consider will always be capped and we shall
often omit to mention it. The main examples of endo-permutation modules are the kP-modules Q’])/Q(k)
where @ is any normal subgroup of P and Qp/q denotes the Heller operator for the quotient group P/Q .

A k-algebra A is called a Dade P-algebra if it is a P-algebra (i.e. P acts on A by algebra auto-
morphisms) which is central simple and split (i.e. isomorphic to a matrix algebra over k) and if A has a
P-invariant basis with at least one P-fixed point. Thus if M is a capped endo-permutation kP-module,
then A = Endg (M) is a Dade P-algebra. Conversely, if A is a Dade P-algebra, then A = Endg(M) for
some k-vector space M and the P-action on A lifts uniquely to a kP-module structure on M (thanks to
the fact that P is a p-group), so that M becomes a capped endo-permutation module. Thus the concepts
of capped endo-permutation module and Dade P-algebra are equivalent. By the very definition of an endo-
permutation module, the emphasis is put on the corresponding Dade P-algebra, so we shall often use the
algebra point of view.

The following result is basic for understanding the Dade group.

(1.1) Lemma. If M is a capped endo-permutation kP-module, then any two indecomposable direct

summands of M with vertex P are isomorphic.

Such an indecomposable direct summand is called a cap of M and is uniquely determined up to isomorphism.
It is again a capped endo-permutation kP-module. Two capped endo-permutation modules M and N are
said to be equivalent if they have isomorphic caps, in which case we write M ~ N . The set of equivalence
classes of capped endo-permutation kP-modules is written D(P), or Dg(P) when we need to emphasize
the base field k. The tensor product of kP-modules induces a group structure on D(P) . The unit element
is the class of the trivial module and turns out to consist of all permutation modules (which are capped, i.e.
have a summand isomorphic to k). The inverse of the class of M is the class of the dual module M* . The
group D(P) is abelian and is called the Dade group of P.

In any equivalence class, there is a unique indecomposable module up to isomorphism (namely the cap
of any module in the class), so it is often convenient to view D(P) as the set of isomorphism classes of
indecomposable endo-permutation kP-modules with vertex P . However, the tensor product of two such
indecomposable modules need not be indecomposable, so one needs to take its cap to recover the group
structure in terms of indecomposable modules.

One can also view the equivalence relation in terms of Dade P-algebras as follows. Two Dade P-algebras
A and B are equivalent (written also A ~ B) if and only if {47 = jBj , where i is a primitive idempotent
of AP with brp(i) # 0 and j is a primitive idempotent of BY with brp(j) # 0 (both are unique up to
conjugation by Lemma 1.1). Here brp : A¥ — A[P] is the quotient map, called the Brauer homomorphism.
Thus D(P) is also the group of equivalence classes of Dade P-algebras and we shall freely use either point
of view. The group structure is induced by the tensor product of algebras. Moreover, the inverse of the class
of A is the class of the opposite P-algebra A° | because if Endy(M) = A, then Endy(M*) = AP .
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There is yet another way of viewing the equivalence relation: M ~ N if and only if there exist
modules V' and W in the trivial class (i.e. permutation modules with a trivial summand) such that
M ®, V=N @, W. In terms of Dade P-algebras, A ~ B if and only A ®; Endg(V) = B @ Endg (W)
for some V and W as above.

Despite the fact that the group structure on D(P) is induced by the tensor product, we shall use an
additive notation, which is much more convenient in the formulas and in many computations. Thus, for any

endo-permutation modules M and N , we define
[M]+ [N] = [M @& N],

and similarly in terms of Dade P-algebras. For simplicity, we shall write Qp;q for the class of Q}D/Q(k) .
For example, the class of Q7% (k) is equal to nQp , since we have Q7 (k) ® Q% (k) = QB (k) @ (free) .

There is an obvious restriction map
Res(, : D(P) — D(Q)
where @ is a subgroup of P . If @ is a normal subgroup, there is also an obvious inflation map
Infp,o « D(P/Q) — D(P).

For instance €2p;q is the image under Infllj/Q of the class of the Heller translate of the trivial module for

the quotient group P/@Q . Finally we define the deflation map
Defp) o : D(P) — D(P/Q)

as follows. If A is a Dade P-algebra, then the Brauer quotient A[Q] = AQ/ZR<Q Ag turns out to be
a Dade (P/Q)-algebra and we set Defg/Q([A]) = [A[Q]] where [A] denotes the class of A. This is the
slash construction in Dade’s terminology. If X is a P-invariant basis of A, then the Q-fixed points X©
form a (P/Q)-invariant basis of A[@]. The three above maps are group homomorphisms and are part of
the functorial framework which will be introduced in Section 2 and 3 (and fully used in Sections 7-11). The
fourth important map is tensor induction and will be introduced in Section 2.

If @ is a subgroup of P and R is a normal subgroup of @, then @Q/R is a section of P and we define
Defresg/R = Defg/R ReséJ :D(P) — D(Q/R).
An important subgroup of D(P) is the kernel of all these maps. We consider

H DefresﬁP(Q)/Q :D(P) — H D(Np(Q)/Q),
Q#1 Q#L

where @ runs over all non-trivial subgroups of P (up to conjugation). We define

T(P) = Ker(H DefresﬁP(Q)/Q) = m Ker(DefresﬁP(Q)/Q).
Q#1 Q#1

Recall that a kP-module M is called endo-trivial if Endg (M) = k & (free) as a kP-module. In that case
M is a capped endo-permutation module. The connection with T'(P) is provided by the following result.
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(1.2) Lemma. (Puig [Pu2, 2.1.2]). Let M be an indecomposable endo-permutation kP-module with
vertex P. Then [M] € T(P) if and only if M is endo-trivial.

Thus the subgroup 7'(P) coincides with the group of endo-trivial modules. Another characterization of
endo-trivial modules has recently been obtained by J. Carlson [Ca2].

In view of its essential role in the sequel, we recall the following result about Qp .

(1.3) Lemma. Let @) be a subgroup of P .
(a) Resg(Qp) =Qq.
b) If Q is a non-trivial normal subgroup of P , then Def5,,(Qp) = 0. In other words, Qp is endo-trivial.
8 P/Q

Proof. (a) We have ResJ:'QD (QL(k)) = Qb(k) @ (free) .
(b) We have Endy(Qb(k)) = Qh (k) @ Qb(k)* = Qh (k) @k Q;l(k‘) =k @ (free) as kP-modules. O

We can now recall the two main theorems about the Dade group.

(1.4) Theorem. (Dade [Da3, 10.1 and 12.5]). Assume that P is abelian.

(a) T(P) isgenerated by Qp . Thus T(P) is trivial if |P| = 2, cyclic of order 2 if P is cyclic of order > 3,
and infinite cyclic otherwise.

(b) D(P) is isomorphic to the direct sum of the groups T(P/Q), where @ runs over the subgroups of P .
Thus D(P) = Z" & (Z/27)° , where r is the number of non-cyclic quotients of P and s is the number
of cyclic quotients of P of order > 3.

Of course T'(P/Q) is identified with a subgroup of D(P) via inflation. Note that (a) is hard to prove, but
that (b) follows rather easily from (a) by induction. Another proof of the crucial step for (a) (namely when
P has order p?) is due to Carlson [Cal].

(1.5) Theorem. (Puig [Pu2, 2.2 and 2.4]).

(a) The kernel of the restriction map T(P) — [[pT(F), where E runs over the elementary abelian
subgroups of P, is finite.

(b) The group D(P) Is finitely generated.

The proof of (a) uses a non-trivial cohomological result of Carlson and some algebraic geometry (though
Puig’s version is explained in terms of commutative algebra). By induction, (b) follows easily from (a) and
Dade’s theorem above.

The previous results imply the following injectivity theorem, which is one of our main tools for finding
the torsion-free ranks of D(P) and T'(P). For simplicity, we write QD(P) = Q ®z D(P) and QT(P) =
QezT(P).



(1.6) Theorem. The following maps are injective:

(a) Res:QT(P)— [[zQT(E), where I runs over the elementary abelian subgroups of P of rank 2.

(b) Defres : QD(P) — HQ/RQD(Q/R), where @)/ R runs over the elementary abelian sections of P of
rank 2.

Proof. (a) By Theorem 1.5 (a), the restriction map to all elementary abelian subgroups is injective after
tensoring with @ . But if Ej denotes the elementary abelian group of rank &, we have QT'(E;) = 0, while
the restriction map Resg’; :T(Ex) = T(F>2) is an isomorphism if k& > 2, by Theorem 1.4 (a) and the fact
that Resg:(QEk) = Qp, . The result follows.

(b) We prove the injectivity of the map by induction on |P|, starting with the trivial case of a cyclic
group. If now P is not cyclic, let a € QD(P) lie in the kernel of all maps DefresS/R for sections @Q/R
which are elementary abelian of rank 2. If H is a non-trivial subgroup of P | then ay = DefresﬁP(H)/H(a)
also lies in the kernel of all maps Defresgfl(%H)/H for sections @/R of rank 2 in Np(H)/H , by transitivity
of these maps (which easily follows from the definitions). By induction, we have ag = 0. Since this holds for

every non-trivial subgroup H , it follows that a € QT'(P), by definition of T'(P) . Now for every elementary
abelian subgroup E of rank 2, Resg (a) =0 by assumption. Therefore ¢ =0 by (a). O

2. Tensor induction and some functorial constructions

The purpose of this section is to introduce a construction which contains tensor induction as a special case.
In fact, it turns out that the five natural operations on Dade P-algebras, namely restriction, inflation,
deflation, tensor induction, and isomorphisms, can be recovered by means of a single mechanism. We define
this construction here, not only because of its simplicity and its use later in Section 7, but also because the
proofs of the results which we need about tensor induction of Dade P-algebras are actually simpler if we
adopt this approach. Those results will be proved in the next section.

Throughout this section and the next, it is much more convenient to work with Dade P-algebras rather
than endo-permutation modules. However, we first recall the notion of tensor induction of modules, and then
of algebras. Let H be a subgroup of a finite group G and let G/H denote the set of right cosets gH where
g € G (i.e. right orbits under the action of H). If M is a kH-module, recall that the tensor induction
of M is the kG-module Tean(M) defined as follows. As a k-vector space, we have

Tenfy (M) = Q) (kC @n M),
CeG/H

and the kG-module structure is given by

g- [ ® (sc ®mc)] = ® (gsg-1c @ My-1¢)

CeG/H CeG|H

where g € G and, for each C € G/H, s¢ € C and m¢ € M. If [G/H] denotes a set of coset
representatives, then we have Tean(M) = ®se[G/H](5 ® M) and the action of g is given by

gl QR Gom))= Q () @hm)= (K (5@ h-1me-r(y)),

s€[G/H] s€[G/H] s€[G/H]



where gs = 7(s)hs, hs € H and 7 is a permutation of [G/H]. The basic properties of tensor induction
(e.g. transitivity, multiplicativity, Mackey formula) can be found in [Be, 3.15], but we shall actually recover
them by means of our functorial formalism (at least for permutation modules).

If Aisan H-algebraover k,then kC®ppA isan algebra (isomorphicto A), via (s®a)(s®a’) = s@aa’
where s € C' is fixed (and this is independent of the choice of s). Therefore the tensor product of algebras
Qcec/u(kC ®km A) has an algebra structure. It follows that the kG-module Ten$(A) has a G-algebra
structure, since it is easy to check that G acts on Teng(A) by algebra automorphisms. Moreover tensor

induction of modules and algebras are related in the following way.

(2.1) Lemma. Let M be a kH-module and consider the corresponding H-algebra Endy (M) . Then there
is an isomorphism of G-algebras Ten§ (Endg(M)) = Endy (Ten§; (M) .

Proof. Let [G/H] be a set of coset representatives. Then there is a canonical isomorphism of k-algebras

¢ : ® (3®Endk(M));>Endk( ® (3®M))

sE[G/H] s€[G/H]

and therefore Ten% (Endk(M)) = Endg (Tenfl(M)) as k-algebras. In order to check that ¢ commutes with
the action of G, we choose g € G and write gs = 7(s)hs; as before. We also have g='s = T_l(s)hr__ll(s) .

Since H acts on Endg(M) by conjugation, the action of g on Ten$ (Endk(M)) is given by

9l @ Gea)]= Q ()@ hah),

s€[G/H] s€[G/H]

where a; € Endg (M) for all s. We have to prove that this is the same action as the conjugation action
of g on Endg(Ten$§(M)) . Given R seiam (8@ ms) € Ten$ (M) , we have

9l @ oa)s'[ @ om)=g] Q o) & (s©hi'my)

se[G/H] s€[G/H] se[G/H] se[G/H]
=g [ ® (s® ashs_lmT(s))] = ® (T(s) ® hsashs_lmT(s))
s€[G/H] s€[G/H]
=[ @ () @hah [ Q) (r(s) @ my))]
se[G/H] se€[G/H]
= [ ® (T(s) ® hsashs_l)] [ ® (5®ms)] .
se[G/H] s€[G/H]

The result follows. O

Now we introduce our functorial formalism. The main idea is to change the point of view about Dade
P-algebras. Instead of viewing them as P-algebras in which there exists a P-invariant basis, we consider
a permutation kP-module kX with a fixed basis X and we then look at all possible algebra structures
on kX . For Dade P-algebras, we actually only need to consider central simple split algebra structures.

We first have to introduce our construction for permutation modules. Let p be a prime number and let
k be a field of characteristic p. If P is a finite p-group, we denote by Permy(P) the category of finitely
generated permutation kP-modules. The objects of Permy(P) are the kP-modules M which admit a
P-invariant k-basis and the morphisms in Permg(P) are the morphisms of kP-modules. Let Perm,(P)

denote the following category: the objects of Permy, (P) are the finite P-sets, and a morphismin Perm(P)

-8 —



from Y to X is a matrix m(z,y), indexed by X x Y, with coefficients in %k, which is P-invariant, i.e.
such that m(gz, gy) = m(z,y) for all (z,y) € X xY and all g € P. The composition of morphisms is
given by usual matrix multiplication.

There is an obvious functor ep : Perm,(P) — Permy(P), mapping the P-set X to the module kX |
and the matrix m indexed by X x Y to the morphism from kY to kX defined on the k-basis Y of kY
by

YeEY — Zm(m,y)xEkX.
zeX
The functor ep is fully faithful by construction, and it is essentially surjective since any permutation module
admits a P-invariant k-basis X | hence is isomorphic to kX . Thus ep is an equivalence of categories, and
this allows us to define our constructions on permutation P-algebras only in the category Permy(P).

It is clear for instance that the direct sum functor in Permy(P) , mapping a pair of modules M and M’
to their direct sum M @ M’ corresponds to the disjoint union functor, mapping a pair of P-sets (X, X’)
to their disjoint union X U X’ | and a pair of morphisms (m,m’) with m:Y - X and m’: Y’ = X’ to
the morphism mUm' : YUY’ — X U X' defined by

m(a,b) if aeX,beY,
(mUm')(a,b) =< m'(a,b) if aecX',beyY’,
0 if aeX,beY' oraeX',beyY.

In other words, we have an isomorphism
€p(X |_|X/) = 6P(X) o) €p(X/)

which is natural in X and X’. Similarly, the tensor product of modules corresponds to the cartesian

product: define the cartesian product of m:Y — X and m’: Y’ — X’ to be the morphism
mxm Y xY' = X x X', (mxm)(z,2',y,y") = m(z,y)m' (2, y').
Then clearly ep(X x X') Z ep(X) @k ep(X'), and this is functorial in X and X'.

Let P and @ be finite p-groups, and let U be a finite biset, which is a left @)-set and a right P-set,
such that the actions of P and () commute. Such a biset will be called a @-set-P for short. The opposite
biset U is the P-set-() obtained as usual from the underlying set U by reversing the actions

guh (inU?) = h~tug™ (inU), Yge P,Yhe @, Yuel.

If X is a finite P-set, then the set Homp (U, X) of all P-equivariant maps U — X is a finite Q-set.
We define a functor Ty from Perm,(P) to Perm,(Q) on objects by

TU(X) = HOHlp(UOp,X).

If m is a P-invariant matrix indexed by X x Y, let Ty (m) be the matrix indexed by Ty (X) x Ty (V)
defined by
To(m) (g, v)= [ m(s(w),¢(w).
u€[U/P]
It is clear that this does not depend on the choice of the set of orbit representatives of U/P , since m is

P-invariant.



(2.2) Lemma. The correspondence Ty is a functor from Permy(P) to Perm(Q).

Proof. First it is clear that Ty (m) is @-invariant, since for every h € @ we have

Ty(m)(hp, k) =TT mle(h™"u), ¢(h™"u)) = Tu(m)(p,¥),

ue[U/P]

because the image by h~! of a set of orbit representatives of U/P is another set of representatives.

