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Abstract. We show that there is an exact sequence of biset functors over p-groups

0 → Cb
j−→B∗ Ψ−→DΩ → 0

where Cb is the biset functor for the group of Borel-Smith functions, B∗ is the dual of the
Burnside ring functor, DΩ is the functor for the subgroup of the Dade group generated
by relative syzygies, and the natural transformation Ψ is the transformation recently
introduced by the first author in [5]. We also show that the kernel of mod 2 reduction
of Ψ is naturally equivalent to the functor B× of units of the Burnside ring and obtain
exact sequences involving the torsion part of DΩ, mod 2 reduction of Cb, and B×.

1. Introduction and Statement of Results

Let C denote the biset category for finite groups : it is defined as the category whose
objects are finite groups, and where the morphism set MapC(G,H) from the group G to
the group H is the Grothendieck group Γ(H,G) of finite (H,G)-bisets, i.e. the free abelian
group on the set of isomorphism classes of finite (H,G)-bisets, quotiented by the subgroup
generated by elements of the form [U tV ]− [U ]− [V ], where U tV is the disjoint union of
the (H,G)-bisets U and V , and [U ] denotes the isomorphism class of U . The composition
of two morphisms is given by the bilinear map Γ(K,H)× Γ(H,G) → Γ(K,G) defined as
the linear extension of the assignment (V,U) 7→ V ×H U . A biset functor is an additive
functor from C to the category Ab of abelian groups.

If p is a prime number, then the biset category over p-groups is the full subcategory of
C whose objects are finite p-groups. It is denoted by Cp. An additive functor F : Cp → Ab
is called a biset functor over p-groups or briefly a p-biset functor. More details about biset
functors can be found in [2] (see also [5], [6], [7], or [9]).

An important example of a biset functor is the Burnside group functor which sends each
finite group G to its Burnside group B(G), where the Burnside group B(G) is defined as
the Grothendieck group of isomorphism classes of finite left G-sets. For each finite (H,G)-
biset U , the group homomorphism B(U) : B(G) → B(H) is defined as the linear map
sending the isomorphism class of the left G-set X to the isomorphism class of the left H-
set U×GX. The other well-known examples are the representation ring functors Rk over a
field k of characteristic 0 (equal to Q or R in this paper). The biset functor structure for Rk

is defined in a similar way to the Burnside ring using tensor product instead of cartesian
product. We usually use the same notation for biset functors and for their associated
p-biset functors obtained by restriction to the subcategory of p-groups.

Another interesting biset functor is the functor B× of units of the Burnside ring. This is
a functor which assigns to each group G, the unit group B(G)× of the Burnside ring B(G).
The biset functor structure forB× is rather complicated, involving multiplicative induction
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instead of the usual induction. The details of this structure can be found in Section 5 of [8]
and Section 2 of [14].

In this paper, we are particularly interested in two other p-biset functors. One is the
dual of the Burnside ring functor B∗ which assigns to each p-group P the dual group
B∗(P ) = Hom(B(P ),Z) and to each (Q,P )-biset U , the transpose of the linear map
B(Uop) : B(Q) → B(P ). Here Uop denotes the (P,Q)-biset which is isomorphic to U as
a set and whose (P,Q)-action is given by g · u · h = h−1ug−1. The second functor is the
functor DΩ which sends each p-group P to the subgroup DΩ(P ) of the Dade group Dk(P )
generated by relative syzygies. Here k can be taken as any field of characteristic p, and
the choice does not affect the structure of the group DΩ(P ). The biset functor structure
of DΩ is described in [3]. The definition of tensor induction and verification of composition
rule is particularly difficult. The following theorem is proved in [5].

Theorem 1.1 (Bouc [5]). There is a unique natural transformation Ψ : B∗ → DΩ of
p-biset functors with the property that

ΨP (ωX) = ΩX

for any finite p-group P and any finite P -set X.

The element ωX ∈ B∗(P ) denotes the homomorphism B(P ) → Z such that ωX(P/H) is
equal to 1 if H fixes a point on X and equal to 0 if it does not. The element ΩX ∈ DΩ(P )
is the equivalence class of the endo-permutation module ∆k(X), where ∆k(X) is the kernel
of the augmentation map ε : kX → k (in the cases where ∆k(X) is not a capped endo-
permutation module, we take ΩX = 0). The fact that ΨP is a well-defined homomorphism
is a nontrivial fact requiring verification that both ωX and ΩX are subject to the same set
of relations. We refer the reader to [3] and [5] for details.

Note that the dual of the Burnside ring B∗(P ) can be naturally identified with the
group of super class functions C(P ) where a super class function is a function from the
set of subgroups of P to the integers which is constant on the conjugacy classes. The
identification comes from the duality pairing C(P )× B(P ) → Z defined by (f, [G/H]) =
f(H). Under the identification B∗ ∼= C, the kernel of ΨP can be described as a subset of
super class functions formed by super class functions satisfying a certain set of conditions.
We observe that these conditions are exactly the same as the conditions known as the
Borel-Smith conditions (see Definition 3.1). We obtain the following:

Theorem 1.2. The kernel of Ψ : B∗ → DΩ is naturally equivalent to the biset functor Cb

of Borel-Smith functions under the identification of B∗ with the functor C of super class
functions. Hence, there is an exact sequence of p-biset functors of the form

0 → Cb
j−→B∗ Ψ−→DΩ → 0.

The Borel-Smith conditions are the conditions which the dimension function of a homo-
topy representation satisfies. This suggests that the exact sequence given in Theorem 1.2
has some geometric meaning. One probably needs to extend the concept of homotopy
representation in a suitable way so that it includes G-CW-complexes which are homotopy
equivalent to a wedge of spheres. If this can be done, then it may lead to a more natural
description of the transformation Ψ. At this point we do not know how to do this and we
leave it as an open problem.

In [5], the first author considers another subfunctor of B∗, namely the dual of rational
representations functor R∗Q. Note that by the Ritter-Segal theorem, the linearization map
LinQ : B(P ) → RQ(P ) is surjective for every p-group P , so the dual of the natural
transformation LinQ gives an injective natural transformation i : R∗Q → B∗. In [5], it is
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shown that the image of the natural transformation Ψ◦ i is equal to the torsion part DΩ
tors

of DΩ. This gives an exact sequence of the form

0 → R∗Q
i−→B∗ Ψ−→DΩ/DΩ

tors → 0

where Ψ is the composition of Ψ with the quotient transformation DΩ → DΩ/DΩ
tors.

