Classification of functors between categories of (G-sets

S. Bouc

ABSTRACT. Let G and H be finite groups. I give a one to one correspondence
between the isomorphism classes of functors from (G-sets to H-sets which
preserve disjoint unions ans cartesian squares, and isomorphism classes of H-
sets-(G. The composition of functors leads to a new product on sets with a
double action, which is a subset of the usual one. The associated double Burn-
side rings and categories are better behaved than the usual ones with respect
to semi-simplicity. I give some applications to Hochschild (co)-homology and
to Thévenaz-Webb’s version of Alperin’s conjecture.

1. Introduction

Let G be a finite group, and R be a commutative ring. There are several
equivalent definitions of Mackey functors for G with values in the category R-mod
of left R-modules (cf. [5]), and one of them is in terms of the category G-set of
finite sets with a left G-action: a Mackey functor M for G with values in R-mod is
a bifunctor from G-set to R-mod, i.e. a couple M = (M., M*) of functors with M,
covariant and M* contravariant, which coincide on objets (i.e. M.(X) = M*(X)
for any G-set X). This bifunctor is supposed to have the following two properties:

1. Tt transforms disjoint unions into direct sums: if X [[Y is the digjoint union

of X and Y, and ix and ¢y are the canonical injections from X and Y into
X]IY, then the morphisms M, (ix) ® M.(iy) and M*(ix) ® M*(iy) are
mutual inverse isomorphisms from M(X) & M(Y) onto M(X [[Y).

2. It commutes on cartesian squares: if

x —2 - v
b c
s —— T

d
is a cartesian (or pullback) square, then
M.(b)M*(a) = M*(d)M.(c)
A morphism of Mackey functors is a natural transformation of bifunctors. The
Mackey functors for G in R-mod form an abelian category Mackgr(G).

This definition suggests the following question: if G and H are two groups, are
there functors F' from G-set to H-set such that if M is a Mackey functor for H,
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then the composite functor M o F' is a Mackey functor for G7 There are well known
examples of that situation: for instance, if H is a subgroup of GG, and M a Mackey
functor for H, then the induced functor IndeM is defined over the G-set X as

(Ind§ M)(X) = M(Res% X)

and so it is composed of M and the restriction functor from G-set to H-set.
In order to generalize that situation, it seems natural to look for functors F
from G-set to H-set with the following two properties:

1. The functor F' transforms disjoint unions into disjoint unions: with the same
notation as above, the map F(ix) ][] F(éy) is a bijection of F(X)][] F(Y)
into F(X][Y).

2. The functor F' transforms a cartesian square into a cartesian square.

The object of the present work is to give a classification of such functors F'.

2. Sets with a double action

2.1. Definitions. Let G and H be two groups. A set with a double action,
or G-set-H, is a set U with a left G-action and a right H-action which commute,
i.e. are such that

(g.u).h = g.(u.h) V(g,u,h) e GxU x H

It turns out that the (isomorphism classes of) functors F' from G-set to H-set
which preserve digjoint unions and pullback squares are in one to one correspon-
dence whith the (isomorphism classes of) finite H-sets-G. In order to give a precise
statement, I need to define the following product on sets with a double action: if
G, H and K are three groups, if U is a G-set-H, and V a H-set-K, then let

UoV={(u,v) eUxV |YheH uh=u=3keK, hv=uvk}
Tt is the set of couples (u,v) such that the left orbit of v under the right stabilizer
of u is contained in the right orbit of v.
The group H acts on the right on U o V' by
(u,v).h = (u.h,h="v)
and I define U op V as the quotient set
UogV=(UoV)/H
The set U oy V is a G-set- K with the following double action

g.-(u,v).k = (g.u,v.k)
It is a subset of the usual reduced product U xg V', but it is a strict subset in
general.

2.2. Classification of functors. Let G and H be two groups, and U be a
finite H-set-G. If X is a G-set, or a G-set-{1}, then U og X is a H-set-{1}, i.e. an
H-set. This provides a functor U oy — from G-set to H-set. The precise statement
mentioned above is the following:

THEOREM 2.1. Let G and H be two groups. If F' is a functor from G-set
to H-set which preserves disjoint unions and cartesian squares, then there exists
an H-set-G U, unique up to isomorphism of H-sets-G, such that F' is isomorphic
to the functor U og —. Conversally, if U 1s a H-set-G, then the functor U og —
preserves disjoint unions and cartesian squares.
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The following corollary is probably well-known:

COROLLARY 2.2. Let G and H be finite groups. Then the categories G-set and
H-set are equivalent if and only +f G and H are isomorphic.

