Biset functors

Serge Bouc

CNRS - Université de Picardie

MSRI - 02/08/2008
1 Groups and morphisms
Overview

1 Groups and morphisms
 - Group homomorphisms
Overview

1 Groups and morphisms
 - Group homomorphisms
 - Bisets
Overview

1 Groups and morphisms
 - Group homomorphisms
 - Bisets

2 The biset category
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors

Serge Bouc (CNRS - Université de Picardie)
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements

Serge Bouc (CNRS - Université de Picardie)
Overview

1 Groups and morphisms
 - Group homomorphisms
 - Bisets

2 The biset category

3 Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4 \(p \)-biset functors
 - Rational representations of \(p \)-groups
 - Genetic subgroups. Genetic bases
 - Rational \(p \)-biset functors

5 Applications
 - Units of Burnside rings
 - Linearly isomorphic permutation representations
 - The Dade group of a \(p \)-group

Serge Bouc (CNRS - Université de Picardie)
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4. p-biset functors

Rational representations of p-groups
Genetic subgroups. Genetic bases
Rational p-biset functors

Applications
Units of Burnside rings
Linearly isomorphic permutation representations
The Dade group of a p-group
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4. p-biset functors
 - Rational representations of p-groups

Applications

- Units of Burnside rings
- Linearly isomorphic permutation representations
- The Dade group of a p-group
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4. p-biset functors
 - Rational representations of p-groups
 - Genetic subgroups. Genetic bases
Overview

1 Groups and morphisms
 - Group homomorphisms
 - Bisets

2 The biset category

3 Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4 p-biset functors
 - Rational representations of p-groups
 - Genetic subgroups. Genetic bases
 - Rational p-biset functors

Applications
- Units of Burnside rings
- Linearly isomorphic permutation representations
- The Dade group of a p-group
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4. p-biset functors
 - Rational representations of p-groups
 - Genetic subgroups. Genetic bases
 - Rational p-biset functors

5. Applications
Overview

1 Groups and morphisms
 - Group homomorphisms
 - Bisets

2 The biset category

3 Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4 p-biset functors
 - Rational representations of p-groups
 - Genetic subgroups. Genetic bases
 - Rational p-biset functors

5 Applications
 - Units of Burnside rings
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4. p-biset functors
 - Rational representations of p-groups
 - Genetic subgroups. Genetic bases
 - Rational p-biset functors

5. Applications
 - Units of Burnside rings
 - Linearly isomorphic permutation representations
Overview

1. Groups and morphisms
 - Group homomorphisms
 - Bisets

2. The biset category

3. Biset functors
 - Faithful elements
 - Projective functors. Simple functors

4. p-biset functors
 - Rational representations of p-groups
 - Genetic subgroups. Genetic bases
 - Rational p-biset functors

5. Applications
 - Units of Burnside rings
 - Linearly isomorphic permutation representations
 - The Dade group of a p-group
Group homomorphisms and representations

When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism. It leads to the category of groups: objects are groups, and morphisms are group homomorphisms. With this definition, many objects naturally attached to groups become contravariant functors: e.g. any K_H-module can be viewed as a K_G-module, by restriction along f. This yields a map $R^K(f) : R^K(H) \to R^K(G)$ between representation groups. Any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.

Examples:
- If f is the inclusion map $G \leq H$, then $R^K(f)$ and $B(f)$ are ordinary restriction maps, denoted by Res^H_G.
- If $N \unlhd G$, and $f : G \to H = G/N$ is the projection map, then $R^K(f)$ and $B(f)$ are inflation maps, denoted by Inf^G_H.
When G and H are (finite) groups, the natural notion of morphism $f : G \rightarrow H$ is the notion of group homomorphism.
Group homomorphisms and representations

- When G and H are (finite) groups, the natural notion of morphism $f : G \rightarrow H$ is the notion of group homomorphism.
- It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.
When G and H are (finite) groups, the natural notion of morphism $f : G \rightarrow H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors:

- For any K-H-module, it becomes a K-G-module by restriction along f.
- Any H-set becomes a G-set through f.

