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Abstract

Let p be a prime number. This paper solves the question of the structure of the
group D(P ) of endo-permutation modules over an arbitrary finite p-group P , that
was open after Dade’s original papers in 1978 ([19], [20]), and it gives a proof of the
conjectures proposed in [4] and [10]. This leads to a presentation of D(P ) by explicit
generators and relations, generalizing the presentation obtained by Dade when P is
abelian.

A key result of independent interest is the explicit description of the kernel of the

natural map from the Burnside group to the group of rational characters, in terms of

the extraspecial group of order p3 and exponent p if p 6= 2, or of all dihedral groups

of order at least 8 if p = 2.
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1. Introduction

This paper describes the structure of the Dade group D(P ) of a finite p-
group P , that was defined by E. C. Dade in 1978 ([19], [20]), in order to classify
endo-permutation kP -modules, where k is a field of characteristic p > 0, or
more generally, a “p-local” ring.

Endo-permutation modules for p-groups appear as a crucial tool in many
aspects of the p-modular representation theory of finite groups, e.g. as source
modules of simple modules, or in the description of source algebras of blocks
(L. Puig [22]), or the description of derived or stable equivalences between
blocks (L. Puig [24]). They are a generalization of the notion of endo-trivial
module or invertible module, studied in particular by J. L. Alperin ([1], [3])
and J. F. Carlson ([15], [16]).

In his original papers, Dade determined the structure of D(P ) when P is
abelian. Then Puig proved ([23]) that for an arbitrary finite p-group P , the
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group D(P ) is a finitely generated (abelian) group. Next J. Thévenaz and I
showed ([12]) that the free rank of D(P ) is equal to the number of conjugacy
classes of non cyclic subgroups of P .

Recently, in a series of remarkable papers ([13], [14], [17]), J. F. Carlson and
J. Thévenaz completed the classification of endo-trivial modules, and proved
detection theorems for the Dade group. Their results are the first essential
ingredient for the present work. Their third paper ([17]) also gave methods
to start an induction procedure, by which N. Mazza and I determined ([11])
the structure of D(P ), when P is any (almost) extraspecial p-group.

The second ingredient of the present paper is the notion of biset functor
for finite groups, introduced in [5], and specialized to p-groups in [12]. Biset
functors over p-groups seem specially well suited to study the subgroupDΩ(P )
ofD(P ) generated by the relative syzygies ΩX associated to (non empty) finite
P -sets X, where the module ΩX is defined as the kernel of the augmentation
map kX → k (see [2] or [6] for details).

In [6], a formula for tensor induction of relative syzygies in the Dade group
was stated, showing that the correspondence sending a p-group P to DΩ(P )
is a biset functor. In [9], it was shown that this functor DΩ is a quotient of
the Z-dual B∗ of the Burnside biset functor B, and that there is an exact
sequence of biset functors over p-groups

0 → R∗
Q → B∗ → DΩ/DΩ

tors → 0 ,

where R∗
Q is the Z-dual of the functor of rational representations, and DΩ

tors

is the torsion subfunctor of DΩ.
In this sequence, the embedding R∗

Q → B∗ is the transpose of the natural
transformation χ : B → RQ, whose evaluation at P maps the P -set X to the
corresponding QP -module QX. A key result in this paper is Theorem 6.12,
which may be of independent interest : it shows that the functor K = Ker χ is
generated by its values at the extraspecial group of order p3 and exponent p for
p 6= 2, or at the dihedral groups of order at least 8 for p = 2. In other words,
it gives an explicit way to build all the “virtual P -sets with zero character”
from specific ones for these extraspecial or dihedral p-groups.

On the other hand, the surjectivity of χ is known since 1972 by the Ritter-
Segal theorem, which was stated in a more explicit form in [7]. This was the
starting point of the study of the functor RQ of rational representations of
p-groups ([8]), which is the third ingredient of this paper. In particular, the
notion of genetic section of a p-group was defined there, and was developed
in [10], where the notion of rational biset functor was also introduced.

This led to precise conjectures on the torsion part of the Dade group (Con-
jectures 6.2 and 6.3 of [10]). In my talk at Oberwolfach in March 2003 ([4]),
I formulated another conjecture on the Dade group, saying that D = DΩ if
p 6= 2, and that D/DΩ is isomorphic to a specific subfunctor of F2RQ if p = 2,
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associated to quaternion 2-groups. In the present paper, I will give a proof of
all these conjectures, in Theorem 7.7, Theorem 8.2, and Theorem 10.2.

The main consequence will be presentation of D(P ) by explicit generators
and relations (Theorem 9.5), generalizing the presentation obtained by Dade
when P is abelian.

The paper is organized as follows : Section 2 recalls some definitions and
results from rational representation theory of p-groups. Section 3 is devoted
to definitions and results on biset functors. Section 4 is a brief presentation of
the Dade group, its functorial properties, and theorems of Dade and Carlson-
Thévenaz. In Section 5, I will state some results on genetic bases, in particular
Lemma 5.2, that is the key to both Theorem 6.12 and Theorem 8.2. The key
result on the functor K is stated in Section 6. Section 7 is an application to
the Dade group, showing that D = DΩ + Dtors, and that D = DΩ if p 6= 2.
Section 8 is devoted to the structure of the torsion part of the Dade group.
Section 9 gives a presentation of D(P ) by generators and relations. Finally
Section 10 describes the functorial structure of D/DΩ for p = 2.

2. Rational representations

Throughout this paper, the symbol p will denote a prime number. All
p-groups will be finite ones. If P is a p-group, then Φ(P ) denotes its Frattini
subgroup, and Z(P ) its center. The largest elementary abelian subgroup of
Z(P ) is denoted by Ω1Z(P ).

If n is a positive integer, the symbol Cn will denote a cyclic group of
order n. If n ≥ 2, then D2n denotes a dihedral group of order 2n, with the
convention that D4 is the Klein four group. If n ≥ 3, then Q2n denotes a
generalized quaternion group of order 2n. If n ≥ 4, then SD2n denotes a semi
dihedral group of order 2n.

2.1. Basic subgroups and associated simple modules : Recall some
notation and definitions from [8] :

2.2. Notation : if P is a group, denote by RQ(P ) the Grothendieck group
of finitely generated QP -modules, and by IrrQ(P ) a set of representatives of
isomorphism classes of irreducible QP -modules. There is a natural bilinear
form on RQ(P ), with values in Z, defined by

〈V,W 〉P = dimQ HomQP (V,W )

for QP -modules V and W . If V is a simple QP -module, there is a unique
linear form m(V,−) on RQ(P ), with values in Z, sending the QP -module W
to the multiplicity m(V,W ) of V as a summand of W .
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2.3. Definition : ([8] 2.3 ) Let P be a finite p-group. A subgroup Q of P
is called basic if the following two conditions hold :

1. The quotient NP (Q)/Q is cyclic or generalized quaternion.

2. If R is any subgroup of P and if R ∩NP (Q) ⊆ Q, then |R| ≤ |Q|.

If Q is a proper basic subgroup of P , then there is a unique subgroup
Q̃ ⊃ Q of P with |Q̃ : Q| = p, and the kernel of the projection map

QP/Q→ QP/Q̃

is an irreducible QP -module, denoted by VQ.
The group P itself is a basic subgroup of P , and by convention VP is

the trivial QP -module Q. With this notation, any irreducible QP -module is
isomorphic to VQ, for some basic subgroup Q of P .

If Q and Q′ are basic subgroups of P , then the QP -modules VQ and VQ′ are
isomorphic if and only if Q +P Q′, where +P is the relation defined in [8] 2.7
by

Q +P Q′ ⇔

{

|Q| = |Q′|
∃x ∈ P, Qx ∩NP (Q′) ⊆ Q′ .

2.4. Remark : In particular, a normal subgroup N of P is basic if and only
if P/N is cyclic or generalized quaternion. Moreover, if Q is a basic subgroup
such that Q +P N , then Q = N .

2.5. Definition and Notation : ( [8] Proposition 3.7) A p-group P has
normal p-rank 1 if it does not have any normal subgroup isomorphic to (Cp)

2.
Up to isomorphism, such a group has a unique rational faithful irreducible
representation, denoted by ΦP .

Recall (Theorem 5.4.10 of [21]) that if P is a p-group of normal p-rank 1
and order pn, then P ∼= Cpn if p 6= 2, and if p = 2, then P ∼= C2n , or P ∼= Q2n

(n ≥ 3), or P ∼= D2n (n ≥ 4), or P ∼= SD2n (n ≥ 4).

2.6. Definition : ([8] Definition 3.5) A section (T, S) of the group P is a
pair of subgroups of P such that S / T ⊆ P . A section (T, S) of P is proper
if (T, S) 6= (P,1). If R is a group, the section (T, S) will be said of type R if
the factor group T/S is isomorphic to R.

The section (T, S) of the p-group P will be called genetic if the following
three conditions hold :

1. The group T/S has normal p-rank 1.

2. The QP -module V (T, S) = IndP
T InfTT/SΦT/S is simple.

3. 〈V (T, S), V (T, S)〉P = 〈ΦT/S ,ΦT/S〉T/S.

The simple QP -module V (T, S) will be called the simple module associ-
ated to (T, S). It was shown in Theorem 3.4 of [8] that for any simple QP -
module V , there exists a genetic section (T, S) of P such that V ∼= V (T, S).
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Moreover ([8] Theorem 7.11 and Proposition 7.1), if (T, S) and (T ′, S′) are
genetic sections of P , the corresponding modules V (T, S) and V (T ′, S′) are
isomorphic if and only if (T, S) P (T ′, S′), i.e. if there exists x ∈ P such
that

T x·S′ = Sx·T ′ and T x ∩ S′ = Sx ∩ T ′ .

In particular, the relation P (“linked modulo P”) is an equivalence relation
on the set of genetic sections of P . Observe that if (T, S) P (T ′, S′), then
the groups T/S and T ′/S′ are isomorphic. In other words (T, S) and (T ′, S′)
have the same type.

2.7. Definition : If V is a simple QP -module, and (T, S) is a genetic
section of P such that V ∼= V (T, S), then T/S is called the type of V .

The genetic sections of P can be characterized as follows :

2.8. Proposition : ([10] Proposition 4.4) Let P be a finite p-group, and let
(T, S) be a section of P . Let ZP (S) denote the subgroup of P defined by

ZP (S)/S = Z
(

NP (S)/S
)

.

Then the following conditions are equivalent :

1. The section (T, S) is an genetic section of P .

2. The group NP (S)/S has normal p-rank 1, the group T is equal to NP (S),
and if x ∈ P is such that Sx ∩ ZP (S) ⊆ S, then x ∈ NP (S).

In particular, if (T, S) is a genetic section of P , then T = NP (S). Hence
(T, S) is actually determined by S. This leads to the following :

2.9. Definition and Notation : A subgroup S of the p-group P will be
called genetic if the section (NP (S), S) is a genetic section of P . The simple
module V (NP (S), S) will be denoted by V (S).

Similarly, if S and S ′ are genetic subgroups of P , I will say that S P S′

if (NP (S), S) P (NP (S′), S′).

The relation P is an equivalence relation on the set of genetic subgroups
of P . By Theorem 3.11 of [8], the correspondence S 7→ V (S) is a one to one
correspondence between the set of equivalence classes of genetic subgroups
modulo P , and the set of isomorphism classes of rational irreducible
representations of P . Moreover by Theorem 7.11 of [8], if S and S ′ are genetic
subgroups of P such that S P S′, the set of elements x ∈ P such that
S xS′ is a single double coset NP (S)yNP (S′) in P . In particular if S xS,
then x ∈ NP (S).

2.10. Definition : A subset S of the set of genetic subgroups of P will
be called a genetic basis of P if it is a set of representatives of the set of
equivalence classes of genetic subgroups of P for the relation P .
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2.11. Remark : A normal subgroup N of P is genetic if and only if P/N
has normal p-rank 1. In that case, if S is any genetic subgroup of P such that
S P N , then S = N . In particular, the group N belongs to every genetic
basis of P .

2.12. Remark : (see Proposition 7.4 in [8]) If S is a genetic subgroup of P ,
and if RS/S is a basic subgroup of NP (S)/S, intersecting trivially the center
of NP (S)/S, then RS is a basic subgroup of P , corresponding to the same
simple QP -module (i.e. with the above notation VRS

∼= V (S)).
If NP (S)/S is cyclic or generalized quaternion, then RS = S. If NP (S))/S

is dihedral or semi dihedral, then RS/S is any non central subgroup of order 2
of NP (S)/S.

Basic subgroups obtained from genetic ones by this operation were called
origins in [8]. In general, not all basic subgroups are origins, but there is at
least an origin in each equivalence class of basic subgroups for the relation +P

(see Corollary 7.5 in [8] for details).

3. Biset functors

3.1. Notation and Definition : Denote by Cp the following category :

• The objects of Cp are the finite p-groups.

• If P and Q are finite p-groups, then HomCp(P,Q) = B(Q× P op) is the
Burnside group of finite (Q,P )-bisets. An element of this group is called
a virtual (Q,P )-biset.

• The composition of morphisms is Z-bilinear, and if P , Q, R are finite
p-groups, if U is a finite (Q,P )-biset, and V is a finite (R,Q)-biset, then
the composition of (the isomorphism classes of) V and U is the (isomor-
phism class) of V ×Q U . The identity morphism IdP of the p-group P
is the class of the set P , with left and right action by multiplication.

Let Fp denote the category of additive functors from Cp to the category Z-Mod

of abelian groups. An object of Fp is called a biset functor (defined over p-
groups, with values in Z-Mod).