2.3. Mackey formula.

NotaTiON 2.3. If G and H are groups, and L is a subgroup of the product
G x H, then let py(L) (resp. p2(L)) be the projection of L in G (resp. in H), and
let k1(L) (resp. ka(L)) be the (projection of the) intersection of L with G x {1}
(resp. with {1} x H), i.e.

k(L) ={9€G|(g,1) € L}

Let (G x H)/L be the set of left classes of L in G x H, viewed as a G-set-H with
the following double action

g.(x,y)L.h = (g, A~ 'y)L
If K is another group, and M is a subgroup of H x K, let L x M the subgroup of
G x K defined by

L+«M={(g,k) e GxK|3heH, (g,h)€ L, (h,k)e M}
With those notations:

ProrosiTION 2.4. Let G, H and K be finite groups. If L is a subgroup of
G x H and M 1s a subgroup of H x K, then

(G x H)/L oy (H x K)/M = > (G x K)/(L @V M)
z€pa(L)\H/p1(M)
k2(L)*Cpa(M)
REMARK 2.5. There is an analogue formula for the usual product x f7, obtained
by forgetting the second summation condition k(L) C p1(M).

PrOPOSITION 2.6. Let G and H be finite groups, and L be a subgroup of Hx G.
If X is a G-set, then X*(X) has a natural structure of p1(L)-set, and

(7 % G)/L) 0 X ~Tndf ;) X*>(8)

EXAMPLE 2.7. 1) Let H be a subgroup of G. If U is the group G, viewed
as an H-set-GG, then the functor U og — 1s 1somorphic to the restriction functor
from G-set to H-set. It leads to the induction functor between the corresponding
categories of Mackey functors. If V is the group G, viewed as a G-set-H, then
the functor V of — is the induction functor from G-set to H-set, which gives the
restriction functor from Mackr(G) to Mackr(H).

2) Let N be a normal subgroup of G, and H = G/N. If U is the group H, viewed
as an H-set-G, then the functor U og — is isomorphic to the fixed points functors
X +— XN from G-set to H-set. The corresponding functor between categories of
Mackey functors is the inflation functor from Mackr(H) to Mackr(G). Tf V is
the group H, viewed as an G-set-H, then the functor V oy — is isomorphic to the
inflation functor from H-set to (G-set, and is associated to the co-inflation functor
from Mackgr(G) to Mackr(H).

3) If 6 is an isomorphism of G on H, then H is an H-set-G with the right action
of G given by 6. It corresponds of course to the transport by 6 of G-set to H-set,
and of Mackr(H) to Mackgr(G).
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4) Tt’s easy to see that any functor from G-set to H-set preserving disjoint unions
and cartesian squares is a disjoint union of functors which are composed functors
of the previous five types.

3. The associated double Burnside ring

The product on sets with a double action defined in the previous section is
associative and left and right distributive with respect to disjoint unions. The
products og gives a ring structure on the Grothendieck group T'(G) of G-sets-G,
which is a kind of double Burnside ring. The unit element of that ring 1s the group
G, viewed as a G-set-G by left and right multiplication.

3.1. A subring of T(G). Let X and M be subgroups of G such that X C
Na(M). Let
Axy={(a,b)eGxG|la€X, ab™ € M}
It is a subgroup of G x G if X C Ng(M). Let

tX,M = (G X G)/AX,M

LEMMA 3.1. Let (X, M) and (Y, N) be couples of subgroups of G such that
X CNg(M) and Y C Ng(N). Then for any x € G, the group X N"Y normalizes
M. N, which is a subgroup of G +f M® CY. Moreover

tx Moty N = Z txn=y M.=N
ceX\G/Y
MeCY
This lemma shows that the elements ¢x x generate a subring of I'(G).

3.2. Projectorsin the Burnside ring. The usual Burnside ring b(G), which
is the Grothendieck group of G-set, has a natural structure of T'(G)-module, ob-
tained by extending the map X — U og X by linearity. This gives a natural
morphism @ of rings from T'(G) into Endz (b(G))

In [1], T introduced orthogonal projectors of the Burnside ring, associated to
some families F' of subgroups of GG having the following properties:

1. The family F' is stable under G-conjugacy.

2. The family F is stable under product: if H and K are in F, and if H C

Ng(K), then HK € F.

3. The trivial subgroup isin F.

The projector associated to the element P of F' could be defined by
B =~ Y (=DPdF, xP e

inf s=P
s€SA(F)/Ng(P)

where Sd(F) is the set of strictly increasing sequences of elements of F.