The first step in our proof of Theorem 1.2 will be to show that j(Cb) is a subfunctor
of i(R∗Q), so that after some identifications Theorem 1.2 is equivalent to the following :

Theorem 1.3. There is an exact sequence of p-biset functors of the following form

0 → Cb
j−→R∗Q

eΨ−→DΩ
tors → 0

where Ψ̃ is the composition Ψ ◦ i.
To prove Theorem 1.3, we first observe that all the p-biset functors involved in the

sequence are rational in the sense of Section 7 of [6]. Thus to show the exactness of this
sequence, it is enough to check the exactness only at p-groups of normal p-rank one. Then,
the proof follows from an inspection of this sequence in the case of these groups.

In the rest of the paper, we consider the mod 2 reduction of the exact sequence given in
Theorem 1.2. Let us denote the mod 2 reduction F2⊗ZF of a biset functor F by F2F and
the torsion group TorZ1 (F2, F ) by TorF2F . Applying the mod 2 reduction to the sequence
given in Theorem 1.2, we obtain a long exact sequence of the form

0 → TorF2D
Ω−→F2Cb−→F2B

∗ Ψ2−→F2D
Ω → 0

which gives us two short exact sequences involving the kernel of Ψ2.

Theorem 1.4. The kernel of Ψ2 : F2B
∗ → F2D

Ω is naturally equivalent to the functor B×
of units of the Burnside ring.

As an immediate consequence, we obtain

Corollary 1.5. The following sequences of p-biset functors are exact :

0 → B×−→F2B
∗ Ψ2−→F2D

Ω → 0

0 → TorF2D
Ω → F2Cb → B× → 0.

The second sequence is closely related to the following exact sequence of p-biset functors
recently given by the first author in [8] :

0 → B× → F2R
∗
Q → F2D

Ω
tors → 0.

By taking Yoneda splice, we can view these sequences as parts of a long exact sequence of
the form

0 → TorF2D
Ω → F2Cb → F2R

∗
Q
eΨ2−→F2D

Ω
tors → 0

where the kernel of the last natural transformation is equal to B×. We prove in Section 5
that this long exact sequence is nothing but the mod 2 reduction of the exact sequence in
Theorem 1.3 (see Proposition 5.3).

In [9], Bouc and Thévenaz gave an exact sequence of p-biset functors

0 → Dtors → F2RQ → ΓF2 → 0

for odd primes, where ΓF2 is the constant functor with values F2 and Dtors is a quotient
of the torsion part of the Dade group. Later Carlson and Thévenaz ([11] Theorem 13.3)
proved that actually Dtors = Dtors. These two results together with Theorem 6.2 of [9]
show that Dtors = DΩ

tors when p is an odd prime. So TorF2D
Ω can be identified with the

functor Dtors. In this case also B× is naturally equivalent to the constant functor ΓF2 ,
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and it is interesting to ask whether F2Cb can be identified with F2RQ when p is an odd
prime. We show this is true if and only if p is congruent to 3 modulo 4 (Theorem 5.4 and
Remark 5.5). Thus, in this case, the second exact sequence given in Corollary 1.5 is the
same as the exact sequence given by Bouc-Thévenaz in [9].

The paper is organized as follows : Section 2 is a quick exposition of the notion of
rational p-biset functor. In Section 3, we give the definition of Borel-Smith functions
and explain their basic properties. Section 4 is devoted to the proof of Theorem 1.2 and
Theorem 1.3, and in Section 5, we prove Theorem 1.4 and discuss its consequences.

2. Rational p-biset functors

Since the notion of rational biset functor is an essential tool in the present paper, we
will quickly recall the basic definitions and properties related to this particular class of
p-biset functors.

2.1. Some particular bisets. Recall that the formalism of bisets allows for a unified
description of the operations of induction, restriction, inflation, deflation, and transport
by isomorphism :
• If H is a subgroup of the finite group G, the induction biset IndG

H is the (G,H)-biset
equal to G as a set, with biset structure given by left multiplication by elements of G and
right multiplication by elements of H. The restriction biset ResG

H is the (H,G)-biset G,
with biset structure given by left multiplication by elements of H and right multiplication
by elements of G.
• If N is a normal subgroup of G, then the inflation biset InfGG/N is the (G,G/N)-biset
equal to G/N as a set, with right G/N -action by multiplication, and left G-action by
projection onto G/N , and next multiplication in G/N . The deflation biset DefGG/N is the
(G/N,G)-biset equal to G/N as a set, with left G/N -action by multiplication, and right
G-action by projection and multiplication.
• If ϕ : G → G′ is a group isomorphism, then the transport by isomorphism biset Iso(ϕ)
or IsoG′

G is the (G′, G)-biset equal to G′ as a set, with left action of G′ by multiplication,
and right action of G by first taking image by ϕ, and then multiplying in G′.
• If (T, S) is a section of G, i.e. if S /T ≤ G, we denote by IndinfGT/S the composition
IndG

T ×T InfTT/S . As a (G,T/S) biset, it is isomorphic to the set G/S, with the obvious
biset structure. Similarly, we denote by DefresG

T/S the composition DefTT/S ×T ResG
T . As a

(T/S,G)-biset, it is isomorphic to S\G, with the obvious biset structure.
• When F is a biset functor, and U is one of the above (H,G)-bisets, we will also denote
by U the map F (U) : F (G) → F (H) : e.g., when (T, S) is a section of G, we will write
IndinfGT/S for the map F (T/S) → F (G) obtained by composition of the maps InfTT/S :
F (T/S) → F (T ) and IndG

T : F (T ) → F (G).
• If G and H are finite groups, and U is an (H,G)-biset, then Uop denotes the (G,H)-biset
equal to U as a set, with biset structure defined by

∀(g, u, h) ∈ G× U ×H, g.u.h (in Uop) = h−1ug−1 (in U) .

For example, one checks easily that if (T, S) is a section of the finite group G, then the
(G,T/S)-bisets (DefresG

T/S)op and IndinfGT/S are isomorphic.
• If F is a biset functor, the dual biset functor F ∗ is the biset functor defined by F ∗(G) =
HomZ

(
F (G),Z

)
for any finite group G, and by F ∗(U) = tF (Uop), for any finite (H,G)-

biset U , where tF (Uop) denotes the transposed map of F (Uop).
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In particular, if (T, S) is a section of the finite group G, if f ∈ F ∗(G), then DefresG
T/Sf

is the element of F ∗(T/S) defined by

∀u ∈ F (T/S), (DefresG
T/Sf)(u) = f(IndinfGT/Su) .