If F is an object of Fp, if P and Q are finite p-groups, and if ϕ ∈
HomCp(P,Q), then the image of w ∈ F (P ) by the map F (ϕ) will generally be
denoted by ϕ(w). The composition ψ ◦ϕ of morphisms ϕ ∈ HomCp(P,Q) and
ψ ∈ HomCp(Q,R) will also be denoted by ψ ×Q ϕ.

3.2. Notation : The Burnside biset functor (defined e.g. as the Yoneda
functor HomCp(1,−)), will be denoted by B. The functor of rational repre-
sentations (see Section 1 of [8]) will be denoted by RQ.
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3.3. Examples : Recall that this formalism of bisets gives a single frame-
work for the usual operations of induction, restriction, inflation, deflation, and
transport by isomorphism via the following correspondences :

• If Q is a subgroup of P , then let IndP
Q ∈ HomCp(Q,P ) denote the set P ,

with left action of P and right action of Q by multiplication.

• If Q is a subgroup of P , then let ResP
Q ∈ HomCp(P,Q) denote the set P ,

with left action of Q and right action of P by multiplication.

• If N /P , and Q = P/N , then let InfPQ ∈ HomCp(Q,P ) denote the set Q,
with left action of P by projection and multiplication, and right action
of Q by multiplication.

• If N /P , and Q = P/N , then let DefPQ ∈ HomCp(P,Q) denote the set Q,
with left action of Q by multiplication, and right action of P by projec-
tion and multiplication.

• If ϕ : P → Q is a group isomorphism, then let IsoQ
P = IsoQ

P (ϕ) ∈
HomCp(P,Q) denote the set Q, with left action of Q by multiplication,
and right action of P by taking image by ϕ, and then multiplying in Q.

3.4. Remark : If P and Q are p-groups, then any element ϕ ∈ HomCp(P,Q)
is a Z-linear combination of transitive (Q,P )-bisets, and by Lemma 7.4 of [12],
every transitive (Q,P )-biset can be factored in the category Cp as a composi-
tion

IndQ
V ◦ InfVV/U ◦ Iso

V/U
T/S (ϕ) ◦ DefTT/S ◦ ResP

T

where (T, S) is a section of P , and (V,U) is a section of Q, such that there
exists a group isomorphism ϕ : T/S → V/U .

3.5. Notation : If (T, S) is a section of P , set

IndinfPT/S = IndP
T InfTT/S and DefresP

T/S = DefTT/SResP
T .

Then IndinfPT/S
∼= P/S as (P, T/S)-biset, and DefresP

T/S
∼= S\P as (T/S, P )-

biset.

3.6. Opposite bisets : If P and Q are finite p-groups, and if U is a finite
(Q,P )-biset, then let U op denote the opposite biset : as a set, it is equal to U ,
and it is a (P,Q)-biset for the following action

∀h ∈ Q,∀u ∈ U,∀g ∈ P, g.u.h (in U op) = h−1ug−1 (in U) .

This definition can be extended by linearity, to give an isomorphism

ϕ 7→ ϕop : HomCp(P,Q) → HomCp(Q,P ) .
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It is easy to check that (ϕ ◦ ψ)op = ψop ◦ ϕop, with obvious notation, and the
functor

{

P 7→ P
ϕ 7→ ϕop

is an equivalence of categories from Cp to the dual category.

3.7. Example : if P is a p-group, and (T, S) is a section of P , then

(IndinfPT/S)op ∼= DefresP
T/S

as (T/S, P )-bisets.

3.8. Definition and Notation : If F is a biset functor, the dual biset
functor F ∗ is defined by

F ∗(P ) = HomZ(F (P ),Z) ,

for a p-group P , and by

F ∗(ϕ)(α) = α ◦ F (ϕop) ,

for any α ∈ F ∗(P ), any p-group Q, and any ϕ ∈ HomCp(P,Q).

3.9. Some idempotents in EndCp(P ) : Let P be a finite p-group, and let
N /P . Then it is clear from the definitions that

DefPP/N ◦ InfPP/N = (P/N) ×P (P/N) = IdP/N .

It follows that the composition eP
N = InfPP/N ◦ DefPP/N is an idempotent in

EndCp(P ). Moreover eP
1 = IdP , and if M and N are normal subgroups of P ,

then ePN ◦ ePM = ePNM .

3.10. Lemma : ([10] Lemma 2.5) If N /P , define fP
N ∈ EndCp(P ) by

fP
N =

∑

M / P
N⊆M

µ/ P (N,M)eP
M ,

where µ/P denotes the Möbius function of the poset of normal subgroups of P .
Then the elements fP

N , for N /P , are orthogonal idempotents of EndCp(P ),
and their sum is equal to IdP .

Moreover, it is easy to check from the definition that for N /P ,

(3.11) fP
N = InfPP/N ◦ f

P/N
1

◦ DefPP/N ,

and
ePN = InfPP/N ◦ DefPP/N =

∑

M / P
M⊇N

fP
M .
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3.12. Lemma : If N is a non trivial normal subgroup of P , then

fP
1 ◦ InfPP/N = 0 and DefPP/N ◦ fP

1
= 0 .

Proof: Indeed by 3.11

fP
1 ◦ InfPP/N = fP

1 ◦ InfPP/N ◦ DefPP/N ◦ InfPP/N

=
∑

M / N
M⊇N

fP
1 f

P
M InfPP/N = 0 ,

since M 6= 1 when M ⊇ N . The other equality of the lemma follows by taking
opposite bisets.

3.13. Remark : It was also shown in Section 2.7 of [10] that

fP
1

=
∑

N⊆Ω1Z(P )

µ(1, N)P/N ,

where µ is the Möbius function of the poset of subgroups of N .

3.14. Notation and Definition : If F is a a biset functor, and if P is a
p-group, then the idempotent fP

1
of EndCp(P ) acts on F (P ). Its image

∂F (P ) = fP
1
F (P )

is a direct summand of F (P ) as Z-module : it will be called the set of faithful
elements of F (P ).

The reason for this name is that any element u ∈ F (P ) which is inflated
from a proper quotient of P is such that F (fP

1
)u = 0. From Lemma 3.12, it

is also clear that
∂F (P ) =

⋂

16=N / P

Ker DefPP/N .

3.15. Notation : If F is a biset functor, and P is a p-group, set

F (P ) = F (P )/
∑

(T,S)
|T/S|<|P |

IndinfPT/SF (T/S) ,

and dually

F (P ) =
⋂

(T,S)
|T/S|<|P |

Ker DefresP
T/S .

where in both expressions (T, S) runs through proper sections of P .
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4. The Dade group

In this section, I will briefly recall some basic definitions and constructions
on the Dade group of endo-permutation modules. Most of them go back to
Dade’s paper ([19]), and are also exposed in Sections 28-29 of Thévenaz’s
book ([25]). The “functorial approach” to the Dade group was introduced in
Sections 2 and 3 of [12].

4.1. Let k be a field of characteristic p. If P is a p-group, the Dade group
D(P ) = Dk(P ) can be defined as the group of equivalence classes of capped
endo-permutation modules, or as the group of equivalence classes of Dade
P -algebras over k, for a suitable equivalence relation in each case. It is an
abelian group, and Puig ([23]) has shown that it is finitely generated.

The (equivalence classes of ) endo-trivial modules form a subgroup T (P )
of D(P ), called the group of endo-trivial modules. Another crucial subgroup
of D(P ) is the subgroup DΩ(P ) generated by relative syzygies (see [2] or [6]
for details).

4.2. Functorial properties : The Dade group has some important func-
torial properties : if Q is a subgroup of P , and if N is a normal subgroup of P ,
or if ϕ : P → P ′ is a group isomorphism, then there are maps of restriction,
induction, deflation, inflation, and transport by isomorphism

(4.3)































D(P )
ResP

Q
−−−→D(Q)

TenP
Q

−−−→D(P )

D(P )
DefP

P/N
−−−−→D(P/N)

InfPP/N
−−−→D(P )

D(P )
IsoP ′

P−−→D(P ′)

coming respectively from the restriction, tensor induction, Brauer quotient,
inflation, and transport by group isomorphism of Dade algebras (note the
change of notation for induction).

These five operations can be unified in a single formalism using bisets :
if P and Q are p-groups, if U is a finite (Q,P )-biset, then in Corollary 2.3
of [12], we introduced a map

D(U) : D(P ) → D(Q) ,

such that the maps in 4.3 are equal to D(U), where U is the corresponding
biset ResP

Q, IndP
Q, DefPP/N , InfPP/N , and IsoP

Q defined in Section 3.3. The defini-
tion of this map D(U) associated to an arbitrary finite (Q,P ) biset U followed
from the existence of a corresponding functor TU : Permk(P ) → Permk(Q),
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which is a sort of generalized tensor induction, where Permk (P ) is a category
equivalent to the category of finitely generated permutation kP -modules (see
Section 2 of [12], in particular Lemma (2.2) and Corollary (2.13), for details).

Moreover the correspondence U 7→ D(U) is additive (by Proposition 2.10
of [12]), so it can be extended to a correspondence

ϕ ∈ HomCp(P,Q) 7→ D(ϕ) ∈ HomZ(D(P ), D(Q)) .

However, these constructions do not define a biset functor structure : the
reason is that in general, with obvious notation

D(ψ) ◦D(ϕ) 6= D(ψ ◦ ϕ) ,

as can be read from Proposition 3.5 and Proposition 3.10 of [12] : in general,
the right hand side is equal to a linear combination

∑

i riD(Ui), where the
Ui’s are transitive bisets, and the ri’s are integers, whereas the left hand side
is equal to

∑

i riγaiD(Ui), for the same Ui’ and ri’s, but with a new kind of
operation inserted, namely the γai ’s. These operations are called for short
“Galois torsions”, and they are precisely defined in Section 3 of [12] : if a is
any endomorphism of the ground field k, then for any p-group P , there is a
linear map γa = γa,P : D(P ) → D(P ). They only appear when one composes
a tensor induction followed by a deflation (see Proposition 3.10 of [12] for
details).

This remark and Lemma 3.10 show in particular that the maps D(f P
N ),

for N /P , which only involve deflation and inflation maps, are orthogonal
idempotents of EndZ(D(P )), and their sum is the identity.

4.4. Notation : If P and Q are p-groups, and if ϕ ∈ HomCp(P,Q), the map
D(ϕ) : D(P ) → D(Q) will simply be denoted by ϕ, and the image of u ∈ D(P )
by this map will be denoted by ϕ(u) or ϕu. The faithful part f P

1 D(P ) of the
Dade group will be denoted by ∂D(P ).

It is easy to see that the maps γa restrict to the identity on DΩ(P ) (see
Section 1.6 of [9]). Moreover, if ϕ ∈ HomCp(P,Q), then D(ϕ)(DΩ(P )) ⊆
DΩ(Q), by Section 4 and 5 of [6]. The above discussion now shows that the
correspondence P 7→ DΩ(P ) is a biset functor.

4.5. Some known Dade groups : In his original papers, Dade determined
D(P ), when P is abelian :

4.6. Theorem : (Dade [19], [20]) Let P be an abelian p-group. Then D(P ) is
generated by the elements ΩP/Q, for Q ⊆ P , subject to the relations τQΩP/Q =
0, if P/Q is cyclic, where τQ = 1 if |P/Q| ≤ 2, and τQ = 2 otherwise.

In particular D(P ) = DΩ(P ) if P is abelian.
The structure of D(P ) is also known for any 2-group P of normal 2-rank 1 :

when P is generalized quaternion, the result is due to Dade, and the other
cases have been solved by Carlson and Thévenaz :
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4.7. Theorem : (Dade [18], Carlson-Thévenaz [13] Theorem 10.3)

1. D(D2n) ∼= Z2n−3.

2. D(SD2n) ∼= Z2n−4 ⊕ Z/2Z.

3. D(Q2n) ∼= Z2n−5 ⊕ Z/4Z ⊕ Z/2Z, for n ≥ 4.

4. D(Q8) ∼= Z ⊕ Z/4Z ⊕ Z/2Z, if the ground field contains all cubic roots
of unity, and D(Q8) ∼= Z ⊕ Z/4Z otherwise.

This result is actually more precise : Lemma 2.10 of [13] shows that if P
is one of these 2-groups, then ∂D(P ) = T (P ) = Ker DefPP/Z , and D(P ) =

T (P ) + IndP
P/ZD(P/Z), where Z is the center of P . This allows induction,

since P/Z is dihedral. Then Theorem 5.4 and Theorem 7.1 of [13] show that
D(P ) = DΩ(P ) when P is dihedral, or semi dihedral.

If P is generalized quaternion of order 2n, then Theorem 6.3 and Theo-
rem 6.5 of [13] show that T (P ) is equal to the torsion part Dtors(P ) of D(P ),
and that T (P ) ∼= Z/4Z ⊕ Z/2Z if n ≥ 4, or if n ≥ 3 and the ground field has
all cubic roots of unity. If n = 3 and the ground field has no non trivial cubic
roots of unity, then T (P ) = Dtors(P ) = DΩ

tors(P ) ∼= Z/4Z.

4.8. Lemma : Let Q be a generalized quaternion 2-group of order 2n. Sup-
pose that n ≥ 4, or that n = 3, and the ground field has all cubic roots of
unity. Then

1. There are exactly two elements ηQ and η′Q of order 2 in the set D(Q) −

DΩ(Q), and
ηQ + η′Q = 2ΩQ/1 .

2. If R is a proper subgroup of Q, then ResQ
RηQ ∈ DΩ(R).

3. If R is a generalized quaternion group containing Q, then

TenR
QηQ − ηR ∈ DΩ(R) .