Now of course, if m represents the identity morphism, then Ty (m)(p, ) is non-zero if and only if
o(u) = ¥(u) for all uw e U, or equivalently if ¢ = . So Ty (m) is the identity morphism.

Finally, let Z be another P-set and let n be a matrix representing a morphism in Permy(P) from
Z to Y . The product matrix m - n is defined by

(m-n)(z,2) = Z m(z,y)n(y, z) .

yey

Let 6 € Homp(U®,Z) and ¢ € Homp (U, X). Then

(2.3) Ty(m-n)e,0)= I (3 mle())n(y.00)).

u€[U/P] yeY

Now for a given u € [U/P], we have

> m(e(u), y)n(y,0(u)) > m(e(u), gy)n(gy, 0(u))

yey y€[Pu\Y]
QE[PH/Pu,y]

= > m(p(ug),y)n(y, (ug))
yelP\Y]
QE[Pu/Pu,y]

o 1P Puylm(p(u), y)n(y, 0(u)) .

yE[Pu\Y]

As P, is a p-group and k is of characteristic p, the coefficient |P, : P, 4| is zero unless P, , = P, , or
equivalently y € YTu .

Now expanding the product in Equation (2.3) is equivalent to choosing for each u € [U/P] an element
Yo € YP« . This in turn is equivalent to defining a P-morphism 3 from U to Y (by ¥(v') = gy, if
u€[U/P], g € P,and u' = ug). This gives finally

Ty (m - n)(p,0) = > T m(e), w(w)n(w(u), 6(u))

Y€EHomp(U°PY) ue[U/P]

- > Ty (m)(p, ¥) Tu (n) (¢, 0) .

Y €E€Homp(U°P)Y)

This proves that m — Ty (m) is multiplicative, and the lemma follows. O

(2.4) Remark. The previous lemma still holds in a more general framework: we only need to suppose that
k is a commutative ring of characteristic p and that P is a finite group such that, for any u € U, the
stabilizer P, of u in P is a p-group. The construction of the functor Ty is taken from [Bo2], where it is
studied in a much more general framework. In fact, it is possible to define Ty (M) for any kP-module M
(and also for Mackey functors) but the definition is more complicated. Our presentation here is easier thanks

to our use of invariant bases.
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(2.5) Example: Restriction. Let @) be a subgroup of P, and set U = P | viewed as a @-set-P by left
and right multiplication. Then if X is a P-set, it is clear that

Ty (X) = Homp(U?, X) = Homp(P, X) = Res(, X .
Similarly, if m is a morphism in Perm, (P) from X to Y, then since U/P = {1} we have

T (m) (9, 4) = m{p(1), (1))
In other words, the functor Ty is just the restriction functor in this case.

(2.6) Example: Tensor induction. In the same situation, set V = P, viewed as a P-set-Q by left and
right multiplication. Then the functor Ty is a functor from Perm,(Q) to Perm,(P). Let S be a set of
coset representatives of P/Q . If X is any @Q-set, there is a bijection

Ty (X) = Homg (V*, X) = Homg(P, X) = [ X,
SES

mapping ¢ € Homg (P, X) to the sequence (go(s))ses . Conversely, if (zy)ses is a sequence in [[ .4 X,

then we can define a morphism of @-sets ¢ from V to X by
p(sh) =h'z,, VseS,Yheq.

With this identification, the action of g € P on [[,.¢ X is given as follows. There is a permutation 7 of S
and hs € @ such that gs = 7(s)hs for all s € S. Then we have g~'s = T_l(S)h;_ll(s) and it follows that
the action of g on the sequence (z;)ses produces the sequence (h,-1()Z,-1(s))ses -

Now the module & (Hses X) is isomorphic to the n-th tensor power of kX , where n = |S|, and the
previous description of the action of P on Teng(kX) shows that

ETy (X) 2k (J] X) = Tenf(kX)
SES

as kP-modules. Moreover, if m is a morphism in Perm(P) from X to Y, then for ¢ € Homg(V?,X)
and ¢ € Homg(VP,Y) we have

Ty (m) (¥, @) = [[ m(¥(s), ¢(s))

SES
Identifying k£ 7Ty (X) with Teng(kX) , this shows that the morphism Ty (m) is given by
Ty (m)(zs,®...Qxs,) = Z (Hm(ytl,a:sl)) 1®...9t, = ( Z m(tl,sl)t1)®. . .®( Z m(tn,sn)tn) .
t1,.,tn€S i=1 t1€S tn€S

In other words 7y (m) is the |S|-th tensor power of m. So the functor Ty gives rise to the tensor

induction functor (up to some obvious composition with the equivalences ep : Perm, (P) — Permy(P) and

eq : Perm; (Q) — Permy(Q) ).
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(2.7) Example: Inflation. Let R be a normal subgroup of P and let @ = P/R. Let U = @, viewed
as a P-set-@) by projection and multiplication on the left, and by multiplication on the right. If X is any
@-set, then Ty (X) = Homg (U, X) is just the set X with its structure of P-set obtained by inflation
from @ to P.If m is a morphism of @-sets from X to Y, as U/Q = {1}, we have

Ty (m)(g, ¥) = m(e(1), %(1)),
as in Example 2.5 above. So Ty 1is just the inflation functor in this case.

(2.8) Example: Deflation. In the same situation as in Example 2.7, set V = @, viewed as a Q-set-P .
Then if X is a P-set and if X denotes the set of R-fixed points, there is an isomorphism of @Q-sets

Ty (X) = Homp(VP, X) = XF

mapping ¢ € Homp(V %, X) to ¢(1) € X . The inverse isomorphism maps = € X to the morphism
¢ € Homp(V°P, X) defined by ¢(g) = gz where § € @ is the image of g € P. It follows that &k Ty (X) is
isomorphic as k@-module to the Brauer quotient (kX)[R]. Here again, as V/P is a single point, it is clear

that this isomorphism is functorial in X .

(2.9) Example: Isomorphisms. Let 6 : P — @ be a group isomorphism. Then we can view U = @ as a
@-set-P | by left multiplication, and right multiplication twisted by 6. It should be clear in that case that
the functor Ty is just the functor “change of group via 6”7. We shall denote it by Ison3 , for it will always

be clear in the context which isomorphism is used.

Before introducing algebra structures on our permutation modules, we need to know the basic properties

of the functors Ty .

(2.10) Proposition. Let P and @ be finite p-groups and let U be a finite Q-set-P .
(a) If X is the trivial P-set, then Ty (X) is the trivial @Q)-set.
(b) If X and Y are P-sets, then there are isomorphisms

TU(X X Y) = TU(X) X TU(Y)

which are natural in X and Y in the category Perm,(P). Moreover if Y = X and o is the switch
endomorphism of X x X (defined by o(x1,z2, 2], 24) = Oz, w10z, 01 , where & is the Kronecker symbol),
then Ty (o) is the switch endomorphism of Ty (X) x Ty (X) .

(c) If U’ is another finite Q-set-P , then there is an isomorphism of functors Ty,y' = Ty x Ty .

Proof. (a) If X is the trivial P-set, then Ty (X) is the trivial @-set, since there is a unique morphism of
P-sets from any P-set to X .

(b) There is a canonical isomorphism of @-sets
Ty (X x Y) = Homp (U, X x Y) 2= Homp (U, X) x Homp(U?,Y) = Ty (X) x Ty (Y).

To see that it is natural in X and Y in the category Perm;(P), suppose m: X — X' (resp. n:Y =Y")

are morphismsin Permy(P). Then m isa P-invariant matrix indexed by X’ x X , and n isa P-invariant
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matrix indexed by Y’ x Y . The associated morphism from X xY to X’ x Y’ is the matrix m x n indexed
by (X' xY')x (X xY), given by

(mxn)(z', ¢, z,y) = m(2',z) n(y,y) .

Now let ¢ : UP — (X xY) and ¢ : UP? — (X' x Y') be morphisms of P-sets. Denote by ¢x
(respectively ¢y ) the composition of ¢ with the projection X x Y — X (respectively with the projection
X xY =Y ), and define similarly ¢, and ¢}, . The morphism Ty (m x n) is then defined by

Ty(m x n)(¢', ) = Egp] m(ex (1), ox (1)) n(py (u), v (u)) -
This can also be written as
Ty(m x n)(¢',¢) = ( E[I;I/P]m(so'Xf(U):sox(U))) ( E[IU_[/P] ”(@'Y'(U):SDY(U))) :
so that
Ty (m x n)(¢', ¢) = Tu (m)(¢x, ¢x) To (n)(#y 1, #v)

which is equivalent to Ty (m x n) = Ty (m) x Ty (n) .

Now when Y = X | the switch morphism ¢ is defined by

! I
0-(@1717 Lo, Ty, $2) = 6@‘1,@"251:’1,:62

where d is the Kronecker symbol. Soif ¢ = (¢1,¢2) and ¢’ = (¢], ¢5) are morphisms from U to X x X |
then

Tu(o) (e, @) = T Oeriwesw)del w)eatu) -
uel[U/P]

This is non-zero if and only if ¢1 = ¢} and ¢} = @2 . Therefore Ty (o) is the switch endomorphism
of TU(X) X TU(X) .

(¢) If X is a P-set, there is a canonical isomorphism of Q-sets
Tyuw (X) = Homp (U UU')P, X) = Homp (U, X) x Homp(U'?, X) = Ty (X) x Ty (X)),

mapping a morphism ¢ : (U UU')? — X to the pair (¢, ¢ju+) . Moreover, if m is a morphism from Y
to X, then Tyuy:(m) is defined by

Tyuo (m)(e, ¥) = H m(p(u), ¢ (u))

ue [(wuun)/P]
where ¢ € Homp((U UU)P X) and ¢ € Homp((U L U')P)Y) . This product can also be written as
Tyuo (m)(p,¢¥) = H m (g (), Y (u)) H m(gy (u'), Yo ()
u€[U/P] u’€[U'/P]
=Ty (m)(pv, Yyo) Tv (m) (e, Yu) -

This proves that Tyuy:(m) = Ty (m) x Ty(m) . O
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Now we introduce algebra structures on our permutation modules. Suppose we are given a permutation
P-algebra A over k| that is, a P-algebra with a P-invariant k-basis X . Equivalently, A is a permutation

k P-module together with a multiplication map and a unit map

p:A®,A— A and ek — A,
satisfying conditions of associativity and unitarity, which can be expressed in terms of commutative diagrams
in the category Permy(P) as follows:

1d® e®id id@e
Ak A A——>

L > Ae A kor A—"" > A@r A= A@i k
u®id Iz \ju/

A
Ao A m A

Using the basis X , we have morphisms g : X x X — X and ¢:e — X in Perm;(P) and the following

diagrams are commutative:

TdX p exid idXxe
XXXxX——XxX oex X ——— =X XxX=——""""XXxe
X
XXXN—>X

We can take the images of pu and & by the functor Ty . Since Ty maps the trivial set to the trivial set

and since it commutes with direct products, we obtain maps
TU(H) :TU(X) XTU(X)%TU(X) and TU(Q):O%TU(X),

which define a multiplication map and a unit map on k 7y (X) . Taking the images of the previous diagrams
by the functor Ty, we see that kTy(X) is a k-algebra. Moreover, since kTy(X) is a permutation
kQ@-module, it is a permutation @Q-algebra, which we denote by Ty (A) .

The algebra Ty (A) only depends on A up to isomorphism. Indeed, if A’ is a permutation P-algebra
isomorphic to A, with multiplication u’ and unit &', then A’ admits a P-invariant k-basis X’ and there

exists an isomorphism m : X — X' in Perm;(P) such that the diagrams

2] €
XxX — X « - . X
X' xX —s X' ¢« — = X'
I el

are commutative. Taking the images of those diagrams under Ty , we see that Ty (m) induces an algebra
isomorphism Ty (A4) = Ty (4') .

The endomorphism algebra Endg(kX) of a permutation kP-module kX is a special case of a permu-
tation P-algebra. In terms of the basis X ;| Endg(kX) has basis X x X where (z,y) is the endomorphism
of kX mapping z € X to J,, -z . This is the standard basis of a matrix algebra. Moreover the algebra
structure of Endg(kX) is given by (z,y)(z,t) =4y, - (,1).
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(2.11) Lemma. Let X be a P-set and let U be a finite Q-set-P. Then the Q-algebra Ty (Endy (kX))
is isomorphic to Endy (k TU(X)) .

Proof. In view of the above observations, Ty (Endk(kX)) has basis Ty (X x X) while Endy (k TU(X)) has
basis Ty (X) x Ty (X) . So we have to prove that the natural isomorphism Ty (X x X) = Ty (X) x Ty (X)
gives rise to an algebra isomorphism of the corresponding permutation P-algebras. The multiplication in
k(X x X) corresponds to the matrix m indexed by X* x X? given by

L if zo=as, z1=y1, 24=y2,

0 otherwise.

Therefore the multiplication in Ty (X x X) is given by

m(dy, @2, b3, da, 1, ¥2) = H m (o1 (u), da(u), d3(u), da(u), v1(u), Yo (u))

uel[U/P]

_J 1 it do(u)=¢s(u), é1(u)=v1(u), ¢a(u)=va(u),Vu € [U/P],
0 otherwise,
_ 1 it ¢a=¢s, ¢1=Yn, da=1s,
0 otherwise.
This corresponds precisely to the multiplication in k(TU(X) x Ty (X)) . O

m(r1,$2,$3,$4;y1;y2) =

Note that, in the special case of tensor induction (Example 2.6), Lemma 2.11 gives a version of Lemma 2.1

(only for permutation modules).

(2.12) Proposition. Let A and B be two Dade P-algebras over k and let U be a finite Q-set-P .
(a) Tu(A) is a Dade Q-algebra.
(b) If A and B are equivalent, then Ty (A) and Ty (B) are equivalent.

Proof. (a) We first observe that if we apply Ty to Endg(kX) where kX is a permutation kP-module, we
obtain a ()-algebra Ty (Endk (kX)) which is again isomorphic to the endomorphism algebra of a permutation
module, by Lemma 2.11.

Let X be a P-invariant basis of A. By construction, Ty (A4) is a permutation @Q-algebra, with
Q@-invariant basis Ty (X). Since X has a P-fixed point « by definition, Ty (X) = Homp (U, X) has a
(Q-fixed point, namely the constant map on =z .

Now A is isomorphic to a matrix algebra, so that we have A ®; A% = Endy(A4). As the product for
the opposite algebra A°F is obtained by composing the multiplication g with the switch endomorphism
of A®y A, it follows from Proposition 2.10 that Ty (A?) = Ty(A)? as kQ-algebras. Therefore, by
Proposition 2.10 again,

Ty (A) Qi Ty (A)Op > Ty (A R AOp) >Ty (Endk (A)) ,
and by the observation above, Ty (Endk (A)) is again isomorphic to the endomorphism algebra of a (per-
mutation) module, hence to a matrix algebra. It follows that Ty (A) is a central simple algebra over k.

Finally we have to see that Ty (A) is split. This is a technical point which we shall prove in full
generality in the next section (see Lemma 3.12), but we mention here that it obviously holds if k is either
algebraically closed or a finite field, because the Brauer group of such a field is trivial. So Ty (A4) is a Dade
(Q-algebra.

(b) If A and B are equivalent, then

A ®p El’ldk(kX) >~ B Qg Endk(kY)
for some permutation modules kX and kY . Therefore, by Proposition 2.10 and Lemma 2.11, we obtain
TU(A) ®r Endy (]i? TU(X)) = TU(B) ®r Endy (k’ TU(Y)) ,
and this shows that Ty (A) and Ty (B) are equivalent. O

— 15 —



(2.13) Corollary. If U is afinite Q-set-P, the functor Ty induces a group homomorphism D(P) = D(Q),
mapping the class of a Dade P-algebra A to the class of the Dade Q-algebra Ty (A).

This map will be denoted by D(U) : D(P) — D(Q). In the five examples mentioned before (Exam-
ples 2.5-2.9), we obtain the fundamental operations of restriction, tensor induction, inflation, deflation, and

isomorphisms.

3. Composition

We need to know how the natural operations introduced in the previous section compose with each other.
A particularly important result for the sequel describes the composition of tensor induction and deflation.
But our uniform formalism allows us to prove a single result for the composition of the functors 7y, which
can be specialized to various situations.

It turns out that the composition of two functors 7y cannot be expressed only in terms of other such
functors. There is still another natural operation on Dade algebras and endo-permutation modules which
appears, that relies on the action of field endomorphisms (Galois actions for perfect fields).

If a is an endomorphism of &k, we denote by
Ya : Permy (P) — Permy (P)

the functor which is the identity on objects and which maps the morphism m : Y — X to the morphism
Ya(m) :Y — X defined by

Ya(m)(z,y) = a(m(z,y)) Ve€ X, VyeY.

