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Abstract

Let p be a prime number. This paper solves the question of the structure of the
group D(P) of endo-permutation modules over an arbitrary finite p-group P, that
was open after Dade’s original papers in 1978 ([19], [20]), and it gives a proof of the
conjectures proposed in [4] and [10]. This leads to a presentation of D(P) by explicit
generators and relations, generalizing the presentation obtained by Dade when P is
abelian.

A key result of independent interest is the explicit description of the kernel of the
natural map from the Burnside group to the group of rational characters, in terms of
the extraspecial group of order p® and exponent p if p # 2, or of all dihedral groups
of order at least 8 if p = 2.
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1. Introduction

This paper describes the structure of the Dade group D(P) of a finite p-
group P, that was defined by E. C. Dade in 1978 ([19], [20]), in order to classify
endo-permutation kP-modules, where k is a field of characteristic p > 0, or
more generally, a “p-local” ring.

Endo-permutation modules for p-groups appear as a crucial tool in many
aspects of the p-modular representation theory of finite groups, e.g. as source
modules of simple modules, or in the description of source algebras of blocks
(L. Puig [22]), or the description of derived or stable equivalences between
blocks (L. Puig [24]). They are a generalization of the notion of endo-trivial
module or invertible module, studied in particular by J. L. Alperin ([1], [3])
and J. F. Carlson ([15], [16]).

In his original papers, Dade determined the structure of D(P) when P is
abelian. Then Puig proved ([23]) that for an arbitrary finite p-group P, the



group D(P) is a finitely generated (abelian) group. Next J. Thévenaz and I
showed ([12]) that the free rank of D(P) is equal to the number of conjugacy
classes of non cyclic subgroups of P.

Recently, in a series of remarkable papers ([13], [14], [17]), J. F. Carlson and
J. Thévenaz completed the classification of endo-trivial modules, and proved
detection theorems for the Dade group. Their results are the first essential
ingredient for the present work. Their third paper ([17]) also gave methods
to start an induction procedure, by which N. Mazza and I determined ([11])
the structure of D(P), when P is any (almost) extraspecial p-group.

The second ingredient of the present paper is the notion of biset functor
for finite groups, introduced in [5], and specialized to p-groups in [12]. Biset
functors over p-groups seem specially well suited to study the subgroup D (P)
of D(P) generated by the relative syzygies Q) x associated to (non empty) finite
P-sets X, where the module €2x is defined as the kernel of the augmentation
map kX — k (see [2] or [6] for details).

In [6], a formula for tensor induction of relative syzygies in the Dade group
was stated, showing that the correspondence sending a p-group P to D(P)
is a biset functor. In [9], it was shown that this functor D’ is a quotient of
the Z-dual B* of the Burnside biset functor B, and that there is an exact
sequence of biset functors over p-groups

)

0— Ry — B*— DY/Dil, —0
where Rg is the Z-dual of the functor of rational representations, and D{! .
is the torsion subfunctor of D.

In this sequence, the embedding Ry — B* is the transpose of the natural
transformation x : B — Rg, whose evaluation at P maps the P-set X to the
corresponding QP-module QX. A key result in this paper is Theorem 6.12,
which may be of independent interest : it shows that the functor K = Ker x is
generated by its values at the extraspecial group of order p? and exponent p for
p # 2, or at the dihedral groups of order at least 8 for p = 2. In other words,
it gives an explicit way to build all the “virtual P-sets with zero character”
from specific ones for these extraspecial or dihedral p-groups.

On the other hand, the surjectivity of y is known since 1972 by the Ritter-
Segal theorem, which was stated in a more explicit form in [7]. This was the
starting point of the study of the functor Rg of rational representations of
p-groups ([8]), which is the third ingredient of this paper. In particular, the
notion of genetic section of a p-group was defined there, and was developed
in [10], where the notion of rational biset functor was also introduced.

This led to precise conjectures on the torsion part of the Dade group (Con-
jectures 6.2 and 6.3 of [10]). In my talk at Oberwolfach in March 2003 ([4]),
I formulated another conjecture on the Dade group, saying that D = D if
p # 2, and that D/ D is isomorphic to a specific subfunctor of FoRg if p = 2,



associated to quaternion 2-groups. In the present paper, I will give a proof of
all these conjectures, in Theorem 7.7, Theorem 8.2, and Theorem 10.2.

The main consequence will be presentation of D(P) by explicit generators
and relations (Theorem 9.5), generalizing the presentation obtained by Dade
when P is abelian.

The paper is organized as follows : Section 2 recalls some definitions and
results from rational representation theory of p-groups. Section 3 is devoted
to definitions and results on biset functors. Section 4 is a brief presentation of
the Dade group, its functorial properties, and theorems of Dade and Carlson-
Thévenaz. In Section 5, I will state some results on genetic bases, in particular
Lemma 5.2, that is the key to both Theorem 6.12 and Theorem 8.2. The key
result on the functor K is stated in Section 6. Section 7 is an application to
the Dade group, showing that D = D@ + Dy, and that D = D% if p # 2.
Section 8 is devoted to the structure of the torsion part of the Dade group.
Section 9 gives a presentation of D(P) by generators and relations. Finally
Section 10 describes the functorial structure of D/D for p = 2.

2. Rational representations

Throughout this paper, the symbol p will denote a prime number. All
p-groups will be finite ones. If P is a p-group, then ®(P) denotes its Frattini
subgroup, and Z(P) its center. The largest elementary abelian subgroup of
Z(P) is denoted by Q1 Z(P).

If n is a positive integer, the symbol C, will denote a cyclic group of
order n. If n > 2, then Dyn denotes a dihedral group of order 2", with the
convention that Dy is the Klein four group. If n > 3, then Qon denotes a
generalized quaternion group of order 2”. If n > 4, then SDasn denotes a semi
dihedral group of order 2".

2.1. Basic subgroups and associated simple modules : Recall some
notation and definitions from [8] :

2.2. Notation : if P is a group, denote by Rg(P) the Grothendieck group
of finitely generated QP-modules, and by Irrg(P) a set of representatives of

isomorphism classes of irreducible QP-modules. There is a natural bilinear
form on Rg(P), with values in Z, defined by

(V.W)p = dimg Homgp(V, W)

for QP-modules V. and W. If V is a simple QP-module, there is a unique
linear form m(V,—) on Rg(P), with values in Z, sending the QP-module W
to the multiplicity m(V,W) of V' as a summand of W .



2.3. Definition : ([8] 2.3 ) Let P be a finite p-group. A subgroup Q of P
s called basic if the following two conditions hold :

1. The quotient Np(Q)/Q is cyclic or generalized quaternion.
2. If R is any subgroup of P and if RN Np(Q) C @, then |R| < |Q)|.

~ It @ is a proper basic subgroup of P, then there is a unique subgroup
Q@ D Q of P with |@Q : Q| = p, and the kernel of the projection map

QP/Q — QP/Q

is an irreducible Q P-module, denoted by V.

The group P itself is a basic subgroup of P, and by convention Vp is
the trivial Q P-module Q. With this notation, any irreducible QP-module is
isomorphic to Vg, for some basic subgroup @ of P.

If @ and Q' are basic subgroups of P, then the QP-modules Vg and Vg are
isomorphic if and only if Q =p @', where =p is the relation defined in [8] 2.7
by

O QI =1Q']
@=rd ‘:){ dre P, Q*NNp(Q') CQ

2.4. Remark : In particular, a normal subgroup N of P is basic if and only
if P/N is cyclic or generalized quaternion. Moreover, if ) is a basic subgroup
such that @ =p N, then Q = N.

2.5. Definition and Notation : ( [8] Proposition 3.7) A p-group P has
normal p-rank 1 if it does not have any normal subgroup isomorphic to (Cp)Q.
Up to isomorphism, such a group has a unique rational faithful irreducible

representation, denoted by ®p.

Recall (Theorem 5.4.10 of [21]) that if P is a p-group of normal p-rank 1
and order p", then P = Cpn if p # 2, and if p = 2, then P = Can, or P = Qon
(n>3),or P=Don (n>4),or P=SDo (n>4).

2.6. Definition : ([8] Definition 3.5) A section (T',S) of the group P is a
pair of subgroups of P such that ST C P. A section (T,S) of P is proper
if (T,S) # (P,1). If R is a group, the section (T, S) will be said of type R if
the factor group T/S is isomorphic to R.

The section (T,S) of the p-group P will be called genetic if the following
three conditions hold :

1. The group T/S has normal p-rank 1.
2. The QP-module V(T,S) = Ind?lnfg/sfbws is simple.
8. (V(T,8),V(T.9)p = (Pr/s: P1/s)1/5-
The simple QP-module V (7, S) will be called the simple module associ-

ated to (7,5). It was shown in Theorem 3.4 of [8] that for any simple QP-
module V, there exists a genetic section (7,5) of P such that V = V(T,5).
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Moreover ([8] Theorem 7.11 and Proposition 7.1), if (7,S) and (T7,5") are
genetic sections of P, the corresponding modules V (T, S) and V(T',5’) are
isomorphic if and only if (T, S) —p (T7,5’), i.e. if there exists © € P such
that

T°.8" = 8*. T and T°ns =8"NnT

In particular, the relation —p (“linked modulo P”) is an equivalence relation
on the set of genetic sections of P. Observe that if (7,5) —p (7”,5), then
the groups T'/S and T"/S’" are isomorphic. In other words (T, S) and (77, 5")
have the same type.

2.7. Definition : IfV is a simple QP-module, and (T,S) is a genetic
section of P such that V=2 V(T,S), then T/S is called the type of V.

The genetic sections of P can be characterized as follows :

2.8. Proposition : ([10] Proposition 4.4) Let P be a finite p-group, and let
(T, S) be a section of P. Let Zp(S) denote the subgroup of P defined by

Zp(S)/S = Z(Np(5)/5)

Then the following conditions are equivalent :

1. The section (T, S) is an genetic section of P.

2. The group Np(S)/S has normal p-rank 1, the group T is equal to Np(S),
and if x € P is such that S* N Zp(S) C S, then x € Np(S).

In particular, if (7, 5) is a genetic section of P, then ' = Np(S). Hence
(T, S) is actually determined by S. This leads to the following :

2.9. Definition and Notation : A subgroup S of the p-group P will be
called genetic if the section (Np(S),S) is a genetic section of P. The simple
module V(Np(S),S) will be denoted by V (S).

Similarly, if S and S’ are genetic subgroups of P, I will say that S —p S’
if (Np(S),S) —p (Np(5'),5").

The relation —p is an equivalence relation on the set of genetic subgroups
of P. By Theorem 3.11 of [8], the correspondence S — V'(S) is a one to one
correspondence between the set of equivalence classes of genetic subgroups
modulo —p , and the set of isomorphism classes of rational irreducible
representations of P. Moreover by Theorem 7.11 of [8], if S and S’ are genetic
subgroups of P such that S —p S’, the set of elements z € P such that
S — *5" is a single double coset Np(S)yNp(S’) in P. In particular if S — =S,
then z € Np(9).

2.10. Definition : A subset S of the set of genetic subgroups of P will
be called a genetic basis of P if it is a set of representatives of the set of
equivalence classes of genetic subgroups of P for the relation —p .




2.11. Remark : A normal subgroup N of P is genetic if and only if P/N
has normal p-rank 1. In that case, if S is any genetic subgroup of P such that
S —p N, then S = N. In particular, the group N belongs to every genetic
basis of P.

2.12. Remark : (see Proposition 7.4 in [8]) If S is a genetic subgroup of P,
and if Rg/S is a basic subgroup of Np(S)/S, intersecting trivially the center
of Np(S)/S, then Rg is a basic subgroup of P, corresponding to the same
simple @ P-module (i.e. with the above notation Vg, = V(.9)).

If Np(S)/S is cyclic or generalized quaternion, then Rg = S. If Np(S))/S
is dihedral or semi dihedral, then Rg/S is any non central subgroup of order 2
of Np(5)/S.

Basic subgroups obtained from genetic ones by this operation were called
origins in [8]. In general, not all basic subgroups are origins, but there is at
least an origin in each equivalence class of basic subgroups for the relation = p
(see Corollary 7.5 in [8] for details).