4. If a is any endomorphism of the ground field, then γa(ηQ) = ηQ if n ≥ 4.

Proof: Assertion 1 follows from the fact that ΩQ/1 generates a cyclic sum-
mand of order 4 in Dtors(P ) ∼= Z/4Z⊕Z/2Z. And in the group Z/4Z⊕Z/2Z,
the elements of order 2 are (0, 0), (2, 0), (0, 1), and (2, 1).

Assertion 2 is trivial if n = 3, because by construction in that case all
proper restrictions of ηQ are 0. If n ≥ 4 and R is cyclic, then ResQ

RηQ =
2ΩR/1 = 0 by construction (see Lemma 6.4 and Theorem 6.5 of [13]). Suppose
now that R is quaternion, and |Q : R| = 2. There are two conjugacy classes
of quaternion subgroups of order 8 in Q, and one of them is contained in R.
Let H and H ′ denote representatives for these classes, and suppose H ⊆ R.
Then ResQ

HηQ is equal to 0 or 2ΩH , by the proof of Theorem 6.5 of [13],

and then ResQ
Hη

′
Q is respectively equal to 2ΩH or 0. Replacing ηQ by η′Q if

12



necessary, I can assume ResQ
HηQ = 0. Now the element u = ResQ

RηQ is such
that ResR

Lu = 0, for any quaternion subgroups L of order 8 of R. Then u = 0
by Theorem 2.8 of [13] (see also the proof of Theorem 6.5 there). This shows
Assertion 2, since ηQ + η′Q = 2ΩQ/1.

Assertion 3 is equivalent to TenR
QηQ /∈ DΩ(R). Proceed by induction on

|R : Q|, and suppose that |R : Q| = 2. If u = TenR
QηQ ∈ DΩ(R), then

u is equal to 0 or 2ΩR/1. By Mackey formula, the restriction of u to the

generalized quaternion subgroup Q′ 6= Q of R is equal to TenQ′

Q∩Q′ResQ
Q∩Q′ηQ.

This is equal to 0 by the above argument, since Q ∩ Q′ is cyclic. It follows
that u = 0, since ResR

Q′2ΩR/1 = 2ΩQ′/1 6= 0. Now ResR
Qu = ηQ + rηQ, where

r ∈ R − Q. Moreover rηQ 6= ηQ : if n ≥ 4, this is because r exchanges the
conjugacy classes of quaternion subgroups of order 8 of Q. And if n = 3, it can
be checked directly from the construction : with the notation of Theorem 6.3
of [13], the action of the automorphism of Q8 which exchanges the generators
x and y is equivalent to replacing the cubic root ω by its conjugate ω2. So the
elements of the outer automorphism group Out(Q8) ∼= S3 with odd signature
exchange ηQ and η′Q. In both cases ResR

Qu 6= 0, which is a contradiction.
Finally Assertion 4 is clear from the construction Theorem 6.5 of [13].

5. Genetic bases

5.1. Lemma : Let P be a p-group, and Z be a central subgroup of order p
in P . If S is a genetic subgroup of P , then

DefPP/ZV (S) = {0} ⇔ S 6⊇ Z .

Proof: If S = P , the result is trivial. Suppose that S 6= P , and let R/S be
a basic subgroup of NP (S)/S, intersecting trivially the center of NP (S)/S.
ThenR is a basic subgroup of P for V (S), and V (S) is isomorphic to the kernel
of the projection map QP/R→ QP/R̃, where R̃ is the unique subgroup of P
such that |R̃ : R| = p. Hence V (S) = QP/R− QP/R̃ in RQ(P ).

Then either S ⊇ Z, and then DefPP/ZV (S) = QP/R − QP/R̃ 6= 0 in
RQ(P/Z), or S 6⊇ Z, and then R 6⊇ Z because ZS/S = Ω1Z(NP (S)/S), thus
R̃ = RZ and DefPP/ZV (S) = QP/RZ − QP/RZ = 0 in RQ(P/Z).
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5.2. Lemma : Let P be a p-group, and let E be a non-central normal
elementary abelian subgroup of order p2 of P . Set Z = E∩Z(P ), where Z(P )
is the center of P .

1. If R is a genetic subgroup of CP (E) such that Z 6⊆ R, then R is a genetic
subgroup of P , and NP (R) ⊆ CP (E). Moreover if V is the simple QP -
module associated to R, and W is the simple QCP (E)-module associated
to R, then V ∼= IndP

CP (E)W , and 〈V, V 〉P = 〈W,W 〉CP (E).

2. If Q is a genetic subgroup of P such that Z 6⊆ Q, then there exists a
genetic subgroup R of CP (E) such that Z 6⊆ R and R P Q.

Proof: Set H = CP (E). Then |P : H| = p, and |Z| = p, since E is not
central in P , and since the p-Sylow subgroups of Aut(E) have order p.

Let R be a genetic subgroup of H such that Z 6⊆ R, and let W be the
corresponding rational irreducible representation of H. Then DefHH/ZW = {0}
by Lemma 5.1.

Now set V = IndP
HW . Then since Z ⊆ H

DefPP/ZV = Ind
P/Z
H/ZDefHH/ZW = {0} .

Restriction to H gives
ResP

HV
∼= ⊕

x∈P/H

xW .

Let I denote the stabilizer of W in P , i.e. the group of elements x ∈ P such
that the representations W and xW of H are isomorphic. Then I ⊇ H, so
I = H or I = P .

If I = H, then the representations xW , for x ∈ P/H, are non isomorphic
to each other. In this case V is an irreducible representation of P : indeed
if V1 is any simple summand of V , then some conjugate of W is a direct
summand of W1 = ResP

HV1. Since W1
∼= xW1 for any x ∈ P , is follows that

all the conjugates of W in P are direct summands of W1. Thus W1 = ResP
HV ,

and V1 = V . Moreover

〈V, V 〉P = 〈W,ResP
HV 〉H =

∑

x∈P/H

〈W, xW 〉H = 〈W,W 〉H .

This means in particular that the section (NH(R), R) is a genetic section
of P for the irreducible representation V . Thus NH(R) = NP (R) by Propo-
sition 2.8, and R is a genetic subgroup of P .

If I = P , then xW ∼= W for any x ∈ P , and ResP
HV

∼= pW . Let

V = V1 ⊕ . . . ⊕ Vn

be a decomposition of V as a direct sum of irreducible rational representations
of P . Then DefPP/ZVi = {0}, for i = 1, . . . n. Fix i in {1, . . . , n}, and let Si

denote any simple summand of ResP
EVi. Then either Si

∼= Q, or there exists
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a subgroup Fi of index p in E, such that Si is isomorphic to the kernel of the
projection map QE/Fi → Q. Now DefEE/ZSi = {0}, thus Si 6∼= Q, and the
subgroup Fi is not equal to Z. It follows that NP (Fi) = CP (Fi) = CP (E),
since Fi has order p and E = FiZ. Hence the stabilizer of Si in P is equal
to H, and by Clifford theory

Vi
∼= IndP

H S̃i ,

where S̃i is the Si-isotypic component of ResP
EVi. By restriction to H, this

gives
ResP

HVi
∼= ⊕

x∈P/H

xS̃i ,

and the representations xS̃i appearing in the right hand side are mutually non
isomorphic irreducible representations of H, since the stabilizer of S̃i in P is
equal to the stabilizer of Si, i.e. the normalizer of Fi in P . It follows that

ResP
HV

∼= pW ∼=
n
⊕
i=1

⊕
x∈P/H

xS̃i .

This gives a contradiction, since W has to be isomorphic to some conjugate
of some S̃i, but W is invariant by P , whereas the stabilizer of S̃i in P is equal
to H. This proves Assertion 1 of the lemma.

For Assertion 2, consider a genetic subgroup Q of P , such that Z 6⊆ Q,
and let V = V (S) denote the corresponding rational irreducible representation
of P . Then DefPP/ZV = {0} by Lemma 5.1.

Let S be a simple summand of ResP
EV . Then DefEE/ZS = {0}, thus as

above S is isomorphic to the kernel of the projection map QE/F → Q, for
some subgroup F of index p in E, and F 6= Z. Hence the stabilizer of S in P
is equal to NP (F ) = CP (F ) = CP (E) = H, and

V ∼= IndP
HW ,

where W is equal to the S-isotypic component of ResP
EV .

Moreover 〈V, V 〉P = 〈W,W 〉H , since the stabilizer of W in P is equal to H,
and DefHH/ZW = {0}. Let R be any genetic subgroup of H associated to the
representation W . Then R 6⊇ Z, and (NH(R), R) is a genetic section of P for
V . Thus NH(R) = NP (R), and (NP (R), R) P (NP (Q), Q), as was to be
shown.

5.3. Corollary : In the situation of Lemma 5.2, there exists a genetic basis
S of P and a decomposition

S = S1 t S2

in disjoint union such that
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1. if Q ∈ S2, then Q ⊇ Z, and

2. the set {xQ | Q ∈ S1, x ∈ [P/CP (E)]} is a set of representatives of ge-
netic subgroups R of CP (E) such that R 6⊇ Z, for the relation CP (E) ,
where [P/CP (E)] is any chosen set of representatives of CP (E)-cosets
in P .

Proof: Let S be a genetic basis of P . Set S2 = {Q ∈ S | Q ⊇ Z}, and S1 =
S − S2. By Lemma 5.2, I can assume that if Q ∈ S1, then NP (Q) ⊆ CP (E),
and Q is a genetic subgroup of CP (E). Then the set

Γ = {xQ | Q ∈ S1, x ∈ [P/CP (E)]}

is a set of genetic subgroups of CP (E), not containing Z, and they are not
equivalent to each other for the relation CP (E) : indeed, if there exist

Q,Q′ ∈ S1 and elements x, x′ ∈ [P/CP (E)] such that x′

Q′ hxQ for some
h ∈ CP (E), then in particular Q′ x′−1hxQ, thus Q′ = Q since S is a genetic
basis of P . Moreover Q′ = Q = x′−1hxQ since Q is genetic in P . Thus x′−1hx ∈
NP (Q) ⊆ CP (E), thus x ∈ h−1x′CP (E) ⊆ CP (E)x′CP (E) = x′CP (E), since
CP (E) / P , and x = x′.

Conversely, if R is a genetic subgroup of CP (E) such that R 6⊇ Z, then R
is a genetic subgroup of P , and there exists an element y ∈ P and an element
Q of S such that R yQ. This implies in particular that

Q ∩ Z = Q ∩ Z ∩NP (Ry) ⊆ Z ∩Ry = (Z ∩R)y = 1 ,

hence Q ∈ S1. Now y is equal to ux, for some unique element x in [P/CP (E)],
and some u ∈ CP (E), because CP (E) / P . Thus R CP (E)

xQ, and xQ is an
element of Γ.

6. The kernel of B → RQ

6.1. Notation : Let B denote the Burnside biset functor (over Z), and RQ

denote the functor of rational representations. Let K denote the kernel of the
natural morphism from B to RQ.

By the Ritter-Segal Theorem, there is an exact sequence of biset functors

0 → K → B → RQ → 0 .

6.2. Remark : For any p-group P , the corresponding sequence

0 → K(P ) → B(P ) → RQ(P ) → 0 .
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is a split exact sequence, since the group RQ(P ) is a free group with basis
IrrQ(P ) and rank equal to the number of conjugacy classes of cyclic subgroups
of P . It follows that K(P ) is a free group, of rank equal to the number of
conjugacy classes of non cyclic subgroups of P . In particular K(P ) = {0} if
P is cyclic.

6.3. Notation : If P is a p-group, and B is a set of representatives of
proper basic subgroups of P , for the relation +P , set B = B t {P}.

Denote by [sP ] a set of representatives of conjugacy classes of subgroups
of P . The elements P/Q, for Q ∈ [sP ], form a Z-basis of B(P ). If Q is a
subgroup of P , set

SB
Q = P/Q− P/P −

∑

R∈B

m(VR,QP/Q)(P/R − P/R̃) .

6.4. Lemma : Let κB the endomorphism of B(P ) defined by

κB(P/Q) = SB
Q ,

for Q ∈ [sP ]. Then κB is an idempotent endomorphism of B(P ), whose image
is equal to K(P ).

In other words, the elements SB
Q, for Q ∈ [sP ], generate K(P ). Moreover

the element u =
∑

Q∈[sP ] uQP/Q of B(P ), where uQ ∈ Z, is in K(P ) if and

only if u =
∑

Q∈[sP ] uQS
B
Q.

Proof: Let u =
∑

Q∈[sP ] uQP/Q be an element of B(P ), where uQ ∈ Z. Its
image in RQ(P ) is equal to

v =
∑

Q∈[sP ]

uQQP/Q .

Now m(Q,QP/Q) = 1 for any subgroup Q of P , thus m(Q, v) =
∑

Q∈[sP ] uQ.
Moreover m(VR, v) =

∑

Q∈[sP ] uQm(VR,QP/Q), for R ∈ B. Since VR is iso-

morphic to the kernel of the projection map QP/R → QP/R̃, it follows that
VR is equal to the image in RQ(P ) of the element P/R−P/R̃ of B(P ). Since
Q is the image of P/P in RQ(P ), it follows that v is also equal to the image
in RQ(P ) of the element

u′ = (
∑

Q∈[sP ]

uQ)P/P +
∑

R∈B

∑

Q∈[sP ]

uQm(VR,QP/Q)(P/R − P/R̃) .

Thus u− u′ =
∑

Q∈[sP ] uQS
B
Q = κB(u) is in K(P ). Moreover u is in K(P ) if

and only if u′ = 0, i.e. if u = κB(u). The lemma follows.
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6.5. Corollary : Let E be an elementary abelian p-group of order p2. Then
K(E) = ∂K(E) is free of rank one, generated by the element

(6.6) εE = E/1 −
∑

F⊆E
|F |=p

E/F + pE/E

of B(E).