We shall be interested in the special case where a(A) = AP" for all A € k (where n > 0 is an integer), in
which case we simply write +,» for this functor. Note that this endomorphism is a (Galois) automorphism
if and only if & is perfect. So in the general case we have to consider endomorphisms.

Let A be a permutation P-algebra, with multiplication g and unit €. Choosing a P-invariant k-basis

X of A, we have morphisms p: X x X — X and g:e — X in Permy(P) and commutative diagrams:

tdXp exid idxe
XxXxX——Xx X oex X ——= X x X=——"—"XXe
puxid £ \Lﬁ/
X
XXXH—>X

We can take the image of those diagrams by our functor =, . It is clear that if m and n are morphisms

in Permy(P), then v4(m x n) = v4(m) x v4(n), so the previous diagrams become

idXva(p) Ya(g)xid idxa(e)
XXX xX—X x X oex X — = X x X=——""X xeo
. H
Vo) xid Ya () Yale) L_ Ya(g)
X
XxX———X
Ya (1)
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and this shows that we have defined another algebra structure on kX , which we will denote by 7v,(A) . This
algebra structure is obtained by twisting by the endomorphism a the multiplication constants of A with
respect to the fixed P-invariant k-basis X .

The algebra v,(A) only depends on A up to isomorphism. Indeed, if A’ is a permutation P-algebra
isomorphic to A, with multiplication u’ and unit &', then A’ admits a P-invariant k-basis X’ and there

exists an isomorphism m : X — X' in Permy(P) such that the diagrams

2] €
XxX — X e —— 5 X
X' xX — X' ¢« — = X'
u el

are commutative. The images of those diagrams under +, show that ~,(m) is an isomorphism of P-algebras

from v4(A) to v4(A’) . It is also clear that if A and B are permutation P-algebras, then

Va(A®k B) Z7a(4) ®7a(B)  and 7, (A7) = 7, (A)7.

(3.1) Lemma. Let a be an endomorphism of the field k and let A and B be two Dade P-algebras
over k.
(2) v4(A) is a Dade P-algebra.

(b) If A and B are equivalent, then v,(A) and ~,(B) are equivalent.

Proof. (a) As 74(A) has the same P-invariant basis as A, there is a fixed point in this basis. In order to
show that ~,(A4) is a matrix algebra, it suffices to restrict the group action to the trivial group (in which case
we have many more bases available). Now A isisomorphicto M, (k) for some n andso v,(A) = 7, (Mn (k))
by the observations above. Choosing the canonical basis of the matrix algebra M, (k) , the multiplication
constants have values 0 or 1 and so are fixed under a . It follows that ~, (Mn(k)) = M, (k).

(b) If A and B are equivalent, then A®y Endg(kX) = B®y Endg(kY) for some permutation modules
kX and kY . Since 75, preserves tensor products, it suffices to show that =, (Endk(k‘X)) is again the
endomorphism algebra of a permutation module. But since Endy(kX) has P-invariant basis X x X with

multiplication constants having values 0 or 1, it is fixed under v, . O

It follows that +, induces a well defined map v, : D(P) — D(P) , mapping the class of a Dade P-algebra A
to the class of v,(A).
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(3.2) Lemma. Let P and @ be p-groups, let U be a @Q-set-P , and let a be an endomorphism of k .
(a) There is an isomorphism of functors 0 : Ty 0 yq — 4 © Ty from Perm,(P) to Perm,(Q) .
(b) We have D(U)o~q =740 D(U) as maps D(P) = D(Q) .

Proof. Note that we use the same notation v, : Permy(P) — Perm,(P) for every p-group P, without
mentioning P . It is clear that Ty o4, and =, o Ty coincide on objects since 7, is the identity on
objects. Thus the map fx is equal to the identity for any P-set X . Now if m : Y — X is a morphism

in Perm,(P), we have

(T or)m)(e,¥) = [ ralm)(e).v@) = [ a(m(e), )

u€e[U/P] u€l[U/P]

I m(e(u),v(u) | = (va o Tv)(m)(e,¢),

ue[U/P]

Il
)

and (a) follows. Now if X and Y are P-sets, the diagram

(Tr 07a)(X xY) ——— (T 0 7a)(X) x (Tt 0 74)(Y)

9Xxy|v [gxxﬁy

(Ya o Ty)(X xY) ——— (va o Tv)(X) X (va o Tv)(Y)

is commutative, since the vertical arrows are both the identity maps, and the horizontal ones are the same
map. Applying this to the multiplication map for a permutation P-algebra A , it follows that the @-algebras
(Ty 07v4)(A) and (y4 o Ty)(A) are isomorphic, proving (b). O

(3.3) Example. For every endomorphism a of &k, we have v,(Qp) = Qp . Indeed Qp is defined over the
prime field F, and a is the identity on F, . It follows that if P is abelian, then 7, : D(P) — D(P) is
the identity because, by Dade’s Theorem 1.4, D(P) is generated by elements of the form Qp,o . By the
injectivity of the map in Theorem 1.6, this implies that v, is always the identity on QD(P), for every

p-group P, because 7, commutes with restriction and deflation by Lemma 3.2.

(3.4) Example. The only example we know of an endo-permutation module which is not defined over the
prime field F, occurs for p = 2 and the quaternion group Js. By a construction of Dade [Dal], there
is a 3-dimensional endo-trivial F4Qg-module M , which has order 4 in the Dade group. If a denotes the
non-trivial Galois automorphism of Fy , it turns out that ~,(M) = M* and this shows that v, is not the
identity of the Dade group.

Despite the fact that v, is often the identity, we are forced to introduce it in general in order to describe
the composition of the functors Ty . Suppose that P, @, and R are p-groups. If U is a finite @-set-P
and V is a finite R-set-} , we denote by V xg U the quotient of V' x U by the right Q-action defined by

(v,u)-h = (vh,h~tu), YoeV,Vue U, Vhe Q.
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In other words V xq U = (V x U?)/Q . It is an R-set-P for the following double action:
l-(v,u)-g = (lv, ug), YoeV, YVueU VIER,VgeP.

If (u,v) € VxqU,let Q, denote the right stabilizer of v in @ and @, .p the stabilizer of the pair (v,uP),
that is,
Quup ={h €Q | vh=v, g € P such that hu = ug}.

Now we can describe the composition of the functors 7y and Ty .

(3.5) Proposition. Let U be a finite Q-set-P and let V' be a finite R-set-() , where P, @), and R are
finite p-groups.
(a) If X is a finite P-set, there is a canonical isomorphism of R-sets

(Tv o Ty )(X) = Homg (V, Homp (U, X)) = Homp (U xq V?, X) = Ty xou(X).

In other words the functors Ty o Ty and Ty x,u are isomorphic on objects of Permy, (P) .
(b) If m is a morphism in Perm,(P) from X to Y, then

TVXQU(m)(wa‘p) = H m(l/)(v,u),go(v,u)) )

(v,u)el(V xQU)/P]
(v oT)m)we) = I (m(,u)evw)
(v, u)el(VxQU)/P]

for all ¢ € Homp((V XQ U)OP,Y) and ¢ € Homp((V XQ U)OP,X) .

bl

)lQu3Qv,uP|

Proof. Statement (a) is straightforward to show, so we prove (b). The expression for Ty y,v(m)(¥,¢) is
just the definition. On the other hand, using the isomorphism of part (a), the matrix (7v o Ty)(m) can be
expressed as

(3.6) (T eT)m)e) = [ I mletww,eu),
ve[V/QluelU/P)]
where we have fixed sets of representatives [U/P] and [V/Q] of U/P and V/Q respectively. In general,

the sets (V xq U)/P and V/Q x U/P are not isomorphic. So the functors Ty x,v and Ty o Ty are not
isomorphic on morphisms. To see how much they differ, consider the map

0:[V/Q] % [U/P] = (V xqU)/P,  0(vo, u0) = (vo, uo)P.

This map is surjective, since if (v,u) € V xg U, there exist vy € [V/Q] (unique) and h € @ such that
v=wph. Nowin V x¢o U, we have (v,u) = (vg, hu), and there exist ug € [U/P] (unique) and g € P such
that hu = ugg . Then we clearly have

0(vo, uo) = (vo, ug) P = (vo, uog) P = (vo, hu)P = (voh,u)P = (v,u)P.

Now two pairs (vg,ug) and (vi,u;) have the same image under ¢ if and only if there exist A € @ and
g € P such that

vy = vgh and htuy = Uugg .

The first equality gives v1 = vg = voh , since vy and vy are in the set of representatives [V/Q]. The second
one gives u1 = hupg . In other words u1 P is in the left orbit of ugP under the right stabilizer @Q,, of vo .
So the inverse image 67! ((v, u)P) has cardinality |Q, : Qv up| and we can rewrite Equation (3.6) as

(TvoTo)me)=  [I  (m(e(,u)e(ew)

(v,u)e[(VxQU)/P]

3

)le3Qv,uP|

as was to be shown. O
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(3.7) Corollary. Let U be a finite QQ-set-P and let V be a finite R-set-@) , where P, @, and R are
finite p-groups.
(a) If the right action of @ on V Is free, then the functors Ty o Ty and Ty x,u are isomorphic.

(b) If the right action of P on U is transitive, then the functors Ty o Ty and Ty x,u are isomorphic.

Proof. For (a), we have (), = 1 for every v € V', while for (b), U/P is a singleton, so that Q, = Qv up -
So in both cases [@Qy : Qv up] = 1 and Proposition 3.5 shows that (1y o Ty )(m) = Tvx,v(m) for every

morphism m . O

The assumption in (a) is satisfied if Ty is the restriction Resg where R < @ (because V =@ as an
R-set-Q ), if Ty is the tensor induction Teng where @ < R (because V = R as an R-set-Q ), if Ty is the
inflation Infg where ) = R/S (because V = @ as an R-set-Q) ), and also if Ty is an isomorphism ISOS .
Similarly, the assumption in (b) is satisfied if Ty is a restriction, an inflation, a deflation, or an isomorphism.

Many standard results follow from this, including transitivity properties and the Mackey formula. We
illustrate the mechanism with the latter formula. Let R and S be subgroups of Q). Let rQq = @ viewed
as an R-set-() (restriction) and similarly ¢Qs = @ viewed as a @-set-S (tensor induction). Making the
product over @, we obtain the R-set-S

rQQ Xq qWs = rQs = H RuS = H R Xpus “S X (us) S,

u€[R\Q/ 5] u€[R\Q/ 5]
from which it follows that
ResgoTeng =T4200 °T50s = TrQoxooQs = H Temgn ug oRes;% us oIsouSS ,
u€[R\Q/ 5]

which is the Mackey formula. The product here is the product in Permy(R), which corresponds to the
tensor product of permutation modules.
All the results above have been expressed in terms of the functors Ty and Ty . When these functors

are applied to a permutation P-algebra A, we obtain corresponding isomorphisms of R-algebras, as follows.

(3.8) Corollary. Let U be a finite Q-set-P ,let V be a finite R-set-() , where P, @, and R are finite
p-groups, and let A be a permutation P-algebra. If either the right action of @} on V is free, or the
right action of P on U is transitive, then the R-algebras (Ty o Ty)(A) and Tvx,u(A) are isomorphic.
In particular, D(V) o D(U) = D(V xg U) as maps D(P) — D(R) .

As explained above, this applies whenever D(V') is either a restriction, a tensor induction, an inflation,
or an isomorphism, or when D(U) is a restriction, an inflation, a deflation, or an isomorphism. The only
remaining case is when D(V) is a deflation and D(U) is a tensor induction. Indeed, if U is an arbitrary
transitive @-set-P , then U decomposes as a product of those five special types of @-sets-P (see Lemma7.4).

So finally we come to the formula which describes the last case and which will play a crucial role in
the next sections. The result holds when Defg/R ) Teng is applied to any permutation )-algebra, but for

simplicity we only state the result for the corresponding maps between the Dade groups.
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(3.9) Proposition. Let P be a p-group, let ) be a subgroup of P, and let R be a normal subgroup
of P. Then
P/R R/R
Defllj/R o Teng = Y| R:QnER| © TenQ{,%/R o Isog/énR o Defg/QnR ,

as maps from D(Q) to D(P/R).

Proof. Let V = P/R, viewed as a (P/R)-set-P ,let U = P, viewed as a P-set-Q, and let A be a Dade
(Q-algebra with a P-invariant basis X . Then by Examples 2.6 and 2.8, we have

Defg/R Teng(A) = (Tv o Ty )(4).

Now V xp U is the set P/R, viewed as a (P/R)-set-@ . The stabilizer in P of every v €V is P, = R

(because R is a normal subgroup), and if u € U, then
Poug={9€P, |FheQ, gu=uh}="QNR.

Since R isnormalin P, we have |R: “QNR|=|R: QN R| and this shows that the index appearing as an
exponent in Proposition 3.5 is constant. Therefore, if we apply Proposition 3.5 to any morphism m: 7 — Y

in Permy(Q) , we obtain

TVXPU(m)(1/)7SO) = H m<’¢)(v’u)’30(v’u)) )
(v,w)el(V X U)/Q]
and  (Ty o Ty)(m) (¢, ) = II (m('t/)('v,'u),¢(,L,’,u)))|R~ QnA]
(v, w)El(V X U)/Q]
= YR:QnE| H m<'¢}(v’ u): ‘P(va u)) )

(v,u)e[(VxpU)/Q]

for all ¢ € Homp((V XQ U)OP,Y) and ¢ € Homp((V XQ U)OP,Z) . Applying this to the morphism
m: X x X = X which represents the multiplication in A, we see that the multiplication in (Ty o Ty)(A)
is obtained by applying v|r.gnr| to the multiplication constants in 7y x .7 (A) . In other words, this shows
that

Defp) Tengy (A) = (Ty o Ty)(A) = Y rgar (Tv x v (4)) .

Now let
Z =P/R, viewed as a (P/R)-set-(QR/R) (tensor induction),

I=QR/R, viewed as a (QR/R)-set-(Q/Q N R)  (isomorphism),
W=Q/QNR, viewed as a (Q/Q N R)-set-QQ  (deflation).
Then we have

VXPUIZXQR/RIXQ/QQR W

As the right action of @/Q N R on I and the right action of QR/R on Z are free, Corollary 3.8 implies

that this product can be replaced by a composition. So we obtain

P/R
QR/R

QR/R Q
Q/QnR Def

Iso O/QnR

TVXPU(A) = (TZ oldyo Tw)(A) = Ten (A) ,

and the proposition follows. O
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(3.10) Remark. When applied to a permutation P-algebra A, it is possible to express the general
result of Proposition 3.5 using the twists ~,~ , thus obtaining a single result including Corollary 3.8 and
Proposition 3.9 as special cases. It suffices to notice that the index |@Q, : Qv up| only depends on the orbit
of (v,u) €V xqg U under the action of R x P°P . Therefore (Ty o Ty )(A) decomposes as

(TV o TU)(A) = ® 7|Quin,uP| (Av,u) ’
(v,u)E[R\(V xQU)/P]

for suitable R-algebras A, ., , while

(TVXQU)(A) = ® Av,u:
(v, u)E[R\(V xqU)/P]

without any twists.

As mentioned in Example 3.3, the twist v r.gnpg| is the identity if we apply it to the Dade group of an

abelian group. Therefore, Proposition 3.9 can be simplified in the following way.

(3.11) Corollary. Let P be a p-group, let Q be a subgroup of P, and let R be a normal subgroup
of P.
(a) If Qo is a normal subgroup of @) such that Q/Qq is abelian, then

P P Q _ P/R QR/R Q Q
DefP/RoTenQ OIan/Qo = TenQR/R oIsoq/QnR oDefQ/QnR oIan/Q0 ,

as maps from D(Q/Qo) to D(P/R) .
(b) If Q is abelian, then

Defg/R o Teng = Tengg?R o Isogiéj:R o Defg/QnR ,

as maps from D(Q) to D(P/R).

Proof. Clearly (b) follows from (a) by taking Qo = 1. For (a) we apply Proposition 3.9 and compose
everything with Infg/QD . Since Y| gr.gnr) commutes with tensor induction, isomorphisms, deflation, and
inflation (Lemma 3.2) and since it is the identity of D(Q/Qo) because Q/Qy is abelian, the result follows. O

We close this section with the result which was needed in the proof of Proposition 2.12.

(3.12) Lemma. Let U be a finite Q-set-P , where P and @ are finite p-groups, and let A be a Dade
P-algebra. Then the algebra Ty (A) is split (hence is a Dade Q-algebra).