2.2. Idempotents. Let G be a finite group, and N be a normal subgroup of G. It is easy
to check that DefGG/N ×G InfGG/N is isomorphic to the identity (G/N,G/N)-biset G/N . It
follows that the composition

jG
N = InfGG/N ×G/N DefGG/N

is an idempotent endomorphism of G in the category C. Moreover, jG
1 is the identity

of EndC(G), and if N and M are normal subgroups of G, then one checks easily that
jG
M ◦ jG

N = jG
MN in EndC(G). A classical inversion procedure now shows that if for N /G,

we set
fG

N =
∑

M / G
M⊇N

µ/ G(N,M)jG
M ,

we get a complete set of orthogonal (non primitive in general) idempotents in EndC(G),
as N runs through the set of normal subgroups of G. Here µ/ G denotes the Möbius
function of the poset of normal subgroups of G.

It follows in particular that for any biset functor F and any finite group G, the subgroup

∂F (G) = F (fG
1 )

(
F (G)

)

is a direct summand of F (G). It is called the set of faithful elements of F (G). It is also
the set of elements of F (G) mapping to zero by any proper deflation.

2.3. Genetic subgroups. Let p be a prime, and P be a finite p-group. A subgroup Q
of P is called genetic if the following two conditions hold :

• The group NP (Q)/Q has normal p-rank 1, i.e. all its abelian normal subgroups
are cyclic.

• Let ZP (Q) be the subgroup of NP (Q) defined by

ZP (Q)/Q = Z
(
NP (Q)/Q

)
.

Then for any x ∈ P , the intersection Qx ∩ ZP (Q) is contained in Q if and only if
Qx = Q.

Two genetic subgroups Q and R are said to be linked modulo P (notation Q P R) if
there exist elements x and y in P such that Qx ∩ ZP (R) ⊆ R and Ry ∩ ZP (Q) ⊆ Q. It
was shown in [4] that this is an equivalence relation on the set of genetic subgroups of P ,
and that the equivalence classes are in one to one correspondence with the isomorphism
classes of rational irreducible representations of P .

A genetic basis is a set of representatives of genetic subgroups of P for the relation P .

2.4. Rational p-biset functors. Let p be a prime, and let F be a p-biset functor. If P
is a finite p-group, and G is a genetic basis of P , one can show ([6] Theorem 3.2, see also
Remark 4.6 of [8]) that the map

IG = ⊕
Q∈G

IndinfPNP (Q)/Q : ⊕
Q∈G

∂F
(
NP (Q)/Q

) → F (P )

is split injective.
The p-biset functor F is called rational if for any p-group P , there exists a genetic basis G

of P such that the map IG is an isomorphism. Equivalently, for any genetic basis IG of P ,
the map IG is an isomorphism.
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The use of the word rational here comes from the fact that RQ is a rational p-biset
functor (Example 7.2 of [6]). Rational p-biset functors have two important properties :
the first one is that by definition, proving a result involving only rational p-biset functors
and morphisms between them, generally amounts to checking that the desired result holds
when evaluated at p-groups of normal p-rank 1. The second one is that the full subcategory
of the abelian category of p-biset functors, whose objects are rational p-biset functors, is
a Serre subcategory, i.e. if F ′ ⊆ F are p-biset functors, then F is rational if and only if
F ′ and F/F ′ are. Moreover, any dual functor of a rational p-biset functor is rational (see
Proposition 7.4 of [6] for details).

3. Borel-Smith functions

Let G be a finite group, and let C(G) denote the set of super class functions. Recall
that a super class function is a function from the set of subgroups of G to integers which
is constant on conjugacy classes. Borel-Smith functions are defined as follows:

Definition 3.1. A function f ∈ C(G) is called a Borel-Smith function if it satisfies the
following conditions:

(i) If H E L ≤ G, L/H ∼= Z/pZ, and p is odd, then f(H)− f(L) is even.
(ii) If H E L ≤ G, L/H ∼= Z/pZ× Z/pZ, Hi/H the subgroups of order p in L/H, then

f(H)− f(L) =
p∑

i=0

(f(Hi)− f(L)).

(iii) IfHELEN ≤ NG(H) and L/H ∼= Z/2Z, then f(H)−f(L) is even if N/H ∼= Z/4Z,
and f(H)− f(L) is divisible by 4 if N/H is the quaternion group of order 8.

These conditions are usually referred as Borel-Smith conditions. They were first dis-
covered as the conditions satisfied by the dimension function of a homology mod p sphere
with a G-action. The set of Borel-Smith functions is an additive subgroup of C(G) which
we denote by Cb(G) (see page 210 in [12] for more details).

Remark 3.2. Condition (iii) is usually stated in stronger terms, since one requires that
f(H) − f(L) should be divisible by 4 for any H E L E N ≤ NG(H) such that N/H is a
generalized quaternion group of order 2k, for k ≥ 3. But clearly, it is enough to consider
the quaternion group of order 8, since any larger quaternion group contains such a group
of order 8, which contains its unique subgroup of order 2.

Given a real representation V , we define the super class function DimV as the function
with values DimV (H) = dimR V H for all H ≤ G. It is an easy exercise to show that the
dimension function of a real representation satisfies the Borel-Smith conditions, and hence
DimV is a Borel-Smith function. The key result on Borel-Smith functions is that when G
is a nilpotent group, for every f ∈ Cb(G), there exist real representations V and W such
that f = DimV −DimW . In particular, we have the following:

Theorem 3.3. (Theorem 5.4 on page 211 of [12]) Let G be a nilpotent group, and
let RR(G) denote the real representation ring of G. Consider the group homomorphism
Dim : RR(G) → C(G) defined as the linear extension of the assignment V 7→ DimV .
Then, the image of Dim is exactly equal to the group of Borel-Smith functions Cb(G).

The assignment G 7→ Cb(G) together with appropriate action of bisets is a biset functor,
and the assignment V 7→ DimV is a morphism of biset functors. To show this, we first
need to describe the biset functor structure of the group of super class functions, and for
this we will identify C(G) with B∗(G).
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Recall that the biset functor B∗, the dual of the Burnside group functor, is defined
as the functor which sends every finite group G to B∗(G) = Hom(B(G),Z), and every
morphism U ∈ Γ(H,G), to the homomorphism B∗(U) : B∗(G) → B∗(H) where B∗(U) is
the transpose of the linear map B(Uop) : B(H) → B(G). Now the group C(G) of super
class functions can be identified with B∗(G) via the duality pairing C(G) × B(G) → Z
defined by (f, [G/L]) = f(L), and we will freely use this identification throughout the
paper. In particular, we will use it for considering the assignment G 7→ C(G) as a biset
functor. It is easy to check that if G and H are finite groups, if U is a finite (H,G)-biset,
and if f ∈ C(G), then the value of the superclass function C(U)(f) at the subgroup K of
H is equal to

(3.4) C(U)(f)(K) =
∑

u∈[K\U/G]

f(Ku) ,

where [K\U/G] is a set of representatives of (K,G)-orbits on U , and Ku is the subgroup
of G defined by

Ku = {g ∈ G | ∃k ∈ K, ku = ug} .