3. Biset functors

3.1. Notation and Definition : Denote by C, the following category :

o The objects of C,, are the finite p-groups.

o If P and Q are finite p-groups, then Home, (P, Q) = B(Q x PP) is the
Burnside group of finite (Q, P)-bisets. An element of this group is called
a virtual (Q, P)-biset.

e The composition of morphisms is Z-bilinear, and if P, QQ, R are finite
p-groups, if U is a finite (Q, P)-biset, and V is a finite (R, Q)-biset, then
the composition of (the isomorphism classes of ) V and U is the (isomor-
phism class) of V- xq U. The identity morphism Idp of the p-group P
1s the class of the set P, with left and right action by multiplication.

Let F,, denote the category of additive functors from C, to the category Z-Mod
of abelian groups. An object of F, is called a biset functor (defined over p-
groups, with values in Z-Mod).

If F'is an object of F,, if P and @) are finite p-groups, and if ¢ €
Home, (P, Q), then the image of w € F(P) by the map F(¢) will generally be
denoted by ¢(w). The composition 1) o ¢ of morphisms ¢ € Home, (P, Q) and
Y € Home, (@, R) will also be denoted by 9 x ¢ ¢.

3.2. Notation : The Burnside biset functor (defined e.g. as the Yoneda
functor Home, (1, —)), will be denoted by B. The functor of rational repre-
sentations (see Section 1 of [8]) will be denoted by Rg.



3.3. Examples : Recall that this formalism of bisets gives a single frame-
work for the usual operations of induction, restriction, inflation, deflation, and
transport by isomorphism via the following correspondences :

e If Q is a subgroup of P, then let Indg € Home, (@, P) denote the set P,
with left action of P and right action of () by multiplication.

e If () is a subgroup of P, then let Resg € Home, (P, Q) denote the set P,
with left action of @ and right action of P by multiplication.

o If NaP, and Q = P/N, then let Inf, € Home, (Q, P) denote the set Q,
with left action of P by projection and multiplication, and right action
of @ by multiplication.

e If NaP, and Q = P/N, then let Defg € Home, (P, Q) denote the set Q,
with left action of () by multiplication, and right action of P by projec-
tion and multiplication.

o If p : P — @ is a group isomorphism, then let IsonD = Isog(gp) €
Home, (P, Q) denote the set @, with left action of @ by multiplication,
and right action of P by taking image by ¢, and then multiplying in Q.

3.4. Remark : If P and Q are p-groups, then any element ¢ € Home, (P, Q)
is a Z-linear combination of transitive (@, P)-bisets, and by Lemma 7.4 of [12],
every transitive (@, P)-biset can be factored in the category C, as a composi-
tion
V/U
Ind{ o Inf}/;; o Tsoy5 (i) © Def] g o Res}

where (7,5) is a section of P, and (V,U) is a section of @, such that there
exists a group isomorphism ¢ : T/S — V/U.

3.5. Notation : If (T,S) is a section of P, set

Indinfg /s = Indglnfg /s and Defres? /5 = Def? / SRes?

Then Indinfg/s = P/S as (P,T/S)-biset, and Defresg/s =~ S\P as (T/S, P)-
biset.

3.6. Opposite bisets : If P and @ are finite p-groups, and if U is a finite
(Q, P)-biset, then let U°P denote the opposite biset : as a set, it is equal to U,
and it is a (P, Q)-biset for the following action

Vh € Q,Yu € U,Vg € P, gu.h (in U%®) = hlug™" (in U)
This definition can be extended by linearity, to give an isomorphism

o %P Homg, (P,Q) — HOme(Q7P)



It is easy to check that (¢ o 9)% = 1) o ¢°P, with obvious notation, and the

functor
{ P— P

Aad
is an equivalence of categories from C, to the dual category.

3.7. Example : if P is a p-group, and (7, S) is a section of P, then
(Indinfl /5)% = Defres?, /s
as (T'/S, P)-bisets.

3.8. Definition and Notation : If F' is a biset functor, the dual biset
functor F* is defined by

F*(P) = Homz(F(P),Z) |,
for a p-group P, and by

F*(p)(a) = ao F(p?) ,

for any o € F*(P), any p-group Q, and any ¢ € Home, (P, Q).

3.9. Some idempotents in Ende,(P) : Let P be a finite p-group, and let
N <« P. Then it is clear from the definitions that

Deff, o Inff v = (P/N) xp (P/N) =Idpy

It follows that the composition eﬁ = Inff. /N © Defg /N is an idempotent in

Endc, (P). Moreover e = Idp, and if M and N are normal subgroups of P,
then el oel, = ek /.

3.10. Lemma : ([10] Lemma 2.5) If N 4P, define f§ € Endc, (P) by

f]]\:f,: Z :U'ﬂP(N7M)€f/[ )
MaP
NCM

where piqp denotes the Mobius function of the poset of normal subgroups of P.
Then the elements fﬁ, for NaP, are orthogonal idempotents of Ende,(P),
and their sum is equal to Idp.

Moreover, it is easy to check from the definition that for N < P,
(3.11) R =t o f; N oDeff

and

el = Inf]];/N o Defg/N = g i
MaP
MDN



3.12. Lemma : If N is a non trivial normal subgroup of P, then

flonfpy =0 and Defpy o f{ =0

Proof: Indeed by 3.11

f{ofp = f olnfp)y o Defp )y o Infp
= > Hfinfg,y =0,
M<aN
MDN

since M # 1 when M O N. The other equality of the lemma follows by taking
opposite bisets. 0

3.13. Remark : It was also shown in Section 2.7 of [10] that

=3 wwLNPN |

NCQ, Z(P)
where p is the Mdbius function of the poset of subgroups of V.

3.14. Notation and Definition : If F' is a a biset functor, and if P is a
p-group, then the idempotent f¥ of Endc, (P) acts on F(P). Its image

OF (P) = f{F(P)

is a direct summand of F(P) as Z-module : it will be called the set of faithful
elements of F(P).

The reason for this name is that any element u € F(P) which is inflated
from a proper quotient of P is such that F(f{)u = 0. From Lemma 3.12, it
is also clear that

OF(P)= [ KerDefpy
1#AN4aP

3.15. Notation : If F is a biset functor, and P is a p-group, set

F(P)=F(P)/ Y TIndinf} ¢F(T/S) ,
(T,S)
I7/51<|P|

and dually
F(P)= ﬂ Ker Defresg/s

(T,5)
IT/S|<|P]|

where in both expressions (7,.5) runs through proper sections of P.
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4. The Dade group

In this section, I will briefly recall some basic definitions and constructions
on the Dade group of endo-permutation modules. Most of them go back to
Dade’s paper ([19]), and are also exposed in Sections 28-29 of Thévenaz’s
book ([25]). The “functorial approach” to the Dade group was introduced in
Sections 2 and 3 of [12].

4.1. Let k be a field of characteristic p. If P is a p-group, the Dade group
D(P) = Dg(P) can be defined as the group of equivalence classes of capped
endo-permutation modules, or as the group of equivalence classes of Dade
P-algebras over k, for a suitable equivalence relation in each case. It is an
abelian group, and Puig ([23]) has shown that it is finitely generated.

The (equivalence classes of ) endo-trivial modules form a subgroup 7'(P)
of D(P), called the group of endo-trivial modules. Another crucial subgroup
of D(P) is the subgroup D*(P) generated by relative syzygies (see [2] or [6]
for details).

4.2. Functorial properties : The Dade group has some important func-
torial properties : if ) is a subgroup of P, and if N is a normal subgroup of P,
or if ¢ : P — P’ is a group isomorphism, then there are maps of restriction,
induction, deflation, inflation, and transport by isomorphism

( P P
Res Ten
D D

D(P) (Q) (P)

Def? Inft
— "% pp/N)—E D(P)

(4.3) D(P)

P/
Isop

D(P) 2%, p(P')

coming respectively from the restriction, tensor induction, Brauer quotient,
inflation, and transport by group isomorphism of Dade algebras (note the
change of notation for induction).

These five operations can be unified in a single formalism using bisets :
if P and @ are p-groups, if U is a finite (Q, P)-biset, then in Corollary 2.3
of [12], we introduced a map

D(U): D(P) = D(Q) ,

such that the maps in 4.3 are equal to D(U), where U is the corresponding
biset Resg, Ind, Deflli N Inf]P; N and Isog defined in Section 3.3. The defini-
tion of this map D(U) associated to an arbitrary finite (@), P) biset U followed
from the existence of a corresponding functor Ty : Permy (P) — Perm;(Q),
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which is a sort of generalized tensor induction, where Perm,, (P) is a category
equivalent to the category of finitely generated permutation kP-modules (see
Section 2 of [12], in particular Lemma (2.2) and Corollary (2.13), for details).

Moreover the correspondence U — D(U) is additive (by Proposition 2.10
of [12]), so it can be extended to a correspondence

¢ € Home, (P, Q) — D(p) € Homz(D(P), D(Q))

However, these constructions do not define a biset functor structure : the
reason is that in general, with obvious notation

D(y) o D(p) # D(¢o¢)

as can be read from Proposition 3.5 and Proposition 3.10 of [12] : in general,
the right hand side is equal to a linear combination ), r;D(U;), where the
U;’s are transitive bisets, and the r;’s are integers, whereas the left hand side
is equal to ), rive, D(U;), for the same U;” and r;’s, but with a new kind of
operation inserted, namely the 7,,’s. These operations are called for short
“Galois torsions”, and they are precisely defined in Section 3 of [12] : if a is
any endomorphism of the ground field &, then for any p-group P, there is a
linear map v, = Yq,p : D(P) — D(P). They only appear when one composes
a tensor induction followed by a deflation (see Proposition 3.10 of [12] for
details).

This remark and Lemma 3.10 show in particular that the maps D(f%),
for N <P, which only involve deflation and inflation maps, are orthogonal
idempotents of Endz(D(P)), and their sum is the identity.

4.4. Notation : If P and Q are p-groups, and if ¢ € Home, (P, Q), the map
D(y) : D(P) — D(Q) will simply be denoted by ¢, and the image of u € D(P)
by this map will be denoted by p(u) or u. The faithful part f{ D(P) of the
Dade group will be denoted by OD(P).

It is easy to see that the maps 7, restrict to the identity on D®(P) (see
Section 1.6 of [9]). Moreover, if ¢ € Home, (P,Q), then D(p)(D%(P)) C
D(Q), by Section 4 and 5 of [6]. The above discussion now shows that the
correspondence P — D®(P) is a biset functor.

4.5. Some known Dade groups : In his original papers, Dade determined
D(P), when P is abelian :

4.6. Theorem : (Dade [19], [20]) Let P be an abelian p-group. Then D(P) is
generated by the elements Qpq, for Q C P, subject to the relations 1odp;g =
0, if P/Q is cyclic, where g =1 if |[P/Q| < 2, and 1g = 2 otherwise.

In particular D(P) = D®(P) if P is abelian.

The structure of D(P) is also known for any 2-group P of normal 2-rank 1 :
when P is generalized quaternion, the result is due to Dade, and the other
cases have been solved by Carlson and Thévenaz :
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Theorem : (Dade [18], Carlson-Thévenaz [13] Theorem 10.3)

D(Dgn) = 72773,

D(SDan) 2 72" 4 3 7./27.

D(Qon) X 75 @ ZJAZ © 7.)27, for n > 4.

D(Qs) 2 Z®ZLJAZ © 7/2Z, if the ground field contains all cubic roots
of unity, and D(Qg) = 7 ® Z/AZ otherwise.

o o~ X

This result is actually more precise : Lemma 2.10 of [13] shows that if P
is one of these 2-groups, then 0D(P) = T(P) = Ker Defg/z, and D(P) =
T(P) + Indg/ZD(P/Z), where Z is the center of P. This allows induction,
since P/Z is dihedral. Then Theorem 5.4 and Theorem 7.1 of [13] show that
D(P) = D*(P) when P is dihedral, or semi dihedral.