Examples:
- If f is the inclusion map $G \leq H$, then $R_{K,H}(f)$ and $B(f)$ are ordinary restriction maps, denoted by $\text{Res}_{H,G}$.
- If $N \trianglelefteq G$ and $f : G \rightarrow H = G/N$ is the projection map, then $R_{K,H}(f)$ and $B(f)$ are inflation maps, denoted by $\text{Inf}_{G,H}$.
Group homomorphisms and representations

- When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.
- It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.
- With this definition, many objects naturally attached to groups become contravariant functors: e.g.
 - any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f.

Serge Bouc (CNRS - Université de Picardie)
When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors: e.g.

- any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f. This yields a map $R_\mathbb{K}(f) : R_\mathbb{K}(H) \to R_\mathbb{K}(G)$ between representation groups.
When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors: e.g.

- any K^H-module can be viewed as a K^G-module, by restriction along f. This yields a map $R_K(f) : R_K(H) \to R_K(G)$ between representation groups.
- any H-set can be viewed as a G-set,
When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors: e.g.

- any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f. This yields a map $R_{\mathbb{K}}(f) : R_{\mathbb{K}}(H) \to R_{\mathbb{K}}(G)$ between representation groups.
- any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.
When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors: e.g.

- any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f. This yields a map $R_{\mathbb{K}}(f) : R_{\mathbb{K}}(H) \to R_{\mathbb{K}}(G)$ between representation groups.
- any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.

Examples:
When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors: e.g.

- any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f. This yields a map $R_\mathbb{K}(f) : R_\mathbb{K}(H) \to R_\mathbb{K}(G)$ between representation groups.
- any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.

Examples:

- If f is the inclusion map $G \leq H$, then $R_\mathbb{K}(f)$ and $B(f)$ are ordinary restriction maps,
Group homomorphisms and representations

- When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.
- It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.
- With this definition, many objects naturally attached to groups become contravariant functors: e.g.
 - any KH-module can be viewed as a KG-module, by restriction along f. This yields a map $R_K(f) : R_K(H) \to R_K(G)$ between representation groups.
 - any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.
- **Examples:**
 - If f is the inclusion map $G \leq H$, then $R_K(f)$ and $B(f)$ are ordinary restriction maps, denoted by Res^H_G.
Group homomorphisms and representations

- When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.
- It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.
- With this definition, many objects naturally attached to groups become contravariant functors: e.g.
 - any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f. This yields a map $R_\mathbb{K}(f) : R_\mathbb{K}(H) \to R_\mathbb{K}(G)$ between representation groups.
 - any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.
- **Examples:**
 - If f is the inclusion map $G \leq H$, then $R_\mathbb{K}(f)$ and $B(f)$ are ordinary restriction maps, denoted by Res^H_G.
 - If $N \trianglelefteq G$, and $f : G \to H = G/N$ is the projection map, then $R_\mathbb{K}(f)$ and $B(f)$ are inflation maps,
When G and H are (finite) groups, the natural notion of morphism $f : G \to H$ is the notion of group homomorphism.

It leads to the category of groups: objects are groups, and morphisms are group homomorphisms.

With this definition, many objects naturally attached to groups become contravariant functors: e.g.

- any $\mathbb{K}H$-module can be viewed as a $\mathbb{K}G$-module, by restriction along f. This yields a map $R_\mathbb{K}(f) : R_\mathbb{K}(H) \to R_\mathbb{K}(G)$ between representation groups.
- any H-set can be viewed as a G-set, and this yields a map $B(f) : B(H) \to B(G)$ between Burnside groups.

Examples:

- If f is the inclusion map $G \leq H$, then $R_\mathbb{K}(f)$ and $B(f)$ are ordinary restriction maps, denoted by Res^H_G.
- If $N \trianglelefteq G$, and $f : G \to H = G/N$ is the projection map, then $R_\mathbb{K}(f)$ and $B(f)$ are inflation maps, denoted by Inf^G_H.
From homomorphisms to bisets

- There are other natural covariant operations:

If $G \leq H$, there is an induction map $\text{Ind}^H_G : R^K(G) \to R^K(H)$, and also $\text{Ind}^H_G : B(G) \to B(H)$.

If $H = G/N$, there is a deflation map $\text{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N \backslash X$.