Proof: Indeed K(E) is free of rank 1 by Remark 6.2. In this case, by Re-
mark 2.4, there is a unique set B of representatives of proper basic subgroups
of E, consisting of all subgroups of E of order p, and its easy to check that
κB(E/Q) = 0 if Q 6= 1, and κB(E/1) = εE.

6.7. Notation : Fix an elementary abelian p-group Ep2 of order p2,and set
ε = εEp2

, defined in 6.6. Let Kε denote the subfunctor of K generated by ε,

i.e. the intersection of all subfunctors L of K such that L(Ep2) 3 ε.

Thus for any p-group P

Kε(P ) = HomCp(E,P ) ×E ε .

6.8. Lemma : Let P be a p-group.

1. If Q is a subgroup of P such that Q ∩ Z(P ) 6= 1, then f P
1
P/Q = 0.

2. If the center of P is not cyclic, then ∂B(P ) ⊆ Kε(P ).

Proof: If Q is a subgroup of P and Z = Q ∩ Z(P ) 6= 1, then P/Q =

InfPP/Z(P/Z)
/

(Q/Z), thus fP
1 P/Q = 0 by Lemma 3.12. This proves Assertion

1.
Now proving Assertion 2 amounts to showing that f P

1 P/Q ∈ Kε(P ), for
any subgroup Q of P . Consider first the case Q = 1. Since the center Z(P ) of
P is not cyclic, there exists a subgroup E ⊆ Z(P ) which is elementary abelian
of order p2. In particular the element

εE = E/1 −
∑

F∈E
|F |=p

E/F + pE/E

of B(E) is the image of ε under any isomorphism Ep2 → E. Thus εE ∈ Kε(E).
Inducing up to P gives the element

e = P/1 −
∑

F∈E
|F |=p

P/F + pP/E

ofKε(P ). But fP
1 e = fP

1 P/1 by Assertion 1, since E ⊆ Z(P ). Hence fP
1 P/1 ∈

Kε(P ).
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I will now show that fP
1 P/Q ∈ Kε(P ) for any subgroup Q of P by induc-

tion on the index |P : Q|. If Q = P , then fP
1 P/P = 0 ∈ Kε(P ), since the

center of P is non trivial. Now let Q be any subgroup of P , and suppose that
fP
1 P/R ∈ Kε(P ) for any subgroup R of P with |R| > |Q|. If Q ∩ Z(P ) 6= 1,

then fP
1 P/Q = 0 ∈ Kε(P ). If Q∩Z(P ) = 1, then Z(P ) embeds in the center

of N = NP (Q)/Q, so this center is not cyclic. The special case above shows
that the element

fN
1 N/1 =

∑

Z⊆Ω1Z(N)

µ(1, Z)N/Z

belongs to Kε(N). Taking inflation from N to N , and then induction from N
to P gives the element

w = IndinfPNP (Q)/Qf
N
1 N/1 =

∑

Q′/Q⊆Ω1Z(N)

µ(1, Q′/Q)P/Q′

of Kε(P ). It follows that

fP
1 w = fP

1 P/Q+
∑

Q′/Q⊆Ω1Z(N)
Q′/Q6=1

µ(1, Q′/Q)fP
1 P/Q

′ ∈ Kε(P ) .

By induction hypothesis, all terms in the summation are in Kε(P ), and by
difference fP

1 P/Q ∈ Kε(P ), as was to be shown.

6.9. Notation :

1. If p 6= 2, denote by Xp3 an extraspecial group of order p3 and exponent p,
and by Z its center. Choose two non conjugate non central subgroups I
and J of order p in Xp3 . Let δ be the element of B(Xp3) defined by

δ = (Xp3/I −Xp3/IZ) − (Xp3/J −Xp3/JZ) .

2. If p = 2, and if n ≥ 3 is an integer, denote by D2n a dihedral group of
order 2n, and by Z its center. Choose two non conjugate non central
subgroups In and Jn of order 2 in D2n . Let δn be the element of B(D2n)
defined by

δn = (D2n/In −D2n/InZ) − (D2n/Jn −D2n/JnZ) .

6.10. Remark : Let P be one of the groups Xp3 or D2n , for n ≥ 3. Then
the center Z of P is cyclic of prime order, and P has a unique faithful rational
representation : if P is dihedral of order at least 16, this follows from Propo-
sition 3.7 in [8]. If P = D8, this follows from the remark preceding Notation
3.8, in the same paper. And if P = Xp3 , this follows from the fact that P has
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p+ 3 conjugacy classes of cyclic subgroups, and that P/Z ∼= (Cp)
2 has p+ 2

such subgroups.
Now in each case, it is easy to see that any non central subgroup Q of

prime order of P is basic, and the corresponding simple module is isomorphic
to the kernel of the projection map QP/Q → QP/QZ. This shows that the
elements (P/Q − P/QZ) − (P/R − P/RZ), for any non-central subgroups
Q and R of prime order of P , are in K(P ). In particular δ ∈ K(Xp3), and
δn ∈ K(D2n), for n ≥ 3.

6.11. Lemma :

1. If p 6= 2, then JZ ∼= Ep2 , and Res
Xp3

JZ δ = εJZ .

2. If p = 2, then J3Z ∼= Ep2, and ResD8

J3Zδ3 = εJ3Z

Proof: This is a straightforward consequence of the Mackey formula.

6.12. Theorem :

1. If p 6= 2, then the functor K is generated by δ : in other words for any
p-group P

K(P ) = HomCp(Xp3 , P ) ×Xp3
δ .

In particular K(P ) = {0} except if P is isomorphic to Xp3 , or if P is
elementary abelian of order p2.

2. If p = 2, then the functor K is generated by the elements δn, for n ≥ 3 :
in other words for any 2-group P

K(P ) =
∑

n≥3

HomC2
(D2n , P ) ×D2n δn .

In particular K(P ) = {0}, except if P is dihedral of order at least 4.

Proof: If p 6= 2, denote by L the subfunctor of K generated by δ, and if
p = 2, denote by L the subfunctor of K generated by the elements δn, for
n ≥ 3. I will show that L(P ) = K(P ) for any p-group P by induction on the
order of |P |.

Step 1 : The induction starts with the case where P is cyclic : since K(P ) =
{0} in this case, the result is trivial.

Suppose that P is a p-group such that K(P ′) = L(P ′) for any p-group
with |P ′| < |P |. By Lemma 3.10 there is a decomposition

K(P ) ∼= ⊕
N / P

fP
NK(P ) ,

and fP
N = InfPP/N ◦ f

P/N
1

◦ DefPP/N . Now by induction hypothesis, it follows

that fP
NK(P ) ⊆ L(P ) if N 6= 1, since K(P/N) = L(P/N). Hence in order to

show that K(P ) = L(P ), it suffices to show that fP
1 K(P ) = ∂K(P ) ⊆ L(P ).
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Now if the center of P is not cyclic, then ∂K(P ) ⊆ Kε(P ) by Lemma 6.8,
and Kε(P ) ⊆ L(P ) by Lemma 6.11. Thus ∂K(P ) ⊆ L(P ), and I can suppose
that the center of P is cyclic.

Step 2 : Suppose that P admits a normal elementary abelian subgroup E of
rank 2. Set H = CP (E) and Z = E ∩Z(P ). Then |P : H| = |Z| = p, since E
is not central in P . According to Corollary 5.3, there is a genetic basis S of
P and a decomposition S = S1 t S2 with the following properties :

1. if S ∈ S2, then S ⊇ Z, and

2. the set {xS | S ∈ S1, x ∈ [P/H]} is a set of representatives of genetic
subgroups R of H such that R 6⊇ Z, for the relation H , where [P/H]
is any chosen set of representatives of H-cosets in P .

For each S ∈ S, choose a basic subgroup RS/S of NP (S)/S, intersecting
trivially the center of NP (S)/S, and denote by B the set of subgroups RS ,
for S ∈ S. Then B is a set of representatives of basic subgroups of P for the
relation +P , and in particular it contains P . Set moreover B = B − {P}.

Observe now that RS ⊇ Z if S ⊇ Z. Conversely, if S 6⊇ Z, then ZS/S is
the only subgroup of the center of NP (S)/S of order p, thus RS ∩ ZS = S,
and RS 6⊇ Z. This gives a decomposition of B as

B = B1 t B2

where

B1 = {R ∈ B | R 6⊇ Z} = {RS | S ∈ S1} .

B2 = {R ∈ B | R ⊇ Z} = {RS | S ∈ S2}

By Lemma 6.4, the group K(P ) is generated by the elements

SB
Q = P/Q− P/P −

∑

R∈B

m(VR,QP/Q)(P/R − P/R̃) ,

for Q ∈ [sP ]. Hence in order to show that fP
1 K(P ) = ∂K(P ) ⊆ L(P ), it

is enough to show that fP
1 S

B
Q ∈ L(P ) for any subgroup Q of P . Moreover

fP
1 P/Q = P/Q−P/QZ for any Q ⊆ P , since Z = Ω1Z(P ) is the only central

subgroup of order p of P . Thus if R ∈ B and R ⊇ Z, then R̃ ⊇ Z, and
fP
1 P/R = fP

1 P/R̃ = 0. And if R 6⊇ Z, then R̃ = RZ, and fP
1 (P/R− P/R̃) =

P/R − P/RZ in this case. Since fP
1 P/P = 0, one has that

fP
1 S

B
Q = P/Q− P/QZ −

∑

R∈B1

m(VR,QP/Q)(P/R − P/RZ) .
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6.13. Remark : This shows in particular fP
1 S

B
Q = 0 if Q ⊇ Z. Indeed in

that case if R ∈ B is such that m(VR,QP/Q) 6= 0, then there exists x ∈ P
such that Qx ∩NP (R) ⊆ R (see Proposition 2.5 in [8]). Thus

Z = Qx ∩ Z ⊆ Qx ∩NP (R) ⊆ R .

Step 3 : Suppose first that Q ⊆ H. Since B1 = {RS | S ∈ S1}, if R = RS ∈
B1, then S ⊆ H by choice of S, and then by Lemma 5.2, the corresponding
simple module VR = V (S) is isomorphic to IndP

HWR, whereWR = W (S) is the
simple QH-module corresponding to the genetic subgroup S of H. Moreover
in that case 〈VR, VR〉P = 〈WR,WR〉H .

Let V be any QP -module. Then

〈VR, V 〉P = m(VR, V )〈VR, VR〉P

= 〈IndP
HWR, V 〉P = 〈WR,ResP

HV 〉H

= m(WR,ResP
HV )〈WR,WR〉H ,

thus m(VR, V ) = m(WR,ResP
HV ). This gives

fP
1 S

B
Q = P/Q− P/QZ −

∑

R∈B1

m(WR,ResP
HQP/Q)(P/R − P/RZ) ,

and since ResP
HQP/Q ∼= ⊕x∈[P/H]QH/Q

x, where [P/H] is some set of repre-
sentatives of H-cosets in P , this leads to

(6.14) fP
1 S

B
Q = P/Q− P/QZ −

∑

R∈B1

x∈[P/H]

m(WR,QH/Q
x)(P/R − P/RZ)

By Corollary 5.3 again, it is possible to choose a genetic basis T of H such
that

{xS | S ∈ S1, x ∈ [P/H]} = {S ∈ T | S 6⊇ Z} .

This also means that the set

D1 = {xRS | S ∈ S1, x ∈ [P/H]} = {xR | R ∈ B1, x ∈ [P/H]}

can be completed to a set D of representatives of basic subgroups of H for
the relation +H . Set D = D − {H}, and for R ∈ D, denote by WR the
corresponding simple QH-module (so in particular, this notation is consistent
for R ∈ B1). Then the elements

SD
T = H/T −H/H −

∑

R∈D

m(WR,QH/T )(H/R −H/R̃) ,
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for T ⊆ H, generate K(H), hence by induction hypothesis, they belong to
L(H). This shows that the element

SD
Q − SD

QZ = H/Q−H/QZ −
∑

R∈D

m(WR,QH/Q− QH/QZ)(H/R−H/R̃)

belongs to L(H). Now if R ∈ D and R ⊇ Z, then WR = InfHH/ZW
′
R, where

W ′
R = DefHH/ZWR. Moreover 〈WR,WR〉H = 〈W ′

R,W
′
R〉H/Z , thus

m(WR,QH/Q) = m(W ′
R,QH/QZ) = m(WR,QH/QZ) .

This shows that m(WR,QH/Q−QH/QZ) = 0 if R ⊇ Z, i.e. if R /∈ D1. And
if R ∈ D1, then R̃ = RZ, and

〈WR,QH/QZ〉H = 〈DefHH/ZWR,Q(H/Z)/(QZ/Z)〉H/Z = 0 ,

since DefHH/ZWR = {0}. Hence m(WR,QH/QZ) = 0, and this gives finally

SD
Q − SD

QZ = H/Q−H/QZ −
∑

R∈D1

m(WR,QH/Q)(H/R −H/RZ) .

Comparing with expression 6.14, since obviously

m(WR,QH/Q
x) = m(WxR,QH/Q) ,

it follows that
fP
1 S

B
Q = IndP

H(SD
Q − SD

QZ) .

showing that fP
1 S

B
Q ∈ L(P ) if Q ⊆ H.

Step 4 : Suppose now that Q 6⊆ H. This case will be handled by the following
lemma :

6.15. Lemma : Let P be a p-group, and suppose that E is a normal
subgroup of P , which is elementary abelian of rank 2, and not contained in
the center of P . Set Z = E ∩ Z(P ). Let S be a subgroup of P , such that
S 6⊇ Z, and S 6⊆ CP (E).