A natural question is then to ask if those endomorphisms of 4(G) can be lifted
through @ to an orthogonal family of idempotents of T'(G). Of course, the answer
is yes:

PROPOSITION 3.2. Let P an element of F. Define EG € T(G) by
Eg== > (=)lng ) eups

inf s=P
s€SA(F)/Ng(P)
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Then ®(ES) = 7%, and the elements ES, for P € F/G, form an orthogonal family
of idempotenis of T'(G), and their sum is the identity.

3.3. A morphism from 5(G) to T'(G). The natural morphism from b(G) to
Endyz (b(G)) induced by multiplication can also be lifted to a ring morphism from
b(G) to T(G):

LEMMA 3.3. Let X be a G-set, and X be the set G x X, viewed as a G-set-G
by
g.(a,z).9g' = (gag’, g.7)

Then the map X — X extends to a ring homomorphism from b(G) to T(G), and
for any G-setY

XogY =X xgY ~XxY

The main consequence of this lemma is that any decomposition of unity into
orthogonal idempotents in b(G) can be transported to T'(G). In particular, if K
is a field of characteristic 0 or coprime to the order of GG, then the Burnside ring
bi(G) = K ®z b(G) is semi-simple, and there are explicit formulae, due to Gluck
([3]), giving its primitive idempotents: they are indexed by the conjugacy classes
of subgroups of (G, and the idempotent efI associated to the class of the subgroup
H is given by

1 7.~ 17 yd
e = mg}[uqx]h,ﬂ[.(e/m

where Y]K, H[ is the reduced Euler-Poincaré characteristic of the “open interval”
]K, H[ in the poset of subgroups of G.

The family €% gives then another decomposition of unity in orthogonal idem-

potents in the ring I'x(G) = K @ T(G).

3.4. The idempotents FS ;. Taking for F the family of all subgroups of
G, T have now two different decomposition of unity in orthogonal idempotents in
T'x(G) (namely the E§ and the €§). Tt can be shown that the products e& og E§
are zero unless H is a normal subgroup of GG, and a few transformations lead to the
following proposition:

PropPoOSITION 3.4. Let K be a field of characteristic 0 or coprime to |G|. Let
H4aK be subgroups of G. Define

1

F¢, =—— XIX]1X,K[X]H,N[¥ ¢

K,H |Ng(IX,H)| XZC;( | | ] [] [ X,N
HCN4aK

where Y] H, N[X is the reduced Euler-Poincaré characteristic of the “open interval”
1H, N[¥ in the poset of normal subgroups of K.

Then the F}?’H, as (K, H) runs through a set of representatives of conjugacy
classes of couples of subgroups of G such that H4K , are a set of mutually orthogonal
idempotents of Txc(G), and their sum is the identity.
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3.5. Central idempotents of T'x(G). The sum of idempotents FI%H asso-
ciated to couples (K, H) for which K/H is isomorphic to a given group is a central
idempotent of T'x(G):

ProprosiTiON 3.5. Let HaK and H'<K' be subgroups of G. If
Fio gy 06 Tk(G) oG FR ip # 0
then the quotients K/H and K'/H' are isomorphic.

COROLLARY 3.6. Let S be a finite group. Define

Bs= ), Fin
(K,H)mod. G

HaK
K/H~S
Then the Bg, as S runs through a set of representatives of isomorphism classes of
sections of G, are mutually orthogonal idempotent of the center of Tx(G), and their
sum 1s the tdentity.

3.6. Identification of 'k (G). The previous proposition provides a decompo-
sition of Tx(G) into a direct product of algebras Bg og T'x(G). Each of those pieces
can be completely decribed up to isomorphism. Let me first fix some notations:

NotaTIiON 3.7. Let S be a finite group, and Rg be a system of representa-
tives of conjugacy classes of couples (K, H) of subgroups of GG such that HaK and
K/H ~ S. For (K,H) € Rg, choose an isomorphism tx g from K/H to S. It
induces a morphism ak g of the group Ng(K, H)/K to the group Out(S) of outer
automorphisms of S.

With those notations:

THEOREM 3.8. Let K be a field of characteristic 0 or coprime to |G|. Then

1. The algebra Tx(G) is isomorphic to the direct product of the algebras Bg o
Tx(G), as S runs through a set of representatives of isomorphism classes of
sections of G.

2. For any section S of G, the algebra Bs og Tx(G) is isomorphic to the Hecke
algebra

Qut(S
EndOut(S) ( @(K,H)ERS IndaK,I(q(J)VG(K,H)/K)/C)

COROLLARY 3.9. If the characteristic of K is coprime to |G| and |Out(S)| for
all sections S of G, then the algebra T (G) is semi-simple.