If P is generalized quaternion of order 2", then Theorem 6.3 and Theo-
rem 6.5 of [13] show that T'(P) is equal to the torsion part Disrs(P) of D(P),
and that T(P) 2 Z/4Z & Z/2Z if n > 4, or if n > 3 and the ground field has
all cubic roots of unity. If n = 3 and the ground field has no non trivial cubic
roots of unity, then T(P) = Diops(P) = D2, (P) = 7./AZ.

tors

4.8. Lemma : Let Q be a generalized quaternion 2-group of order 2™. Sup-
pose that n > 4, or that n = 3, and the ground field has all cubic roots of
unity. Then

1. There are exactly two elements ng and nb of order 2 in the set D(Q) —
D(Q), and
nQ + 1o =21

2. If R is a proper subgroup of Q, then Res%nQ € DQ(R).

3. If R is a generalized quaternion group containing Q, then
TengnQ — 1R € DQ(R)

4. If a is any endomorphism of the ground field, then v,(ng) = ng if n > 4.

Proof: Assertion 1 follows from the fact that (2g,; generates a cyclic sum-
mand of order 4 in Dyys(P) = Z/AZ & Z/27. And in the group Z /47 & Z /27,
the elements of order 2 are (0,0), (2,0), (0,1), and (2,1).

Assertion 2 is trivial if n = 3, because by construction in that case all
proper restrictions of ng are 0. If n > 4 and R is cyclic, then ResgnQ =
2Q2p /1 = 0 by construction (see Lemma 6.4 and Theorem 6.5 of [13]). Suppose
now that R is quaternion, and |@ : R| = 2. There are two conjugacy classes
of quaternion subgroups of order 8 in @), and one of them is contained in R.
Let H and H’ denote representatives for these classes, and suppose H C R.
Then Res%nQ is equal to 0 or 2Qp, by the proof of Theorem 6.5 of [13],

and then Resgnb is respectively equal to 2Qy or 0. Replacing ng by 77/Q if
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necessary, I can assume ResgnQ = 0. Now the element u = ResgnQ is such
that Resfu = 0, for any quaternion subgroups L of order 8 of R. Then u = 0
by Theorem 2.8 of [13] (see also the proof of Theorem 6.5 there). This shows
Assertion 2, since 1g + 1 = 2Qq/1-

Assertion 3 is equivalent to TengnQ ¢ D®(R). Proceed by induction on
|R : @I, and suppose that |[R : Q| = 2. If u = TengnQ € D®(R), then
u is equal to 0 or 2Qp/;. By Mackey formula, the restriction of u to the

generalized quaternion subgroup Q' # @ of R is equal to Tenng,Resng,nQ.
This is equal to 0 by the above argument, since Q N Q' is cyclic. It follows
that u = 0, since Resg,%lml = 2Qq/ 1 # 0. Now Resgu = ng + "ng, where
r € R— Q. Moreover "ng # ng : if n > 4, this is because r exchanges the
conjugacy classes of quaternion subgroups of order 8 of ). And if n = 3, it can
be checked directly from the construction : with the notation of Theorem 6.3
of [13], the action of the automorphism of Qg which exchanges the generators
x and vy is equivalent to replacing the cubic root w by its conjugate w?. So the
elements of the outer automorphism group Out(Qg) = S3 with odd signature
exchange 7¢ and n’Q. In both cases Resgu # 0, which is a contradiction.
Finally Assertion 4 is clear from the construction Theorem 6.5 of [13]. 0O

5. Genetic bases

5.1. Lemma : Let P be a p-group, and Z be a central subgroup of order p
i P. If S is a genetic subgroup of P, then

Def,V(S) = {0} & S 2 Z

Proof: If S = P, the result is trivial. Suppose that S # P, and let R/S be
a basic subgroup of Np(S)/S, intersecting trivially the center of Np(S)/S.
Then R is a basic subgroup of P for V(.5), and V' (.S) is isomorphic to the kernel
of the projection map QP/R — QP/]%, where R is the unique subgroup of P
such that |R : R| = p. Hence V(S) = QP/R — QP/R in Rg(P).

Then either S O Z, and then Defg/ZV(S) = QP/R — QP/R # 0 in
Ro(P/Z), or S 2 Z, and then R 2 Z because ZS/S = Q01 Z(Np(S)/S), thus
R=RZ and Deff ,V(S) = QP/RZ — QP/RZ = 0 in Ro(P/Z). 0
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5.2. Lemma : Let P be a p-group, and let E be a mon-central normal
elementary abelian subgroup of order p? of P. Set Z = ENZ(P), where Z(P)
is the center of P.

1. If R is a genetic subgroup of Cp(E) such that Z € R, then R is a genetic
subgroup of P, and Np(R) C Cp(E). Moreover if V is the simple QP-
module associated to R, and W is the simple QCp(E)-module associated
to R, then V = Indg, oW, and (V,V)p = (W, W)c, ().

2. If Q is a genetic subgroup of P such that Z € Q, then there exists a
genetic subgroup R of Cp(E) such that Z Z R and R —p Q.

Proof: Set H = Cp(E). Then |P : H| = p, and |Z| = p, since E is not
central in P, and since the p-Sylow subgroups of Aut(E) have order p.

Let R be a genetic subgroup of H such that Z € R, and let W be the
corresponding rational irreducible representation of H. Then Defg /ZW = {0}
by Lemma 5.1.

Now set V = Ind5;W. Then since Z C H

Deff ,V = Ind}/;

H/ZDefg/ZW = {0} .

Restriction to H gives
ReshV = @ W
xeP/H
Let I denote the stabilizer of W in P, i.e. the group of elements x € P such
that the representations W and *W of H are isomorphic. Then I 2 H, so
I=Horl=P.

If I = H, then the representations *W, for x € P/H, are non isomorphic
to each other. In this case V is an irreducible representation of P : indeed
if V4 is any simple summand of V, then some conjugate of W is a direct
summand of W7 = Resng. Since W1 =2 *Wy for any x € P, is follows that
all the conjugates of W in P are direct summands of Wi. Thus W, = Res5V,
and V; = V. Moreover

(V.V)p = (W,ResyV)r = > (W,"W)n = (W, W)y
xeP/H

This means in particular that the section (Ng(R),R) is a genetic section
of P for the irreducible representation V. Thus Ng(R) = Np(R) by Propo-
sition 2.8, and R is a genetic subgroup of P.

If I = P, then *W 2 W for any x € P, and RGSEV = pW. Let

V=Wvie...aV,

be a decomposition of V' as a direct sum of irreducible rational representations
of P. Then Defg/ZVi = {0}, for i = 1,...n. Fix i in {1,...,n}, and let S;

denote any simple summand of ResEVi. Then either S; =2 Q, or there exists
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a subgroup F; of index p in F, such that S; is isomorphic to the kernel of the
projection map QFE/F; — Q. Now Defg/ZS = {0}, thus S; # Q, and the
subgroup F; is not equal to Z. It follows that Np(F;) = Cp(F;) = Cp(E),
since F; has order p and E = F;Z. Hence the stabilizer of S; in P is equal
to H, and by Clifford theory

V; = IndbS; |

where S; is the Sj-isotypic component of ResgVi. By restriction to H, this
gives
ReshVi= @ °S; |
xeP/H
and the representations *S; appearing in the right hand side are mutually non
isomorphic irreducible representations of H, since the stabilizer of S; in P is
equal to the stabilizer of S;, i.e. the normalizer of F; in P. It follows that

ReshV = pW = & o *S;
i=1zeP/H

This gives a contradiction, since W has to be isomorphic to some conjugate
of some S;, but W is invariant by P, whereas the stabilizer of S; in P is equal
to H. This proves Assertion 1 of the lemma.

For Assertion 2, consider a genetic subgroup @ of P, such that Z € @,
and let V' = V(.S) denote the corresponding rational irreducible representation
of P. Then Defg/ZV = {0} by Lemma 5.1.

Let S be a simple summand of ResEV. Then Defg/zs = {0}, thus as
above S is isomorphic to the kernel of the projection map QFE/F — Q, for

some subgroup F' of index p in E, and F' # Z. Hence the stabilizer of S in P
is equal to Np(F) = Cp(F) = Cp(E) = H, and

V=2 Indhw

where W is equal to the S-isotypic component of Resgv.

Moreover (V,V)p = (W, W)y, since the stabilizer of W in P is equal to H,
and Defg /ZW = {0}. Let R be any genetic subgroup of H associated to the
representation W. Then R 2 Z, and (Ng(R), R) is a genetic section of P for
V. Thus Ng(R) = Np(R), and (Np(R),R) —p (Np(Q),Q), as was to be

shown. O

5.3. Corollary : In the situation of Lemma 5.2, there exists a genetic basis
S of P and a decomposition

S=85US8y

i disjoint union such that
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1. if Q € Sy, then Q 2 Z, and

2. the set {*Q | Q € S1, x € [P/Cp(E)]} is a set of representatives of ge-
netic subgroups R of Cp(E) such that R 2 Z, for the relation —c, (g ,

where [P/Cp(FE)] is any chosen set of representatives of Cp(FE)-cosets
in P.

Proof: Let S be a genetic basis of P. Set So ={Q € S| Q 2 Z}, and §1 =
S — S2. By Lemma 5.2, T can assume that if @ € Sy, then Np(Q) C Cp(E),
and @ is a genetic subgroup of C'p(FE). Then the set

I={"Q| Qe S8, vc[P/Cp(E)]}

is a set of genetic subgroups of Cp(F), not containing Z, and they are not
equivalent to each other for the relation —c¢,(g) : indeed, if there exist

Q.Q € S; and elements z, 2’ € [P/Cp(E)] such that *' Q' — "*Q for some
h € Cp(E), then in particular Q' — @ “the ) thus Q' = Q since S is a genetic
basis of P. Moreover Q' = Q = %" since Q is genetic in P. Thus z'~1hx €
Np(Q) C Cp(E), thus z € h™12/Cp(E) C Cp(E)x'Cp(E) = 2'Cp(E), since
Cp(E)<P, and z =2’

Conversely, if R is a genetic subgroup of C'p(FE) such that R 2 Z, then R
is a genetic subgroup of P, and there exists an element y € P and an element
Q@ of § such that R — Y. This implies in particular that

QNZ=QNZNNp(RY) CZNR'=(ZNRY =1 ,

hence @ € S;. Now y is equal to ux, for some unique element x in [P/Cp(E)],
and some u € Cp(E), because Cp(E)< P. Thus R —¢,(g) “Q, and *Q is an
element of T'. 0

6. The kernel of B — Rg

6.1. Notation : Let B denote the Burnside biset functor (over Z), and Rg
denote the functor of rational representations. Let K denote the kernel of the
natural morphism from B to Rg.

By the Ritter-Segal Theorem, there is an exact sequence of biset functors

0—-K—=B—Rg—20

6.2. Remark : For any p-group P, the corresponding sequence

0— K(P)— B(P)— R@(P) —0

16



is a split exact sequence, since the group Rg(P) is a free group with basis
Irrg(P) and rank equal to the number of conjugacy classes of cyclic subgroups
of P. It follows that K(P) is a free group, of rank equal to the number of
conjugacy classes of non cyclic subgroups of P. In particular K(P) = {0} if
P is cyclic.

6.3. Notation : If P is a p-group, and B is a set of representatives of
proper basic subgroups of P, for the relation =p, set B = B LI {P}.