1. The group CS(E) = S ∩ CP (E) is a normal subgroup of SE, and the
quotient SE/CS(E) is isomorphic to Xp3 if p 6= 2, and to D8 if p = 2.

2. There exist a subgroup T of CP (E) and a morphism ϕ in Cp from Xp3

to P if p 6= 2 (resp. from D8 to P if p = 2), such that the element

(P/S − P/SZ) − (P/T − P/TZ)

is the image by ϕ of the element δ of K(Xp3) (resp. of the element δ3
of K(D8)).
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Proof: Since E is normal in P , and not central in P , the group CP (E)
has index p in P . Now CP (E) / P , hence S normalizes CP (E), hence also
S ∩CP (E). Since E centralizes this latter group, it follows that CS(E) / SE.
Moreover E∩CS(E) = E∩S. If this is not trivial, then it has order p, otherwise
E ⊆ S, hence Z ⊆ S. Now S normalizes S ∩ E, hence it centralizes it. Thus
S centralizes E = (S ∩E)Z, and this contradicts the hypothesis.

Hence E ∩ CS(E) = 1, thus E embeds as a normal elementary abelian
subgroup E of order p2 in the quotient X = SE/CS(E). Now X is equal
to the semi-direct product of E by its subgroup S = S/CS(E), which has
order |S : S ∩ CP (E)| = p. Moreover X is not abelian, since otherwise
[S,E] ⊆ E ∩ CS(E) = 1, thus S ⊆ CP (E). Assertion 1 of the lemma follows.

The group X has center of order p, equal to Z = ZCS(E)/CS(E). Let θ
be any group isomorphism from Xp3 to X if p 6= 2 (resp. from D8 to X if
p = 2) sending the subgroup IZ of Xp3 (resp. the subgroup I3Z of D8) to

SZ, and the subgroup JZ of Xp3 (resp. the subgroup J3Z of D8) to E. Such
an isomorphism exists since the automorphism group of Xp3 (resp. of D8)
acts 2-transitively on its elementary abelian subgroups of order p2. Then θ(I)
(resp. θ(I3)) is some conjugate of S in X, and θ(J) (resp. θ(J3)) is some
subgroup T of E. Let w = δ if p 6= 2 (resp. w = δ3 if p = 2). Then

θ(w) = (X/S −X/SZ) − (X/T −X/TZ) .

Taking inflation to SE, and then induction to P gives the element

IndinfPSE/CS(E)θ(w) = (P/S − P/SZ) − (P/T − P/TZ) ,

where T is the preimage in SE of the subgroup T of E = ECS(E)/CS(E)
under the projection SE → SE/CS(E).

In particular T ⊆ E(S∩CP (E)) = CP (E) (since E ⊆ CP (E) ⊆ SCP (E) =
P ), proving Assertion 2 of the lemma.

Step 5 : It remains to show that fP
1 S

B
Q ∈ L(P ) if Q is a subgroup of P , such

that Q 6⊇ Z and Q 6⊆ H = CP (E). By Lemma 6.15, there exists a subgroup T
of H such that the element

u = (P/Q− P/QZ) − (P/T − P/TZ)

is the image of δ (resp. δ3) by some morphism in the category Cp. Since
δ ∈ L(Xp3) (resp. δ3 ∈ L(D8)), it follows that u ∈ L(P ). Since moreover
L(P ) ⊆ K(P ), the element u is equal to

(SB
Q − SB

QZ) − (SB
T − SB

TZ)

by Lemma 6.4. It follows that

(fP
1 S

B
Q − fP

1 S
B
QZ) − (fP

1 S
B
T − fP

1 S
B
TZ) ∈ L(P ) .
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Since T ⊆ H, the previous discussion shows that f P
1 S

B
T ∈ L(P ). Moreover

fP
1 S

B
QZ = fP

1 S
B
TZ = 0 by Remark 6.13. Hence fP

1 S
B
Q ∈ L(P ), as announced.

Step 6 : To complete the proof of Theorem 6.12, it remains to consider the
case where P has no elementary abelian normal subgroup of order p2, i.e. the
case where P has normal p-rank 1. If p is odd, there is nothing more to do,
since then P is cyclic, and K(P ) = {0}. If p = 2, then :

− if P is cyclic, again there is nothing more to do, since K(P ) = {0}.

− if P is generalized quaternion, then ∂K(P ) = {0} : indeed the only
subgroup of P intersecting trivially the center is the trivial group, and
the trivial group is a normal basic subgroup of P , hence it belongs to
any set B of representatives of basic subgroups of P , by Remark 2.4.
Clearly then SB

1
= 0.

− if P is semi-dihedral, then ∂K(P ) is free of rank 1 : up to conjugation,
there are only two subgroups of P which intersect trivially the center
of P , namely the trivial group and the non central subgroupQ of order 2,
which is a basic subgroup of P . Then any set B of representatives of
basic subgroups of P modulo the relation +P must contain Q (up to
conjugation). Then clearly fP

1 S
B
Q = 0. On the other hand

fP
1 S

B
1

= P/1 − P/Z −m(VQ,QP/1)(P/Q− P/QZ)

= P/1 − P/Z − 2P/Q+ 2P/QZ

= IndP
QZεQZ

Thus in this case also ∂K(P ) ⊆ Kε(P ) ⊆ L(P ).

− The only remaining case is when P is dihedral, say P ∼= D2n , with
n ≥ 4. In this case up to conjugation, there are 3 subgroups which
intersect trivially the center of P , namely the trivial group, and the non
central subgroups In and Jn of order 2. Since In +P Jn, I can suppose
that B contains Jn (and not In). In this case

fP
1 S

B
Q =







P/1 − P/Z − 2(P/Jn − P/JnZ) if Q = 1

(P/In − P/InZ) − (P/Jn − P/JnZ) if Q =P In
0 otherwise

Thus fP
1
SB

1
= IndP

JnZεJnZ is in L(P ), by Lemma 6.11, and fP
1
SB

In
=

δn ∈ L(P ). Thus ∂K(P ) ⊆ L(P ) also in this case.

The only thing to prove now is that K(P ) = {0} except if P ∼= Xp3 or P ∼= Ep2

if p 6= 2, or if P is dihedral of order at least 4 if p = 2. But by Remark 3.4, if
Q is any p-group, then any transitive (P,Q)-biset factors as a composition of
a deflation-restriction to some section of Q, followed by a group isomorphism,
followed by an induction-inflation from a section of P .
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Since any section of Xp3 is cyclic, isomorphic to Ep2 or to Xp3 , since any
section of a dihedral group is cyclic or dihedral of order at least 4 (with the
usual convention that a dihedral group of order 4 is elementary abelian), it
follows that for any ϕ ∈ HomCp(Xp3 , P ) (resp. for any ϕ ∈ HomC2

(D2n , P )),
the element ϕ(δ) (resp. the element ϕ(δn)) is a linear combination of elements
of the form IndinfPT/Sv, for sections T/S of P which are also sections of Xp3

(resp. of D2n), and elements v ∈ K(T/S). Here of course I can assume that
T/S is not cyclic, otherwise K(T/S) = {0}.

Hence K(P ) = {0} if P is not isomorphic to Ep2 or Xp3 for p 6= 2 (resp.
if P is not dihedral of order at least 4 if p = 2). This completes the proof of
Theorem 6.12.

6.16. Corollary : Let P be a p-group. Then K(P ) is equal to the set of
linear combinations of elements of the form IndinfPT/Sθ(κ), where (T, S) is a
section of P , where θ is a group isomorphism from one of the groups Xp3 ,
Ep2 , or D2n (n ≥ 3) to T/S, and κ is respectively equal to δ, ε, δn.

6.17. Remark : One can check easily that if P is isomorphic to one of the
groups Ep2 , Xp3 , D2n for n ≥ 3, then K(P ) is actually non zero, respectively
isomorphic to Z, Z/pZ, or Z/2Z, and generated by the image of ε, δ, or δn.

7. The Dade group modulo torsion

In this section I will show that D(P ) = DΩ(P ) + Dtors(P ), for any p-
group P . In the case p 6= 2, this will be enough to conclude that D = DΩ.

7.1. Theorem : Let n be a positive integer. Then

(nD ∩DΩ) +DΩ
tors = nDΩ +DΩ

tors .

Proof: If n = 1, there is nothing to prove, so assume n ≥ 2. By Theorem 1.8
of [9], there is an exact sequence of bisets functors

0 → R∗
Q → B∗ → DΩ/DΩ

tors → 0 ,

where R∗
Q and B∗ are the respective Z-dual of RQ and B, and the inclusion

R∗
Q → B∗ is the transpose of the natural morphism B → RQ. If P is a

p-group, evaluation at P gives the exact sequence of abelian groups

0 → R∗
Q(P ) → B∗(P ) → (DΩ/DΩ

tors)(P ) → 0 ,
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and this sequence is actually split exact, since (DΩ/DΩ
tors)(P ) is a free abelian

group. In particular, this sequence remains exact after tensoring (over Z) with
Γn = Z/nZ, and this shows that the sequence

0 → ΓnR
∗
Q → ΓnB

∗ → Γn(DΩ/DΩ
tors) → 0

is an exact sequence of biset functors, where the ⊗Z symbols have been
dropped (so e.g. ΓnRQ denotes Γn ⊗Z RQ). Now there are canonical iso-
morphisms

ΓnR
∗
Q

∼= HomΓn(ΓnRQ,Γn)

ΓnB
∗ ∼= HomΓn(ΓnB,Γn) .

Moreover

Γn(DΩ/DΩ
tors)

∼= (DΩ/DΩ
tors)

/

n(DΩ/DΩ
tors)

∼= (DΩ/DΩ
tors)

/(

(nDΩ +DΩ
tors)/D

Ω
tors

)

∼= DΩ/(nDΩ +DΩ
tors) .

Setting Tn = DΩ/(nDΩ +DΩ
tors), this gives the exact sequence

(7.2) 0 → HomΓn(ΓnRQ,Γn) → HomΓn(ΓnB,Γn) → Tn → 0 .

Note that Tn(P ) is a free Γn-module, for any p-group P .
Now on the other hand the exact sequence of biset functors

0 → K → B → RQ → 0

remains exact after tensoring with Γn, since every evaluation of this sequence
is a split exact sequence of abelian groups. Hence there is an exact sequence

0 → ΓnK → ΓnB → ΓnRQ → 0 ,

and every evaluation of this sequence is a split exact sequence of Γn-modules.
Now taking Γn-duals leads to the exact sequence
(7.3)

0 → HomΓn(ΓnRQ,Γn) → HomΓn(ΓnB,Γn) → HomΓn(ΓnK,Γn) → 0 .

Comparing the sequences 7.2 and 7.3 gives the following natural isomorphism
of biset functors

(7.4) Tn
∼= HomΓn(ΓnK,Γn) .

This means that for any p-group P , there is a non-degenerate scalar product

( , )P : Tn(P ) × ΓnK(P ) → Γn
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with the property that for any p-group Q and any ϕ ∈ HomCp(Q,P ), one has
that

(7.5) ∀u ∈ Tn(P ), ∀v ∈ ΓnK(Q),
(

u, ϕ(v)
)

P
=

(

ϕop(u), v
)

Q
.

Now set
F =

(

(nD ∩DΩ) +DΩ
tors

)/

(nDΩ +DΩ
tors) .

Then F is a biset subfunctor of Tn. Suppose that F 6= {0}, and let P be a
p-group of minimal order such that F (P ) 6= {0}. Then F (P ) is a subset of

T n(P ) ⊆ {u ∈ Tn(P ) | DefresP
T/S(u) = 0, ∀S / T ⊆ P, |T/S| < |P |} .

By the above duality 7.5, it follows that if u ∈ Tn(P ), then for any proper
section T/S of P , and any v ∈ ΓnK(P )

(

u, IndinfPT/S(v)
)

P
= 0 .

Hence (u,w)P = 0 for any w ∈
∑

S / T⊆P
|T/S|<|P |

IndinfPT/SΓnK(T/S). By Theo-

rem 6.12, this is the whole of ΓnK(P ), unless P is isomorphic to Xp3 or Ep2 if
p 6= 2, or if P is dihedral of order at least 4 if p = 2. Thus if P is not isomor-
phic to one of the groups in this list, then (u, v)P = 0 for any v ∈ ΓnK(P ),
hence u = 0 since the scalar product is non degenerate. Thus T n(P ) = {0}.

Hence the minimal group P is one of the groupsXp3 , Ep2 orD2n (note that
E22

∼= D22). If F (P ) = {0} in each of these cases, this gives a contradiction,
proving that F = {0}. But if P is one of the groups Xp3 , Ep2 or D2n , then
D(P ) = DΩ(P ) : for P = Xp3 , this follows from Theorem 10.2 of [11], for
P = Ep2 , this follows from Theorem 4.6, and for P = D2n , this follows from
Theorem 4.7. Hence nD(P ) ∩ DΩ(P ) = nDΩ(P ), and F (P ) = {0}. This
completes the proof of the theorem.

7.6. Remark : Using the fact that Γn is a self injective ring, one can show
that the above isomorphism 7.4 actually restricts to an isomorphism

Tn(P ) ∼= HomΓn(ΓnK(P ),Γn) ,

for any p-group P . Moreover

ΓnK(P ) = ΓnK(P )/
∑

S / T⊆P
|T/S|<|P |

IndinfPT/SΓnK(T/S)

∼=
(

K(P )/nK(P )
)/

∑

S / T⊆P
|T/S|<|P |

IndinfPT/S

(

K(T/S)/nK(T/S)
)

∼= K(P )/
(

∑

S / T⊆P
|T/S|<|P |

IndinfPT/SK(T/S) + nK(P )
)

∼= K(P )/nK(P ) ∼= ΓnK(P ) ,
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so in fact there is always a group isomorphism T n(P ) ∼= HomΓn(ΓnK(P ),Γn).