4. Associated categories

The product og is associative and posesses a unit. It is natural to try to
associate to it a category which objects are the finite groups, the morphisms the
sets with a double action, the composition of morphisms being given by the product
og. Its actually possible to refine this definition.
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4.1. P-free-Q sets. Let P be a non-empty family of finite groups which is
stable under taking subgroups, taking quotients, and taking extensions. This is
equivalent to say that P is the family of finite groups with composition factors in
a given family of simple groups.

If P and Q are two such families, if G and H are finite groups, and U is a
G-set-H, 1 will say that U is P-free-Q if for any u € U, the left stabilizer of u in
G is in P and its right stabilizer is in Q. In the case where P and Q are reduced
to the trivial group, a P-free-Q set is just a set which is free on the left and on the
right.

LEMMA 4.1. Let G, H and K be groups. Let A be a G-set-H and B be a
H-set-K. If A and B are P-free-Q, then so is Aoy B.

4.2. The categories C(P,Q) and Fr(P, Q). Let C(P, Q) be the following
category: the objects are the finite groups. A morphism in C(P, Q) from G to
H is an element of the Grothendieck group of the category of H-sets-G which are
P-free-Q: such elements are difference of two H-sets-G which are P-free-Q. The
product of the morphism A — B from G to H and the morphism C'— D from H to
K is defined as

(C—D)o(A—B) = ((c onr A)[[(D on B)) - ((c o B)[[(D om A))

More generally, if R is a commutativering, let Cr(P, Q) be the category RRC(P, Q),
defined the same way with

HOH]CR(P,Q)(GJ H) =R® HomC(P,Q)(Ga H)

Finally, let Fr(P, Q) be the category of R-linear functors from Cr(P, Q) to R-mod.
The category Fr(P,Q) is an abelian category, and T can talk about simple,
projective, injective objects.

PRrROPOSITION 4.2. The simple objects of Fr(P, Q) are in one to one correspon-
dence with the isomorphism classes of couples (H,V), where H is a finite group,
and V' an ROut(H)-simple-module. If P C Q, then for any group G the value of
the simple functor Sy on G is given by

Suv(G) ~ @(Gl,Nl)TriVG(Gl’Nl)/Gl (V)

where (G1, N1) runs through a set of representatives of conjugacy classes of couples
of subgroups of G such that N1aG1, N1 € P, and G1/N; ~ H.

4.3. Semi-simplicity. If G is a finite group, there is a largest normal sub-
group of G which is in P, which T shall denote by Op(G).
If K is a subgroup of (G, and P a normal subgroup of K which isin P, let

(DIG(,P = E FI?H
HaK
Op(H)=P
H mod. Ng(K,P)
Then it can be shown that the elements <I>IG(7P are in fact in Ende, (p p)(G), which I
shall denote by Endg »(G). They give a decomposition of unity in mutually orthog-
onal idempotents of that algebra, and lead to a complete description of Endx »(G),
similar to theorem 3.8, proving that those algebras are also semi-simple.
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They also provide a good notion of residue for an object M of Fr(P,P): the
residue M(G) of M at G is defined by

M(G) =Tm M(®§)
It can also be identified with the quotient of M (G) by the submodule >~ M (f) (M(H)) ,
for |H| < |G| and f € Home, (p p)(H,G).

Those residues provide the following decomposition:
PRrROPOSITION 4.3. Let M be an object of Fic(P,P), and G a finite group. Then
M(G) ~ @k, py M(K [ P)NoK-PI K

where (K, P) runs through a set of representatives of conjugacy classes of couples
of subgroups of G such that P<K and P € P.

A little more work gives then the following:

THEOREM 4.4. If K is a field of characteristic 0, then the category Frx (P, P)
1s semi-simple: any object M splits as
M ~ GBFSF,J\?(F)
where T' runs in a set of representatives of isomorphism classes of finite groups.

A further decomposition of M(T) into a sum of KOut(T)-simple modules gives a
decomposition of M nto a sum of simple functors.

5. Applications

5.1. Mackey functors. The main motivation of that work was the construc-
tion of functors between categories of Mackey functors, and the sets with a double
action provide indeed such constructions: let G and H be finite groups, and U be
a H-set-G. If M is a Mackey functor for the group H, and X is a G-set, define

(MoU)X)= MU ogX)
For a map of G-sets f: X — Y define
(MoU)u(f) = M(U og f) (MoU)(f)=M*(Uog¢f)

ProrosiTiON 5.1. If M is a Mackey functor for H, and U s a H-set-G, then
M oU s a Mackey functor for G. The correspondence M — M o U is a functor
from Mackgr(H) to Mackpr(G).