Proof. 1t suffices to restrict to the trivial group, so we compose Ty with Resi2 =Ty where V = @, viewed
as a l-set-Q) . Since (Ty o1y)(A) = Ty x,u(A) by Corollary 3.8, we have reduced to the case of a 1-set-P .
We can also assume that this set is transitive, since a disjoint union corresponds to a tensor product and a
tensor product of split algebras is split. So U has the form R\ P for some subgroup R of P and therefore
Ty corresponds to the deflation Defllz/R (followed by Hesf/R since we only consider the l-action on the
left).

So we have to prove that the Brauer quotient Defg/R(A) = A[R] is split. Recall from the proof of
Proposition 2.12 that we already know that A[R] is a central simple k-algebra. Since we only need Resg(A)
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in the definition of A[R] (and since the restriction of a split algebra is split!), we can assume that R = P.
We proceed by induction on |P].

If P is cyclic of order p, then up to equivalence of Dade P-algebras, we have either A = k or
A = Endg (Qp(k)) , in which case the result is easy. Moreover the equivalence relation preserves the split-
ting property. Alternatively, every module is defined over I, and indecomposable modules are absolutely
indecomposable, so we can work over an algebraically closed field where all central simple algebras are split.

If now |P|> p, we choose a normal subgroup S of index p and we recall that A[P] = A[S][P/S]. By
induction, we know that A[S] is split, hence is a Dade (P/S)-algebra. By the cyclic case, we conclude that
A[S][P/S] is split. O

4. The torsion-free rank of the Dade group

The purpose of this section is to prove Theorem A of the introduction. More precisely, we shall prove the

following result.

(4.1) Theorem. Let P be a finite p-group. Let S be the set of non-cyclic subgroups of P and for every
Q € S, choose a normal subgroup Qo < @ such that Q/Qo is elementary abelian of rank 2. Then the
Q-linear map
yp= [ Defresgq, :QDP)— [] QDQ/Qy= ] @
QE[S/P] QE[s/P] QE[S/P]
is an isomorphism, where [S/P] denotes a set of representatives of the conjugacy classes of subgroups
in 8. In particular, the torsion-free rank of D(P) is equal to the number of conjugacy classes of non-cyclic

subgroups of P .

If E is elementary abelian of rank 2, then by Theorem 1.4 there is an isomorphism QD(E) > Q
mapping Qg to 1 (and this explains the right hand side isomorphism in the statement). This isomorphism
is canonical since Qg is invariant under the group of automorphisms of £ . Throughout this section, we
shall always identify QD(FE) with @ via this isomorphism. This identification is particularly useful for the

statement of the following crucial lemma.

(4.2) Lemma. Let P be an elementary abelian group of rank 3 and let L be a subgroup of P of order p.
Then the map

X =pDefp/, — Y Resp,
E¥L
rk(E)=2

viewed as a homomorphism QD(P) — Q, is independent of L .

Proof. By Theorem 1.4, {Qp/c | |C| = p} U{Qp} is a basis of QD(P). We compute x on each basis

element. By Lemma 1.3, we have

xX(@Qp)=— > 1=-p,

EYL
rk(E)=2

and this is independent of L. If C' is a subgroup of order p, we have

1 ifC=1,
mﬁum”d:{0ﬁC¢L
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because in the second case, the Brauer quotient corresponding to L is equal to the Brauer quotient corre-
sponding to C'L since C' acts trivially, and DefggL(Qp/c) =0 by Lemma 1.3. On the other hand, if E
is a subgroup of rank 2,
P 1 ifE#C,

Resr(pyc) = {o if £>C,
because in the first case, the action of E coincides with the action of EC/C = P/C', while in the second
we have Resgég(ﬁp/c) = Qg ¢ which is zero since I//C has order p and QD(E/C)=0 (in fact Qp/c
is a torsion element in D(E/C)). It follows that

ifC'=L,then x(Qp/r)=p -1 - Z 1 =p—p?,
E#L
rk(E)=2

EXL E$C
I‘k(E):2

So x(Qpjc) =p—p* is independent of L. O

(4.3) Remark. Lemma 4.2 is in fact a special case of a result which holds for an arbitrary p-group P : for

every normal subgroup N such that P/N is elementary abelian of rank 2, the map

Z | X (X, P) Defresl;/(XnN) :QD(P)—Q
X<P
XN=P
is independent of N . Here pu(X,P) denotes the Mobius function of the poset of subgroups of P. This
fact will be proved in Remark 10.2. Even for an elementary abelian group of rank 4, it is a rather tedious

exercise to give a direct proof using the same method as above.
(4.4) Proposition. The homomorphism p is injective.

Proof. By Theorem 1.6, we know that

(4.5) Defres : QD(P) — [[ QD(@Q/R)= [] @
Q/R Q/R

is injective, where }/R runs over all elementary abelian sections of P of rank 2. But the various maps
Defresg/R are not linearly independent (as Lemma 4.2 shows). We prove the injectivity of the map ¢¥p of
the statement by induction on |P|. The result is clear if |P|=p because QD(P)=0.

Assume |P| > p? and let a € Ker(¢p) . By the injectivity of the map (4.5), it suffices to show that
DefresS/R(a) = 0 for every elementary abelian section /R of rank 2. For every proper subgroup T
of P, we have Resg(a) € Ker(¢r), provided we make a consistent choice ot the sections Q/Qq for
the subgroup 7', that is, we keep the same choice of (g for every @ < T . Note also that the choice of
representatives of conjugacy classes does not play any role here since Defres};Q/ R = Conngefresg/R , Where
Conj, is the conjugation map, so that Ker(DefresIZQ/ aR) = Ker(Defresg/R) )

Since 7 is injective by induction, we obtain Resg(a) = 0 for every proper subgroup 7 and con-
sequently Defresg/R(a) = 0 whenever @ is a proper subgroup of P. So we are left with the proof
that Defg/R(a) = 0 for every elementary abelian quotient P/R of rank 2. We know by assumption that
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Defg/PD (a) = 0. The group P/(PyNR) is elementary abelian (of rank at most 4) and so it is clearly possible
to find a sequence of subgroups S; (1 <7< m) such that

Slzpo, SmIR, SZ'ZPOOR, |PZSZ'|I]92, |P:(Siﬂsi+1)|:p3 (1§z§m—l)

So it suffices to prove that if Defg/sl(a) = 0, then Defg/szﬂ(a) =0. Let N =S5;NS;41 so that P/N
has rank 3. Applying Defllz/N and using Lemma 4.2 for the group P/N | we obtain

pDefII;/SlJrl — E Defresg/N :pDefII;/Sl — E Defresgﬂv.
E¥Siq1 E¥5;
rk(E/NJ'E:2 rk(E/N)=2

Since we already know that Defresg/N(a) = 0 for every such subgroup F (because F is a proper subgroup
of P), we are left with

P P
pDefP/5l+1(a) = pDefP/Sl(a) =0,
so that DefII;/SlJrl(a) =0 as required. O
We shall not prove directly the surjectivity of ¥yp . We shall construct a map ap in the reverse direction
and then show that ¢¥p ap is an isomorphism. If @Q/R is a section of P | in analogy with the notation

DefresS/R , we define
Teninfg/R = TengInfg/R .

Now for every elementary abelian section @/N of P of rank 2, we define

1 .
BoN = AT E | X| p(X, Q) Teninfy  xan) : Q — QD(P).
QI =5
XN=Q

This homomorphism is dual to the one mentioned in Remark 4.3. Note that the conditions on X imply that
X/(XNN)=Q/N is elementary abelian of rank 2, so that QD(X/(X N N)) = Q and the domain of the
map is indeed Q. Note also that if we needed an integral linear combination, it would suffice to multiply
657]\, by p, because p|X|p(X,Q) is always a multiple of |@|. There is a close connection between the
idempotents of the Burnside ring and the formula for 657]\, (as well as the formula in Remark 4.3 above).
This will be explained in Remark 10.2 and gives a reason why such linear combinations play a crucial role.

Now we define

ap= Y Bho,: I @—QD(P),
QE[S/P] QE[S/P]

where & and @y are defined as in the statement of Theorem 4.1. In order to be able to compute ¥p ap,
we shall collect properties of the maps %jw , but we first need a combinatorial lemma.

We recall that, for p-groups, the Mébius function u(X, P) vanishes unless X is a normal subgroup
with P/X elementary abelian, and if P/X is elementary abelian of rank r, then pu(X,P) = (—1)Tp(g)
(see [KT, 2.4]). As in [Bol], whenever N is a normal subgroup of @, we define

1
(4.6) moN =1 >, 1X[u(X,Q).
el &,
XN=Q

We need the following technical property about this number.
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(4.7) Lemma. Let N be a normal subgroup of Q with /N elementary abelian of rank 2.
(a) mg n Is independent of N .
(b) If M is another normal subgroup of Q with QQ/M elementary abelian of rank 2, then

1 o
moum=mon=r1= Y |X|uX,Q =(1-p)(1-p)...(1-p"7%,
1Ql XM=XN=Q
XnM=XnN

where n is the rank of Q/®(Q) (the largest elementary abelian quotient of @Q ).

Proof. (a) follows from (b). The expression of mg v as a sum is a special case of the formula appearing
at the bottom of page 703 of [Bol]. This uses the fact that /M is a b-group, which means that for every
non-trivial normal subgroup U of Q/M , we have mg v = 0 (as it is easy to check, or see example 4,
page 709 of [Bol]). It is clear from the formula that mg s = mg n .

For the expression of mg v as a product, one notices first that in (4.6) every subgroup X contains the
Frattini subgroup ®(Q) (otherwise p(X,Q) = 0), so that one can assume that @ is elementary abelian.

Writing F,, for the elementary abelian group of rank n, we prove by induction on & that

k
(4.8) me, g, = [[(1—p"77),

i=1

for 1<k<n—2.1If k=1, wehave mg, g, = (1—p"~?%) by a direct computation (in (4.6), either we have
X =FE, and u(E,, E,) =1 or X has index p and does not contain E; in which case pu(X,FE,) = —1

n—1

and there are p such subgroups). The induction step is obtained by using the transitivity formula

mg N = mag,m mag/m,N/m Where M < N < G . This formula appears on page 703 of [Bol]. Thus we have

k—1 k
ME, Ex = ME, Ex_y MEu_j41,B1 = [H(l —p" T (=t = T =),
i=1 i=1

as required. Now the result follows by taking k=n—2. O

We recall that the notation R >p () means that R contains a P-conjugate of R. We write T(Q, R)
for the set of all ¢ € P such that 9Q < R.

(4.9) Proposition. Let @) be a subgroup of a p-group P and let N be a normal subgroup of @) with
Q/N elementary abelian of rank 2.
(a) If R is a subgroup of P, then

Z ﬁlj ,IN ifR ZP Q 3
Resy; 85 v = {ge[R\ﬂQ,R)/Q] ©
0 ifR#p Q.

(b) If M is a normal subgroup of ) with Q/M elementary abelian of rank 2, then Defresg/M ﬁS,N is
the multiplication by mg ym|Np(Q)/Q|, where mq a is given by (4.6).
¢) pE \ isindependent of N, thatis, 85 ; = 85 » , where M is as in (b).
QN Q.M QN

Proof. (a) We first compute Resg 68,N . We apply the Mackey formula, taking into account the fact that
each subgroup X is a normal subgroup of @ (since otherwise u(X,Q) = 0), so that R\Q/X = RX\Q.
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Since X/(X N N) = E has rank 2, QD(E) = Q is generated by Qg which is invariant under the action
of Aut(E), so that the map Conj, : QD(E) — QD(E) is the identity. Thus we obtain

1

Resj(-% 58,N = @ Z | X | 1(X,Q) Resg Ten?( Inf§/(XnN)
X<Q
XN=Q
1 .
= @ Z |X| ,U(X, Q) Z TengﬂX ReSan Inf§/(XﬂN) ConJg
X<@ 9€[RX\Q]
XN=Q
1
= & S Ten§ DT |X|u(X,Q)|Q : RX|Res¥ InfX ) xnn -

RNX=S

We claim that Resa Inf§/(XnN) =0 if S does not cover the quotient @/N (that is, SN # Q). Indeed S
does not cover either the quotient X/(X N N), because XN = @ . Therefore Resy Inf§/(XnN) factorizes
through the proper subgroup S(X N N)/(X N N) of X/(X NN). But X/(X N N) = E has rank 2 and
QD(Y) =0 for every proper subgroup Y of E, proving the claim.

Now if SN =@ and S < X <@, then XN = @ and the inclusion S — X induces an isomorphism
S/(SNN)= X/(XNN). Thus we have Resy Inf§/(XnN) = Infg/(SON) , using our usual identification
QD(X/(XNN))=QD(S/(SNN)) = Q. It follows that

1
Resf B8 = o1 2 Tenf [ 37 X u(X,Q)1Q  RX|| Inf (s -

S<R §<X<Q
SN=Q RAX=5
el Q|

and therefore the inner sum is

Now we have |X|-|Q : RX| = [RX:X| |R:S|’

S Qe rx =22 T uxq).

|R: S|
S<X<Q S<X<Q
RNX=S RNX=S
But this is zero by a standard combinatorial lemma, provided R # @ (see [St, 3.9.3]). It follows that
Resg ﬁg n = 0 whenever R is a proper subgroup of (.
Now we compute Resg 55,N . From the definition, we have 65,1\7 = TenéaJ 58,N . Therefore, applying

again the Mackey formula, we obtain

9 .
Resg ﬁS,N = Resﬁ TeIﬂQJ 6871\, = Z Tengn Q ReSR% aQ Conj, 6871\,
ge[R\P/Q]
g, g, g,
= Y. TenfawgResplugfug oy = D Ten'sq Bg o
ge[R\P/Q] gE[R\T(Q,R)/Q]

_ R
- 9Q,9IN »

ge[R\T(Q,R)/Q]

using the fact that, by the first part of the proof, Res;% gQﬁ;g’ o = 0 if RN 9Q < 9Q, that is, if
g ¢ T(Q, R) . In particular, we obtain Resh [J)g’N =0 if T(Q, R) is empty, or in other words if R 2p Q.
(b) Taking R =@ in (a), we have T(Q, R) = Np(Q) and therefore

P P _ Q PP _ Q Q
Defresg/py Bo N = DefQ/M Resg Bo N = Z DefQ/M ﬁQ, aN -
g€[Np(Q)/Q]
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Thus it suffices to show that each Defg/M ﬁg oy 1s the multiplication by mg s and without loss of

generality we can assume that 9N = N . We have

1
Defg/MﬁgN: 1] Z | X|p(X,Q) Defg/MTen?( Inf§/(XnN)

X<Q
XN=@Q

1 M XM/M

= — Z |X|,u(X,Q)Ten?(éw/MIsz/()/mM)Def§/(XnM) Inf§/(XnN),

Q&

XN=Q

using Corollary 3.11. Now if X NM # X NN | then Def§/(XnM) Infﬁ/(XnN) factorizes through the proper
subgroup X/(XNM)(XNN) of X/(XNN). But X/(XNN)=FE hasrank 2 and QD(Y) =0 for every
proper subgroup Y of E . Therefore the sum only runs over subgroups X satisfying XNM = X NN and

we have Def§/(XnM) Inf§/(XnN) = id (by definition of deflation in terms of Brauer quotients). Moreover

X/(XNN)=X/(XNM)=XM/M < Q/M,

and since X/(X N N) and @/M have order p?, we also have XM = @, hence TengéwM/M = id . Finally
Iso?(?%mM) = id by our usual identification QD(X/(X N M)) ~ QD(Q/M)= Q. It follows that
1 . .
Defg/MﬁgyN:@ Z |X|/L(X;Q)'Zd:mQyM~ld,
XM=XN=Q
XaM=XnN
by Lemma 4.7.

(c) Since 6£,N = Teng 687]\, , we only have to prove that 58,N is independent of N . By the injectivity
of the restriction-deflation map to elementary abelian sections of rank 2 (Theorem 1.6), it suffices to show
that Defresg/s 587]\, is independent of N for every such section R/S . This is obvious if R < @) because
Resg 58,N =0 by (a). When R =@, we have Defresg/S 68,N =mg g -id by (b) and this is independent
of N. O

(4.10) Corollary. Let A = (aq,r) be the matrix of the linear map p ap with respect to the canonical
basis of HQe[S/P] Q, ordered in a way compatible with the relation >p .

(a) A is triangular.

(b) The diagonal entries are ag g = mg.qg, |[Np(Q)/Q].

(c) ¥p Is surjective.

Proof. (a) If R 2p @, then Resg ﬁngD = 0 by Proposition 4.9 and therefore Defresg/ﬁD ﬁngD = 0. This

implies that A is triangular.
(b) By Proposition 4.9, Defresg/QD ﬁngD =mg g, |Np(Q)/Q]-id.