Note that for a real representation V of G, the value of the element DimV of B∗(G)
on X ∈ B(G) is equal to dimQHomQG(QX,V ). It follows easily that the assignment
V 7→ DimV is a morphism of biset functors from RR to B∗.

Notation 3.5. If H is a finite p-group, define an element εH of B(H) by

εH =
∑

E≤Ω1Z(H)

µ(1, E) [H/E] ,

where Ω1Z(H) is the largest elementary abelian subgroup in the center of H, and µ(1, E)
is the value of the Möbius function of the poset of subgroups of E.

It follows easily from this definition that DefHH/NεH = 0 for any nontrivial normal
subgroup N of H (for details, note that with the notation of Lemma 3.12 and Remark 3.13
of [7], one has that εH = fH

1 [H/1] in B(H)).

Notation 3.6. Let Ξ denote the class of p-groups which are cyclic of order p with p > 2,
cyclic of order 4, quaternion of order 8, or elementary abelian of rank 2. If H ∈ Ξ, define
the integer mH by mH = 2 if H is cyclic, by mH = 4 if H is quaternion, and by mH = 0
if H is elementary abelian of rank 2.

With this notation, we can rephrase the Borel-Smith conditions in the following way :
observe first that εH = H/1 − H/Z, if H is a nontrivial cyclic p-group or a generalized
quaternion 2-group, where Z is the unique central subgroup of order of p, and that

εH = H/1−
∑

|H:K|=p

H/K + pH/H = (H/1−H/H)−
∑

|H:K|=p

(H/K −H/H) ,

if H ∼= Z/pZ × Z/pZ. Now the Borel-Smith conditions can be expressed by saying that
an element f ∈ B∗(G) is in Cb(G) if and only if (DefresG

T/Sf)(εT/S) ∈ mT/SZ, whenever
(T, S) is a section of G such that T/S ∈ Ξ. This leads to the following :

Proposition 3.7. For a finite group G, let Cb(G) denote the group of Borel-Smith func-
tions. Set

β(G) = {f ∈ B∗(G) | ∀H ∈ Ξ, ∀ψ ∈ MapC(G,H), B∗(ψ)(f)(εH) ∈ mHZ} .

Then β(G) = Cb(G), up to the identification B∗(G) = C(G). In particular, the assignment
G 7→ Cb(G) ⊆ C(G) defines a subfunctor of C.
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Proof. First β(G) ⊆ Cb(G), because if (T, S) is a section of G with T/S ∈ Ξ, then the
set S\G is a (T/S,G)-biset, i.e. an element of MapC(G,T/S), whose action is precisely
DefresG

T/S .
Conversely, let G be any finite group, and let f ∈ Cb(G). We prove that for any H ∈ Ξ

and any ψ ∈ MapC(G,H), the value B∗(ψ)(f)(εH) is a multiple of mH .
We can assume that ψ is some transitive (H,G)-biset, so that, by [2] Lemme 3, there

exists a section (Y,X) of H and a section (T, S) of G, and a group isomorphism θ : T/S →
Y/X with

B∗(ψ)(f) = IndinfHY/XIso(θ)DefresG
T/Sf ,

thus
B∗(ψ)(f)(εH) = (Iso(θ)DefresG

T/Sf)(DefresH
Y/XεH) .

If the section (Y,X) is the section (H,1), then

B∗(ψ)(f)(εH) = (Iso(θ)DefresG
T/Sf)(DefresH

Y/XεH) = (DefresG
T/Sf)(Iso(θ−1)εH)

= (DefresG
T/Sf)(εT/S) ∈ mHZ ,

since f ∈ Cb(G) and T/S ∼= H. So we can assume that (Y,X) is a proper section of H.
Suppose first that H ∼= Z/pZ × Z/pZ. Then it is easily checked that any proper

restriction and any proper deflation of εH is equal to 0. So B∗(ψ)(f)(εH) = 0 as was to
be shown in this case.

Now, if H is cyclic, then mH = 2. If H has odd prime order p, then the proper deflation
DefHH/HεH is zero, and the proper restriction ResH

1 εH is (p − 1)1/1, which is a multiple
of 2. So B∗(ψ)(f)(εH) is even. If H has order 4, then any proper deflation of εH is zero,
and the restriction of εH to its subgroup K of order 2 is 2(K/1−K/K), again a multiple
of mH . It follows that the restriction of εH to the trivial group is also a multiple of mH .
Hence B∗(ψ)(f)(εH) is a multiple of mH in this case.

Finally, suppose H is the quaternion group of order 8. Since any proper deflation of εH
is zero and every subgroup of H is normal,

DefresH
Y/XεH = ResH/X

Y/X DefHH/XεH = 0

for every section (Y,X) with X 6= 1. So, we can assume X = 1. Note that for every
subgroup Y of H, we have ResH

Y εH = 2|H:Y |εY which is obviously a multiple of mH = 4 if
|H : Y | ≥ 4. In the case |H : Y | = 2, we have Y ∼= Z/4Z, and hence

B∗(ψ)(f)(εH) = 2(DefresG
T/Sf)(εT/S)

is multiple of 4 since (DefresG
T/Sf)(εT/S) is even, for f ∈ Cb(G) and T/S ∼= Z/4Z. Hence

β(G) = Cb(G).
Now if G and G′ are two finite groups, and if ϕ ∈ MapC(G,G′), and if f ∈ β(G), then

for any H ∈ Ξ and any ψ ∈ MapC(G′,H), one has that

B∗(ψ)B∗(ϕ)(f)(εH) = B∗(ψϕ)(f)(εH) ∈ mHZ ,

since ψϕ ∈ MapC(G,H) and f ∈ β(G). ThusB∗(ϕ)(f) ∈ β(G′), and β is a biset subfunctor
of B∗. This completes the proof. ¤

4. Proof of Theorem 1.2 and Theorem 1.3

Let P be a p-group, and k be a field of characteristic p. Given a non empty finite
P -set X, consider the kG-module ∆k(X) = ker{ε : kX → k} where ε is the k-linear
homomorphism which takes every element x ∈ X to 1 ∈ k. It has been shown by Alperin [1]
that ∆k(X) is an endo-permutation module which is capped in most of the cases (when P
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does not have a single fixed point on X). Recall that a kP -module M is called an endo-
permutation module if Endk(M) is a permutation module, and it is called capped if it
has an indecomposable summand with vertex P . When ∆k(X) is a capped module, then
we define the relative syzygy ΩX as the equivalence class of the endo-permutation module
∆k(X) in the Dade group Dk(P ) (see [7] for the definition of the Dade group). When
∆k(X) is not capped, or when X = ∅, we take ΩX = 0. The group DΩ(P ) is defined to
be the subgroup of the Dade group Dk(P ) generated by relative syzygies.