7.7. Theorem :

1. D = DΩ +Dtors.

2. If p 6= 2, then D = DΩ.

(Assertion 2 was the first part of Conjecture B in [4]).
Proof: Indeed, by Proposition 7.4.9 of [6], for any p-group P , the quotient
D(P )/(DΩ(P ) + L(P )) is a finite p-group, where L(P ) is the intersection of
the kernels of the maps DefresP

T/S , where T/S is an elementary abelian section

of P . Thus if u ∈ D(P ), then there is m ∈ N such that pmu ∈ DΩ(P )+L(P ).
Now the group L(P ) is always a subgroup of Dtors(P ), by Theorem 1.6 of

[12]. Let e denote its exponent. Then epmu ∈ DΩ(P ), hence

epmu ∈ epmD(P ) ∩DΩ(P ) ⊆ epmDΩ(P ) +DΩ
tors ,

by Theorem 8.2. Hence there exists v ∈ DΩ(P ) such that the difference
epmu − epmv = epm(u − v) is a torsion element of DΩ(P ). Hence u− v is a
torsion element of D(P ), proving Assertion 1.

If p 6= 2, it has been shown by Carlson and Thévenaz (see Theorem 13.1
of [14]) that L(P ) = {0}. Hence with the same notation e = 1, and the
difference w = pm(u−v) is in DΩ

tors(P ). This group is a 2-group of exponent 2
(by Corollary 7.6 of [10], or by Corollary 13.2 of [14]). Thus w = pmw, and
pm(u − v − w) = 0. But by Corollary 13.2 of [14], there is no p-torsion in
D(P ). Thus u = v + w ∈ DΩ(P ), and D(P ) = DΩ(P ) in this case.

8. The torsion part of the Dade group

8.1. Proposition : Let P be a p-group, and suppose that E is a normal
subgroup of P , which is elementary abelian of rank 2. Let Z be a subgroup of
order p of E ∩ Z(P ). Then

Dtors(P ) ∩ Ker ResP
CP (E) ∩ Ker DefPP/Z = {0} .

Proof: by induction on the order of P : suppose that the result holds for all
p-groups Q with |Q| < |P |.

Step 1 : If E is central in P , the result is trivial, for in that case CP (E) = P ,
and ResP

CP (E) is the identity map.

29



If E is not central in P , then |P : CP (E)| = p, and E ∩Z(P ) has order p,
hence it is equal to Z. Let u ∈ Dtors(P ), such that ResP

CP (E)u = 0 and

DefPP/Zu = 0.

Let H be a proper subgroup of P , containing E, and consider v = ResP
Hu.

Then the hypothesis of the proposition holds for H, its normal subgroup E,
and its subgroup Z contained in E ∩ Z(H). Moreover v is in Dtors(H), and

ResH
CH(E)v = ResP

CH(E)u

= Res
CP (E)
CH(E)

ResP
CP (E)u = 0 .

Similarly

DefHH/Zv = DefHH/ZResP
Hu

= Res
P/Z
H/ZDefPP/Zu = 0 .

The induction hypothesis now shows that v = 0. Thus ResP
Hu = 0 for any

proper subgroup of P containing E.
Consider now a subgroup Z ′ of order p of Z(P ), not contained in E (equiv-

alently Z ′ 6= Z, since E is not central in P ). The group E embeds in the group
P = P/Z ′, since E ∩Z ′ = 1, and its image E = EZ ′/Z ′ is a normal subgroup
of P .

If u ∈ P is such that uZ ′ ∈ CP (E), then [u,E] ⊆ Z ′, hence [u,E] ⊆
E ∩ Z ′ = 1. This shows that CP (E) = CP (E)/Z ′. Moreover Z = Z.Z ′/Z ′ is
a central subgroup of order p of P , contained in E.

Set w = DefPP/Z′u. Then w ∈ Dtors(P ), and

ResP
CP (E)

w = Res
P/Z′

CP (E)/Z′
DefPP/Z′u

= Def
CP (E)
CP (E)/Z′

ResP
CP (E)u = 0 .

Similarly

DefP
P/Z

w = DefPP/ZZ′u

= Def
P/Z
P/ZZ′

DefPP/Zu = 0 .

Then w = 0 by induction hypothesis. It follows that DefPP/Xu = 0 for any

central subgroup X of order p of P , and then DefPP/Nu = 0 for any non trivial
normal subgroup N of P .

On the other hand, Carlson and Thévenaz have shown that the element u
of Dtors(P ) is equal to 0 if and only if DefresP

NP (Q)/Qu = 0 for any subgroup Q
of P such that NP (Q)/Q is cyclic, if p 6= 2, or cyclic, generalized quaternion,
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or semi-dihedral, if p = 2 (see [14] Theorem 13.4). Let Q be such a subgroup.
If M = Q ∩ Z(P ) is non trivial, then setting P = P/M and Q = Q/M

DefresP
NP (Q)/Qu = DefresP

NP (Q)/Q
DefP

P
u = 0 .

And if M = 1, then Z(P ) embeds in the center of the group NP (Q)/Q,
which is always cyclic when NP (Q)/Q is cyclic, generalized quaternion, or
semi-dihedral. This cannot happen if Z(P ) is not cyclic, and u = 0 in this
case.

Step 2 : Hence I can assume that Z(P ) is cyclic. Then by Assertion (b) of
Theorem 13.1 of [14], the element u of Dtors(P ) is equal to 0 if and only if
DefresP

T/Su = 0, for any section (T, S) of P such that T/S is cyclic of order p
if p 6= 2, or cyclic of order 4 or quaternion of order 8 if p = 2.

Let (T, S) be such a section. If M = S∩Z(P ) 6= 1, then setting P = P/M ,
T = T/M and S = S/M

DefresP
T/Su = DefresP

T/S
DefP

P
u = 0 .

Similarly, if H = TE 6= P , then

DefresP
T/Su = DefresH

T/SResP
Hu = 0 ,

since H is a proper subgroup of P containing E.

Step 3 : So I can suppose that TE = P , and S ∩ Z(P ) = 1. Set M =
S ∩ CP (E). Then M is normalized by T and centralized by E, thus M /P ,
and M ∩ Z(P ) = 1 since M is a subgroup of S. Thus M = 1. Since CP (E)
has index p in P , this implies that |S| ≤ p, and there are two cases :

• if |S| = p, then S ⊆ T ⊆ SCP (E) = P , thus T = S(T ∩ CP (E)), and in
particular T/S ∼= T ∩ CP (E) is isomorphic to Cp for p 6= 2, or to C4 or
Q8 for p = 2. Moreover S in central in T , thus T = S × (T ∩ CP (E)).
The group SE is isomorphic to the (non trivial) semi-direct product
of Cp by Ep2 , hence it is isomorphic to Xp3 if p 6= 2, and to D8 if
p = 2. The group E ∩ T has order at most p (otherwise E ⊆ T , thus
E ⊆ T ∩ CP (E), and this cannot happen since T ∩ CP (E) is one of the
groups Cp, C4 or Q8).

If E ∩ T = 1, then P = SE × (T ∩ CP (E)), since

SE ∩ (T ∩CP (E)) = S(E ∩ T ) ∩ CP (E) = S ∩CP (E) = 1 .

In that case the center of P cannot be cyclic, since both groups SE and
T ∩ CP (E) are non trivial.
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It follows that E ∩ T has order p. If E ∩ T 6= Z, then E = (E ∩ T )Z is
centralized by T , hence contained in the center of P . Thus E ∩ T = Z.
In that case

SE ∩ (T ∩ CP (E)) = SZ ∩ CP (E) = Z(S ∩ CP (E)) = Z ,

and P is isomorphic to the central product of SE and T ∩CP (E). Thus
if p 6= 2, then T ∩ CP (E) = T ∩ E = Z, for T ∩ E ⊆ T ∩ CP (E), and
both have order p, and P = SE ∼= Xp3 in this case. And if p = 2, the
group P is isomorphic to D8 ∗ C4 or D8 ∗Q8.

• if S = 1, then T is isomorphic to Cp if p 6= 2, or to C4 or Q8 if p = 2.
Again if E ∩ T = 1 then P = E o T ∼= Ep2 o Cp

∼= Xp3 if p 6= 2.
And if p = 2, then P ∼= E4 o C4 or P ∼= E4 o Q8, and in each case
Z(P ) = Z × Z(T ) ∼= C2 × C2, which is not cyclic. And if E ∩ T 6= 1,
then E ∩ T = Z as above.

If p 6= 2, then T has order p, hence T ⊆ E, hence P = E, a contradiction.
And if p = 2, then P ∼= E o T/∆, where ∆ is the unique subgroup of
order 2 of Z × Z(T ) which is neither contained in Z nor in Z(T ). If
T ∼= C4, then P ∼= D8, and u = 0 since D(D8) is torsion free by Theorem
10.3 of [13]. And if T ∼= Q8, then clearly [P, P ] = (Z × [T, T ])/∆,
which has order 2, and is also equal to the Frattini subgroup of P , since
P/[P, P ] is elementary abelian of order 8. In this case also Z(P ) is
cyclic of order 4, generated by the element et, where e ∈ E − Z, and
t is a generator of CT (E). Hence P is almost extraspecial of order 16,
isomorphic to P ∼= D8 ∗ C4 again.

Step 4 : Finally, the only cases left to consider are

• Case 1 : p 6= 2 and P ∼= Xp3 ,

• Case 2 : p = 2 and P ∼= D8 ∗ C4,

• Case 3 : p = 2 and P ∼= D8 ∗Q8.

By Theorem 9.1 of [11], the group ∂Dtors(P ) is cyclic of order 2 in Case 1
and Case 2, or cyclic of order 4 in Case 3 and the ground field does not
contain primitive cubic roots of unity. In Case 3, when the ground field
contains primitive cubic roots of unity, then ∂Dtors(P ) ∼= Z/4Z ⊕ Z/2Z, by
Theorem 10.1 of [11].

Note that by Theorem 4.6 and Theorem 4.7, this can be expressed as

∂Dtors(P ) ∼=







Ttors(Cp) in Case 1
Ttors(C4) in Case 2
Ttors(Q8) in Case 3

.

Using this observation, these results can be interpreted as follows : the genetic
subgroups S of P which do not contain Z = Ω1Z(P ) = Φ(P ) are precisely the
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non central subgroups of order p. For such a subgroup set R = NP (S). Then

R/S ∼=







Cp in Case 1
C4 in Case 2
Q8 in Case 3

.

By Theorem 6.1 of [10], and with the same notation, the map

TeninfPR/S : Ttors(R/S) → Dtors(P )

is injective, and its image is contained in ∂Dtors(P ) = Ker DefPP/Z : indeed

for v ∈ Ttors(R/S) = f
R/S
1 Dtors(R/S), since Def

R/S
R/SZv = 0, it follows that

TeninfPR/Sv = aR,S(v) = (P/S − P/SZ)v ,

where P/S − P/SZ is a virtual (P,R/S)-biset. Then clearly

DefPP/ZTeninfPR/Sv = (P/SZ − P/SZ)v = 0 ,

since the Galois torsions have no effect here : the group P/Z is elementary
abelian, hence D(P/Z) = DΩ(P/Z).

Hence in each case above, the map TeninfPR/S induces an isomorphism
from Ttors(R/S) to ∂Dtors(P ). It follows that the (restriction of the) map
bR,S = S\P − SZ\P is the inverse isomorphism ∂Dtors(P ) → Ttors(R/S).

Now the elementary abelian subgroups of P of rank 2 are all maximal
elementary abelian subgroups of P . If E is one of them, then E = SZ, where
S is any non central subgroup of order p of E. In particular CP (E) is equal
to R = NP (S).

Now if u ∈ ∂Dtors(P ) is such that ResP
CP (E)u = 0, then

bR,S(u) = (S\P − SZ\P )u

= f
R/S
1

DefRR/SResP
Ru = 0 ,

hence u = 0 since bR,S is an isomorphism. This completes the proof of Propo-
sition 8.1.

8.2. Theorem : Let P be a p-group, and let S be a genetic basis of P . Then
the map

IS = ⊕
S∈S

TeninfPNP (S)/S : ⊕
S∈S

Ttors(NP (S)/S) → Dtors(P )

is an isomorphism.

(This was Conjecture A in [4], or Conjecture 6.2 in [10]).
Proof: Let

DS : Dtors(P ) → ⊕
S∈S

Ttors(NP (S)/S)
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be the map in the other direction, defined as in Section 6 of [10] by DS =
⊕S∈S bNP (S),S . Since DS◦IS = Id by Theorem 6.1 of [10], proving Theorem 8.2
is equivalent to proving that the map DS is injective, and I will proceed by
induction on the order of P .

Before that, suppose that the map IS is an isomorphism, for a particular
genetic basis S of P . It follows that

Dtors(P ) ∼= ⊕
S∈S

Ttors(NP (S)/S) ,

and up to isomorphism, the right hand side is independent of the choice of
S, since the groups NP (S)/S are the types of the irreducible rational repre-
sentations of P . Now if S ′ is another genetic basis of P , then the map IS′ is
always injective, by Theorem 6.1 of [10]. Hence it is an isomorphism, since
it is an injection from a finite group to an isomorphic finite group. In other
words, it is enough to prove Theorem 8.2 for any particular genetic basis S of
P .

Suppose now that Theorem 8.2 holds for any p-group Q with |Q| < |P |.
Let S be a genetic basis of P , and let Z be any central subgroup of order p
in P . Set

S ′ = {S ∈ S | S ⊇ Z} .