(c) By Lemma 4.7, we know that the explicit value of mg ¢, is non-zero. Therefore the matrix A is

invertible, so that ¥p ap is an isomorphism. In particular ¥p is surjective. O

Together with Proposition 4.4, part (c) of Corollary 4.10 completes the proof of Theorem 4.1. Moreover,

we also deduce that the map ap is an isomorphism and we now use this for describing two bases of QD(P).
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(4.11) Proposition. Let F denote an elementary abelian group of rank 2 and for each section X/Y
isomorphic to E | identify QD(X/Y) = Q with QD(E).

(a) The set {ﬁngD(QE) | @ € [S/P]} is a basis of QD(P).

(b) The set {Teninfg/QD(QQ/QD) | @ € [S/P]} is a basis of QD(P).

Proof. (a) This set is the image under ap of the canonical basis of HQE[S/P] @ and ap is an isomorphism.
(b) For every Q < P, let Jg be the subspace of QD(P) generated by all elements of the form
Teninfg/N(QR/N) where R< @ and R/N = E. We have

1 . .
B0 () = 1] Y X[a(X, Q) Teninfy) xnq,)(Rx/(xneo)) = Teninfg o, (R/q,)  (mod Jo).
X<Q

XQo=@Q

Since 65,N = ﬁngD whenever /N = E (Proposition 4.9), we deduce that
Teninfg/N(QQ/N) = Teninfg/QD(QQ/Qo) (mod Jg) .

Therefore, in the expression for 65,% (Qg) , we can replace each Teninf§/(XnQD) (x/(xnqo)) by an element
of the form Teninf§/XD(QX/XD) + y where y € Jx . It follows by induction that there exist rational

numbers Agr such that

BSVQD(QE):Teninfg/QO(QQ/QD)—i— Z ARTeninfﬁ/RD(QR/RD).
Re[S/P]
R<Q

Thus we obtain a matrix which is triangular with ones along the diagonal and the result follows from (a). O

Since Qg is defined over the prime field [F, , the results of this section are independent of the base

field k& and this gives our next result.

(4.12) Corollary. For every field k of characteristic p, there is an isomorphism Q Dy, (P) = QDy(P)

induced by scalar extension from [F, to k.

(4.13) Remark. Let O be a complete discrete valuation ring of characteristic zero with residue field k.
One can define the Dade group Do (P) in a similar fashion using Dade P-algebras over . The residue
map Do (P) — Dg(P) is injective (see [Th], Section 29) and it is conjectured that it is an isomorphism.
Since Qg obviously lifts to O, the results of this section also hold over O and it follows that the residue
map QDo(P) — QDg(P) is an isomorphism.

(4.14) Remark. There is an expression for Qp as a linear combination of the basis {Temimfg/qD (Qo/q.) }
of @QD(P). One can show that such a formula only involves the basis elements indexed by the subgroups @
which are elementary abelian. Moreover, even when P itself is elementary abelian, the coefficients have
denominators and this shows that this Q-basis is not suitable as an integral basis for the torsion-free part

of D(P).
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5. The torsion-free rank of the endo-trivial group

The torsion-free rank of the endo-trivial group T(P) has been determined recently by J.L. Alperin, us-
ing relative Heller translates of endo-permutation modules (which turn out to be again endo-permutation
modules). In this section, we prove Alperin’s theorem by another method, using tensor induction.

Let A be the poset of all elementary abelian subgroups of P of rank > 2. The torsion-free rank
of T(P) will turn out to be the number of conjugacy classes of connected components of A. Therefore
we first need to understand better those components. Clearly the isolated vertices of A are precisely the
maximal elementary abelian subgroups of rank 2. Let B be the subposet of A consisting of all elementary
abelian subgroups of P of rank > 3 as well as their subgroups of rank 2. The following group-theoretic

result is well-known and not very hard to prove (see Lemma 10.21 in [GLS]).

(5.1) Lemma. Let m(P) be the maximal rank of an elementary abelian subgroup of P .
(a) If m(P) =2, then A consists of isolated vertices.
(b) If m(P) > 3, then B is a connected component of A and all other connected components (if any) are

isolated vertices.

We shall call B the big connected component of A. Let X be the set of connected components of A and
let [X/P] be aset of representatives of conjugacy classes in X' . Since B is clearly invariant by conjugation,
it must belong to [X/P] (whenever m(P) > 3).

(5.2) Theorem. For every connected component C € [X /P], choose E¢ € C.

(a) The restriction map

p= H ResgczQT(P)—> H QT(Ec) = H Q

ce[x /P ce[x /Pl ce[x /Pl

is an isomorphism.
(b) If C is a singleton (so that E¢ is an isolated vertex), let ac = Tengc(QEc) . For the big connected
component B, let ag = Qp . Then the set {ac | C € [X/P]} is a Q-basis of QT(P).

Proof. By Theorem 1.5, we know that

Res : QT(P) — [J QT(E)

is injective, where E runs over all elementary abelian subgroups of P . Clearly we only need to choose
one subgroup in each conjugacy class. Now if Ej denotes the elementary abelian group of rank %k, we
have QT(E;) = 0, while the restriction map Resg’; :T(Ex) = T(F2) is an isomorphism if k& > 2, by
Theorem 1.4 (a) and the fact that Resg’; (Qp,) = Qp, . Therefore all restriction maps within the big com-
ponent B are isomorphisms and so it suffices to consider the chosen subgroup Epg . It follows from this that
we do not loose injectivity if we only restrict to the subgroups E¢ for C € [Y/P]. In other words p is
injective.

We shall show that the set {a¢c | C € [X/P]} belongs to QT(P) and maps via p to a basis
of HCE[X/P] @ . This will prove the surjectivity of p as well as statement (b).

First we need to check that ac € QT(P). This is clear for the big component since Qp € T(P)
(Lemma 1.3). Now if E = E¢ is an isolated vertex of A, we have ac = TenE(QE) € QD(P) and we check
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that it belongs to QT'(P) by computing all deflations Defresﬁ/R where R# 1 and N = Np(R). By the

Mackey formula, we have

Def%/R Resﬁ Teng(QE) = Def%/R ( E TenJ;fEnN Res ZIEON(QQE)) .
ge[N\P/E]

But %p = Qe and its restriction to any proper subgroup C' is zero since E has rank 2 and QD(C) =0
if |[C|=p. So g only runs over the set T'(E, N) of all ¢ € P such that 9 < N and we obtain

Defresﬁ/R Tenk (Qp) = E Def%/R Tendp (Qop) .
gE[N\T(E,N)/E]

We show that each term of the sum is zero. By relabelling 9% | we can assume that g = 1. By Corollary 3.11,

we have

N/R
ER/R

ER/R

Def%/R Ten (Qg) = Ten Isop par Defg/EnR(QE) .

But Defg/EnR(QE) =0 whenever ENR# 1 (Lemma 1.3), so we only need to show that ENR# 1.
Since £ < N, E normalizes R, hence centralizes some non-trivial subgroup @ of R (because E and
R are p-groups) and we can assume that @ is elementary abelian. Then EQ is elementary abelian and so
EQ = F by maximality of E (since E is an isolated vertex, it is a maximal elementary abelian subgroup).
Therefore @ < EF and ENR>Q #1.
Now we want to prove that {p(ac) | C € [X'/P]} is a Q-basis of [[¢¢x/p Q. We need to compute
the restrictions of ac = Teng (Qg), where E = E¢ is an isolated vertex as before. If F' is an elementary

abelian subgroup, we have

Resh Tenk (Qp) = Z Tenfynp Res oo p (Qog) .
ge[F\P/E]

Since the restriction of Qg to any proper subgroup is zero (because E has rank 2), ¢ only runs over the
set T(E,F) of all ¢ € P such that 9F < F'. But since F is isolated, T(F,F) is non empty only if F
is conjugate to £ . Therefore ResgD Tenk (Qg) = 0 for every component D not conjugate to C = {E}.
Moreover, taking now F' = E, we have T'(E, F) = Np(E) and we obtain

Resp Ten (Qp) = > Qo =|Np(E)/E|-Qp.
gEINPp (E)/E]
This shows that p(ac) is a multiple of the basis element indexed by C in the canonical basis of HCE[X/P] Q,
whenever C consists of an isolated vertex. We are left with the big component B (but only if m(P) > 3). We

have defined ap = Qp and we have Resp(Qp) = Qp for every F'. Therefore p(ag) is the sum of all basis
elements in the canonical basis of [[o¢(y/p) Q. Altogether, it is now clear that the set {p(ac) | C € [¥/P]}

is a Q-basis of HCE[X/P] Q. O

As in the case of the whole Dade group we deduce the following result.
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(5.3) Corollary. For every field k of characteristic p, there is an isomorphism QTy,(P) = QTy(P)

induced by scalar extension from [F, to k.

As in Remark 4.13, we also deduce that, if O is a complete discrete valuation ring of characteristic
zero with residue field &, the residue map Q7o (P) — QT(P) is an isomorphism. However, much more is
known, since it has been proved recently by J.L. Alperin that the residue map To(P) — Ti(P) is always

an isomorphism.

(5.4) Remark. If F is an isolated vertex of A, we have used the fact that Resc(Qg) =0 if C < F,
because C' is cyclic and so QD(C) = 0. If we want to work over Z, then D(C) = Z/2Z if |C| = p
and p is odd, so we need to consider 2Qg instead to obtain Resc(2Qg) = 0. It follows that the elements
2a¢ = Tengc (2Qg.) (where C runs over the isolated components up to conjugacy), together with ag = Qp
for the big component (if m(P) > 3), belong to T(P), are linearly independent over Z, and span a full
lattice in T'(P).

We also observe that 2ac is the class of the endo-permutation module M = Teng (Q%(k)) , Where
E = E¢ . This class belongs to T'(P), but the module M itself may not be endo-trivial (it is only equivalent
to an endo-trivial module). The reason is that the endomorphism algebra of Q% (k) has the form k & (free)
and when we consider its tensor induction, we obtain k@ X where X is a permutation module which may

not be free. For instance the tensor induction of a free module may not be free.

6. Partial results on the torsion subgroup

The purpose of this section is to prove Theorem B of the introduction. Let p be an odd prime and let P
be a finite p-group. Recall that we have defined D!(P) = D!(P)/Ker(ip), where D!(P) is the torsion
subgroup of D(P) and where

Yp: D'(P) — [] D(4)

is the product of the restriction-deflation maps to all cyclic sections A of order p. Since the subgroup
Ker(¢p) is quite difficult to handle (and might be trivial), we only deal with the quotient D?(P). Note
that if A is cyclic of order p, we have D(A) = D'(A) = Di(A) = 7Z/27, generated by Q4 (by direct

inspection or by Theorem 1.4). We first need a lemma.

(6.1) Lemma. Let p be an odd prime and let E be an elementary abelian p-group of rank 2. Then the

restriction
Res : D'(E) — H D'(R)
R<E

to all proper subgroups is injective.

Proof. Let a € D*(E) . By Dade’s Theorem 1.4, we have

a = Z nQ QE/Q;
QecC
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where € is the set of all non-trivial cyclic subgroups of E and where ng € Z/2Z for every Q. If
a € Ker(Res) , we have, for every Re C,

0= ResR Z ng Qr,
QecC
Q7R
because the action of R on Q}E/Q(k) is obtained using the isomorphism R = F/@ whenever R # @
(that is, RQ = E'). It follows that
> ng=0€2/2Z,

QeC
Q#R

for every R € C. Considering R, R’ € C with R # R’ we obtain

ng + E ng=0=ngp + E nQ,

QecC QeC
Q#R, Q#R' Q#R, Q#R'
and therefore ng = ng' . Thus all the numbers ng are equal and the sum of p of them is zero in Z/2Z

(because |C|=p+1). Since p is odd, ng =0 for every Q. O
Theorem B of the introduction is contained in the following more precise result.

(6.2) Theorem. Let P be a finite p-group, where p is an odd prime. Let C be the set of non-trivial
cyclic subgroups of P and for every C € C, let ®(C) be the unique maximal subgroup of C .
(a) The group homomorphism

[I Defrest ey : DI(P)— [ D(C/@(C))= [ z/2z
cefc/P celc/ P celc/ P

is an isomorphism, where [C/P] denotes a set of representatives of the conjugacy classes of subgroups
in C.

(b) The set {TenC(QC/q) y) | € €[C/P]} is an [Fy-basis of Dt(P), mapping via ¢p to the canonical
basis of [[cee/p) Z/2Z.

Proof. The injectivity of ¢p will follow from the injectivity of

yp DI (P) — [[ D(A

where A runs over all sections of order p. Let a € Ker(¢p). We prove that @ = 0 by induction on |P].
For every proper subgroup @ , we clearly have Resg(a) € Ker(¢g) and therefore Resg (a) = 0 by induction.
By the injectivity of the map ¢ p above, it suffices to prove that Defg/s(a) = 0 for every quotient P/S of
order p.

If P is cyclic, then necessarily S = ®(P) and the condition Defg/s(a) = 0 is part of the assumption
that @ € Ker(¢p). If P is not cyclic, then there is an elementary abelian quotient P/R of rank 2 with
R < S and it suffices to prove that Defllz/R(a) = 0. But the restriction of Defllj/R(a) to every proper
subgroup @/R is zero since Resg (a) = 0. Therefore, by Lemma 6.1, we have Defg/R(a) =0 as required.
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We now prove that, for every C € [C/P], ép (Teng(Qc/q>(C))) is the basis element indexed by C' in
the canonical basis of HCe[c/P] Z/27.. This will prove the surjectivity of ¢p as well as statement (b). For
every D € C, we have by the Mackey formula

DefDq(p) Resp Teng (Qe/a(c)) = Z Def D 4(py Tenpa oo Respp o (Qaca(sc))
ge[D\P/C]
using the fact that conjugation by g maps Q¢ e(c) to Qac/a(ac) . If DNIC < 9C, then DN IC < O(90)
and therefore Resg% ac(Qaca(scy) = 0. So g only runs over the set T(C, D) of all g € P such that
9C' < D . Thus we obtain

Defresg/(t,(D) Teng(QC/Q(C)) = E Defg/q)(D) Tengc(ﬂ gc/<1>( gc)) .
ge[D\T(C,D)/C]

By Corollary 3.11, Defg/q)(D) Ten’, factorizes as the composite of Def Zg/ scna(p) followed by an iso-
morphism and a tensor induction. So if 9C' < D, that is, 9C < ®(D), we have a deflation to the
trivial group, hence zero since D(1) = 0. This proves that Defresg/q)(D) Teng(Qc/q>(c)) = 0 whenever
D is not conjugate to C'. If now D = C', we are left with the sum over g € [Np(C)/C] and we have
Defg/q)(c) (Qcja(c)) = Qcye(c) - Therefore we obtain

Defresg/q)(c) Teng(Qc/Q(c)) = [Np(C)/C|-Qcjac) = Qc/a(c)

using the fact that |Np(C)/C| is odd and Q¢;e(c) has order 2. This completes the proof that the image
op (Teng(Qc/¢(c))) is the basis element indexed by C'. O

It is easy to see by induction (as in the proof of Theorem 1.6) that the injectivity of the map ¥p would
follow if the restriction map

Res : T(P) — [[ T'(®)

was injective, where E runs over elementary abelian subgroups of P . This is one of the important open
questions about the Dade group (mentioned to us several years ago by J.F. Carlson and J.L. Alperin). We

mention the following consequence.

(6.3) Corollary. Assume that p is odd and that Ker(¢p) = 0. Then D'(P) is an Fy-vector space of
dimension s, where s is the number of conjugacy classes of non-trivial cyclic subgroups of P . In particular

every torsion element of D'(P) is self-dual.

Proof. The first statement follows from Theorem 6.2 and the second from the fact that the self-dual endo-

permutation modules are precisely the elements of order 2 of the Dade group. O

(6.4) Remark. A typical element of order 2 in D?(P) is Qp/g where @ is a proper normal subgroup
with P/Q cyclic. Tts expression relative to the Fo-basis of D?(P) is

QP/Q = ZTeng(chQ(c)) s
C

where C' runs over the cyclic subgroups (up to conjugation) such that @ has index p in QC . This follows
easily from the computation of Defresg/q)(D)(Qp/Q) for every cyclic subgroup D .
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(6.5) Remark. For the torsion subgroup 7%(P) of the endo-trivial group T'(P), one can define similarly
Tt(P) = T*(P)/Ker(Res) where
Res : T(P) — [[ 7'(2)
E
is the restriction to all elementary abelian subgroups (since we have Ker(Res) C T*(P) by Theorem 1.5).
However, there is no interesting result here, because W(P) is zero if P is not cyclic. Indeed, if P is
not a quaternion group, every maximal elementary subgroup F has rank > 2 and T'(F) has no torsion,
so that T*(P) is contained in Ker(Res). If P is a quaternion group, then T'(P) = T*(P) = Ker(Res)
because the target of the restriction map above is T(C3) = 0. Note that if P is cyclic of order > 3, then
T(P)=T!P)=T{P)=7/27.