If $\text{char}(K) \nmid |N|$, there is $\text{Def}^G_H : R^K(G) \to R^K(H)$, induced by $V \mapsto V N = V / [N, V]$.

It is often useful to compose these two different kinds of operations. This gives a list or formulae, e.g. the celebrated Mackey formula $\text{Res}^G_K \circ \text{Ind}^G_H = \sum_{x \in K \setminus G/H}$.

Question: Is there a way to encode all these operations (Res^H_G, Ind^H_G, $\text{Def}^G_{G/N}$, $\text{Def}^G_{G/N}$) in a single formalism? Is there a category in which all these would appear as "morphisms"?

Answer: Yes. The biset category for finite groups.
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\text{Ind}^H_G : R_K(G) \to R_K(H)$.

It is often useful to compose these two different kinds of operations. This gives a list or formulae, e.g. the celebrated Mackey formula $\text{Res}^G_K \circ \text{Ind}^H_G = \sum_{x \in K \mod H} \cdots$.
There are other natural **covariant** operations:

- If $G \leq H$, there is an **induction** map $Ind^H_G : R_K(G) \to R_K(H)$, and also $Ind^H_G : B(G) \to B(H)$.
There are other natural covariant operations:

- If \(G \leq H \), there is an induction map \(\text{Ind}_G^H : R_K(G) \to R_K(H) \), and also \(\text{Ind}_G^H : B(G) \to B(H) \).
- If \(H = G/N \), there is a deflation map \(\text{Def}_H^G : B(G) \to B(H) \).

It is often useful to compose these two different kinds of operations. This gives a list of formulae, e.g. the celebrated Mackey formula:

\[
\text{Res}^H_G \circ \text{Ind}_G^H = \sum_{x \in K \setminus G \setminus H} \ldots
\]

Question: Is there a way to encode all these operations (\(\text{Res}_H^G \), \(\text{Ind}_G^H \), \(\text{Inf}_G^G \), \(\text{Def}^G_H \)) in a single formalism? Is there a category in which all these would appear as "morphisms"?

Answer: Yes: the biset category.
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\text{Ind}^H_G : R_K(G) \to R_K(H)$, and also $\text{Ind}^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $\text{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N \smallsetminus X$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula $\text{Res}^G_K \circ \text{Ind}^G_H = \sum_{x \in K \smallsetminus G/H}$.

Question: Is there a way to encode all these operations (Res^H_G, Ind^H_G, $\text{Inf}^G_G/G/N$, Def^G_H) in a single formalism? Is there a category in which all these would appear as "morphisms"?

Answer: Yes.

: the biset category.
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $Ind^H_G : R_K(G) \to R_K(H)$, and also $Ind^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $Def^G_H : B(G) \to B(H)$, induced by $X \mapsto N \setminus X$, and if $\text{char}(K) \nmid |N|$, there is $Def^G_H : R_K(G) \to R_K(H)$,
There are other natural \textbf{covariant} operations:

- If $G \leq H$, there is an \textit{induction} map $\text{Ind}^H_G : R_K(G) \to R_K(H)$, and also $\text{Ind}^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a \textit{deflation} map $\text{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N \setminus X$, and if $\text{char}(K) \nmid |N|$, there is $\text{Def}^G_H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula.

Question: Is there a way to encode all these operations (Res^H_G, Ind^H_G, $\text{Inf}^G_{G/N}$, $\text{Def}^G_{G/N}$) in a single formalism? Is there a category in which all these would appear as "morphisms"?

Answer: Yes. The biset category for finite groups.
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\text{Ind}^H_G : R_K(G) \to R_K(H)$, and also $\text{Ind}^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $\text{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N\backslash X$, and if $\text{char}(K) \nmid |N|$, there is $\text{Def}^G_H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations.