By Theorem 1.1, there is a surjective natural transformation Ψ : B∗ → DΩ of bisets
functors which is defined by

ΨP (ωX) = ΩX

for any finite p-group P and any finite P -set X. There is also an injective natural trans-
formation j : Cb → B∗ defined as the composition of the inclusion of the subfunctor Cb

into C with the identification C ∼= B∗.
Recall that the transpose of the linearization map B → RQ is an injection i : R∗Q → B∗.

It was shown in Theorem 1.8 of [5] that the image of R∗Q(P ) by the map ΨP is precisely
the torsion part DΩ

tors(P ) of DΩ(P ).
Our proof of Theorem 1.2 is as follows : we first show that Cb is a subfunctor of the

image of R∗Q in B∗. In other words, the injection j : Cb → B∗ factors through an injection
we also denote by j : Cb → R∗Q, so Theorem 1.2 is equivalent to Theorem 1.3, i.e. to the
exactness of the following sequence of biset functors

(4.1) 0 → Cb
j−→R∗Q

eΨ−→DΩ
tors → 0

where Ψ̃ = Ψ ◦ i.
Now all functors in this sequence are rational p-biset functors in the sense of Section 7

of [6]. In particular, the evaluation of this sequence at some p-group P is determined in
a precise way by its evaluations at p-groups of normal p-rank one, and the proof of its
exactness comes down to an inspection of this sequence in the case of these groups.

Lemma 4.2. Let P be a p-group, and f ∈ B∗(P ). Then f ∈ R∗Q(P ) if and only if for any
section (T, S) of P with T/S ∼= Z/pZ× Z/pZ, one has that (DefresP

T/Sf)(εT/S) = 0, i.e.

f(P/S)− f(P/T ) =
∑

S<X<T

(
f(P/X)− f(P/T )

)
.

Proof. The proof is similar to the proof of Lemma 3.2 of [5] (which gives another more
complicated criterion for f to belong to R∗Q(P )), and we refer to this lemma for details.
Since RQ(P ) and B(P ) are free abelian groups, the commutative diagram

R∗Q(P ) −−−−→ B∗(P )y
y

Q⊗Z R∗Q(P ) −−−−→ Q⊗Z B∗(P )

is a pullback diagram, where all the maps are injective. Moreover Q⊗ZR∗Q(P ) = QR∗Q(P )
identifies with HomQ(QRQ(P ),Q), and QB∗(P ) identifies with HomQ(QB(P ),Q). So the
assertion of the lemma is equivalent to the same assertion with R∗Q(P ) replaced by QR∗Q(P )
and B∗(P ) replaced by QB∗(P ).

Now QB(P ) has a basis over Q consisting of its primitive idempotents ePQ, which are
indexed by subgroups Q of P up to P -conjugation. The kernel of the linearization map
QB(P ) → QRQ(P ) consists of the linear combinations of idempotents ePQ indexed by
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noncyclic subgroups Q of P . Thus an element f of QB∗(P ) lies in QR∗Q(P ) if and only if
f(ePQ) = 0 for any noncyclic subgroup Q of P .

Suppose first that f ∈ QR∗Q(P ). Then since QR∗Q is a biset subfunctor of QB∗, it
follows that DefresP

T/Sf ∈ QR∗Q(T/S) for any section (T, S) of P . In particular if T/S

is elementary abelian of rank 2, this amounts to saying that (DefresPT/Sf)(eT/S
T/S) = 0,

since the only noncyclic subgroup of T/S is T/S itself. Moreover one checks easily that
εT/S = pe

T/S
T/S . Hence (DefresP

T/Sf)(εT/S) = 0.
Conversely, suppose that this condition holds for any section (T, S) of P such that T/S

is elementary abelian of rank 2. Then (DefresP
T/Sf)(eT/S

T/S) = 0. We prove that f(ePQ) = 0
for any noncyclic subgroup Q of P by induction on |Q|. If |Q| = p2, then Q is elementary
abelian of rank 2, so (ResP

Qf)(eQQ) = 0, using the hypothesis for the section (Q,1) of P .

But (ResP
Qf)(eQQ) = f(IndP

Qe
Q
Q), and IndP

Qe
Q
Q is a nonzero multiple of ePQ. Thus f(ePQ) = 0

in this case, and this starts induction.
Suppose that Q is a noncyclic subgroup of P , such that f(ePX) = 0 for any noncyclic

subgroup X of P with |X| < |Q|. Choose a normal subgroup S of Q such that Q/S is
elementary abelian of rank 2. Such a subgroup exists since Q is noncyclic. Then

0 = (DefresP
Q/Sf)(eQ/S

Q/S) = f(IndP
QInfQQ/Se

Q/S
Q/S) .

Moreover InfQQ/Se
Q/S
Q/S =

∑
X

eQX , where the summation is over all subgroupsX ofQ for which

XS = Q, up to Q-conjugation. Such subgroups are noncyclic, since X/X ∩ S ∼= Q/S is
noncyclic, and all of them except Q itself have order less than |Q|. Now IndP

Qe
Q
X is a

nonzero multiple of ePX , thus f(IndP
Qe

Q
X) = 0 for X 6= Q. It follows that f(IndP

Qe
Q
Q) = 0,

hence f(ePQ) = 0, completing the inductive step of the proof. ¤

Corollary 4.3. Let P be a p-group. Then Cb(P ) ⊆ R∗Q(P ). So Cb is a p-biset subfunctor
of R∗Q. In particular, the functor Cb is a rational p-biset functor.

Proof. The inclusion Cb(P ) ⊆ R∗Q(P ) follows from the lemma, and from the second Borel-
Smith condition. So Cb is a p-biset subfunctor of R∗Q, hence it is rational, since RQ is
rational, and since the dual as well as any subfunctor of a rational p-biset functor are
rational. ¤

Proof of Theorem 1.3. Proving that the sequence (4.1) is exact amounts to showing that
for each p-group P , the sequence

0 → Cb(P )
jP−→R∗Q(P )

eΨP−→DΩ
tors(P ) → 0

is an exact sequence of abelian groups. Choose a genetic basis G of P . We have a diagram

0 → Cb(P )
jP−→ R∗Q(P )

eΨP−→ DΩ
tors(P ) → 0

↑ ↑ ↑
0 → ⊕

Q∈G
∂Cb(NP (Q)/Q) → ⊕

Q∈G
∂R∗Q(NP (Q)/Q) → ⊕

Q∈G
∂DΩ

tors(NP (Q)/Q) → 0

where the vertical arrows are the maps ⊕
Q∈G

IndinfPNP (Q)/Q, and where for any p-biset

functor F and any p-group P , the group ∂F (R) is the subgroup of faithful elements
of F (R), i.e. the image of the map F (fR

1 ) associated to the idempotent fR
1 ∈ EndC(R).
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The existence of the bottom horizontal maps in this diagram, and the fact that this
diagram is commutative, follow from the fact that the maps j and Ψ̃ are maps of p-
biset functors. The vertical maps are, moreover, isomorphisms, because all three p-biset
functors are rational : the functor R∗Q is dual to a rational p-biset functor, the functor Cb

is a subfunctor of R∗Q, and the functor DΩ
tors is a quotient of R∗Q, since Ψ̃ : R∗Q → DΩ

tors is
surjective.