7. Functorial approach

Now we start the second part of this paper, which is concerned with the functorial approach to the Dade
group. This approach is the original one we used for the proof of Theorems A and B, from which was then
extracted the more elementary version of the previous sections. Qur purpose in this section is to show how
QD and D! can be viewed as functors (in the sense of [Bol]). We also recall a number of general facts
concerning such functors.

We have seen in Sections 2 and 3 that all the natural operations on the Dade group can be described
with a single formalism. If P and @ are p-groups, and if U is a -set-P , then there is a functor
Ty : Permy(P) — Perm; (Q) which maps a Dade P-algebra to a Dade (-algebra. Moreover, this functor

induces a group homomorphism

D(U) : D(P) —s D(Q) .

We have seen in Section 3 that when we compose two such functors Ty and Ty , we don’t get the func-
tor Ty x,u , but a kind of twisted version of it, using endomorphisms of the field k. It follows that the map
D(V)o D(U) is not equal in general to the map D(V xg U) . In order to get rid of those twists, we consider
a quotient of D(P) defined by

Dg(P) = D(P)/G(P),

where G(P) is the subgroup consisting of the classes of the algebras +,(A4) ®r A%, where A is a Dade
P-algebra (see Lemma 3.1). Recall that v, is the twist induced by the endomorphism of k& mapping A
to AP . Note that G(P) is indeed a subgroup of D(P) since 5, commutes with tensor products and with
taking opposite algebras. In Dg(P), we have [y,(A)] = [A4], and consequently [yp~(A)] = [A] for all
necN.
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(7.1) Proposition. Let P be a p-group.

(a) The subgroup G(P) is finite, that is, G(P) C D*(P). In particular QD(P)= QDg(P).

(b) More precisely, we have G(P) C Ker(yp), where ¢p : D'(P) — [[, D(A) is the product of the
restriction-deflation maps to all cyclic sections A of order p .

(c) For every n € N, the functor v,~ induces the identity map on Dq(P) and also on both QD(P)
and D'(P) = D'(P)/Ker(¢p) .

Proof. (a) First recall that, by Example 3.3, if A is an abelian group, then the map v, : D(A) — D(A) is
the identity. By Theorem 1.5, D(P) is a finitely generated abelian group. Therefore, by Theorem 1.6, the

restriction-deflation map

Defres : D(P) — H D(E)

has finite kernel, where E runs over all elementary abelian sections of P of rank 2. Since v, commutes
with Defres (by Lemma 3.2) and is the identity on D(E) because E is abelian, the class of the alge-
bra v,(A) @ AP lies in Ker(Defres) for every Dade P-algebra A. It follows that G(P) is contained in
the finite group Ker(Defres) and so G(P) C D'(P).

(b) Exactly the same argument applies to the restriction-deflation map
yp: D'(P) = [[ D4,
A

where A runs over all cyclic sections of order p. Therefore G(P) C Ker(¢p) .

(c) Clearly =, induces the identity map on Dg(P), by definition of D¢ (P), hence also on the subquo-
tient D?(P). Moreover, since G(P) is finite, D(P) — Dg(P) induces an isomorphism QD(P) = QDg(P)
and the result follows. O

It is precisely part (c) of the proposition which will allow us to put on QD and Dt a structure of
functor in the sense of [Bol]. However, D itself need not be a functor in the sense of [Bol], because of the

presence of the twists y,» (see Example 3.4).

(7.2) Remark. Though we shall not adopt this point of view in this paper, we would like to mention that
it is possible to define a similar formalism which involves the twists by endomorphisms of k& and which
allows us to view D as a functor, without taking the quotient D¢ . We define an End(k)-graded Q-set-P
to be a pair (U,a) where U is a @-set-P and a is a function from Q\U/P to End(k). The disjoint
union of (U,a) and (U’,a’) is defined in the obvious way. Now if R is another p-group and if (V,b) is an
End(k)-graded R-set-@, then the product (V,b) xg (U,a) is the End(k)-graded R-set-P

(V,b) XQ (U,a) = (V XQ U,b XQ a),
where b x¢g a is the function from R\(V xq U)/P to End(k) defined by
(bxga)(v,u) =b(v)oa(u)omyu,

where m,, is raising to the power |Q, : Quup| (see Proposition 3.5). If (U,a) is an End(k)-graded
Q-set-P , we define a functor T(y 4) : Permy,(P) — Perm; (Q) by

Tw,q)(X) = Homp (U, X).
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If m is a morphism in Permy(P) from Y to X, we set

Tw.am) (e, v) = [[ alw)(m(e@),vw)).

ueU/P

Clearly, if we take for @ the constant function equal to the identity endomorphism of k| then the functor

T(v,a) 1s just our previous functor Ty . With those definitions, is is easy to see that we get a map
D(U,a) : D(P) = D(Q),
which is additive in (U, a) . Moreover D(V,b) o D(U,a) = D((V, b) xq (U, a)) by Proposition 3.5.

Now we introduce the functorial framework of [Bol]. If P and @ are p-groups, we denote by I'(Q, P)
the Grothendieck group of finite @-sets-P , with addition induced by the decomposition into disjoint union.
Thus T'(Q, P) is the free abelian group on transitive bisets up to conjugation. An element of I'(@, P) is
called a virtual biset. The product of bisets (V,U) +— V x¢g P can be extended to a bilinear product

o :T(R,Q) x T(Q, P) —» T(R, P).

Let C be the following category:

e The objects of C are the finite p-groups.

e If P and @ are finite p-groups, then Home(P, Q) =T'(P,Q) .

e The composition of morphisms is given by the product o defined above.
The category C is a preadditive category (in the sense of [Mc]). Similarly, when K is a commutative ring,
we consider the category Cx obtained by tensoring everything with K : the objects of Cx are the same as

the objects of C, but
Home, (P,Q) = K @z T'(P,Q) .
The composition of morphisms is defined by K-linearity.
Let us fix some notation about subgroups of products and bisets. If P and @ are finite groups, then
any P-set-() is a disjoint union of transitive ones, and the isomorphism classes of transitive P-sets-() are in

bijection with the conjugacy classes of subgroups of @ x P: if L is such a subgroup, we denote by (Px@Q)/L
the set of right cosets of L in P x @, viewed as a P-set-Q) by

g-(a,b)L-h = (ga,h"'b)L, Vg,a € P, Yb,h € Q.

Define the following subgroups of P and @ :

L={geP|3neq, (g,h) €L}, kL={ge€P|(g,1) €L},

(7-3) Ly={h€Q|3g€P (9,h) €L}, Ly={he@|(1,h) €L},

where the letter p stands for projection and k for kernel. Then xL<,L, Ly aL, , and the quotients ,L/xL
and L,/Ly are naturally isomorphic. Let us recall the following basic decomposition lemma. We use the

notation p,Q¢q for @ viewed as a L,-set-@Q) in the obvious way, and similarly in other situations.
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(7.4) Lemma. ([Bol], Lemma3). With the notation above, the morphism (PxQ)/L from @ to P isequal
to the product of the morphisms r,Qq (restriction), /L, (Lp/Lk)L (deflation), pL/kL<Lp/Lk>L Lk

(isomorphism), 1, (pL/kL) (inflation), and pP 1 (induction).

pL/kL

If R is another p-group and M is a subgroup of @ x R, let
LxM={(z,y) ePxR|3I€Q (z,2) €L, (z,y) € M }.
This is a subgroup of P x R. With this notation, recall the following “Mackey formula”.

(7.5) Lemma. ([Bol], Proposition 1). Let P, (), and R be finite p-groups. If L is a subgroup of P x
and M is a subgroup of Q x R, then

[(PxQ)/L] xq[@x R)/M]= 3 (PxR)/(L+x“VM),

T€[Lp\Q/pM]

where L, and ,M are defined by (7.3).
Now we come to the main fact for our purposes.

(7.6) Proposition. With the notation of the beginning of this section, the following hold.

(a) The correspondence D¢ which maps the p-group P to Dg(P) and the virtual biset U — U’ to the
group homomorphism D¢g(U)— Dg(U') is an additive functor from C to the category of abelian groups.

(b) QD is a Q-linear functor from Cq to the category of QQ-vector spaces.

(c) Dt is an Fy-linear functor from Cr, to the category of Fa-vector spaces.

Proof. (a) Let U be a @Q-set-P and let V' be an R-set-Q , where P, @ and R are p-groups. First note
that, by Lemma 3.2, D(U) : D(P) — D(Q) induces a group homomorphism

Dg(U) : Dg(P) — Dg(Q) .
Now we have to prove that D(V) o D(U) and D(V xg U) induce the same map
Dg(V) ODg(U) = Dg(v XQ U) : Dg(P) — Dg(R) .

This is a direct consequence of Remark 3.10, since all the twists +,» act as the identity of Dg(R) by
Proposition 7.1. Alternatively, one can decompose U and V , reducing first to the case where U and V
are transitive bisets (using Proposition 2.10), and then to the case where U and V are among the special
types of bisets appearing in Lemma 7.4 above. By Corollary 3.8, we know that D(V)o D(U) = D(V xq U)
in all cases except one, namely when D(U) corresponds to a tensor induction and D(V) to a deflation.

Now in this case, by Proposition 3.9 and its proof, for every Dade P-algebra A, we have
(Tv o Tu)(A) = %pr (T xou (4))

for some n € N, so that Dg(V) o Dg(U) = Dg(V xq U) since +,» acts as the identity on Dg(R) .

(b) This follows from (a) by tensoring with @, since QD(P) = QDg(P).

(c) Clearly the torsion subgroup DL (P) of Dg(P) defines a subfunctor of Dg . With the notation of
Proposition 7.1, we have to prove that Ker(yp)/G(P) defines a subfunctor of DL, (P), for the quotient DY
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will then be a functor in the category Fz. Note that W(P) is, by construction, an abelian group of
exponent 2, hence an Fo-vector space, so Dt will in fact be an Fo-linear functor from Cr, to the category
of [Fg-vector spaces.

In order to prove that Ker(¢¥p)/G(P) defines a subfunctor of D% (P), it is easy to verify that it is
invariant under restriction, tensor induction, inflation, and deflation. For a change, we use a more functorial
argument. We prove that Ker(¢p)/G(P) is equal to the kernel of all maps DL (p), for all morphisms
¢ : P — C in Cz. Since this clearly defines a subfunctor of D (P), the result follows.

By linearity, it suffices to consider a morphism ¢ : P — C in Cz defined by a transitive biset, that is,
¢ = (C x P)/L for some subgroup L of C x P. If there is a subgroup A of C' and a subgroup B of P
such that L = A x B, then the morphism ¢ factors through the trivial group (by Lemma 7.4). Therefore

Dg() : DG(P) — Dg(C)

is zero since DL (1) = 0. Otherwise there is a subgroup B of P and a surjection s : B — C' such that
L= {(s(b), b) | b € B} . Then the morphism ¢ is a restriction-deflation map to a section of order p of P,
so that D.(y) vanishes on Ker(¢p)/G(P). O

We denote by Fx the category of K-linear functors from Cgk to the category of K-modules. Thus
the functor K ®z D¢ is an object of Fg , but our goal in this paper is to study QD as an object of Fy
and D! as an object of Fr, . Recall that Fg is an abelian category.

We end this section with generalities about the category Fg , which are proved in [Bol]. The emphasis
in [Bol] is put on functors defined on a similar category whose objects are all finite groups. Here instead we
consider only finite p-groups, but this does not change anything to the general facts which we now recall.
If F is an object of Fg , and if P is a p-group, then F(P) is a module for the endomorphism algebra
Ende, (P) of P in Cg . In fact the correspondence

F — F(P)

is a functor from Fg to Ende, (P)-Mod, called the evaluation functor (at P ). This evaluation functor
has a left adjoint, defined as follows: if V' is an Endc, (P)-module and @ is a p-group, set

(7.7) Lpyv(Q) = Home, (P, Q) ®ende, (p) V' -

This makes sense because Home, (P, Q) has a natural structure of right Endc, (P)-module, given by right
composition of morphisms in Cx (P, Q). If ¢ is a morphism in Cx from @ to @', then composition of

morphisms (on the left) defines a map

Lpv(e) : Lpv(Q) = Lpv(Q').

So Lpy is an object of Fx . Moreover, the correspondence V — Lpy is clearly a functor from the
category of Endc, (P)-modules to Fg , and this functor is left adjoint to the evaluation functor at P .
If the module V is a simple Ende, (P)-module, then Lpy is not simple in general, but it admits a

unique maximal (proper) subfunctor Jpy defined by

(7.8) Jpv(Q) = {Z Y @v; | V¢ € Home, (Q, P), >, (¥i)vi = 0}
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for every p-group @ . The quotient Lpy /Jpy is a simple object of Fx and is denoted by Spyv .

Now in the algebra &nde, (P), let Ip denote the K-submodule generated by the endomorphisms
of P which factor through a group @ of order strictly smaller than the order of P . It is clear that Ip
is a two-sided ideal of Ende, (P). Moreover, if A is the K-submodule generated by the bisets which are
both free and transitive on the right and on the left, then A is a subalgebra isomorphic to the algebra
over K of the group Out(P) of outer automorphisms of P . The isomorphism is obtained by mapping the
automorphism ¢ of P to the set P, , which is the set P, with double action given by

g-x-g =gzeld), Vz € P, Vg9 €P,
where the product on the right hand side is the product inside the group P . Finally, there is a decomposition
(7.9) Ende, (P)=Aa®Ip, with A = KOut(P) .

With this decomposition, the quotient algebra Ende, (P)/Ip is isomorphic to KOut(P) and we can view
any KOut(P)-module V' as an &Endc, (P)-module, still denoted by V.

(7.10) Proposition. ([Bol], Proposition 2). Let Spv = Lpv/Jpyv .

(a) The correspondence (P,V) — Spyv is a bijection between the set of isomorphism classes of pairs (P, V)
consisting of a p-group P and a simple KOut(P)-module V , and the set of isomorphism classes of
simple objects of Fi .

(b) The inverse bijection maps a simple object S to the pair (P, S(P)) , where P is a group of minimal
order such that S(P) # 0. This condition forces S(P) to be a KOut(P)-module, which turns out to

be simple.

In particular, when K is a field, we denote by Sp k the simple functor associated to the pair (P, K), where
K is the trivial KOut(P)-module.

Recall finally ([Bol] section 7.1) that there is a morphism X — X of K-algebras (with unity) from
the Burnside algebra K B(P) of P over K to the algebra Ende, (P). If X is a P-set, the set
(7.11) X=XxP
is a P-set-P with double action given by
g1-(x,9) 92 = (91%,91992) , Ve € X, Vg,91,92€ P.

If X is the transitive P-set P/, then it is easy to check that X is a transitive P-set-P isomorphic
to (P x P)/A(Q), where A(Q) is the diagonal inclusion of @ in P x P.
We have the following idempotents of Z[%]B(P) , indexed by subgroups @ of P:

1
o 2 IRIu(R,Q) (PR,
@ A,

where p denotes the Mobius function of the poset of subgroups of P . These idempotents are characterized
by the fact that if X is a P-set, then

P _
6Q—

X -65 = |XQ|65.

It follows from this characterization that the restriction of 65 to a subgroup R of P is the sum of the
idempotents e? associated to the subgroups S of R which are conjugate to @ in P, up to conjugation
by R. In particular, the restriction of e to any proper subgroup of P is zero.

If p is invertible in K , the idempotents eg have natural images in K B(P), still denoted by eg .

When @ runs over a set of representatives of the conjugacy classes of subgroups of P, the idempotents eg

are mutually orthogonal, and their sum is the identity of K B(P). So we obtain the following result.
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(7.12) Proposition. If p is invertible in K , the elements eg are mutually orthogonal idempotents of

sum 1 in Ende, (P).

For any functor F' in the category Fk , one deduces a decomposition of F'(P) as a direct sum

F(P)= @D I(eh) F(P),

Q

and this will play a crucial role in Section 9.

8. The Burnside functor

One of the main examples of functors in the category Fg is the Burnside functor KB, where K B(P) is the
Burnside algebra of the p-group P over the commutative ring K . When K is a field, the simple functors
which appear as composition factors of K B are easier to describe than arbitrary simple functors. It turns
out that the functors QD and Dt , which we are interested in, are isomorphic to composition factors of QB
and [Fs B respectively. In view of this, we need to understand better the composition factors of KB and
this is the purpose of this section.