This gives a list or formulae, e.g. the celebrated Mackey formula $\text{Res}^G_K \circ \text{Ind}^H_G = \sum_{x \in K \backslash G/H} \ldots$.
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $Ind^H_G : R_K(G) \to R_K(H)$, and also $Ind^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $Def^G_H : B(G) \to B(H)$, induced by $X \mapsto N \setminus X$, and if $\text{char}(K) \nmid |N|$, there is $Def^G_H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae,
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\text{Ind}^H_G : R_K(G) \to R_K(H)$, and also $\text{Ind}^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $\text{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N \setminus X$, and if $\text{char}(K) \nmid |N|$, there is $\text{Def}^G_H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula

$$\text{Res}^G_K \circ \text{Ind}^G_H = \sum_{x \in K \setminus G/H} \ldots$$
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\operatorname{Ind}^H_G : R_K(G) \to R_K(H)$, and also $\operatorname{Ind}^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $\operatorname{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N \setminus X$, and if $\operatorname{char}(K) \nmid |N|$, there is $\operatorname{Def}^G_H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula $\operatorname{Res}^G_K \circ \operatorname{Ind}^G_H = \sum_{x \in K \backslash G/H} \ldots$

Question: Is there a way to encode all these operations (Res^G_H, Ind^G_H, $\operatorname{Inf}^G_{G/N}$, $\operatorname{Def}^G_{G/N}$) in a single formalism?
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\text{Ind}^H_G : R_K(G) \to R_K(H)$, and also $\text{Ind}^H_G : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $\text{Def}^G_H : B(G) \to B(H)$, induced by $X \mapsto N \backslash X$, and if $\text{char}(K) \nmid |N|$, there is $\text{Def}^G_H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula

$$\text{Res}^G_K \circ \text{Ind}^G_H = \sum_{x \in K \backslash G/H} \ldots$$

Question: Is there a way to encode all these operations (Res^H_G, Ind^H_G, $\text{Inf}^G_{G/N}$, $\text{Def}^G_{G/N}$) in a single formalism? Is there a category in which all these would appear as “morphisms”?

Serge Bouc

(CNRS - Université de Picardie)
There are other natural **covariant** operations:

- If $G \leq H$, there is an *induction* map $\text{Ind}_G^H : R_K(G) \rightarrow R_K(H)$, and also $\text{Ind}_G^H : B(G) \rightarrow B(H)$.

- If $H = G/N$, there is a *deflation* map $\text{Def}_G^H : B(G) \rightarrow B(H)$, induced by $X \mapsto N \setminus X$, and if $\text{char}(K) \nmid |N|$, there is $\text{Def}_G^H : R_K(G) \rightarrow R_K(H)$, induced by $V \mapsto V_N = V/[N, V]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula

$$\text{Res}_K^G \circ \text{Ind}_H^G = \sum_{x \in K \setminus G/H} \ldots$$

Question: Is there a way to encode all these operations (Res_G^H, Ind_G^H, $\text{Inf}_G^{G/N}$, $\text{Def}_G^{G/N}$) in a single formalism? Is there a category in which all these would appear as “morphisms”?

Answer: Yes.
There are other natural covariant operations:

- If $G \leq H$, there is an induction map $\text{Ind}_G^H : R_K(G) \to R_K(H)$, and also $\text{Ind}_G^H : B(G) \to B(H)$.
- If $H = G/N$, there is a deflation map $\text{Def}_G^H : B(G) \to B(H)$, induced by $X \mapsto N\backslash X$, and if $\text{char}(K) \nmid |N|$, there is $\text{Def}_G^H : R_K(G) \to R_K(H)$, induced by $V \mapsto V_N = V/[[N, V]]$.

It is often useful to compose these two different kind of operations. This gives a list or formulae, e.g. the celebrated Mackey formula

$$\text{Res}_K^G \circ \text{Ind}_H^G = \sum_{x \in K \backslash G/H} \ldots$$

Question: Is there a way to encode all these operations ($\text{Res}_K^H, \text{Ind}_G^H, \text{Inf}_{G/N}^G, \text{Def}_{G/N}^G$) in a single formalism? Is there a category in which all these would appear as “morphisms”?

Answer: Yes: the biset category for finite groups.
Bisets

Definition

Let G and H be groups.
Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute.
Bisets

Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$(h \cdot u) \cdot g = h \cdot (u \cdot g).$$
Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

\[\forall h \in H, \, \forall u \in U, \, \forall g \in G, \, (h \cdot u) \cdot g = h \cdot (u \cdot g). \]
Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$\forall h \in H, \forall u \in U, \forall g \in G, \quad (h \cdot u) \cdot g = h \cdot (u \cdot g).$$

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]
Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g).$$

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K}U$ is a $(\mathbb{K}H, \mathbb{K}G)$-bimodule.
Bisets

Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g)$.