Denote by [sp] a set of representatives of conjugacy classes of subgroups
of P. The elements P/Q, for Q € [sp], form a Z-basis of B(P). If Q is a
subgroup of P, set

S5 =P/Q—P/P - m(Vg,QP/Q)(P/R - P/R)

ReB

6.4. Lemma : Let kg the endomorphism of B(P) defined by
kB(P/Q) =S5 |
for Q € [sp]. Then kg is an idempotent endomorphism of B(P), whose image
is equal to K(P).
In other words, the elements SS, for @ € [sp], generate K(P). Moreover
the element u = 3 (s, uQP/Q of B(P), where ug € Z, is in K(P) if and

only if u = ZQE[SP] UQSS-
Proof: Let u =} ¢, u@P/@ be an element of B(P), where ug € Z. Its
image in Rg(P) is equal to

v = Z uoQP/Q
Q€lsp]

Now m(Q,QP/Q) = 1 for any subgroup @ of P, thus m(Q,v) = ZQG[SP} uQ.
Moreover m(Vg,v) = X gesp) t@m(Ver, QP/Q), for R € B. Since Vf is iso-

morphic to the kernel of the projection map QP/R — QP/ R, it follows that
Vg is equal to the image in Rg(P) of the element P/R — P/R of B(P). Since
Q is the image of P/P in Rg(P), it follows that v is also equal to the image
in Rg(P) of the element

W= (Y wQP/P+ Y Y ugmVe, QP/Q)(P/R~ P/R)

Q€[sp] ReB Qe[sp]

Thus u — v = > Qelsp] uQSg = kg(u) is in K(P). Moreover u is in K(P) if
and only if v’ = 0, i.e. if u = kg(u). The lemma follows. a
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6.5. Corollary : Let E be an elementary abelian p-group of order p%. Then
K(E) = 0K (FE) is free of rank one, generated by the element

(6.6) ez =E/1- Y E/F+pE/E
FCE
[F'|=p

of B(E).

Proof: Indeed K(FE) is free of rank 1 by Remark 6.2. In this case, by Re-
mark 2.4, there is a unique set B of representatives of proper basic subgroups
of E, consisting of all subgroups of E of order p, and its easy to check that

kB(E/Q)=01if Q # 1, and kp(E/1) = cg. a

6.7. Notation : Fir an elementary abelian p-group E,» of order p?,and set
€ =€Ey,, defined in 6.6. Let K. denote the subfunctor of K generated by ¢,
i.e. the intersection of all subfunctors L of K such that L(E,2) 3 .

Thus for any p-group P

K. (P) =Home,(E,P) xge

6.8. Lemma : Let P be a p-group.

1. If Q is a subgroup of P such that Q N Z(P) # 1, then f{ P/Q = 0.
2. If the center of P is not cyclic, then 0B(P) C K (P).

Proof: If @ is a subgroup of P and Z = Q N Z(P) # 1, then P/Q =
Infg/Z(P/Z)/(Q/Z), thus f{ P/Q = 0 by Lemma 3.12. This proves Assertion
1.

Now proving Assertion 2 amounts to showing that f{P/Q € K.(P), for
any subgroup @ of P. Consider first the case Q = 1. Since the center Z(P) of
P is not cyclic, there exists a subgroup E C Z(P) which is elementary abelian
of order p?. In particular the element

ep=E/1- Y E/F+pE/E

FEE
|F|=p

of B(E) is the image of € under any isomorphism E,» — E. Thusep € K.(E).
Inducing up to P gives the element

e=P/1- Y P/F+pP/E
Fek
|Fl|=p
of K.(P). But f{'e = ff'P/1 by Assertion 1, since E C Z(P). Hence f{'P/1 €
K.(P).
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I will now show that f{ P/Q € K.(P) for any subgroup Q of P by induc-
tion on the index |P : Q|. If Q = P, then ffP/P = 0 € K.(P), since the
center of P is non trivial. Now let ) be any subgroup of P, and suppose that

PP/R € K.(P) for any subgroup R of P with |R| > |Q|. If QN Z(P) # 1,
then ffP/Q =0¢€ K.(P). If QN Z(P) = 1, then Z(P) embeds in the center
of N = Np(Q)/Q, so this center is not cyclic. The special case above shows
that the element _

FNA= Y w1,2)N/Z
ZC01 Z(N)
belongs to K.(N). Taking inflation from N to N, and then induction from N
to P gives the element

Q'/QSnZ(N)

of K.(P). It follows that

fo=f{PQ+ Y  wl,Q/QfNP/Q € K.(P)
Q'/QC Z(N)
Q'/Q#1
By induction hypothesis, all terms in the summation are in K.(P), and by
difference f{'P/Q € K.(P), as was to be shown. a

6.9. Notation :

1. If p # 2, denote by X3 an extraspecial group of order p? and exponent p,
and by Z its center. Choose two non conjugate non central subgroups I
and J of order p in X,s. Let 0 be the element of B(X,3) defined by

8= (Xps /I — X3 /12) — (Xps/J — Xps/ T Z)

2. If p =2, and if n > 3 is an integer, denote by Don a dihedral group of
order 2", and by Z its center. Choose two non conjugate non central
subgroups I, and J, of order 2 in Don. Let 0, be the element of B(Dan)
defined by

8 = (Dan /I, = Dyn /I, Z) — (Dan ) Jy — Dayn [ J 2)

6.10. Remark : Let P be one of the groups X,s or Dan, for n > 3. Then
the center Z of P is cyclic of prime order, and P has a unique faithful rational
representation : if P is dihedral of order at least 16, this follows from Propo-
sition 3.7 in [8]. If P = Dg, this follows from the remark preceding Notation
3.8, in the same paper. And if P = X3, this follows from the fact that P has

19



p + 3 conjugacy classes of cyclic subgroups, and that P/Z = (C,)? has p + 2
such subgroups.

Now in each case, it is easy to see that any non central subgroup @ of
prime order of P is basic, and the corresponding simple module is isomorphic
to the kernel of the projection map QP/Q — QP/QZ. This shows that the
elements (P/Q — P/QZ) — (P/R — P/RZ), for any non-central subgroups
@ and R of prime order of P, are in K(P). In particular 6 € K(X,3), and
On, € K(Don), for n > 3.

6.11. Lemma :
X
1. If p#2, then JZ = E,2, and ResJ?é =cyg.
2. If p=2, then J3Z = E,», and Resi8263 = ez

Proof: This is a straightforward consequence of the Mackey formula. O

6.12. Theorem :

1. If p # 2, then the functor K is generated by & : in other words for any
p-group P
K(P) = Homcp(Xps,P) XXp3 6

In particular K(P) = {0} except if P is isomorphic to X8, or if P is
elementary abelian of order p?.

2. If p =2, then the functor K is generated by the elements d,,, forn >3 :
in other words for any 2-group P

K(P) =Y Homg,(Dzn, P) X pyu 0n

n>3
In particular K(P) = {0}, except if P is dihedral of order at least 4.

Proof: If p # 2, denote by L the subfunctor of K generated by §, and if
p = 2, denote by L the subfunctor of K generated by the elements §,,, for
n > 3. I will show that L(P) = K(P) for any p-group P by induction on the
order of |P].

Step 1 : The induction starts with the case where P is cyclic : since K (P) =
{0} in this case, the result is trivial.

Suppose that P is a p-group such that K(P’) = L(P’) for any p-group
with |P’| < |P|. By Lemma 3.10 there is a decomposition

K(P)~ @ fLK(P) ,
(P)= @ HK(P)
and f]{:; = Inf]]; /N © ff N Deflli /N Now by induction hypothesis, it follows
that fLK(P) C L(P) if N # 1, since K(P/N) = L(P/N). Hence in order to
show that K(P) = L(P), it suffices to show that f{ K(P)= 0K (P) C L(P).
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K.(P) by Lemma 6.8,

Now if the center of P is not cyclic, then 0K (P) C K.
C L(P), and I can suppose

and K.(P) C L(P) by Lemma 6.11. Thus 0K (P)
that the center of P is cyclic.

Step 2 : Suppose that P admits a normal elementary abelian subgroup F of
rank 2. Set H = Cp(E) and Z = ENZ(P). Then |P: H| = |Z| = p, since E
is not central in P. According to Corollary 5.3, there is a genetic basis S of
P and a decomposition S = S§1 L Sp with the following properties :

1. if S €8sy, then S O Z, and

2. the set {*S | S € 81, x € [P/H|} is a set of representatives of genetic
subgroups R of H such that R 2 Z, for the relation —p , where [P/H]
is any chosen set of representatives of H-cosets in P.

For each S € S, choose a basic subgroup Rg/S of Np(S)/S, intersecting
trivially the center of Np(S)/S, and denote by B the set of subgroups Rg,
for S € S. Then B is a set of representatives of basic subgroups of P for the
relation =p, and in particular it contains P. Set moreover B = B — {P}.

Observe now that Rg 2 Z if S O Z. Conversely, if S 2 Z, then ZS/S is
the only subgroup of the center of Np(S)/S of order p, thus Rg N ZS = S,
and Rs 2 Z. This gives a decomposition of B as

B= El L EQ
where

Bi = {ReB|R22Z}={Rs|SecS)
B, = {ReB|RD2Z}={Rs|S€cS)

By Lemma 6.4, the group K (P) is generated by the elements

S6=P/Q—P/P—Y m(Vg,QP/Q)(P/R— P/R) ,
ReB
for Q € [sp]. Hence in order to show that f{K(P) = 0K(P) C L(P), it
is enough to show that f{ SS € L(P) for any subgroup @ of P. Moreover
ffP/Q=P/Q—P/QZ for any Q C P, since Z = Q1 Z(P) is the only central
subgroup of order p of P. Thus if R € Band R D Z, then R D Z, and
ffP/R=f’P/R=0. Andif R 2 Z, then R = RZ, and f{(P/R— P/R) =
P/R — P/RZ in this case. Since f{’'P/P =0, one has that

185 =P/Q—P/QZ~ Y m(Vg,QP/Q)(P/R— P/RZ)

ReB:
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6.13. Remark : This shows in particular flpSg =0if Q O Z. Indeed in
that case if R € B is such that m(Vg, QP/Q) # 0, then there exists € P
such that Q* N Np(R) C R (see Proposition 2.5 in [8]). Thus

Z=Q"NZC Q" NNp(R)CR

Step 3 : Suppose first that Q C H. Since By = {Rgs | S € S1}, if R= Rg €
Bi, then S C H by choice of S, and then by Lemma 5.2, the corresponding
simple module Vi = V/(S) is isomorphic to Ind}; Wg, where Wx = W(S) is the
simple QH-module corresponding to the genetic subgroup S of H. Moreover
in that case (Vg,Vr)p = (Wr, Wgr)H.

Let V be any QP-module. Then

<VR,V>P = m(VR,V)<VR,VR>p

= (Ind5Wg,V)p = (Wg,Resh V)i
= m(Wg,ReshV)(Wgr, Wr)H

thus m(Vg, V) = m(Wg,Res5 V). This gives

1156 = P/Q—P/QZ — ) | m(Wr,Res;QP/Q)(P/R ~ P/RZ)
ReB,

and since ReshQP/Q = D©re(p/mQH/Q", where [P/H] is some set of repre-
sentatives of H-cosets in P, this leads to

(6.14) fSE=P/Q-P/QZ~ > m(Wg,QH/Q")(P/R— P/RZ)

By Corollary 5.3 again, it is possible to choose a genetic basis 7 of H such
that
{*S|S€8,z€[P/H|}={SeT |S2Z} .

This also means that the set
Dy ={"Rs|S €S, v€[P/H|} ={"R|Re By, z€|[P/H]}

can be completed to a set D of representatives of basic subgroups of H for
the relation =z. Set D = D — {H}, and for R € D, denote by Wg the
corresponding simple QH-module (so in particular, this notation is consistent
for R € By). Then the elements

Sf = H/T —H/H = m(Wg,QH/T)(H/R - H/R) ,
ReD
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for T C H, generate K(H), hence by induction hypothesis, they belong to
L(H). This shows that the element

S0 — 80z =H/Q—H/QZ - Y  m(Wr,QH/Q — QH/QZ)(H/R — H/R)
ReD

belongs to L(H). Now if R € D and R O Z, then Wg = Infg/ZWl'Q, where
Wp = Defg/ZWR. Moreover (Wgr, Wr)n = (Wg, Wg)p/z, thus

m(Wgr,QH/Q) = m(Wg,QH/QZ) = m(Wr,QH/QZ)
This shows that m(Wgr,QH/Q —QH/QZ)=0if RD Z,ie. if R ¢ D;. And
if R € Dy, then R = RZ, and
(Wr,QH/QZ)ir = (Defi] ,,Wr, QH/Z)/(QZ/Z)) 11z = 0,

since Defg/ZWR = {0}. Hence m(Wgr,QH/QZ) = 0, and this gives finally

S5 —Sb,=H/Q-H/QZ~ > m(Wg,QH/Q)(H/R~ H/RZ)
ReD,

Comparing with expression 6.14, since obviously

m(WR7 QH/Q:B) - m(WzR7 QH/Q) )
it follows that
f88 =df; (S5 - S52)
showing that flpSg e L(P)ifQ C H.