5.2. Hochschild (co)homology. Let G be a finite group, and [G] be a set
of representatives of the conjugacy classes of GG. Define

cGg = H tea(g),<g>
9€[G]

Tt is a G-set-G, and can be identified with its image in T(G). If M is a Mackey func-
tor for G, let HM = M o cg be the Mackey functor for G obtained by composition
with e¢g. Then:

PROPOSITION 5.2. Let M 1s a Mackey functor for G over the ring R, and
HM = M ocg. Then for any subgroup K of G

HM(K) = @ke[K]M(CK(k))
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In particular, if M is the i-th functor of cohomology H'(—, R) (resp. the i-th functor
of homology H;(—, R)), then HM (K) is isomorphic to the i-th group of Hochschild
cohomology HH'(K, R) (resp. the i-th group of Hochschild homology HH;(K, R)).

5.3. Mackey functors and Alperin’s conjecture. J.Thévenaz and P.Webb
have proposed the following equivalent version of Alperin’s conjecture (cf. [4])

CONJECTURE 5.3. For any finite group G, and any prime number p, there
exists Mackey functors My and My, over a field R of characteristic 0 or coprime
to |G|, such that

1. For any subgroup H of G, the restrictions ResﬁMl and ResﬁMQ are pro-
jective with respect to p-local subgroups of H.
2. For any subgroup H of G

dimp M1(H) — dimg M2(G) = np(H)

where np(H) is the number of simple non-projective kH-modules over an
algebraically closed field k of characteristic p.

The formalism of sets with a double action provides an explicit form of that
conjecture: let sg be the idempotent £ when the family F = §p(G) is the family
of p-subgroups of G| i.e.

5G = — Z (_1)|s|tNg(s),sup s
inf s={1}
s€Sd(s, (G))/G

Let
o= I teatn<s>
9€lG ]

where the sum runs over a set or representatives of the conjugacy classes of p-regular
elements of G.

Let Alpg = cq o sg. Its possible to show that Alpe is also equal to ¢ o sq.
Let R be any commutatice ring, and F'Pr be the fixed points Mackey functor for
the trivial RG-module R. Then:

ProPOSITION 5.4. The virtual Mackey functor M = F Pro(c; — Alpg) is the
difference of Mackey functors My and M+ such that

1. For any subgroup H of G, the functors RestMl and RestMg are projective
with respect to p-local subgroups of H.

2. For any subgroup H of G, the modules My(H) and My(H) are free over R
and

rankp M, (H)—rankpMy(H) = I(H)—=|H\Alpg /[H| = = > (—1)|5|I(NH(5))
s€Sd(s,(H))/H

where s,(H) is the poset of non-trivial p-subgroups of H.

In particular, Alperin’s conjecture is equivalent to
|G\Alpa /G| = fo(G)
for any finite group G.
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5.4. Steinberg residues. Let M be an object of Fg(P,P), where P contains
finite p-groups. Define the Steinberg residue of M at the group G by

SM(G) =Im M (sg)

Steinberg residues provide decomposition of objects of Fr(P,P), generalizing those
obtained in [1]:

PROPOSITION 5.5. If P contains p-groups, and M is an object of Fr(P,P),
then for any group G

M(G) ~ ©pes,(@yyaSM (Ne(P)/ P)

5.5. Adjunction and generalized Steinberg modules. Let G and H be
finite groups, and U be a H-set-G. The functor M +— M o U from Mackgr(H) to
Mackpr(G) admits a left adjoint N — Ly (N) and a right adjoint N — Ry (N),
constructed in [2]. The functor Ly is left adjoint to an exact functor, and so it
maps projectives to projectives. It is also easy to see that if P = s5,(G), and if U is
P-free-P, then Ly (N) is projective with respect to p-subgroups if N is.

Now if R is a field of characteristic p, then evaluation at the trivial subgroup
gives a one to one correspondence between the (isomorphism classes of ) projective
Mackey functors which are projective with respect to p-subgroups and the (isomor-
phism classes of) trivial source modules. This allows a translation of the functor Ly
in the category of trivial source modules: if L is such a module, this construction
gives a module U o L, which is a sum of trivial source modules.

It 1s easy to see that the virtual module sg o L obtained that way is what I
called the generalized Steinberg module St(G, L) in [1].
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