In other words, the above diagram is an isomorphism from the bottom line to the top
one. Moreover, the bottom line is the direct sum of sequences

(4.4) 0 → ∂Cb(S)
jS−→ ∂R∗Q(S)

eΨS−→ ∂DΩ
tors(S) → 0 ,

where S = NP (Q)/Q for Q ∈ G. So all we have to do is to check that this sequence is an
exact sequence when S is a group of normal p-rank one, and we do this by a case by case
inspection. Let S be a p-group of normal p-rank one. Recall that :

• The group S is cyclic if p 6= 2, or cyclic, generalized quaternion, dihedral of order
at least 16, or semi-dihedral if p = 2.

• (see [14] or [4]) If S is nontrivial, then there is a unique subgroup Z of order p
in the center of S. If Q is a subgroup of S not containing Z, then Q = 1 if S is
cyclic or generalized quaternion, or |Q| ≤ 2 if S is dihedral or semidihedral. The
noncentral subgroups of order 2 form a single conjugacy class of subgroups of S if
S is semidihedral, and two conjugacy classes of subgroups if S is dihedral.

• (Proposition 3.7 of [4]) The group S has a unique faithful irreducible rational
representation ΦS .

• (Theorem 10.3 of [10]) The group ∂DΩ
tors(S) is :

– trivial if |S| ≤ 2, or if S is dihedral.
– of order 2 if S is cyclic of order at least 3, generated by ΩS/1.
– cyclic of order 4 if S is generalized quaternion, generated by ΩS/1.
– of order 2 if S is semidihedral, generated by ΩS/1 + ΩS/I , where I is a non-

central subgroup of order 2 of S.
Now we observe that for any p-group S, the group ∂R∗Q(S) is the subgroup of R∗Q(S)

with basis the elements V ∗, where V is a faithful rational irreducible representation of S,
and V ∗ is the element of B∗(S) defined by setting V ∗(S/R) to be equal to the multiplicity
m(V,QS/R) of V as a summand of QS/R, for any subgroup R of S. It follows that if S
has normal p-rank one, then ∂R∗Q(S) = ZΦ∗S .

Now for any finite p-group S, the group ∂B∗(S) is the group of linear forms B(S) → Z
which map to 0 by any proper deflation. But if N /S and f ∈ B∗(S), then for any
subgroup X/N of S/N one has that

(DefPS/Nf)
(
(S/N)/(X/N)

)
= f(S/X) .

This means that f ∈ ∂B∗(S) if and only if f(S/X) = 0 whenever X contains a nontrivial
normal subgroup of S, or equivalently since S is a p-group, if X intersects the center
of S nontrivially. The group ∂Cb(S) consists of linear forms which satisfy this condition,
together with the Borel-Smith conditions.

Suppose first that S is cyclic of order at most 2. In this case the Borel-Smith conditions
are void, so an element f of ∂Cb(S) has only one possibly nonzero value, namely f(S/1),
and this value is arbitrary. In other words ∂Cb(S) = ∂R∗Q(S) in this case. ButDΩ

tors(S) = 0
in this case, so the sequence (4.4) is exact.

Now suppose that S is cyclic of order at least 3 or generalized quaternion. Then any
nontrivial subgroup of S intersects the center of S nontrivially. An element f in ∂B∗(S)
has only one possibly nonzero value, namely f(S/1). Thus ∂B∗(S) = ZωS/1. This is also



12 SERGE BOUC AND ERGÜN YALÇIN

equal to ∂R∗Q(S), since the conditions of Lemma 4.2 are trivially true for f = ωS/1 in this
case.

Now f ∈ ∂Cb(S) if and only if the additional Borel-Smith condition coming from a
section (T, 1) is fulfilled, where T is cyclic of prime order if S is cyclic of odd order,
or cyclic of order 4 if S is a cyclic 2-group, or quaternion of order 8 if S is generalized
quaternion, i.e. if f(S/1) is a multiple of 2 if S is cyclic, or 4 if S is generalized quaternion.

This shows that ∂Cb(S) is generated by mSωS/1, where mS = 2 if S is cyclic, or 4 if S
is generalized quaternion. But Ψ̃S(ωS/1) = ΩS/1, and the order of ΩS/1 is precisely 2 if S
is cyclic of order at least 3, or 4 if S is generalized quaternion. Hence the sequence (4.4)
is again exact in this case.

Now if S is dihedral of order at least 16, and f ∈ ∂B∗(S), the only possibly nonzero
values of f are f(S/1), f(S/I), and f(S/J), where I and J are noncentral subgroups of
order 2 of S, not conjugate in S. The Borel-Smith condition coming from the section (E,1),
where E is an elementary abelian subgroup of rank 2 of S containing I, gives f(S/1) =
2f(S/I), because E contains exactly 2 conjugates of I in S. Similarly f(S/1) = 2f(S/J),
hence f(S/I) = f(S/J). Thus f ∈ R∗Q(S) if and only if f(S/1) = 2f(S/I) = 2f(S/J).
The only other nontrivial Borel-Smith condition comes from the section (T,1), where T is
the subgroup of order 4 in S. This condition gives that f(S/1) is even, but this follows from
the previous conditions. This shows that ∂Cb(S) = ∂RQ(S) in this case, generated by the
linear form whose nonzero values are 1 at S/I and S/J , and 2 at S/1. But ∂DΩ

tors(S) = 0
if S is dihedral, and the sequence (4.4) is exact in this case.