Step 4 : Suppose now that Q € H. This case will be handled by the following
lemma :

6.15. Lemma : Let P be a p-group, and suppose that E is a normal
subgroup of P, which is elementary abelian of rank 2, and not contained in
the center of P. Set Z = EN Z(P). Let S be a subgroup of P, such that
S2Z,and S Z Cp(E).

1. The group Cs(E) = SN Cp(E) is a normal subgroup of SE, and the
quotient SE/Cg(E) is isomorphic to Xps if p # 2, and to Dg if p = 2.

2. There erist a subgroup T of Cp(E) and a morphism ¢ in C, from X,s
to P if p #2 (resp. from Dg to P if p=2), such that the element

(P/S —P/SZ)— (P/T — P/TZ)

is the image by o of the element § of K(X,3) (resp. of the element d3
of K(Dg)).
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Proof: Since E is normal in P, and not central in P, the group Cp(FE)
has index p in P. Now Cp(E)< P, hence S normalizes Cp(E), hence also
SNCp(E). Since E centralizes this latter group, it follows that Cs(E)<4SE.
Moreover ENCs(E) = ENS. If this is not trivial, then it has order p, otherwise
E C S, hence Z C S. Now S normalizes S N E, hence it centralizes it. Thus
S centralizes E = (SN E)Z, and this contradicts the hypothesis.

Hence E N Cg(E) = 1, thus E embeds as a normal elementary abelian
subgroup E of order p? in the quotient X = SE/Cg(E). Now X is equal
to the semi-direct product of E by its subgroup S = S/Cg(E), which has
order |S : SN Cp(E)| = p. Moreover X is not abelian, since otherwise
[S,E] CENCg(E) =1, thus S C Cp(F). Assertion 1 of the lemma follows.

The group X has center of order p, equal to Z = ZCg(E)/Cs(E). Let 0
be any group isomorphism from X,s to X if p # 2 (resp. from Dg to X if
p = 2) sending the subgroup IZ of X3 (resp. the subgroup I3Z of Dg) to
SZ, and the subgroup JZ of X3 (resp. the subgroup J3Z of Dg) to E. Such
an isomorphism exists since the automorphism group of X3 (resp. of Dg)
acts 2-transitively on its elementary abelian subgroups of order p?. Then 6([)
(resp. 0(I3)) is some conjugate of S in X, and 6(J) (resp. 6(J3)) is some
subgroup T of E. Let w = § if p # 2 (resp. w = J3 if p = 2). Then

O(w) = (X/S - X/SZ) - (X)T — X/TZ)
Taking inflation to SFE, and then induction to P gives the element
Indinf{y o ) 0(w) = (P/S = P/SZ) — (P/T - P/TZ) ,

where T is the preimage in SE of the subgroup T of E = ECg(E)/Cs(E)
under the projection SE — SE/Cg(E).

In particular T' C E(SNCp(E)) = Cp(E) (since E C Cp(E) C SCp(F) =
P), proving Assertion 2 of the lemma. 0
Step 5 : It remains to show that flpsg € L(P) if @Q is a subgroup of P, such
that Q@ 2 Z and Q € H = Cp(E). By Lemma 6.15, there exists a subgroup 7'
of H such that the element

u=(P/Q—-P/QZ)— (P/T - P/TZ)

is the image of ¢ (resp. d3) by some morphism in the category C,. Since

d € L(X,3) (resp. 03 € L(Dg)), it follows that u € L(P). Since moreover

L(P) C K(P), the element u is equal to
(5§ = S02) = (7 = S72)
by Lemma 6.4. It follows that
(FSG = 1562) = (J'SF = fI'S75) € L(P)

24



Since T' C H, the previous discussion shows that f{'S® € L(P). Moreover
1PSSZ = fF'SE, = 0 by Remark 6.13. Hence flpSS € L(P), as announced.

Step 6 : To complete the proof of Theorem 6.12, it remains to consider the
case where P has no elementary abelian normal subgroup of order p2, i.e. the
case where P has normal p-rank 1. If p is odd, there is nothing more to do,
since then P is cyclic, and K(P) = {0}. If p = 2, then :
— if P is cyclic, again there is nothing more to do, since K (P) = {0}.
— if P is generalized quaternion, then 0K (P) = {0} : indeed the only
subgroup of P intersecting trivially the center is the trivial group, and
the trivial group is a normal basic subgroup of P, hence it belongs to

any set B of representatives of basic subgroups of P, by Remark 2.4.
Clearly then Sf =0.

— if P is semi-dihedral, then 0K (P) is free of rank 1 : up to conjugation,
there are only two subgroups of P which intersect trivially the center
of P, namely the trivial group and the non central subgroup @ of order 2,
which is a basic subgroup of P. Then any set B of representatives of
basic subgroups of P modulo the relation =p must contain @ (up to
conjugation). Then clearly flpSg = 0. On the other hand

'Sf = P/1-P/Z—-m(Vy,QP/1)(P/Q — P/QZ)
= P/1-P/Z-2P/Q +2P/QZ
= IndgzeQZ

Thus in this case also 0K (P) C K.(P) C L(P).

— The only remaining case is when P is dihedral, say P = Dan, with
n > 4. In this case up to conjugation, there are 3 subgroups which
intersect trivially the center of P, namely the trivial group, and the non
central subgroups I,, and J,, of order 2. Since I, =p J,, I can suppose
that B contains J,, (and not I,,). In this case

P/1—P/Z —2(P/J, — P|J,Z) ifQ=1
L85 =4 (P/L,— P/1,Z) — (P/J, — P/J,Z) ifQ=pI,

0 otherwise

Thus f{S¥ = Ind} 44,7 is in L(P), by Lemma 6.11, and ffSi =
dp € L(P). Thus 0K (P) C L(P) also in this case.
The only thing to prove now is that K (P) = {0} except if P 2 X 3 or P = E»
if p # 2, or if P is dihedral of order at least 4 if p = 2. But by Remark 3.4, if
@ is any p-group, then any transitive (P, Q))-biset factors as a composition of
a deflation-restriction to some section of (), followed by a group isomorphism,
followed by an induction-inflation from a section of P.
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Since any section of X3 is cyclic, isomorphic to E,2 or to X,s, since any
section of a dihedral group is cyclic or dihedral of order at least 4 (with the
usual convention that a dihedral group of order 4 is elementary abelian), it
follows that for any ¢ € Home, (X3, P) (resp. for any ¢ € Homg,(D2n, P)),
the element ¢(J) (resp. the element ¢(d,,)) is a linear combination of elements
of the form IndianTD /50 for sections T'/S of P which are also sections of X3
(resp. of Dan), and elements v € K(T'/S). Here of course I can assume that
T/S is not cyclic, otherwise K (7'/S) = {0}.

Hence K(P) = {0} if P is not isomorphic to E,2 or X, for p # 2 (resp.
if P is not dihedral of order at least 4 if p = 2). This completes the proof of
Theorem 6.12. O

6.16. Corollary : Let P be a p-group. Then K(P) is equal to the set of
linear combinations of elements of the form Indinfg/sﬁ(k;), where (T, S) is a
section of P, where 0 is a group isomorphism from one of the groups X,
Ey2, or Don (n>3) to T/S, and k is respectively equal to 6, €, 6y.

6.17. Remark : One can check easily that if P is isomorphic to one of the
groups E,2, X3, Dan for n > 3, then K(P) is actually non zero, respectively
isomorphic to Z, Z/pZ, or 7/27, and generated by the image of &, §, or J,,.

7. The Dade group modulo torsion

In this section I will show that D(P) = D*(P) + Diors(P), for any p-
group P. In the case p # 2, this will be enough to conclude that D = D,
7.1. Theorem : Letn be a positive integer. Then

(nD N DY) + DY . =nD? + D

tors tors

Proof: If n = 1, there is nothing to prove, so assume n > 2. By Theorem 1.8
of 9], there is an exact sequence of bisets functors

0—Ry— B*— DD, —0 ,

where R*Q and B* are the respective Z-dual of Rg and B, and the inclusion
R{@ — B* is the transpose of the natural morphism B — Rqg. If P is a
p-group, evaluation at P gives the exact sequence of abelian groups

0 — RY(P) — B*(P) — (D%/D§l, ) (P) — 0
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and this sequence is actually split exact, since (D*?/Dj2,.)(P) is a free abelian
group. In particular, this sequence remains exact after tensoring (over Z) with
Iy, = Z/nZ, and this shows that the sequence

tors

0—TwRy —T,B* —T,(DY/D,,) — 0

is an exact sequence of biset functors, where the ®z symbols have been
dropped (so e.g. I'yRg denotes I',, ®z Rg). Now there are canonical iso-
morphisms

1%

IR} Homr, (TR, ')
I,B* =~ Homr, (I',B,T,)

Moreover
ru(DY/DR.) = (D%/DE,.) [n(D?/D,.)

= (p%/Dg,.)/((nD®+ D,.)/DE,.)
D%/(nD® + DE,.)

12

Setting T, = D /(nDt 4+ DS}..), this gives the exact sequence

(7.2) 0 — Homr, (I, Rg,I',) — Homr, (I',B,T',) — T,, — 0

Note that T;,(P) is a free I';,-module, for any p-group P.
Now on the other hand the exact sequence of biset functors

0—-K—=B— Rg—20

remains exact after tensoring with I';,, since every evaluation of this sequence
is a split exact sequence of abelian groups. Hence there is an exact sequence

O—-T'K—-1,B—=I,Rg—0 ,

and every evaluation of this sequence is a split exact sequence of I',-modules.
Now taking I',,-duals leads to the exact sequence
(7.3)

0 — Homr, (I',Rg,I';,) — Homr, (I, B,T",,) — Homr, (I, K, T',) — 0

Comparing the sequences 7.2 and 7.3 gives the following natural isomorphism
of biset functors

(7.4) T, = Homp, (I', K, T,)
This means that for any p-group P, there is a non-degenerate scalar product

(,)p:To(P)xT,K(P)—T,
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with the property that for any p-group @ and any ¢ € Home,(Q, P), one has
that

(7.5) Vu € T, (P), Yv € T, K(Q), <u, (p(v)) = (goap(u),v)

P Q

Now set

tors tors

Then F' is a biset subfunctor of 7). Suppose that F' # {0}, and let P be a
p-group of minimal order such that F(P) # {0}. Then F(P) is a subset of

T,.(P)C{ueT,(P)| Defresg/s(u) =0, VSaT C P, |T/S| < |P|} .

By the above duality 7.5, it follows that if v € T, (P), then for any proper
section T'/S of P, and any v € I',, K(P)

<u, Indinfg/s(v)> b, 0

Hence (u,w)p = 0 for any w € > Indinfg/SPnK(T/S). By Theo-
S4TCP
IT/S|<|P]|
rem 6.12, this is the whole of I', K (P), unless P is isomorphic to X3 or E, if
p # 2, or if P is dihedral of order at least 4 if p = 2. Thus if P is not isomor-
phic to one of the groups in this list, then (u,v)p = 0 for any v € I, K(P),
hence u = 0 since the scalar product is non degenerate. Thus T, (P) = {0}.
Hence the minimal group P is one of the groups X3, 2 or Da» (note that
Ey> = Dy2). If F(P) = {0} in each of these cases, this gives a contradiction,
proving that F' = {0}. But if P is one of the groups X s, E,2 or Dan, then
D(P) = D(P) : for P = X3, this follows from Theorem 10.2 of [11], for
P = E,», this follows from Theorem 4.6, and for PP = Dan, this follows from
Theorem 4.7. Hence nD(P) N D¥(P) = nD®(P), and F(P) = {0}. This
completes the proof of the theorem. 0

F= ((anDQ)+DQ )/(nDQ+DQ )

7.6. Remark : Using the fact that I';, is a self injective ring, one can show
that the above isomorphism 7.4 actually restricts to an isomorphism

for any p-group P. Moreover

T,K(P) = T,K(P)/ Y  Indinff T, K(T/S)

SaTCP
|T'/S|<|P|

<K(P) /nK(P)) / Y Indinff g (K(T/S) /nK(T/S))
Tisi<in)
K(P)/< 3 IndinffTD/SK(T/SHnK(P))

SATCP
IT/SI<|P|

K(P)/nK(P)=T,K(P) |,

12

12

12
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so in fact there is always a group isomorphism T, (P) = Homr, (I', K (P),T',,).