Then the set S
′

= {S/Z | S ∈ S ′} is a genetic basis for P = P/Z. Let

u ∈ Ker DS , and consider v = DefPP/Zu. If S = S/Z is an element of S
′
, for

S ∈ S, then NP (S) = R = R/S, where R = NP (S) and

bR,S(v) = bR,SDefPP/Zu

= DefPP/ZbR,S(u) = 0 .

Now the induction hypothesis shows that v = 0. Since this holds for any
central subgroup Z of order p of P , it follows that u ∈ ∂Dtors(P ). Thus

Ker DS ⊆ ∂Dtors(P ) ,

for any genetic basis S of P .
Now let u ∈ ∂Dtors(P ). Theorem 13.4 of [14] shows that u is equal to 0 if

and only if DefresP
NP (Q)/Qu = 0, for any subgroup Q of P such that NP (Q)/Q

is cyclic, semi dihedral or generalized quaternion. Since DefPP/Zu = 0 for

any non-trivial central subgroup of P , it follows that DefresP
NP (Q)/Qu = 0 if

M = Q ∩ Z(P ) 6= 1, for

DefresP
NP (Q)/Qu = DefresP

NP (Q)/Q
DefP

P
u ,

where P = P/M and Q = Q/M .
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And if M = 1, then Z(P ) embeds in the center of NP (Q)/Q, which is
always cyclic if Q cyclic, semi dihedral or generalized quaternion. This shows
that u = 0 if Z(P ) is not cyclic, hence ∂Dtors(P ) = {0} in this case, and
Ker DS = {0} also.

Now if Z(P ) is cyclic, let Z = Ω1Z(P ) be its subgroup of order p. If P
has normal p-rank 1, then 1 is a normal genetic subgroup of P , thus 1 ∈ S.
Moreover ∂Dtors(P ) is equal to Ttors(P ). Thus for u ∈ ∂Dtors(P )

bP,1(u) = fP
1
u = u .

It follows that Ker DS = {0} in this case.
The remaining case is when P admits a normal subgroup E which is ele-

mentary abelian of rank 2. Set H = CP (E). Since Z(P ) is cyclic, it follows
that |P : H| = p, and that Z = E ∩ Z(P ). By Corollary 5.3, there exists a
genetic basis S of P and a decomposition

S = S1 t S2

in disjoint union such that

1. if S ∈ S2, then S ⊇ Z, and

2. the set Γ = {xS | S ∈ S1, x ∈ [P/H]} is a set of representatives of
genetic subgroups R of H such that R 6⊇ Z, for the relation H ,
where [P/H] is any chosen set of representatives of H-cosets in P .

Let u ∈ Ker DS . Then u ∈ Ker DefPP/Z = ∂Dtors(P ). Set v = ResP
Hu. Then

there is a genetic basis T of H such that Γ = {S ∈ T | S 6⊇ Z}. Let S ∈ S1,
and x ∈ [P/H]. Then xS ∈ T , and

NH(xS) = xNH(S) = xNP (S) .

Moreover

bxR,xS(v) = (xS\H − xSZ\H)ResP
Hu

= (xS\P − xSZ\P )u = xbR,S(x−1u) = xbR,S(u) = 0 .

Moreover if S ∈ T −Γ, then S ⊇ Z, so setting R = NP (S) again, and denoting
by Ŝ the subgroup of R such that Ŝ/S is central of order p in R/S,

bR,S(v) = (S\H − Ŝ\H)ResP
Hu

= (S\H − Ŝ\H)ResP
H

DefP
P
u = 0 ,

where P = P/Z, S = S/Z, H = H/Z, Ŝ = Ŝ/Z.
It follows that bNH(S),S(v) = 0 for any S ∈ T , thus v = 0 by induction

hypothesis. Now u ∈ Ker ResP
CP (E) ∩ Ker DefPP/Z . Hence u = 0 by Proposi-

tion 8.1. This completes the proof of Theorem 8.2.
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8.3. Corollary : Let P be a p-group. Then

Dtors(P ) ∼= (Z/2Z)nP ⊕ (Z/4Z)mP ,

where mP is equal to the number of isomorphism classes of rational irreducible
representations of P of generalized quaternion type, and nP is the number of
isomorphism classes of rational irreducible representations of P whose type is

• cyclic of order at least 3, or semi dihedral, or generalized quaternion, if
the ground field contains primitive cubic roots of unity.

• cyclic of order at least 3, or semi dihedral, or generalized quaternion of
order at least 16 otherwise.

(This was Conjecture 6.3 in [10]).

8.4. Corollary : If P is a 2-group, then D(P ) = DΩ(P ) + 2D(P ), where

2D(P ) = {u ∈ D(P ) | 2u = 0}.

Proof: Indeed D(P ) = DΩ(P ) +Dtors(P ) by Theorem 7.7. Moreover Corol-
lary 8.3 shows that 2Dtors(P ) = 2DΩ

tors(P ) : indeed, it is enough to check this
equality when P is cyclic, semi dihedral, or generalized quaternion, since for
an arbitrary 2-group P , any element in Dtors(P ) is a sum of elements obtained
by inflation and tensor induction from sections of P of this type. Now by The-
orem 4.7, if P is cyclic or semi dihedral, then Dtors(P ) = DΩ

tors(P ). And if P
is generalized quaternion, then 2Dtors(P ) is a group of order 2, generated by
2ΩP/1.

Now if P is an arbitrary 2-group, and if u ∈ D(P ), there is an element
v ∈ DΩ(P ) such that w = u − v is a torsion element of D(P ). So there
exists an element t ∈ DΩ

tors(P ) such that 2w = 2t, i.e. w − t ∈ 2D(P ). Now
u = v + t+ (w − t), and Corollary 8.4 follows.

8.5. Corollary : Let O be a commutative noetherian local ring with maximal
ideal p, complete for the p-adic topology, such that the residue field k = O/p
has characteristic p. If P is a p-group, then reduction mod p induces a group
isomorphism DO(P ) → Dk(P ) from the group of Dade P -algebras over O
to the corresponding group over k. In other words, every endo-permutation
kP -module can be lifted to an endo-permutation OP -lattice.

Proof: The assumption is Assumption 2.1 of [25], except that k is not as-
sumed to be algebraically closed. Now with the Notation of Section 29 of [25],
reduction mod p induces an injection DO(P ) → Dk(P ), by Proposition 29.4
of [25]. This injection obviously restricts to an isomorphismDΩ

O(P ) → DΩ
k (P ).

Also, this injection is an isomorphism if P has normal p-rank 1, by Dade’s
Theorem 4.6, and by Carlson-Thévenaz explicit description of Dk(P ), when
P is a 2-group of normal 2-rank 1.

Now it follows from Theorem 8.2 and Theorem 7.7, that the reduction
map DO(P ) → Dk(P ) is always an isomorphism.
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9. Generators and relations

9.1. Notation : If P is a p-group, denote by [sP ] a set of representatives
of conjugacy classes of subgroups of P , ordered by the relation

U ≤P V ⇔ ∃x ∈ P, U ⊆ xV .

Let µP denote the Möbius function of the poset ([sP ],≤P ). If V ∈ [sP ], let
∆P/V denote the element of DΩ(P ) defined by

∆P/V =
∑

U∈[sP ]
U≤P V

µP (U, V )ΩP/U .

If Q is any subgroup of P , set ∆P/Q = ∆P/V , if V ∈ [sP ] is a conjugate of Q
in P .

If Q and S are subgroups of P , recall from Notation 2.4 of [8] that

IP (Q,S) = {x ∈ Q\P/NP (S) | Qx ∩NP (S) ⊆ S} ,

and set iP (Q,S) = |IP (Q,S)|.
Define similarly

JP (Q,S) = {x ∈ Q\P/NP (S) | |Jx(Q,S)| = p, Jx(Q,S) 6⊆ Z(NP (S)/S)} ,

where Jx(Q,S) = (Qx ∩NP (S))S/S, and set jP (Q,S) = |JP (Q,S)|.

9.2. Remark : If NP (S)/S is cyclic or generalized quaternion, then jP (Q,S)
is equal to 0 for any Q.

If Q is a generalized quaternion group, recall (Lemma 4.8) that ηQ denotes
any element of order 2 in D(Q) −DΩ(Q).

9.3. Notation : If P is a 2-group, and S is a genetic subgroup of P such
that NP (S)/S is generalized quaternion, choose such an element ηNP (S)/S ∈
D(NP (S)/S), and set

ΛS = TeninfPNP (S)/SηNP (S)/S .

9.4. Remark : By Lemma 4.8, the element ΛQ does not exist if Q ∼= Q8

and the ground field does not have primitive roots of unity. In all other cases,
there are exactly two elements ηQ and η′Q of order 2 in D(Q) −DΩ(Q), and
ηQ + η′Q = 2ΩQ/1 in D(Q).
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9.5. Theorem : Let P be a p-group, and let S be a genetic basis of P .
Denote by Q the subset of S consisting of elements S such that NP (S)/S is
generalized quaternion, if the ground field contains all cubic roots of unity, or
generalized quaternion of order at least 16 otherwise.

Then the Dade group D(P ) is generated by

• the elements ∆P/Q, for Q ∈ [sP ], and

• if p = 2, the elements ΛS, for S ∈ Q.

These generators are subject to the following relations 9.6 and 9.7 :

(9.6) ∀S ∈ S, τS
∑

Q∈[sP ]

(aSiP (Q,S) + jP (Q,S))∆P/Q = 0 ,

where τS =























1 if |NP (S)/S| ≤ 2
or if NP (S)/S is dihedral

2 if NP (S)/S is cyclic of order at least 3
or semi dihedral

4 if NP (S)/S is generalized quaternion

and aS =

{

1 if NP (S)/S is cyclic or generalized quaternion
2 if NP (S)/S is dihedral or semi dihedral

.

(9.7) ∀S ∈ Q, 2ΛS = 0 .

Moreover, these generators and relations form a presentation of D(P ) as an
abelian group : more precisely, the generators ∆P/Q, for Q ∈ [sP ], subject

to the relations 9.6, form a presentation of DΩ(P ) as an abelian group. The
elements ΛS, for S ∈ Q generate a subgroup DQ(P ), isomorphic to (Z/2Z)|Q|,
and

D(P ) = DΩ(P ) ⊕DQ(P ) .

Proof: Recall from Theorem 1.7 of [9] that there exists a unique natural
transformation of biset functors Θ : B∗ → DΩ such that ΘP (ωX) = ΩX , for
any p-group P and any finite P -set X, and Θ is surjective. Let L = Ker Θ.

Then L is a biset functor, and since composition of Θ with the projection
DΩ → DΩ/DΩ

tors leads to the exact sequence

0 → R∗
Q → B∗ → DΩ/DΩ

tors → 0 ,

it follows that L is a subfunctor of R∗
Q, hence L is a subfunctor of the dual of

a rational biset functor. By Proposition 7.4 of [10], the functor L is rational,
and thus for any genetic basis S of P , the map

IS = ⊕
S∈S

TeninfPNP (S)/S : ⊕
S∈S

∂L(NP (S)/S) → L(P )
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is an isomorphism.
Now the element ∆P/Q of DΩ(P ) is the image by ΘP of the element δP/Q

of the canonical basis of B∗(P ) (see Remark 2.3 of [10]). In particular the
elements ∆P/Q, for Q ∈ [sP ], generate DΩ(P ).

Let P be any p-group. Evaluating at P the exact sequence

0 → L→ B∗ → DΩ → 0 ,

and taking images by the idempotent fP
1 of EndCp(P ), leads to the exact

sequence of abelian groups

0 → ∂L(P ) → ∂B∗(P ) → ∂DΩ(P ) → 0 .

But R∗
Q has a Z-basis consisting of the elements V ∗, where V runs through a

set of representatives of isomorphism classes of rational irreducible representa-
tion of P , and V ∗(W ) = m(V,W ) for any W ∈ RQ(P ) (see Lemma 3.2 of [9]).
It follows that ∂RQ(P ) has a basis consisting of the elements V ∗, where V
runs through a set of representatives of isomorphism classes of faithful rational
irreducible representation of P .

Now suppose that P has normal p-rank 1, and set Z = Ω1Z(P ). Then
there is a unique such representation ΦP , by Proposition 3.7 of [8]. Thus
∂R∗

Q(P ) is free of rank 1, generated by the element Φ∗
P . Viewed as an element

of B∗(P ), it is equal to

Φ∗
P =

∑

Q∈[sP ]

m(ΦP ,QP/Q)δP/Q .

Then by Lemma 4.1 of [10], if P is cyclic or generalized quaternion, then

m(ΦP ,QP/Q) =

{

0 if Q 6= 1

1 if Q = 1
,

and if P is dihedral or semi dihedral, then

m(ΦP ,QP/Q) =







0 if Q ⊇ Z
1 if Q 6⊇ Z, |Q| = 2
2 if Q = 1

.

If P is cyclic or generalized quaternion, then ∂RQ(P ) is generated by Φ∗
P =

δP/1 = ωP/1. The order τP of ΘP (Φ∗
P ) = ΩP/1 is equal to 1 if |P | ≤ 2, to 2 if

P is cyclic of order at least 3, and to 4 if P is generalized quaternion. Hence
∂L(P ) is generated by ρP = τPωP/1 in this case.

If P is semi dihedral, then ∂R∗
Q(P ) is generated by

Φ∗
P = 2δP/1 + δP/R = ωP/1 + ωP/R ,
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where R is a non central subgroup of P of order 2. Then ΘP (Φ∗
P ) is equal

to ΩP/1 + ΩP/R, which has order 2 in D(P ), by Theorem 7.1 of [13]. Hence
∂L(P ) is generated by ρP = 2(ωP/1 + ωP/R) in this case.