When K = @, this question was studied in [Bol] (for all finite groups instead of p-groups). The
methods can be modified to find all subfunctors of the functor K B defined on the category Cx of p-groups,
when K is a field of characteristic ¢ different from p. In particular when K = @, we recover the results
of [Bol], specialized to the category of p-groups. The description of all subfunctors of KB requires some
combinatorial computations, involving the constants mg n defined in (4.6).

It is clear that KB is a functor in the category Fg , since if U is a @Q-set-P , we have a K-linear
homomorphism

KB(U) : KB(P) — KB(Q)

mapping a P-set Y to the @-set U xp Y . If such a biset U 1is transitive, then it decomposes as a
product of bisets corresponding to a restriction, a deflation, an isomorphism, an inflation, and an induction
(Lemma 7.4).

Since the characteristic ¢ of K is distinct from p, the K-algebra K B(P) is semi-simple for any
p-group P and its primitive idempotents are the idempotents 65 defined in the previous section. It is
easy to compute the value of the five natural operations above on the primitive idempotents eg , with the
single exception of deflation which requires a little work. We first recall this. Details can be found in [Bol],

page 701.

(8.1) Lemma. Let P be a p-group, let ) be a subgroup of P, and let N be a normal subgroup of P.

Then

N N N
Defg/N(eg) = % mq,Qnn - 65%]\7 )

where mqg gnn Is the rational number defined in (4.6).

Given a positive integer 7, we define the ideal

L(P)y=<eb | 1Q/2(Q)>p" >,
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where ®(()) denotes the Frattini subgroup of @ . The condition |Q/®(Q)| > p" means that @ cannot
be generated by fewer than r elements, or in other words that the elementary abelian group Q/®(Q) has
rank > r. For suitable values of r, we want to prove that I, is a subfunctor of K B . These values will be
those of the set

IT={0}Uu{reN|r>0,p""?=1 (mod ¢)} U{co},

where I (P) denotes the zero ideal of KB(P). If s denotes the order of p modulo ¢, then Z consists
of all positive integers congruent to 2 modulo s (together with 0 and oo). If ¢ = 0, then s has to be
understood as oo and we have Z = {0,2, 00} in that case. If ¢ divides p— 1, then s =1 and Z consists
of all positive integers (together with 0 and o).

For every r € T, r # oo, we write s(r) for the successor of r for the natural ordering of Z. Thus
s(0) = 2 (unless ¢ divides p — 1 in which case s(0) = 1), and s(r) = r+s if r > 0. Finally we denote

by E, an elementary abelian group of rank r.

(8.2) Theorem. Let K be a field of characteristic q # p .

(a) For every r € T, the family of ideals I.(P), where P runs over all finite p-groups, forms a subfunctor
of KB.

(b) The functors I, (for r € T ) are the only subfunctors of KB . In other words, the functor KB has a

unique filtration

KB=1yD 1, DI, ={0} if g =0,
KB=I)OD1D>L>I3D... ifg#0and q|p—1,
KB=1yDIDIsys DIpyas D ... if¢g#0and qfp—1.

(c) If r€Z, r+# oo, the quotient I/l Is isomorphic to the simple functor Sg, i , where K denotes
the trivial module.

(d) If P is a p-group, the dimension of Sg, x(P) is equal to the number of conjugacy classes of sub-
groups @ of P such that p" < |Q/®(Q)| < p*(").

Proof. We first prove (b). If F' is a non-zero subfunctor of KB, then F(P) is an ideal of KB(P) for any
p-group P . This follows from the isomorphism X xpY ~ X XY whenever X and Y are P-sets. Here
Xe Ende, (P) is defined by (7.11). It follows that there is a family A(P) such that

F(P)=<ef | Qe AP)>.

If @ is a subgroup of P, we know that IndéaJ (F(Q)) C F(P) and Resg (F(P)) C F(Q), since F is a
subfunctor of KB . Since 65 = |Np(Q) : Q|_1Indg(eg), and since Resg(ep) = eg, we conclude that
Q € A(P) if and only if @ € A(Q). In other words, there is a family A of p-groups such that, for any
p-group P,

F(P)=<ef | QEAQLP>.

If N <P, we must have Infg/N (F(P/N)) C F(P). Since

P PN _ E P
Ian/Nep/N = €x
XN=P
X mod P
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it follows that if P/N € A, then P € A. Finally, let B be the family of elements of A having no proper
quotient in 4. Then of course A is the family of groups having a quotient in B .

If P € B, we must have mpy = 0 for every non-trivial normal subgroup N of P . Indeed
Defllz/N(eII;) = mpnN ei?% by Lemma 8.1, and if mpx # 0, we have P/N € A, which is impossible
since P € B. Since mp g(p) is always equal to 1, this proves that P is elementary abelian. If P # {1} is
elementary abelian of order p”, and if N is a subgroup of order p of P, we have

1
- —1— r—2
mpnN [P E |‘(|M(‘<al ) p

XN=P
since a proper subgroup X of P such that XN = P is a complement of N | hence is a maximal subgroup
of P, sothat u(X,P)= —1. Moreover, there are p"~! such complements.

In other words, the family B is contained in the family of elementary abelian p-groups of order p” with
either # =0 or p’ 2=1 in K. If B is non-empty, and if r is minimal such that the elementary abelian
p-group FE,. of order p” is in B, it follows that A4 is the family of p-groups having F, as a quotient,
that is, the family of p-groups P such that |P/®(P)| > p". This proves that any non-zero subfunctor
of KB isequal to I, with either =0 or p"=2 =1 (mod q) .

(a) We have to prove that any such I, is indeed a subfunctor of K B. This is trivial if » = 0 since
Iy = KB . If now r > 0, it should be clear from the previous remarks that I, is stable under induction
and restriction. It is invariant under inflation, because

P/N

Infg/NeQ/N = Z el

XN=Q
X mod Np(U)

and moreover, if XN = @ and if /N has an elementary abelian quotient of rank > r, then so does X
since X/X NN = @Q/N. In order to check that I, is stable under deflation, let ¢ be a subgroup of P
such that |Q/®(Q)| > p" and let N be a normal subgroup of P. By Lemma 8.1, we have
Def;/N(@g) = W mq,QnN 6S%N ;

and this is non-zero if and only if mg gnn is non-zero. Let M = QNN and R=Q/M = QN/N . Finally,
all we have to check is that if @ is a p-group such that |Q/®(Q)| > p”", if M is a normal subgroup of @
such that mg ap # 0, and if R = Q/M , then we have |R/®(R)| > p" . As in the proof of Lemma 4.7, we
have

mQ.M = MQ,Me(Q) = MQ/2(Q),M2(Q)/2(Q)
so it is enough to suppose that @ is elementary abelian. If |Q| = p* and |M| = p', then we have s > r
by hypothesis, and we can suppose t > 0. Moreover, by (4.8), we have

mom = (1— pPTH1—p ) (1 =pTh)
If s—t—1<r—2,thisiszeroin K. Hence s —t > r, which means that |R/®(R)|> p".

(c) It follows from (b) that each non-zero subfunctor /, has a unique maximal subfunctor /() and
so the quotient I,/Is(r) is a simple functor S, . Clearly E, is a minimal group for S, , and S,(FE,) is
one-dimensional, generated by eg: , which is invariant by any automorphism of E, . So S, is the simple
functor Sg, i .

(d) If P isa p-group, it is clear that the dimension of I,(P) is equal to the number of conjugacy classes

of subgroups @ of P such that p" < |Q/®(Q)|, and similarly for I)(P). Therefore the dimension of
SEr,K(P) = Ir(P)/Is(r)(P)

is equal to the number of conjugacy classes of subgroups @ of P such that p" < |Q/®(Q)| < p*") . O

— 43 —



(8.3) Corollary. Suppose K is a field of characteristic 0.

(a) There is a non-split exact sequence of K-linear functors
0 — Sp,,k — KB — S1xk — 0.

(b) If P is a p-group, the dimension of S x(P) is the number of conjugacy classes of cyclic subgroups
of P, and the dimension of Sg, x (P) Is the number of conjugacy classes of non-cyclic subgroups of P .

(c) The functor Si i is isomorphic to K Rq and the right hand side morphism in (a) can be chosen to be
the natural morphism KB — KRg (mapping a P-set to its permutation Q) P-module).

Proof. (a) The set Z in Theorem 8.2 is equal to {0,2,00}. This means that the functor KB has a unique
proper non-zero subfunctor Sg, x , with quotient isomorphic to S; k .

(b) By Theorem 8.2, the dimension of S; x(P) is the number of conjugacy classes of subgroups @ such
that 1 <1Q/®(Q)| < p?, that is, the cyclic subgroups of P . On the other hand the dimension of Sg, k(P)
is the number of conjugacy classes of subgroups of P having a quotient isomorphic to E5 . Those subgroups
are precisely the non-cyclic subgroups of P.

(c) There is a natural morphism ¢ : KB — KRg such that ¢(P) : KB(P) - KRg(P) maps a
P-set X to the corresponding permutation @ P-module QX . Now it is well-known that the dimension
of KRg(P) is equal to the number of conjugacy classes of cyclic subgroups of P, so that

dimg (K Rg(P)) = dimk (S1,x(P))

by the theorem. It follows that ¢ must be surjective (actually a well-known easy fact!) and the functor S; x

must be isomorphic to KRg. O

Note that Corollary 8.3 is a special case of the analysis of the composition factors of KB made in [Bol]

for all finite groups (see [Bol], Propositions 10 and 12, and Example 4 page 709).

(8.4) Corollary. Suppose K is a field of characteristic ¢q dividing p— 1.
(a) The functor KB has a unique filtration

[{32103113123133...

and for every r > 0, the simple functor Sg, x is a composition factor of KB .

(b) If P is a p-group, the dimension of Sg, k(P) is the number of conjugacy classes of subgroups @ of P
such that QQ/®(Q) has order p" . In particular, the dimension of Sg, x(P) Is the number of conjugacy
classes of non-trivial cyclic subgroups of P .

(c) Si,k Is isomorphic to the constant functor 'k with ['x(P) = K for every P .

(d) KRgq Is isomorphic to a quotient functor of KB and there is a non-split exact sequence of K-linear
functors

0—Seg,k — KRp —1I'x — 0.

Proof. (a) This follows directly from Theorem 8.2 since Z = NU {oco} when ¢ divides p—1.
(b) This follows immediately from Theorem 8.2.
(c) This follows from (b) by taking r = 0.
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(d) There is again a morphism ¢ : KB — K Ry, mapping a P-set to the corresponding permutation
@ P-module. The kernel of this morphism must be one of the subfunctors I, of KB . It cannot be Iy = KB
since ¢ is non-zero (the trivial P-set is not mapped to zero). It cannot be I, since otherwise the image
of ¢ would be the simple functor S; g = 'k, which is one dimensional in every evaluation. But for the
cyclic group C' of order p, the image of ¢(C) is K Rg(C) and has dimension 2 (since the characters Indf1
and 1 are not proportional modulo ¢ ). Finally, the kernel of ¢ cannot be one of the subfunctors I. for
r > 3, for reasons of dimension. Indeed the dimension of K Rg(P) is the number of conjugacy classes of
cyclic subgroups of P, and this is also the dimension of KB(P)/I5(P).

It follows that the kernel of ¢ is I3, and that e is surjective. Thus K Rq is a quotient of K B, having
a unique non-zero proper subfunctor, isomorphic to I /Iy = Sk, k . The quotient functor is the constant

functor 'k (and the morphism K Rg — T'x is actually the reduction modulo ¢ of the dimension). O

We note that the case ¢ | p— 1 is the only one where a constant functor T'x exists.

9. A characterization of some simple functors

We prove in this section that the simple functors Sg x , where F is an elementary abelian p-group and
K is a field of characteristic different from p, can be characterized in some precise way by their values
on elementary abelian groups. This is important for our purposes since both QD and D? turn out to be
simple functors of this type.

Recall that, for every p-group A and every KOut(A)-module V| we have

Sav=Lav/Jav,
where Lsv and Ja v are defined by (7.7) and (7.8). We first need two lemmas.

(9.1) Lemma. Let A be an abelian p-group and let V be a KOut(A)-module. If P is a p-group such
that La v (P)# 0, then the group A is isomorphic to a section of P .

Proof. If La v (P) # 0, then there exists elements ¢; € Homg, (A4, P) and elements v; € V ,for 1 <i<n,
such that

Zg@i@)vi;ﬁo n LAyv(P):HomcK(A,P) ®Ench(p)V.

i=1
Moreover, by linearity, we can suppose that the elements ¢; are transitive P-sets-A . So there exists such a
transitive biset ¢ and an element v € V such that ¢ ® v is non-zero in L4 v (P) . There is a subgroup L
of P x A such that ¢ = (P x A)/L. Using the notation 7.3, we let

B=L,/Ly = ,L/xL,

so that there are surjective morphisms s : ,L — B with kernel ;L and ¢: L, — B with kernel L; such
that

L={(ga)ePxAlge,L,acl,, s(g)=t(a)}.

It is easy to see from Lemma 7.5 that

(9.2) ¢ =(PxA)JL=(Px B)/Mxgp (BxA)/N,
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where
M={(g,5(9)) lg€,L} S PxB and N ={(t(a),a)|ae L} CBxA.

Now the group B = A’/A"” is a section of the abelian group A, where we have set A’ = L, and A" = L; .
The groups A, B, A’,and A" are all abelian, hence isomorphic to their dual (or character group). As A’
is a subgroup of A, its dual A’ = A’ is a quotient of A = A. Now B is a quotient of A’, hence also a
quotient of A . Thus there exists a surjective morphism uw: A — B.

Now set
R={(a,u(a)) |a€e A} C Ax B and S ={(u(a),a) |]a€ A} CBxA.
It follows easily from Lemma 7.5 that
(Bx A)/S xa(AxB)/R=(BxB)/{(bbd)]|be B},

which is the identity endomorphism of B in the category Cg (this is inflation followed by deflation). We

can insert this relation in (9.2), and this gives
¢=(PxB)/M xg(BxA)/Sxa(AxB)/Rxp(BxA)/N.

Setting
Y= (P x B)/M xp (B x A)/S and §=(AxB)/Rxp(BxA)/N,

we have ¢ = ¢po 0. Now if |B| < |A], the endomorphism 6 of A is in the ideal I, defined in (7.9),
since it factors through B . Therefore its action on the KOut(A)-module V' is zero, and it follows that
in L v(P), we have

p@uv=(Wo)@uv=9¢y0-v=0.

This shows that |B| = |A|, hence B = A. Now B is also a section of P, and the lemma follows. O

(9.3) Lemma. Let K be a field of characteristic different from p, let A be an elementary abelian p-group,
and let V be a KOut(A)-module. Then any subfunctor F of L, v is generated by its values on elementary
abelian p-groups, that is,

F(P) = )> Fle)(F(B)).

E p—elementary abelian
p:E—P

for every p-group P .

Proof. We prove the lemma by induction on the order of P | the result being trivial if P itself is elementary
abelian. Let P be an arbitrary p-group, and suppose the result holds for all groups of order strictly smaller
than |P|. Let f € F(P). By Proposition 7.12, we can decompose f as

f= Y P

Q<P
Q@ mod P
Recall that
= S IRIu(R, Q) (P x P)/A(R).
(@) 2
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This expression shows that if @ is a proper subgroup of P, then ;S is a linear combination of elements
of type (P x P)/A(R), where R is a subgroup of @, hence a proper subgroup of P. By Lemma 7.5, the
biset (P x P)/A(R) factorizes as

(Px P)/A(R)= (P x R)/JA(R) xr (R x P)/A(R),
and it follows that
F((Px P)/A(R)(f) € F((P x R)/A(R)(F(R))-

By induction hypothesis, this gives

F((Px P)/AR)(S) € F(Px R)/AR) | 3 Flo)(FE) | € 3 F@)(FE®)).

¢o:E—-R Y E—P

It follows that we only have to deal with the term F(;E)(f) , 50 we can suppose that f = F(ef)(f). On the
other hand, the element f isin F(P)C La v (P), so it can be written

f= ZSDZ' ® v;
i=1

for suitable elements v; € V and ¢; € Home, (A, P), that we can suppose to be transitive P-sets-A . Now
by definition of the functor L4 v , we have

F=FER)Q piou)=) (b xpei) @
i=1 i=1
There exist subgroups L; of P x A such that ¢; = (P x A)/L;. Using the notation 7.3 and setting
B; = (Li)p/(Li)x , there are subgroups M; of P x B; and N; of B; x A such that
Y = (P X A)/LZ = (P X Bz)/Mz XB; (Bz X A)/NZ,

and it follows that

(6? Xp 3’01') R v; = LA,V (6£ o (P X Bz)/Mz) (((Bz X A)/NZ) ® vi) .