7.7. Theorem :
1. D = D% + Dyps.
2. If p# 2, then D = D,

(Assertion 2 was the first part of Conjecture B in [4]).

Proof: Indeed, by Proposition 7.4.9 of [6], for any p-group P, the quotient
D(P)/(D®(P) + L(P)) is a finite p-group, where L(P) is the intersection of
the kernels of the maps Defres? /50 where T'/S is an elementary abelian section
of P. Thus if u € D(P), then there is m € N such that p™u € D®(P) + L(P).

Now the group L(P) is always a subgroup of Diy-5(P), by Theorem 1.6 of

[12]. Let e denote its exponent. Then ep™u € D*(P), hence

ep™u € ep™D(P) N D(P) C ep™DY(P)+ DL,
by Theorem 8.2. Hence there exists v € D®(P) such that the difference
ep™u — ep™v = ep™(u — v) is a torsion element of D(P). Hence u — v is a
torsion element of D(P), proving Assertion 1.

If p # 2, it has been shown by Carlson and Thévenaz (see Theorem 13.1
of [14]) that L(P) = {0}. Hence with the same notation e = 1, and the
difference w = p™ (u—wv) is in D{},. (P). This group is a 2-group of exponent 2
(by Corollary 7.6 of [10], or by Corollary 13.2 of [14]). Thus w = p™w, and
p"(u —v —w) = 0. But by Corollary 13.2 of [14], there is no p-torsion in
D(P). Thus u = v +w € D%(P), and D(P) = D*(P) in this case. a

8. The torsion part of the Dade group

8.1. Proposition : Let P be a p-group, and suppose that E is a normal
subgroup of P, which is elementary abelian of rank 2. Let Z be a subgroup of
order p of ENZ(P). Then

Diors(P) N Ker Res, () N Ker Defh 1z ={0} .
Proof: by induction on the order of P : suppose that the result holds for all
p-groups @ with |Q| < |P].

Step 1 : If F is central in P, the result is trivial, for in that case Cp(E) = P,
and ResgP( B) is the identity map.

29



If E is not central in P, then |P : Cp(E)| = p, and EN Z(P) has order p,
hence it is equal to Z. Let u € Dyys(P), such that ResgP(E)u = 0 and
Defg/zu =0.

Let H be a proper subgroup of P, containing F, and consider v = ResZu.

Then the hypothesis of the proposition holds for H, its normal subgroup F,
and its subgroup Z contained in £ N Z(H). Moreover v is in Dys(H), and

Reng(E)v = Reng(E)u
Cp(E
= ReSCZ((E))ReSgp(E)u =0
Similarly

Defg/zv = Defg/ZResZu

= Resg/éDefg szu =0
The induction hypothesis now shows that v = 0. Thus ResZu = 0 for any
proper subgroup of P containing F.

Consider now a subgroup Z’ of order p of Z(P), not contained in E (equiv-
alently Z' # Z, since E is not central in P). The group E embeds in the group
P =P/Z' since ENZ' =1, and its image E = EZ'/Z’ is a normal subgroup
of P.

If u € P is such that uZ’ € Cp(E), then [u, E] C Z’, hence [u, E] C
ENZ' =1. This shows that Cp(E) = Cp(E)/Z'. Moreover Z = Z.Z' /7" is
a central subgroup of order p of P, contained in E.

Set w = Defg/z/u. Then w € Diyrs(P), and

P o pP/z’ P
ResCF(E)w = ResCP(E)/Z/DefP/Z,u
_ (E) P _
= Defgi(E)/Z,ReSCP(E)u =0
Similarly
Defg/zw = Deflg/ZZ,u

= Defigz,Defg/Zu =0

Then w = 0 by induction hypothesis. It follows that Def? /x U = 0 for any

central subgroup X of order p of P, and then Defﬁ INU = 0 for any non trivial
normal subgroup N of P.

On the other hand, Carlson and Thévenaz have shown that the element
of Dyors(P) is equal to 0 if and only if Defresﬁp @)/Q% = 0 for any subgroup @
of P such that Np(Q)/Q is cyclic, if p # 2, or cyclic, generalized quaternion,
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or semi-dihedral, if p = 2 (see [14] Theorem 13.4). Let @ be such a subgroup.
If M = QN Z(P) is non trivial, then setting P = P/M and Q = Q/M

P P P
DefresNP(Q)/Qu = DefresNﬁ@)/QDefpu =0

And if M = 1, then Z(P) embeds in the center of the group Np(Q)/Q,
which is always cyclic when Np(Q)/Q is cyclic, generalized quaternion, or
semi-dihedral. This cannot happen if Z(P) is not cyclic, and u = 0 in this
case.

Step 2 : Hence I can assume that Z(P) is cyclic. Then by Assertion (b) of
Theorem 13.1 of [14], the element u of Dyyrs(P) is equal to 0 if and only if
DefresITD st =0, for any section (7', S) of P such that T'/S is cyclic of order p
if p #£ 2, or cyclic of order 4 or quaternion of order 8 if p = 2.

Let (T, S) be such a section. If M = SNZ(P) # 1, then setting P = P/M,
T=T/M and S = S/M

Defresg /gU = Defres? gDefgu =0

/
Similarly, if H = TE # P, then

Defresg/su = Defresjff/SResZu =0 ,
since H is a proper subgroup of P containing F.

Step 3 : So I can suppose that TE = P, and SN Z(P) = 1. Set M =
SNCp(FE). Then M is normalized by T and centralized by FE, thus M <P,
and M N Z(P) = 1 since M is a subgroup of S. Thus M = 1. Since Cp(F)
has index p in P, this implies that |S| < p, and there are two cases :

o if |S|=p, then SCT C SCp(FE) =P, thus T = S(T'NCp(F)), and in
particular 7'/S = T'N Cp(E) is isomorphic to C), for p # 2, or to Cy4 or
Qs for p = 2. Moreover S in central in T, thus T' = S x (T'N Cp(E)).
The group SFE is isomorphic to the (non trivial) semi-direct product
of Cp by Ep2, hence it is isomorphic to X3 if p # 2, and to Dg if
p = 2. The group E N T has order at most p (otherwise £ C T, thus
E CTNCp(F), and this cannot happen since T'N Cp(E) is one of the
groups Cp, Cy or Qg).

If ENT =1, then P=SE x (T'NCp(F)), since

SEN(TNCp(E)) =S(ENT)NCp(E) = SNCp(E) =1

In that case the center of P cannot be cyclic, since both groups SE and
T NCp(E) are non trivial.
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It follows that £ NT has order p. If ENT # Z, then E = (ENT)Z is
centralized by 7', hence contained in the center of P. Thus ENT = Z.
In that case

SEN(TNCp(E)) =SZNCp(E)=Z(SNCp(E) =2 ,

and P is isomorphic to the central product of SE and TNCp(E). Thus
ifp#2,then TNCp(E)=TNE=2Z,for TNE CTNCp(E), and
both have order p, and P = SE = X3 in this case. And if p = 2, the
group P is isomorphic to Dg * Cy or Dg * Qs.

e if S =1, then T is isomorphic to C), if p # 2, or to Cy or Qg if p = 2.

Again if ENT = 1then P = ExT = Ep xCy, =& X3 if p # 2.
And if p =2, then P &£ FEy x Cqy or P = E4 X Qg, and in each case
Z(P) = Z x Z(T) = Cy x Cy, which is not cyclic. And if ENT # 1,
then ENT = Z as above.
If p # 2, then T has order p, hence T' C F, hence P = F, a contradiction.
And if p = 2, then P = E x T/A, where A is the unique subgroup of
order 2 of Z x Z(T') which is neither contained in Z nor in Z(T). If
T = C4, then P = Dg, and u = 0 since D(Dg) is torsion free by Theorem
10.3 of [13]. And if T" = Qg, then clearly [P, P] = (Z x [T,T])/A,
which has order 2, and is also equal to the Frattini subgroup of P, since
P/[P, P] is elementary abelian of order 8. In this case also Z(P) is
cyclic of order 4, generated by the element et, where e € £ — Z, and
t is a generator of Cp(F). Hence P is almost extraspecial of order 16,
isomorphic to P & Dg x C4 again.

Step 4 : Finally, the only cases left to consider are

e Case 1: p#2and P = X3,

e Case 2: p=2and P = Dg x (Yy,

e Case 3: p=2and P = Dg * Qsg.
By Theorem 9.1 of [11], the group 0Dy,s(P) is cyclic of order 2 in Case 1
and Case 2, or cyclic of order 4 in Case 3 and the ground field does not
contain primitive cubic roots of unity. In Case 3, when the ground field
contains primitive cubic roots of unity, then 0Dyors(P) = Z/AZ & 7. /27, by
Theorem 10.1 of [11].

Note that by Theorem 4.6 and Theorem 4.7, this can be expressed as

Tiors(Cp) in Case 1
8Dt07"5(P) = jﬂtors(C4) in Case 2
Tiors(Qg) 1in Case 3

Using this observation, these results can be interpreted as follows : the genetic
subgroups S of P which do not contain Z = Q,Z(P) = ®(P) are precisely the
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non central subgroups of order p. For such a subgroup set R = Np(S). Then

Cp, in Case 1
R/S =< C4 in Case?2
Qs in Case 3

By Theorem 6.1 of [10], and with the same notation, the map
Teninfy g : Tiors(R/S) — Diors(P)

is injective, and its image is contained in dDy,.s(P) = Ker Def? /7 indeed

for v € Tiors(R/S) = f”/SDtOrS(R/S), since Defggzv =0, it follows that

Teninfg/sv =aps(v) = (P/S—P/SZ)v
where P/S — P/SZ is a virtual (P, R/S)-biset. Then clearly
Defg/ZTenian/sv =(P/SZ—-P/SZ)v=0 |,

since the Galois torsions have no effect here : the group P/Z is elementary
abelian, hence D(P/Z) = D%(P/Z).

Hence in each case above, the map Teninfg /s induces an isomorphism
from Tiors(R/S) to ODyors(P). It follows that the (restriction of the) map
br,s = S\P — SZ\P is the inverse isomorphism 0D;ors(P) — Tiors(R/S).

Now the elementary abelian subgroups of P of rank 2 are all maximal
elementary abelian subgroups of P. If E is one of them, then £ = SZ, where
S is any non central subgroup of order p of E. In particular Cp(E) is equal
to R=N p(S )

Now if u € ODyps(P) is such that ResgP(E)u =0, then

brsu) = (S\P—SZ\P)u

= f/SDefg/SResgu =0 ,

hence u = 0 since bg g is an isomorphism. This completes the proof of Propo-
sition 8.1. I

8.2. Theorem : Let P be a p-group, and let S be a genetic basis of P. Then
the map

Is = &, Teninfy g/ : 3 Tiors(Np(9)/5) = Diors(P)

is an isomorphism.

(This was Conjecture A in [4], or Conjecture 6.2 in [10]).
Proof: Let

DS : Dtors(P) — @ Ttors(NP(S)/S)
SeS
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be the map in the other direction, defined as in Section 6 of [10] by Ds =
©ses bnp(s),s- Since DsoZs = Id by Theorem 6.1 of [10], proving Theorem 8.2
is equivalent to proving that the map Dgs is injective, and I will proceed by
induction on the order of P.

Before that, suppose that the map Zs is an isomorphism, for a particular
genetic basis § of P. It follows that

Dtors(P) = 56698 TtOTS(NP(S)/S) )

and up to isomorphism, the right hand side is independent of the choice of
S, since the groups Np(S)/S are the types of the irreducible rational repre-
sentations of P. Now if S’ is another genetic basis of P, then the map Zg is
always injective, by Theorem 6.1 of [10]. Hence it is an isomorphism, since
it is an injection from a finite group to an isomorphic finite group. In other
words, it is enough to prove Theorem 8.2 for any particular genetic basis S of
P.