Finally if P is dihedral, then ∂RQ(P ) is generated by

Φ∗
P = 2δP/1 + δP/R + δP/R′ = ωP/R + ωP/R′ ,

where R and R′ are non central subgroups of order 2 of P , not conjugate
in P . Then u = ΘP (Φ∗

P ) = ΩP/R + ΩP/R′ is a torsion element of D(P ),
which is torsion-free by Theorem 4.7. Hence u = 0. So ∂L(P ) is generated
by ρP = ωP/R + ωP/R′ in this case.

Let S ∈ S. If Q is a subgroup of P , then

IndinfPNP (S)/SΦ∗
NP (S)/S(P/Q) = Φ∗

NP (S)/S(DefresP
NP (S)/S(P/Q))

= m(ΦNP (S)/S ,DefresP
NP (S)/S(QP/Q))

= m(IndinfPNP (S)/SΦNP (S)/S ,QP/Q)

= aSiP (Q,S) + jP (Q,S) .

Here the equality in the second line follows from the definition. The equality in
the third line follows by Frobenius reciprocity, from the fact that (NP (S), S)
is a genetic section of P , and the last equality follows from Lemma 4.1 of [10].

Then

IndinfPNP (S)/SΦ∗
NP (S)/S =

∑

Q∈[sP ]

(aSiP (Q,S) + jP (Q,S))δP/Q ,

and it follows that DΩ(P ) has a presentation as an abelian group generated
by the element ∆P/Q, for Q ∈ [sP ], subject to the relations 9.6.

Now the elements ΛS , for S ∈ Q, are of order 2, since the element ηNP (S)/S

has order 2, and since the map

TeninfPNP (S)/S : Ttors(NP (Q)/Q) → D(P )

is injective, by Theorem 6.1 of [10]. Let DQ(P ) denote the subgroup generated
by the elements ΛS , for S ∈ Q.

Then Dtors(P ) = DΩ
tors(P ) + DQ(P ) : to prove this, by Theorem 8.2, it

suffices to check that if P is a quaternion group, then Dtors(P ) is generated
by DΩ(P ) and one chosen element ηQ. But this is obvious, from Lemma 4.8.

Now by Theorem 7.7, it follows that D(P ) = DΩ(P ) +DQ(P ), and

D(P )/DΩ(P ) ∼= Dtors(P )/DΩ
tors(P ) ∼= DQ(P )/(DΩ(P ) ∩DQ(P )) .

By Corollary 8.3 and by Corollary 7.6 of [10], the group Dtors(P )/DΩ
tors(P )

is isomorphic to (Z/2Z)qP , where qP is the number of isomorphism classes of
rational irreducible representations of P which are of generalized quaternion
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type if the ground field contains all cubic roots of unity, and of generalized
quaternion type of order at least 16 otherwise. In other words qP = |Q|.

Now DQ(P ) is an elementary abelian 2-group generated by |Q| elements,
so its rank is at most equal to |Q|. Since its factor group

DQ(P )/(DΩ(P ) ∩DQ(P ))

has rank equal to |Q|, it follows that DΩ(P ) ∩ DQ(P ) = {0}, that the ele-
ments ΛS , for S ∈ Q, are linearly independent over F2, and that

D(P ) = DΩ(P ) ⊕DQ(P ) .

This completes the proof of the theorem.

9.8. Remark : If the group P is abelian, then by Remark 2.11, there is a
unique genetic basis S of P , consisting of subgroups S of P such that P/S
is cyclic. If Q is any subgroup of P , and if S ∈ S, then jP (Q,S) = 0 by
Remark 9.2, and iP (Q,S) is equal to 1 if Q ⊆ S, and to 0 otherwise. Hence
the relations 9.6 become

∀S ∈ S, τS
∑

Q⊆S

∆P/Q = 0 .

Moreover

∑

Q⊆S

∆P/Q =
∑

Q⊆S

∑

U∈[sP ]
U≤P Q

µP (U,Q)ΩP/U

=
∑

U⊆P

(

∑

U⊆Q⊆S

µ(U,Q)
)

ΩP/U

= ΩP/S

by the defining property of the Möbius function, since the poset sP is equal to
the poset of all subgroups of P if P is abelian. Thus Theorem 9.5 is another
form of Dade’s Theorem (Theorem 4.6) if P is abelian.

10. The functor D/DΩ

In this section, I will show that D/DΩ is a biset functor. Of course, by
Theorem 7.7, this is non trivial only if p = 2, which I shall assume throughout
this section.
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10.1. Notation : (see Notation 4.1 of [8]) If Q is a 2-group of normal
2-rank 1, let HQ denote the subfunctor of F2RQ generated by the image ΦQ ∈
F2RQ(Q) of the unique (up to isomorphism) rational irreducible representation
ΦQ of Q.

If P is any 2-group, then F2RQ(P ) has a canonical basis consisting of the
images V of the rational irreducible QP -modules V , up to isomorphism. If
u ∈ F2RQ(P ), denote by γ(V, u) the coefficient of V in the decomposition of
u in this basis.

The next theorem is a precise form of the second part of Conjecture B
in [4] :

10.2. Theorem : If P is a 2-group, there is an exact sequence of abelian
groups

0−−→DΩ(P )
iP−−→D(P )

σP−−→HQ(P )−−→ 0 ,

where iP is the inclusion, and Q ∼= Q8 if the ground field contains all cubic
root of unity, and Q ∼= Q16 otherwise.

Moreover this sequence is functorial in the following sense : if P ′ is a
2-group, and if ψ ∈ HomC2

(P, P ′), then the diagram

0 −−→ DΩ(P )
iP−−→ D(P )

σP−−→ HQ(P ) −−→ 0

DΩ(ψ)







y

D(ψ)







y

HQ(ψ)







y

0 −−→ DΩ(P ′)
iP ′

−−→ D(P ′)
σP ′

−−→ HQ(P ′) −−→ 0

is commutative.
In other words, there is a natural structure of biset functor on D/DΩ, and

D/DΩ ∼= HQ.

In general however, because of “Galois torsion” (see Section 3 in [12]),
there is no natural biset functor structure on D, so there is no genuine “exact
sequence of biset functors”

0 → DΩ → D → HQ → 0 .

If the ground field does not contain non trivial cubic root of unity, then D is a
genuine biset functor, by Lemma 4.8, and this sequence is an exact sequence
of biset functors.
Proof: If the ground field contains all cubic roots of unity, fix a groupQ ∼= Q8,
otherwise fix a group Q ∼= Q16. In any case, choose an element ηQ of order 2,
in D(Q) −DΩ(Q). If P is any 2-group, set

F (P ) = HomC2
(Q,P )(ηQ) .

Then F (P ) is a subgroup of D(P ), and 2F (P ) = 0. Define a map πP :
F (P ) → HQ(P ) by

(10.3) πP (ϕ(ηQ)) = ϕ(ΦQ) ,
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for ϕ ∈ HomC2
(Q,P ).

10.4. Lemma : The map πP is well defined.

Proof: This amounts to showing that if ϕ ∈ HomC2
(Q,P ) is such that

ϕ(ηQ) = 0, then ϕ(ΦQ) = 0. Now if ϕ(ηQ) = 0, then ψ(ϕ(ηQ)) = 0 for
any morphism ψ ∈ HomCp(P,R), where R is a generalized quaternion group,
such that |R| ≥ |Q|.

I have to be careful here, since in general, due to “Galois torsion”, it is
not true that

ψ(ϕ(ηQ)) = (ψϕ)(ηQ) .

However the quotient D(R)/DΩ(R) is isomorphic to Z/2Z : indeed, by the
choice of Q, the hypothesis |R| > |Q|, and the fact that generalized quaternion
groups have a unique rational irreducible representation of quaternion type,
up to isomorphism, the set Q of Theorem 9.5 for the group R is of cardinality
1 (more precisely Q = {1}).

Hence there is a linear form

λR : D(R) → Z/2Z

defined by λR(u) = 1 if u /∈ DΩ(R), and λR(u) = 0 otherwise.
The point now is that ψ(ϕ(ηQ)) differs from (ψϕ)(ηQ) by an element of

DΩ(R) (even 2DΩ(R)) : this follows from the case where ψ and ϕ are bisets,
using Proposition 3.10 of [12], and from the fact that for any endomorphism a
of the ground field the difference γa(ηQ)− ηQ is a multiple of 2ΩQ. In partic-
ular, this shows that

λR

(

ψ(ϕ(ηQ))
)

= λR

(

(ψϕ)(ηQ)
)

= 0 .

10.5. Lemma : Let Q and R be generalized quaternion groups, and let
f ∈ HomC2

(Q,R). Then

λR(f(ηQ)) = γ(ΦR, f(ΦQ)) .

Proof: Since λR(f(ηQ)) and γ(ΦR, f(ΦQ)) are linear in f , it suffices to con-
sider the case where f is a transitive biset, hence (by Remark 3.4) of the
form

IndinfRT/SIso
T/S
Y/XDefresQ

Y/X ,

where T/S is a section of R and Y/X is a section of Q, such that there exists
a group isomorphism Y/X → T/S.

If Y is proper subgroup of Q, then ResQ
Y ηQ is in DΩ(Y ), by Lemma 4.8.

Thus if Y 6= Q, then f(ηQ) ∈ DΩ(R), hence λR(f(ηQ)) = 0. But the restric-
tion of ΦQ to any maximal subgroup H of Q is equal to 2ΦH , by Lemma 3.14
of [8]. Hence f(ΦQ) ∈ 2RQ(R), thus γ(ΦR, f(ΦQ)) = 0 in this case.
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Suppose now that Y = Q. If X 6= 1, then DefQQ/XηQ = 0 (by construction,

or because if Z is the center of Q, then DefQQ/ZηQ is in Dtors(Q/Z) = 0,

since Q/Z is dihedral). Thus if X 6= 1, then λR(f(ηQ)) = 0. On the other
hand, any proper deflation of ΦQ is equal to 0, by Lemma 3.12 of [8], hence
γ(ΦR, f(ΦQ)) = 0 in this case also.

Now assume X = 1. Then T/S is isomorphic to Q. But any section of
the generalized quaternion group R which is itself a generalized quaternion
group is actually a subgroup of R. This shows that S = 1, and I can suppose
that Q is a subgroup of R. In this case TenR

QηQ is equal to ηR or ηR + 2ΩR ,

by Lemma 4.8. But on the other hand IndR
QΦQ = ΦR, thus γ(ΦR, f(ΦQ)) = 1,

proving the lemma.

10.6. End of proof of Lemma 10.4 : consider the element u = ϕ(ΦQ) of
F2RQ(P ). The previous discussion and Lemma 10.5 show that γ(ΦR, ψ(u)) is
equal to 0 for any ψ ∈ HomC2

(P,R), for any generalized quaternion group R
such that |R| ≥ |Q|. Now Corollary 6.7 and Theorem 5.12 of [8] show that
HQ(P ) has an F2-basis consisting of the images V of the rational irreducible
representations V of P , whose type is generalized quaternion of order at least
equal to |Q|, up to isomorphism. Moreover, if V is such a representation, and
(T, S) is a genetic section of P for V , then γ(V, u) = γ(ΦT/S ,DefresP

T/Su),
by Lemma 4.2 of [8]. It follows that γ(V, u) = 0 for any V ∈ IrrQ(P ) of
quaternion type R with |R| ≥ |Q|. Hence u = 0, as was to be shown for
Lemma 10.4.

10.7. End of proof of Theorem 10.2 : since HQ(P ) ⊆ Im πP by 10.3,
the map πP is surjective. Now F (P ) ∩ DΩ(P ) ⊆ Ker πP : indeed if ϕ ∈
HomC2

(Q,P ) is such that u = ϕ(ηQ) ∈ DΩ(P ), then ψ(ϕ(ηQ)) ∈ DΩ(R), for
any generalized quaternion group R and any ψ ∈ HomCp(P,R). The same
argument as above, using Lemma 10.5, shows that ϕ(ΦQ) = 0, i.e. πP (u) = 0.

Now F (P )/(F (P )∩DΩ(P )) ∼= (F (P )+DΩ(P ))/DΩ(P ) is isomorphic to a
subgroup of D(P )/DΩ(P ), which is isomorphic to (Z/2Z)qP , where qP is equal
to the number of isomorphism classes of rational irreducible representations
of P whose type is generalized quaternion of order at least equal to |Q|. Thus
by the above remarks D(P )/DΩ(P ) ∼= HQ(P ), and the surjection

F (P )/(F (P ) ∩DΩ(P )) → HQ(P )

induced by πP has to be an isomorphism. Hence F (P )+DΩ(P ) = D(P ), and
F (P ) ∩DΩ(P ) = Ker πP . This gives a well defined map

σP : D(P ) → HQ(P )
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sending the element u + w of D(P ), where u ∈ F (P ) and w ∈ DΩ(P ), to
πP (u).

Suppose that u = ϕ(ηQ), for ϕ ∈ HomCp(Q,P ). Let P ′ be a 2-group, and
f ∈ HomC2

(P, P ′). Then w′ = f(ϕ(ηQ)) − (fϕ)(ηQ) is in DΩ(P ′), so

σP ′D(f)(u+ w) = σP ′

(

f(ϕ(ηQ)) + f(w)
)

= σP ′

(

(fϕ)(ηQ) + w′ + f(w)
)

= fϕ(ΦQ) = HQ(f)πP (u) = HQ(f)σP (u+ w) .

This shows that the square on right hand side in the theorem is commutative.
This completes the proof of Theorem 10.2, since the square on the left hand
side is also commutative.
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