Now the element ((BZ X A)/Ni) ®u; isin La v (B;), which is zero if A is not a section of B; by Lemma9.1.
Moreover, if A is a section of B;, as B; is also a section of A, we have A = B; .

In this case there is a subgroup P; of P and a surjective homomorphism s; : P; = A such that
Li={(g.5i(9)) lg € P} S Px A,
and we have the factorization
w; = (P x A)JL; = (P x P)/A(F) xp, (Pi x A)/L}
where L} is the group L;, viewed as a subgroup of P; x A. Now Proposition 14 of [Bol] shows that

ef xp (P x P)/A(P) = (P x P)/A(P;) xp, Resh.eb |
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and this is zero if P; # P . So we have P; = P for all ¢ and

pi = (P x A)/A,(P),  where A, (P)=1{(g,si(9)) | g € P}.

Therefore we obtain

- 1

B xp @i = 11 D IRIR(R, P) (P x P)/AR) xp (P x 4)/A,,(P)

R<P

= 5 3 IRIu(B.P) (P x )/ 5 (R).

where Ag (R) = {(7‘, si(r)) | g € R} . The sum only runs over subgroups R such that u(R, P) # 0, so that
R contains the Frattini subgroup ® of P . Setting P = P/® and R = R/®, the surjection s; : P — A
factorizes as the projection 7 : P — P followed by a surjection 5 : P — A, because A is elementary

abelian. It is easy to check that
(P x A)/As (R) = (P x P)/Ax(P) x5 (P x A)/A5,(R),

where Ar(P) = {(g,7(g)) | 9 € P} and As,(R) = {(7,5(7)) | 7 € R} . Therefore we obtain

n

f= 2(611; Xp ;) ® v

i=1

=3 o X IRIA(R P) (P x A)/As, () © v

R<P

=3 [(Px PY/AC(P) s (g X IRIuR.P) (P 4)/ 85, (R)] & v

= Lav (P % P)/A(P)) (F)
= Inf%(?) ;

where f € Layv(P) denotes the expression

7= 151 2 IR u(R.P) (P x 4)/ 85, (R) .

But we have already noticed that inflation followed by deflation is the identity, that is,
(P x P)/{(n(9),9) | g € P} xp (P x P)/{(g,7(9)) | g € P} = (P x P)/{(3.9) | 7 € P} = idgp,

as morphisms in Cg . Therefore f = Def%lnf%(f) = Def%(f) ,and so f € F(P) since f € F(P) and F
is a subfunctor of L4 v . Hence

f=InfE(f) € F(p)(P),

for some morphism ¢ : P — P | as was to be shown. O

Now we can state our characterization of the simple functors Sg x .
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(9.4) Theorem. Let K be a field of characteristic different from p, let F be an elementary abelian
p-group, and let F' be an object of F .
(a) Suppose I has the following two properties:
(1) F(F) = K is the trivial KOut(E)-module.
(2) If P is elementary abelian, dimg (F(P)) = dimg (SE,K(P)) .
Then the functor I admits a direct summand isomorphic to Sg i .
(b) Suppose moreover that the following condition holds:
(3) For any p-group P, the map

[T F(P)— 11 F(A)
) A p—elementary abelian
p:P—A
is injective.

Then the functor I is isomorphic to the simple functor Sg k .

Proof. Since Sg g vanishes on proper sections of E', hypothesis (2) implies that F(P) = 0 if P isa
proper section of E . Therefore the ideal Ip of Ende, (P) acts by zero (see (7.9)) and so F(E) is not
only isomorphic to K as KOut(E)-module (hypothesis (1)), but also as Endc, (P)-module. Therefore, by
adjunction, there is a morphism 0 : Lg g — I which is the identity of K when evaluated at £ . Hence the
kernel of @ is contained in the unique maximal proper subfunctor J = Jg x of Lg x . Now the image F’
of @ contains a submodule F” = 6(J) such that F'/F"” = Sg g . Hypothesis (2) implies that for any
elementary abelian p-group A, we have F'(A) = F(A) and F"(A) =0.
But for any p-group P, we know from Lemma 9.3 that

J(P)y= Y Je)(J(4),

p:A—P

where the sum runs over the elementary abelian groups A, and morphisms ¢ : A — P in Cg . Taking

images by 6, we have

F'(P)y=0p(J(P)) = D 0pJ(9)(J(A) = D F'(@)0a(J(A) = Y F'(p)F"(4)=0.

g AP p AP p AP

Hence F"” =0, and F’ is isomorphic to Sg k , so we have an injection i: Sg x — F .
The next observation is that there is a natural notion of duality in Fg . If F is any K-linear functor

from Cxg to K-vector spaces, the dual F'* of F is defined on each object P by
F*(P) = HomK(F(P),K) .

If @ is another p-group, and ¢ : P — @ is a Q-set-P , then one defines F*(p) = F(¢°)* , where F(p)*
is the transpose map of F(p°). This definition extends by linearity. There is a canonical morphism of

functors § from F' to its bidual F** | defined for a p-group P by
Sp(e)(g) = p(),  Vae F(P), Vg € F(P) .

The map dp is an isomorphism if F(P) is finite dimensional over K .
It is clear that the dual of a simple functor is simple, and the classification of simple functors shows
that the functor Sg k is self dual. Now hypotheses (1) and (2) hold clearly for F* if they do for F'. Our
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previous argument shows therefore that Sg i is a subfunctor of F*. By duality, we obtain a surjective
morphism s : F** — Sg g . Now sodoi is an endomorphism of Sg g , which is non-zero since its evaluation
at [ is the identity of K. As Sg k is simple, it follows that sod o4 is an isomorphism, so that Sg k is
a direct summand of F', proving (a).

Now we can write F' = Sg g & X . Hypothesis (2) shows that X(P) =0 if P is elementary abelian.
Since hypothesis (3) holds for any subfunctor of F' if it does for F', it follows that for any p-group P, the
map

LX) x(P) - 11 X(4)
)

A p—elementary abelian
p:P—A

is injective. As the right hand side is zero, we have X (P) =0, hence X =0 and F is isomorphic to Sg x ,
proving (b). O

10. The torsion-free part of the Dade functor

The purpose of this section is to prove Theorems C and D of the introduction. For convenience, we first

restate Theorem C.

(10.1) Theorem. The functor QD is simple and is isomorphic to Sg g, where E is an elementary abelian

group of order p? .

We shall give two independent proofs of this theorem. The first uses the main theorem of Section 4,
which gives the dimension of QD(P). Our second proof is more conceptual and involves more of the
functorial formalism. It is based on the characterization of Sg g obtained in Section 9 and it is independent
of the results of Section 4. In both cases we need to apply the results of Section 8 giving the dimension

of Sk q(P), though in the second proof this is only used when P is elementary abelian.

First proof of Theorem 10.1. Clearly if we evaluate QD at E | we get QD(E) = Q@ and this isomorphism
is an isomorphism of QOut(£)-modules, since QD(FE) is generated over @ by Qg , which is invariant under
the action of any automorphism of E . Moreover, the group E is minimal for QD so in fact the ideal Ig
of Endey(E) acts by zero and QD(E) is isomorphic to Q as Endey(£)-module, see (7.9).

By adjunction, we now have a morphism of functors 6 : Lg g — QD, see (7.7). This morphism is
non-zero, so its kernel is contained in the unique maximal proper subfunctor Jg g of Lg g, see (7.8). This
shows that the image of # has a quotient isomorphic to Sg.g = Leo/JE,0-

But we know from Theorem 4.1 that for any p-group P, the dimension of QD(P) is equal to the
number ne(P) of conjugacy classes of non-cyclic subgroups of P. On the other hand, we have shown in
Corollary 8.3 that the dimension of Sg g(P) is also nc(P) . Since the image of fp has a quotient isomorphic
to Sgo(P), it follows that fp is surjective, and that QD is isomorphic to Sgq. O
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Second proof of Theorem 10.1. We want to apply Theorem 9.4 for K = @, for the functor F = QD
and for the elementary abelian p-group £ of order p?. So we need to check the three hypotheses of
Theorem 9.4. We first note that QD(E) 2 Q is the trivial QOut(FE)-module since it is generated by Qg ,
which is invariant under automorphisms of E . Thus hypothesis (1) holds.

If P is elementary abelian, then the dimension of QD(P) is given by Dade’s Theorem 1.4, and is equal
to the number of non-cyclic quotients of P, which is equal to the number of non-cyclic subgroups of P,
by duality. But by Corollary 8.3, the dimension of Sg g(P) is equal to the number of non-cyclic subgroups
of P. Hence hypothesis (2) holds for QD.

Finally hypothesis (3) also holds for @D, by Theorem 1.6. We conclude that QD is isomorphic
to Sg,@, by Theorem 9.4. O

It is now straightforward to explain our original proof of Theorem A (giving the dimension of QD(P)),
which was based on Theorem 10.1 (and its second proof above). It suffices to notice that the dimension
of QD(P) is that of Sg g(P), which is known to be the number of conjugacy classes of non-cyclic subgroups
of P, by Corollary 8.3.

(10.2) Remark. In Section 4, we have encountered the homomorphism

1 .
6571\, = — Z | X 1(X,Q) Temnf;;/(XnN) :Q—->QD(P),
Q& .
XN=Q
where P is a p-group, @ < P, and N «Q is such that Q/N is elementary abelian of order p?. Clearly,
this is defined by a formula analogous to the expression for the idempotents of the Burnside ring. The explicit
connection is made by means of the action of the Burnside algebra K B(Q) on QD(Q) (see Proposition 7.12).
Indeed we have ~
ﬁSN = Teng o 68 o Infg/N ,

by a direct computation (using the bisets corresponding to TenlfQD and Infg/N , together with the fact that
QD vanishes on proper sections of @/N ). However, the fact that 55,N is independent of N (Proposi-
tion 4.9) still requires arguments involving the numbers mg n (see the proof of Proposition 4.9 or [Bol]).

On the other hand we also mentioned in Remark 4.3 the homomorphism

1
(5571\, = — Z | X 1(X,Q) Defres;}/(XnN) :QD(P)—=Q,
Q&
XN=Q

which is dual to 657]\, , and we claimed that it is also independent of N . The proof of this is now straight-
forward. It simply follows from the fact that QD is self-dual, because Sg g is self-dual, and the duality

transforms (557]\, into ﬁS,N and conversely.

(10.3) Remark. The self-dual property of Q@D means that there exist non-degenerate bilinear forms
<—,—>p : QD(P)x QD(P)— Q,

which satisfy suitable functorial relations (i.e. Teng is adjoint of Resg and Defg/N is adjoint of Infg/N ).
The forms are symmetric because they are determined by the form <—, —>p (by simplicity of QD = Sg g)
and QD(FE) is one-dimensional. It would be useful to have a natural description of the form <—,—>p on

endo-permutation modules, but we can only describe it on the basis of Q. D(P) given in Proposition 4.11.

Now we come to Theorem D of the introduction.
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(10.4) Theorem. There is an exact sequence of functors
0— QD5 QB-5QRy—0

where for every p-group P, ¢(P) : QB(P) - QRg(P) is the morphism mapping a P-set to the corre-

sponding permutation module over () .

Proof. Corollary 8.3 shows that QB has a unique non-zero proper subfunctor I3, isomorphic to Sg g,
and that the quotient functor is isomorphic to QRg via the morphism e. The result follows from the

isomorphism QD= Sgq. O

(10.5) Remark. We have no natural description of the map « in terms of arbitrary endo-permutation
modules, but we can give an explicit description of the map on a basis of QD(P). We first note that « is
unique up to a scalar multiple, because QD = Sg ¢ is simple and its endomorphism ring is isomorphic to the
endomorphism ring of @ as QOut(£)-module, by adjunction. In other words, a is completely determined

by its evaluation at F

ap:QDE)=Q — QB(E).

Recall that the image of « is the subfunctor I3 defined in Section 8 and that I(F) is one-dimensional,
generated by the primitive idempotent eg of QB(E). Thus we specify ag by mapping Qg to eg .

Now for an arbitrary p-group P, we know that QD(P) has a basis consisting of the elements
Tenglnfg/QD(QQ/QD) , where ) runs over the non-cyclic subgroups of P up to conjugation, and @ de-
notes a fixed normal subgroup of @ such that Q/Qo = E . Since « is functorial, we immediately deduce

that
ap (Tenglnfg/QD(QQ/QD)) = Indg Infg/QD(egfgg) = Indg( Z e?()

XQo=@Q
X mod Q
1 |Np(X)|
Cwdl((Y )=y e
Q . X X
& Nem YT &
XQo=Q XQo=Q

This can also be written in terms of the standard basis of Q B(P) by expanding e% .

11. Partial results on the torsion functor
In this final section, we consider the functor D! and prove results analogous to those proved for QD in the

previous section. We suppose that p is an odd prime.

(11.1) Theorem. If p is odd, the functor Dt is simple and is isomorphic to Scr,, where C' is a cyclic
group of order p.

We shall again give two independent proofs of this theorem. The first uses the main theorem of Section 6,
which gives the dimension of ﬁ(P) , while the second uses more functorial formalism, since it is based on

the characterization of Scy, obtained in Section 9.
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First proof of Theorem 11.1. Clearly if we evaluate D! at C', we get ﬁ(C) = [F and this has to be
an isomorphism of QOut(C)-modules. Moreover, the group C is minimal for Dt so in fact the ideal I¢
of Endc,, (C) acts by zero and Dt(C) is isomorphic to Ty as Endc, (C)-module, see (7.9).

By adjunction, we now have a morphism of functors ¢ : Loy, — Dt | see (7.7). This morphism is
non-zero, so its kernel is contained in the unique maximal proper subfunctor Jew, of Lo, , see (7.8). This
shows that the image of # has a quotient isomorphic to Scr, = Lew,/Jeor, -

But we know from Theorem 6.1 that for any p-group P, the dimension of W(P) is equal to the
number ¢(P) of conjugacy classes of non-trivial cyclic subgroups of P . On the other hand, we have shown
in Corollary 8.4 that the dimension of Scr,(P) is also ¢(P) (note that 2 divides p — 1 since p is odd!).
Since the image of fp has a quotient isomorphic to Scr,(P), it follows that 6p is surjective, and that Dt

is isomorphic to S¢r,. O

Second proof of Theorem 11.1. We want to apply Theorem 9.4 for K = IFy , for the functor F = Dt
and for the cyclic group C of order p. So we need to check the three hypotheses of Theorem 9.4. We first
note that D?(C) = Fy is the trivial QOut(C)-module. Thus hypothesis (1) holds.

If P is elementary abelian, then the dimension of ﬁ(P) is given by Dade’s Theorem 1.4, and is
equal to the number of non-trivial cyclic quotients of P, which is equal to the number of non-trivial cyclic
subgroups of P, by duality. But by Corollary 8.4, the dimension of S¢ r,(P) is equal to the number of
non-trivial cyclic subgroups of P (again note that 2 divides p — 1 since p is odd). Hence hypothesis (2)
holds for Dt .

Finally hypothesis (3) also holds for D? | by definition, since Dt(P) = D!(P)/Ker(¢p) and the injec-
tivity of the map induced by ¢p guarantees hypothesis (3). We conclude that Dt is isomorphic to Scr,,
by Theorem 9.4. O

There is a short exact sequence for D! which is very similar to the one we obtained for QD .

(11.2) Theorem. If p is odd, there is an exact sequence of functors
0— DF 5 TRy B Iy, — 0,
where 'y, denotes the constant functor.

Proof. Corollary 8.4 (which can be applied since 2 | p— 1) shows that FyRgp has a unique non-zero proper
subfunctor, isomorphic to Scr,, and that the quotient functor is isomorphic to I'r, via the dimension

morphism. The result follows from the isomorphism Dt = Scr,. O

(11.3) Remark. The situation is the same as for QD . We have no natural description of the map £ in
terms of arbitrary endo-permutation modules of finite order, but we can give an explicit description of the
map on a basis of D(P) .

The representation ring [y Rp(C') has dimension 2 with basis {1,Indf(1)}, and the kernel of the
dimension map modulo 2 is one-dimensional over [Fs ;| generated by Ind?(l) — 1. So we necessarily have
Bc(Qc) = Indlc(l) — 1. Now for an arbitrary p-group P, we know that D?(P) has an Fy-basis consisting
of the elements Tenk, Infg/q)(z)(QZ/q)(Z)) , where Z runs over the non-trivial cyclic subgroups of P up to
conjugation, and ®(Z) denotes the unique subgroup of Z of index p. Since f is functorial, we immediately
deduce that

Bp (Teny, Inf% 4 1) (Qz/0(2))) = Ind} Inf% 4 5 (Ind?/* P (1) — 1) = Ind} (1) — Ind} (1) .
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