Suppose now that Theorem 8.2 holds for any p-group @ with |Q| < |P|.
Let S be a genetic basis of P, and let Z be any central subgroup of order p
in P. Set

S={SeS|S2>Z} .

Then the set S = {S/Z | S € &'} is a genetic basis for P = P/Z. Let
u € Ker Dg, and consider v = Defg/zu. If S = S/Z is an element of 3/, for
S € S, then N5(S) = R= R/S, where R = Np(S) and

bﬁg(?}) = bESDefg/Zu
= Defg/ZbR,g(u):O

Now the induction hypothesis shows that v = 0. Since this holds for any
central subgroup Z of order p of P, it follows that u € OD4rs(P). Thus

Ker Ds C 0Dyors(P)

for any genetic basis S of P.
Now let u € ODyoprs(P). Theorem 13.4 of [14] shows that wu is equal to 0 if
and only if DefresﬁP(Q)/Qu = 0, for any subgroup @ of P such that Np(Q)/Q

is cyclic, semi dihedral or generalized quaternion. Since Defg/Zu = 0 for

any non-trivial central subgroup of P, it follows that DefresﬁP(Q) QU = 0 if
M =QnZ(P)#1, for
P _ P P
DefresNP(Q)/Qu = DefresNﬁ@)/@Defﬁu ,

where P = P/M and Q = Q/M.
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And if M = 1, then Z(P) embeds in the center of Np(Q)/Q, which is
always cyclic if @ cyclic, semi dihedral or generalized quaternion. This shows
that w = 0 if Z(P) is not cyclic, hence 0Dy 4py = {0} in this case, and
Ker Ds = {0} also.

Now if Z(P) is cyclic, let Z = Q1 Z(P) be its subgroup of order p. If P
has normal p-rank 1, then 1 is a normal genetic subgroup of P, thus 1 € S.
Moreover 9Dyps(P) is equal to Tyyrs(P). Thus for u € ODyyrs(P)

bpi(u) = ffu =u

It follows that Ker Dg = {0} in this case.

The remaining case is when P admits a normal subgroup E which is ele-
mentary abelian of rank 2. Set H = Cp(F). Since Z(P) is cyclic, it follows
that |P : H| = p, and that Z = EN Z(P). By Corollary 5.3, there exists a
genetic basis § of P and a decomposition

S=85 U8y

in disjoint union such that

1. if S €8y, then S O Z, and

2. theset ' = {*S | S € §1, = € [P/H|} is a set of representatives of
genetic subgroups R of H such that R 2 Z, for the relation —j |,
where [P/H] is any chosen set of representatives of H-cosets in P.

Let u € Ker Ds. Then u € Ker Defg/z = ODyors(P). Set v = Resgu. Then
there is a genetic basis 7 of H such that ' ={S €7 | S 2 Z}. Let S € Sy,
and z € [P/H]. Then *S € 7, and

Ny(*S)=*Ng(S) ="Np(9)
Moreover

bepes(v) = (*S\H —*SZ\H)Reshu
= (*S\P —*SZ\P)u = xbg s(z"'u) = zbrg(u) =0
Moreover if S € T—T', then S 2 Z, so setting R = Np(S) again, and denoting
by S the subgroup of R such that S/S is central of order p in R/S,
brs(v) = (S\H — S\H)Reshu
_ (T _ &7 PDyafP, —
= (S\H — S\H)ReszDefpu=0 ,
where P=P/Z,§=S5/Z, H=H/Z, § = 8/Z.
It follows that by, (g),s(v) = 0 for any S € 7, thus v = 0 by induction

hypothesis. Now u € Ker Resgp m N Ker Def]P; /7 Hence v = 0 by Proposi-
tion 8.1. This completes the proof of Theorem 8.2. O
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8.3. Corollary : Let P be a p-group. Then
Diors(P) =2 (Z)22)"" & (Z/AZ)™F

where mp is equal to the number of isomorphism classes of rational irreducible
representations of P of generalized quaternion type, and np is the number of
isomorphism classes of rational irreducible representations of P whose type is

e cyclic of order at least 3, or semi dihedral, or generalized quaternion, if
the ground field contains primitive cubic roots of unity.

e cyclic of order at least 3, or semi dihedral, or generalized quaternion of
order at least 16 otherwise.

(This was Conjecture 6.3 in [10]).

8.4. Corollary : If P is a 2-group, then D(P) = D*(P) + oD(P), where
9D(P) ={u € D(P) | 2u = 0}.
Proof: Indeed D(P) = D®*(P) + Diors(P) by Theorem 7.7. Moreover Corol-
lary 8.3 shows that 2Dy,.s(P) = 2D52,.(P) : indeed, it is enough to check this
equality when P is cyclic, semi dihedral, or generalized quaternion, since for
an arbitrary 2-group P, any element in Dyy,.s(P) is a sum of elements obtained
by inflation and tensor induction from sections of P of this type. Now by The-
orem 4.7, if P is cyclic or semi dihedral, then D;o.s(P) = D2, (P). And if P
is generalized quaternion, then 2Dy,,s(P) is a group of order 2, generated by
2Qp1.

Now if P is an arbitrary 2-group, and if u € D(P), there is an element
v € D?(P) such that w = u — v is a torsion element of D(P). So there
exists an element ¢t € Df} . (P) such that 2w = 2t, i.e. w —t € 9D(P). Now

tors

u=v+t+ (w—t), and Corollary 8.4 follows. a

8.5. Corollary : Let O be a commutative noetherian local ring with mazimal
ideal p, complete for the p-adic topology, such that the residue field k = O/p
has characteristic p. If P is a p-group, then reduction mod p induces a group
isomorphism Do(P) — Dy(P) from the group of Dade P -algebras over O
to the corresponding group over k. In other words, every endo-permutation
kP-module can be lifted to an endo-permutation OP-lattice.

Proof: The assumption is Assumption 2.1 of [25], except that k is not as-
sumed to be algebraically closed. Now with the Notation of Section 29 of [25],
reduction mod p induces an injection Dp(P) — Dy (P), by Proposition 29.4
of [25]. This injection obviously restricts to an isomorphism DE(P) — D$}(P).
Also, this injection is an isomorphism if P has normal p-rank 1, by Dade’s
Theorem 4.6, and by Carlson-Thévenaz explicit description of Dy (P), when
P is a 2-group of normal 2-rank 1.

Now it follows from Theorem 8.2 and Theorem 7.7, that the reduction
map Do (P) — Di(P) is always an isomorphism. a
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9. Generators and relations

9.1. Notation : If P is a p-group, denote by [sp] a set of representatives
of conjugacy classes of subgroups of P, ordered by the relation

U<pVeIzeP, UC™

Let pup denote the Mébius function of the poset ([sp|,<p). If V € [sp], let
Apyy denote the element of D®(P) defined by

Apyy =Y pp(UV)Qp

UE[SP}
U<pV

If Q is any subgroup of P, set Ap;g = Apyy, if V € [sp] is a conjugate of Q
n P.
If Q and S are subgroups of P, recall from Notation 2.4 of [8] that

Zp(Q,S5) ={z € Q\P/Np(S) | Q" N Np(S5) € 5} ,

and set ip(Q,S) = |Zp(Q,S)|.
Define similarly

JIp(Q,5) = {z € Q\P/Np(5) | [1:(Q, 5)| = p, J=(Q,S5) £ Z(Np(5)/5)}

where J;(Q,S) = (Q* N Np(5))S/S, and set jp(Q,S) = |Tp(Q,S)|.

9.2. Remark : If Np(S)/S is cyclic or generalized quaternion, then jp(Q, S)
is equal to 0 for any Q.

If Q is a generalized quaternion group, recall (Lemma 4.8) that 7o denotes
any element of order 2 in D(Q) — D*(Q).

9.3. Notation : If P is a 2-group, and S is a genetic subgroup of P such
that Np(S)/S is generalized quaternion, choose such an element Ny, (s)/s €
D(Np(S)/S), and set

Ag = Teninfﬁp(s) /STINp(S)/S

9.4. Remark : By Lemma 4.8, the element Ag does not exist if Q = Qg
and the ground field does not have primitive roots of unity. In all other cases,
there are exactly two elements 7o and n/Q of order 2 in D(Q) — D%(Q), and

ng + 7729 = QQQ/l in D(Q).
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9.5. Theorem : Let P be a p-group, and let S be a genetic basis of P.
Denote by Q the subset of S consisting of elements S such that Np(S)/S is
generalized quaternion, if the ground field contains all cubic roots of unity, or
generalized quaternion of order at least 16 otherwise.

Then the Dade group D(P) is generated by

e the elements Apq, for Q € [sp], and
o if p =2, the elements Ag, for S € Q.

These generators are subject to the following relations 9.6 and 9.7 :

(9.6) vSes, 7s Y (asip(Q,S) +jpr(Q,5)Apq =0 |
Q€lsp]

L if INp(5)/S] <2
or if Np(S)/S is dihedral
where T = 2 if Np(5)/S is cyclic of order at least 3
or semi dihedral

4 if Np(S)/S is generalized quaternion
J B 1 4f Np(S)/S is cyclic or generalized quaternion
andas = 2 if Np(S)/S is dihedral or semi dihedral
(9.7) VS e Q, 205 =0

Moreover, these generators and relations form a presentation of D(P) as an
abelian group : more precisely, the generators Ap;q, for Q € [sp], subject
to the relations 9.6, form a presentation of D*(P) as an abelian group. The
elements Ag, for S € Q generate a subgroup Dg(P), isomorphic to (Z)27)!9!,

and
D(P) = D*(P) @ Do(P)

Proof: Recall from Theorem 1.7 of [9] that there exists a unique natural
transformation of biset functors © : B* — D% such that © plwx) = Qx, for
any p-group P and any finite P-set X, and © is surjective. Let L = Ker ©.
Then L is a biset functor, and since composition of © with the projection
D® — D®/D5!  leads to the exact sequence
0—Ry— B*—D%/Djl,—0 ,

tors

it follows that L is a subfunctor of R, hence L is a subfunctor of the dual of
a rational biset functor. By Proposition 7.4 of [10], the functor L is rational,
and thus for any genetic basis S of P, the map

Is = &, Teninfy,, g5 : 2 OL(Np(S)/S) — L(P)
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is an isomorphism.

Now the element Ap,q of D*(P) is the image by ©p of the element 0 P/Q
of the canonical basis of B*(P) (see Remark 2.3 of [10]). In particular the
elements Ap/q, for Q € [sp], generate DY(P).

Let P be any p-group. Evaluating at P the exact sequence

0—L—B"—-D%-0 ,

and taking images by the idempotent f{ of Endc,(P), leads to the exact
sequence of abelian groups

0 — dL(P) — OB*(P) — dD%(P) — 0

But Rp) has a Z-basis consisting of the elements V*, where V' runs through a
set of representatives of isomorphism classes of rational irreducible representa-
tion of P, and V*(W) = m(V, W) for any W € Rg(P) (see Lemma 3.2 of [9]).
It follows that ORg(P) has a basis consisting of the elements V*, where V'
runs through a set of representatives of isomorphism classes of faithful rational
irreducible representation of P.

Now suppose that P has normal p-rank 1, and set Z = Q;Z(P). Then
there is a unique such representation ®p, by Proposition 3.7 of [8]. Thus
ORG(P) is free of rank 1, generated by the element ®%. Viewed as an element
of B*(P), it is equal to

p= Y m(®p,QP/Q)dp/q
QE|[sp]

Then by Lemma 4.1 of [10], if P is cyclic or generalized quaternion, then

merar={ ! 1271

and if P is dihedral or semi dihedral, then

0 ifQDZ
m(®p,QP/Q)=4q 1 fQ2DZ |Q[=2
2 fQ=1

If P is cyclic or generalized quaternion, then ORg(P) is generated by ®}, =
dp;1 = wpy1- The order 7p of Op(P}L) = Qp)q is equal to 1if [P < 2, to 2 if
P is cyclic of order at least 3, and to 4 if P is generalized quaternion. Hence
OL(P) is generated by pp = Tpwp/q in this case.