Finally if S is semi-dihedral, and f ∈ B∗(S), then the only possibly nonzero values
of f are f(S/1) and f(S/I), where I is a noncentral subgroup of order 2 in S. Now
f ∈ ∂R∗Q(P ) if and only it satisfies the Borel-Smith condition obtained for the section
(E,1), where E is the elementary abelian subgroup of rank 2 containing I. This condition
gives f(S/1) = 2f(S/I) as in the dihedral case. Hence the generator Φ∗S of ∂R∗Q(S) has
value 1 at S/I, 2 at S/1, and zero anywhere else. Now f ∈ ∂Cb(S) if and only if the
additional Borel-Smith condition coming from the section (T,1) is fulfilled, where T is a
quaternion subgroup of order 8 in S. This condition on f is that f(S/1) is a multiple
of 4. So ∂Cb(S) is generated by 2Φ∗S . But also Φ∗S = ωS/I + ωS/1 in this case, since the
multiplicity of ΦS as a summand of QP/I and QP/1 is equal to 1 and 2, respectively
(Lemma 4.1 of [6]). Thus Ψ̃S(Φ∗S) = ΩS/I + ΩS/1, which has precisely order 2 in DΩ(S).
Hence the sequence (4.4) is again exact in this case, and this completes the proof of
Theorem 1.3, hence also of Theorem 1.2. ¤
Remark 4.5. It follows from Theorem 1.2 that for any p-group P , the map

∏

(T,S)∈Ξ(P )

DefresP
T/S : DΩ(P ) →

∏

(T,S)∈Ξ(P )

DΩ(T/S)

is injective, where Ξ(P ) is the set of sections (T, S) of P such that T/S is in Ξ. This is a
weak form of the detection theorem proved by Carlson and Thévenaz for the whole Dade
group (Theorem 13.1 of [11]). Conversely, one can give an alternative proof of Theorem 1.2
based on this detection theorem, which comes down to examining the cases of groups in Ξ.

5. Proof of Theorem 1.4

Let G be a finite group. In our identification C(G) ∼= B∗(G), we have until now
only considered the additive group structure on C(G). But C(G) has also a natural ring
structure, given by pointwise multiplication of superclass functions. We will now consider
the group C(G)× of units of the ring C(G).
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Of course, since the units group of the ring Z is {±1}, an element f of C(G) is in C(G)×
if and only if f takes values in {±1}. It follows that C(G)× is an elementary abelian 2-
group of rank equal to the number of conjugacy classes of subgroups of G. Hence if we
define the exponential map γ : C(G) → C(G)× by

γ(f)(K) = (−1)f(K)

for any f ∈ C(G) and any subgroup K of G, we get a surjective group homomorphism
C(G) → C(G)×, which factors as

γ : C(G) → F2C(G)
γ̄→ C(G)×

where the left map is the mod 2 reduction C(G) → F2C(G), and the map γ̄ is a group
isomorphism F2C(G) → C(G)×.

We can now use this isomorphism to endow the assignment G 7→ C(G)× with a biset
functor structure, since F2C ∼= F2B

∗ is a biset functor. We denote this biset functor
by C× : in other words, for any finite group G, we set C×(G) = C(G)×. If G and H
are finite groups, if U is a finite (H,G)-biset, and if f ∈ C×(G), then the value at the
subgroupK ofH of the superclass function C×(U)(f) is obtained by the following formula,
similar to 3.4 :

C×(U)(f)(K) =
∏

u∈[K\U/G]

f(Ku) .

This formula shows in particular that the embedding of B×(G) into C×(G) given by
the Mark homomorphism (also called the ghost map) is a morphism of biset functors
(see Section 5 of [8] for details).

Now composing γ : C(G) → C×(G) with the dimension function Dim : RR(G) → C(G),
we obtain the homomorphism

Θ = γ ◦Dim : RR(G) → C×(G)

which is known as tom Dieck’s homomorphism. It is shown by tom Dieck that the im-
age of Θ lies in B×(G). Moreover, by a result of Tornehave [13] it is known that tom
Dieck’s homomorphism is surjective onto B×(G) when G is a p-group (see also [14] for an
alternative proof). One of the consequences of Tornehave’s result is the following :

Proposition 5.1. Let P be a p-group. Then, γ
(
Cb(P )

)
= B×(P ).

Proof. First we show that γ
(
Cb(P )

)
lies in B×(P ). Take u = γ(f) with f ∈ Cb(P ).

Since the image of Dim is equal to Cb(P ) when P is a p-group, there is a virtual real
representation ξ ∈ RR(P ) such that Dim(ξ) = f . This gives u = γ(f) = Θ(ξ), so u is in
B×(P ) as desired. Now, the equality imγ = B×(P ) follows from Tornehave’s result that
Θ is surjective onto B×(P ) for a p-group. ¤

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let P be a p-group. Consider the following commuting diagram

0 −−−−→ Cb(P )
jP−−−−→ C(P ) ΨP−−−−→ DΩ(P ) −−−−→ 0yγ|Cb(P )

yγ

y
0 −−−−→ B×(P ) −−−−→ C×(P ) −−−−→ Q(P ) −−−−→ 0

where the first exact sequence is the one given in Theorem 1.2 and Q(P ) denotes the
quotient group C×(P )/B×(P ). Taking the mod 2 reduction of the top sequence, we
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obtain

0 −−−−→ F2Cb(P )/TorF2D
Ω(P ) −−−−→ F2C(P ) Ψ2−−−−→ F2D

Ω(P ) −−−−→ 0yγ̄|Cb(P )

yγ̄

y
0 −−−−→ B×(P ) −−−−→ C×(P ) −−−−→ Q(P ) −−−−→ 0 .

Since γ̄|Cb(P ) is surjective and γ̄ is an isomorphism, all the vertical maps are isomorphisms.
Hence,

kerΨ2
∼= F2Cb(P )/TorF2D

Ω(P ) ∼= B×(P ).
This completes the proof. ¤
Remark 5.2. One of the consequences of Theorem 1.4 is that for every p-group P , there
is an exact sequence of elementary abelian groups (F2-vector spaces) of the form

0 → B×(P ) → C×(P ) → F2D
Ω(P ) → 0

where the first map is the ghost map. In [14], it has been shown that B×(P ) can be
characterized as the subspace of C×(P ) satisfying certain conditions called Yoshida con-
ditions (see Corollary 2.3 of [14]) and that these conditions can be viewed as a set of
F2-linear forms coming from certain subquotients of P . The exact sequence above gives
that F2D

Ω(P ) has a presentation by Yoshida conditions as an F2-vector space.

In the rest of the section, we study the mod 2 reduction of the exact sequence in
Theorem 1.3. We prove the following :

Proposition 5.3. Let

0 → TorF2D
Ω → F2Cb → F2R

∗
Q
eΨ2−→F2D

Ω
tors → 0

be the mod 2-reduction of the exact sequence given in Theorem 1.3. Then, the kernel of Ψ̃2

is naturally equivalent to the functor B× of units of the Burnside ring.

Proof. Consider the commuting diagram of p-biset functors

0 −−−−→ ker Ψ̃2 −−−−→ F2R
∗
Q

eΨ2−−−−→ F2D
Ω
tors −−−−→ 0y

yi

y
0 −−−−→ B× −−−−→ F2B

∗ Ψ2−−−−→ F2D
Ω −−−−→ 0 .