If P is semi dihedral, then Ry (P) is generated by

p=20p;1 +6p/p =wpn +wp/r
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where R is a non central subgroup of P of order 2. Then © p(®%}) is equal
to Qp/1 + Qp/r, which has order 2 in D(P), by Theorem 7.1 of [13]. Hence
OL(P) is generated by pp = 2(wp/1 +wp/g) in this case.

Finally if P is dihedral, then 0Rg(P) is generated by

®p =20p)1 +dp/r+0p/p =wp/r +wWp/R

where R and R’ are non central subgroups of order 2 of P, not conjugate
in P. Then u = ©p(®p) = Qp/r + Qp/p is a torsion element of D(P),
which is torsion-free by Theorem 4.7. Hence u = 0. So 0L(P) is generated
by pp = wp/r + wp/pr in this case.

Let S € S. If Q is a subgroup of P, then

Indinfy, (s)/5®Np(s)/s(P/Q) = sy s(Defresy, s)s(P/Q))
= m((I)Np(S)/SaDefresgp(S)/S(@P/Q))

= m(IndmfﬁP(S)/S@Np(s)/s,@P/Q)
= asip(Q,S)+jP(st)

Here the equality in the second line follows from the definition. The equality in

the third line follows by Frobenius reciprocity, from the fact that (Np(S),.5)

is a genetic section of P, and the last equality follows from Lemma 4.1 of [10].
Then

Indinfﬁp(s)/s@}‘vp(s)/s = Z (aSZP(Q75)+.7P(st))5P/Q )
QEl[sp]

and it follows that D’(P) has a presentation as an abelian group generated
by the element Ap,q, for @ € [sp], subject to the relations 9.6.

Now the elements Ag, for S € Q, are of order 2, since the element 7y, (s)/s
has order 2, and since the map

Teninfﬁp(s)/s : Ttors(NP(Q)/Q) - D(P)

is injective, by Theorem 6.1 of [10]. Let Do (P) denote the subgroup generated
by the elements Ag, for S € Q.

Then Diyrs(P) = Dk, (P) + Dgo(P) : to prove this, by Theorem 8.2, it
suffices to check that if P is a quaternion group, then Dy,,s(P) is generated
by D% (P) and one chosen element 7¢. But this is obvious, from Lemma 4.8.

Now by Theorem 7.7, it follows that D(P) = D®(P) + Dgo(P), and

D(P)/D*(P) & Dyors(P)/ Dz, (P) = Do(P)/(D®(P) N Do(P))

tors

By Corollary 8.3 and by Corollary 7.6 of [10], the group Diors(P)/D5L, . (P)
is isomorphic to (Z/27)%, where gp is the number of isomorphism classes of

rational irreducible representations of P which are of generalized quaternion
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type if the ground field contains all cubic roots of unity, and of generalized
quaternion type of order at least 16 otherwise. In other words ¢p = |Q].

Now Dg(P) is an elementary abelian 2-group generated by |Q| elements,
so its rank is at most equal to |Q|. Since its factor group

Do(P)/(D®(P) N Dg(P))

has rank equal to |Q|, it follows that D’(P) N Dgo(P) = {0}, that the ele-
ments Ag, for S € Q, are linearly independent over Fo, and that

D(P) = D®(P) ®© Do(P)
This completes the proof of the theorem. O

9.8. Remark : If the group P is abelian, then by Remark 2.11, there is a
unique genetic basis S of P, consisting of subgroups S of P such that P/S
is cyclic. If @ is any subgroup of P, and if S € S, then jp(Q,S) = 0 by
Remark 9.2, and ip(Q,S) is equal to 1 if @ C S, and to 0 otherwise. Hence
the relations 9.6 become

VS eSS, TSZAP/QZO

QCS
Moreover
ZAP/Q = Z np(U, Q)Qp )y
QCs QCS U€[sp]

= Qps

by the defining property of the Mobius function, since the poset s p is equal to
the poset of all subgroups of P if P is abelian. Thus Theorem 9.5 is another
form of Dade’s Theorem (Theorem 4.6) if P is abelian.

10. The functor D/D*

In this section, I will show that D/D® is a biset functor. Of course, by
Theorem 7.7, this is non trivial only if p = 2, which I shall assume throughout
this section.
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10.1. Notation : (see Notation 4.1 of [8]) If Q is a 2-group of normal
2-rank 1, let Hg denote the subfunctor of FoRg generated by the image % €
FoRo(Q) of the unique (up to isomorphism) rational irreducible representation
O of Q.

If P is any 2-group, then FoRg(P) has a canonical basis consisting of the
images V' of the rational irreducible QP-modules V, up to isomorphism. If
u € FaRg(P), denote by v(V,u) the coefficient of V in the decomposition of
u in this basis.

The next theorem is a precise form of the second part of Conjecture B
in [4] :
10.2. Theorem : If P is a 2-group, there is an exact sequence of abelian
groups
0— D¥(P) £ D(P) 2% Ho(P) — 0

)

where ip is the inclusion, and Q = Qg if the ground field contains all cubic
root of unity, and @Q = Q¢ otherwise.

Moreover this sequence is functorial in the following sense : if P’ is a
2-group, and if 1» € Home, (P, P"), then the diagram

0 — D¥P) X DMP) 25 Ho(P) — 0

D) | pw)| e |

0 — D%UP) X5 DP) ZE Ho(P) — 0
18 commutative.
In other words, there is a natural structure of biset functor on D/DQ, and
D/D% = H,.
In general however, because of “Galois torsion” (see Section 3 in [12]),
there is no natural biset functor structure on D, so there is no genuine “exact
sequence of biset functors”

O—>DQ—>D—>HQ—>O

If the ground field does not contain non trivial cubic root of unity, then D is a
genuine biset functor, by Lemma 4.8, and this sequence is an exact sequence
of biset functors.

Proof: If the ground field contains all cubic roots of unity, fix a group Q = Qs,
otherwise fix a group @ = Q16. In any case, choose an element 7¢ of order 2,
in D(Q) — D*(Q). If P is any 2-group, set

F(P) = Home, (Q, P)(1q)

Then F(P) is a subgroup of D(P), and 2F(P) = 0. Define a map 7p :
F(P) — Hq(P) by

(10.3) me(p(ng)) = ¢(®q)
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for ¢ € Home, (Q, P).

10.4. Lemma : The map wp is well defined.
Proof: This amounts to showing that if ¢ € Home,(Q, P) is such that
©(ng) = 0, then ¢(®q) = 0. Now if p(ng) = 0, then 1(p(ng)) = 0 for
any morphism ¢ € Homg, (P, R), where R is a generalized quaternion group,
such that |R| > |Q)].

I have to be careful here, since in general, due to “Galois torsion”, it is
not true that

Y(p(nq)) = (be)(ng)

However the quotient D(R)/D®(R) is isomorphic to Z/2Z : indeed, by the
choice of @, the hypothesis |R| > |@|, and the fact that generalized quaternion
groups have a unique rational irreducible representation of quaternion type,
up to isomorphism, the set Q of Theorem 9.5 for the group R is of cardinality
1 (more precisely Q = {1}).

Hence there is a linear form

Ar:D(R) — Z)2Z

defined by Ag(u) = 1 if u ¢ D®(R), and Ar(u) = 0 otherwise.

The point now is that (p(ng)) differs from (¢)(ng) by an element of
DY(R) (even 2D*(R)) : this follows from the case where 1 and ¢ are bisets,
using Proposition 3.10 of [12], and from the fact that for any endomorphism a
of the ground field the difference v, (n¢) — n¢ is a multiple of 2Q¢. In partic-
ular, this shows that

A (8(6010))) = Ar((We)(m)) = 0

10.5. Lemma : Let QQ and R be generalized quaternion groups, and let
f € Home, (Q, R). Then

Ar(f(1Q)) = (PR, f(®q))

Proof: Since A\g(f(ng)) and v(®g, f(®g)) are linear in £, it suffices to con-
sider the case where f is a transitive biset, hence (by Remark 3.4) of the
form

Indinf? / SIsogf( Defresg /X

where T'/S is a section of R and Y/X is a section of @, such that there exists
a group isomorphism Y/X — T/S.

If Y is proper subgroup of @, then ResgnQ is in D(Y’), by Lemma 4.8.
Thus if Y # Q, then f(ng) € D®(R), hence Ar(f(ng)) = 0. But the restric-
tion of ®¢ to any maximal subgroup H of @) is equal to 2®, by Lemma 3.14
of [8]. Hence f(®q) € 2Rg(R), thus v(®r, f(Pg)) = 0 in this case.
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Suppose now that Y = Q. If X £ 1, then Defg/XnQ = 0 (by construction,

or because if Z is the center of (), then Defg/ZnQ is in Dyors(Q/Z) = 0,
since Q/Z is dihedral). Thus if X # 1, then Ag(f(ng)) = 0. On the other
hand, any proper deflation of ®¢ is equal to 0, by Lemma 3.12 of [8], hence
¥(®r, f(®g)) = 0 in this case also.

Now assume X = 1. Then T'/S is isomorphic to (). But any section of
the generalized quaternion group R which is itself a generalized quaternion
group is actually a subgroup of R. This shows that S = 1, and I can suppose
that @ is a subgroup of R. In this case TenSnQ is equal to ng or nr + 2Qg ,
by Lemma 4.8. But on the other hand Indgbe = Op, thus v(Pg, f(Pg)) = 1,
proving the lemma. d

10.6. End of proof of Lemma 10.4 : consider the element u = ¢(®¢) of
FyRg(P). The previous discussion and Lemma 10.5 show that v(® g, ¥ (u)) is
equal to 0 for any ¢ € Homg, (P, R), for any generalized quaternion group R
such that |R| > |Q|. Now Corollary 6.7 and Theorem 5.12 of [8] show that
Hg(P) has an Fa-basis consisting of the images V' of the rational irreducible
representations V' of P, whose type is generalized quaternion of order at least
equal to |Q|, up to isomorphism. Moreover, if V' is such a representation, and
(T, S) is a genetic section of P for V, then v(V,u) = '7(<I>T/S,Defres$/su),
by Lemma 4.2 of [8]. It follows that v(V,u) = 0 for any V € Irrg(P) of
quaternion type R with |R| > |Q|. Hence u = 0, as was to be shown for
Lemma 10.4. d

10.7. End of proof of Theorem 10.2 : since Hg(P) € Im mp by 10.3,
the map 7p is surjective. Now F(P) N D®(P) C Ker 7p : indeed if ¢ €
Homg, (Q, P) is such that u = ¢(ng) € D®(P), then ¢ (p(ng)) € D(R), for
any generalized quaternion group R and any 1 € Homg,(P, R). The same
argument as above, using Lemma 10.5, shows that p(®g) = 0, i.e. 7p(u) = 0.

Now F(P)/(F(P)ND®(P)) = (F(P)+ D%(P))/D®(P) is isomorphic to a
subgroup of D(P)/D%(P), which is isomorphic to (Z/27)?, where ¢p is equal
to the number of isomorphism classes of rational irreducible representations
of P whose type is generalized quaternion of order at least equal to |@|. Thus
by the above remarks D(P)/D®(P) = Hg(P), and the surjection

F(P)/(F(P)n D%(P)) — Ho(P)

induced by mp has to be an isomorphism. Hence F(P)+ D(P) = D(P), and
F(P) N D%(P) = Ker 7p. This gives a well defined map

op : D(P) — Hq(P)
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sending the element u + w of D(P), where u € F(P) and w € D®(P), to
ﬂp(u).

Suppose that v = ¢(ng), for ¢ € Home,(Q, P). Let P' be a 2-group, and
f € Homg, (P, P'). Then w' = f(p(1q)) — (f#)(ng) is in D(P'), so

opD()u+w) = op(feng) +f(w)

= op((fe)ng) + ' + f(w))
= [e(®q) = Hq(f)mp(u) = Ho(f)op(u+w)
This shows that the square on right hand side in the theorem is commutative.

This completes the proof of Theorem 10.2, since the square on the left hand
side is also commutative. 0
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