Note that by Theorem 1.8 of [5] there is an exact sequence of the form

0 → R∗Q → B∗ → DΩ/DΩ
tors → 0.

Since the cokernel DΩ/DΩ
tors is torsion free, this still gives us an exact sequence after

tensoring with F2. Thus the second vertical map in the above diagram is injective with
cokernel equal to F2 ⊗Z (DΩ/DΩ

tors). By a similar argument one can see easily that the
third vertical transformation is also injective with the same cokernel. So, the first vertical
map is an isomorphism by the Snake lemma. ¤

Note that as a consequence of Proposition 5.3, we obtain two short exact sequences of
p-biset functors :

0 → B× → F2R
∗
Q → F2D

Ω
tors → 0

0 → TorF2D
Ω → F2Cb → B× → 0 .

From the proof of Proposition 5.3, it is easy to see that the second exact sequence is the
same as the second exact sequence given in Corollary 1.5. We also observe that the first
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exact sequence above is the same as the exact sequence given in Proposition 9.11 of [8].
Thus our arguments provide a more natural way to see the exactness of the sequence given
there.

Note that when p is an odd prime, the unit group B×(P ) is equal to {±1} for every
p-group P , so in this case the second exact sequence above reduces to a sequence of the
form

0 → TorF2D
Ω → F2Cb → ΓF2 → 0

where ΓF2 denotes the constant functor with values F2. This is closely related to an exact
sequence given by Bouc and Thévenaz in [9]. The exact sequence given there is of the
form

0 → Dtors → F2RQ → ΓF2 → 0

where Dtors is a quotient of the torsion part of the Dade group. It has been shown by
Carlson and Thévenaz ([11] Theorem 13.3) that actually Dtors = Dtors, and by Theo-
rem 6.2 and Theorem 11.2 of [9], it follows that Dtors = DΩ

tors when p is an odd prime.
It is clear from the second sequence above that Dtors is an F2-vector space. So, we can
identify TorF2D

Ω with Dtors. Thus, it makes sense to ask whether the two above sequences
are the same. We have the following :

Theorem 5.4. The p-biset functors F2Cb and F2RQ are naturally equivalent when p is
congruent to 3 modulo 4.

Proof. Let P be a p-group with p > 2. Consider the F2-linear map ϕ : F2RQ(P ) →
F2Cb(P ) defined as the linear extension of the assignment V 7→ fV where V is a rational
representation of P and fV is the Borel-Smith function given by

fV (Q) =
2

p− 1

(
dimQ V Q − dimQ V P

)
+ dimQ V P

for every subgroup Q ≤ P . To see that fV (Q) is a Borel-Smith function, we first note that
when Q ≤ R are two subgroups in P , then p − 1 divides dimQ V Q − dimQ V R. This can
be shown by an easy induction and by noting that it is true when Q has index p in R (for
a cyclic group H of order p, it is clear that dimQW − dimQWH is divisible by p − 1 for
every QH-module W .) This shows in particular that fV (Q) is an integer for all Q ≤ P .
It also shows that for every Q ≤ R with |R : Q| = p, we have fV (Q) ≡ fV (R) mod 2. To
show that fV also satisfies the Borel-Smith conditions coming from Z/pZ×Z/pZ sections,
we just notice that fV is a linear combination (with rational coefficients) of two Borel-
Smith functions, namely DimV and a constant function. So, it satisfies these Borel-Smith
conditions as well.

Now, we need to verify that ϕ commutes with biset action. For this, it is enough to
show that for any (P,R)-biset U and an QR-module V , the equality

C(U)fV (Q) = fQU⊗QRV (Q)

holds for every Q ≤ P . Since the assignment V → DimV commutes with the biset action,
we have

fQU⊗QRV (Q)− C(U)fV (Q) =
p− 3
p− 1

(
dimQ(QU ⊗QR V )P −

∑

u∈Q\U/R

dimQ V R
)

=
p− 3
p− 1

(
Dim(QU ⊗QR V )(P )− |Q\U/R| dimQ V R

)
.
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Since p−3 is a multiple of 4, and since 4R∗Q ⊆ 2Cb, it is enough to show that the difference

D = Dim(QU ⊗QR V )(P )− |Q\U/R|dimQ V R

is divisible by p − 1. But this follows from the fact that the function DimV is constant
modulo (p − 1), and that there exists a constant biset functor modulo p − 1. In other
words,

Dim(QU ⊗QR V )(P ) =
(
C(U)DimV

)
(P ) =

∑

u∈P\U/R

dimQ V P u

≡ |P\U/R|dimQ V
(
mod. (p− 1)

)
.

Since dimQ V R is also equal to dimQ V modulo p− 1, we have that

D ≡ (|P\U/R| − |Q\U/R|) dimQ V

modulo p− 1. But |P\U/R| − |Q\U/R| is divisible by p− 1 : this easily follows from the
fact that for a cyclic group H of order p, the difference |W | − |W/H| is divisible by p− 1
for every H-set W . Thus D ≡ 0 modulo p− 1, as was to be shown.

Finally, the fact that ϕ is an isomorphism follows from the general theory for rational
biset functors. It is easy to see that both of these functors are rational and so it is enough
to check the isomorphism on genetic sections, i.e. on p-groups of normal p-rank one, which
are cyclic, in this case. For cyclic groups it is very easy to verify that ϕ is an isomorphism
by direct calculation. ¤
Remark 5.5. In the case p ≡ 1 (mod. 4), then it is easy to check that the constant
functions form a subfunctor of F2Cb, isomorphic to ΓF2 . Since F2RQ has no such subfunctor
(Corollary 8.4 of [9]), it follows that the functors F2RQ and F2Cb are not isomorphic in
this case.

We conclude the following

Corollary 5.6. If p ≡ 3 (mod. 4), then the following two exact sequences are isomorphic:

0 → TorF2D
Ω → F2Cb → B× → 0,

0 → Dtors → F2RQ → ΓF2 → 0.

Proof. Since 2 | p − 1, the functor F2RQ has a unique proper non-zero subfunctor, by
Corollary 8.4 of [9]. Since each of the functors TorF2D

Ω, B×, Dtors and ΓF2 is non zero, it
follows that the isomorphism F2RQ → F2Cb of Theorem 5.4 maps the subfunctor Dtors of
F2RQ to the subfunctor TorF2D

Ω of F2Cb , and induces the isomorphism ΓF2 → B×. ¤
Acknowledgements : We wish to thank the referee for her/his detailed report on the
first version of this paper, and for making many useful suggestions to improve it.
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[10] J. Carlson and J. Thévenaz, Torsion endo-trivial modules, Alg. Repr. Theory, 3 (2000), 303-335.
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