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K}U$ is a $(\mathbb{K}H, \mathbb{K}G)$-bimodule. This gives a functor $L \mapsto \mathbb{K}U \otimes_{\mathbb{K}G} L$ from $\mathbb{K}G\text{-Mod}$ to $\mathbb{K}H\text{-Mod}$,
Bisets

Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g).$$

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K}U$ is a $(\mathbb{K}H, \mathbb{K}G)$-bimodule. This gives a functor $L \mapsto \mathbb{K}U \otimes_{\mathbb{K}G} L$ from $\mathbb{K}G\text{-Mod}$ to $\mathbb{K}H\text{-Mod}$, which induces a map $R_{\mathbb{K}}(U) : R_{\mathbb{K}}(G) \to R_{\mathbb{K}}(H)$, if $\text{char} \mathbb{K} \nmid |G_u| \ \forall u \in U \ldots$
Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g).$$

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K} U$ is a $(\mathbb{K} H, \mathbb{K} G)$-bimodule. This gives a functor $L \mapsto \mathbb{K} U \otimes_{\mathbb{K} G} L$ from $\mathbb{K} G\text{-Mod}$ to $\mathbb{K} H\text{-Mod}$, which induces a map $R_{\mathbb{K}}(U) : R_{\mathbb{K}}(G) \to R_{\mathbb{K}}(H)$, if $\text{char}\mathbb{K} \nmid |G_u| \ \forall u \in U$. . .

- If $H \leq G$, let $\text{Res}^G_H = \underleftarrow{H} G_G$.

Serge Bouc (CNRS - Université de Picardie)
Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

$$\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g).$$

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K}U$ is a $(\mathbb{K}H, \mathbb{K}G)$-bimodule. This gives a functor $L \mapsto \mathbb{K}U \otimes_{\mathbb{K}G} L$ from $\mathbb{K}G\text{-Mod}$ to $\mathbb{K}H\text{-Mod}$, which induces a map $R_{\mathbb{K}}(U) : R_{\mathbb{K}}(G) \rightarrow R_{\mathbb{K}}(H)$, if $\text{char} \mathbb{K} \nmid |G_u| \ \forall u \in U$...

- If $H \leq G$, let $\text{Res}^G_H = _H G_G$. Then $R_{\mathbb{K}}(\text{Res}^G_H)$ is the restriction map $R_{\mathbb{K}}(G) \rightarrow R_{\mathbb{K}}(H)$.

Serge Bouc (CNRS - Université de Picardie)
Bisets

Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

\[
\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g).
\]

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K}U$ is a $(\mathbb{K}H, \mathbb{K}G)$-bimodule. This gives a functor $L \mapsto \mathbb{K}U \otimes_{\mathbb{K}G} L$ from $\mathbb{K}G\text{-Mod}$ to $\mathbb{K}H\text{-Mod}$, which induces a map $R_\mathbb{K}(U) : R_\mathbb{K}(G) \to R_\mathbb{K}(H)$, if $\text{char}\mathbb{K} \nmid |G_u| \ \forall u \in U$. . .

- If $H \leq G$, let $\text{Res}_H^G = _HG_G$. Then $R_\mathbb{K}(\text{Res}_H^G)$ is the restriction map $R_\mathbb{K}(G) \to R_\mathbb{K}(H)$.

- Let $\text{Ind}_H^G = _GG_H$.

Serge Bouc (CNRS - Université de Picardie)
Bisets

Definition

Let G and H be groups. An (H, G)-biset U is a (finite) set with a left H-action and a right G-action, which commute i.e.

\[\forall h \in H, \forall u \in U, \forall g \in G, \ (h \cdot u) \cdot g = h \cdot (u \cdot g). \]

[Equivalently, an (H, G)-biset is an $(H \times G^{\text{op}})$-set.]

Let \mathbb{K} be a field. The vector space $\mathbb{K}U$ is a $(\mathbb{K}H, \mathbb{K}G)$-bimodule. This gives a functor $L \mapsto \mathbb{K}U \otimes_{\mathbb{K}G} L$ from $\mathbb{K}G\text{-Mod}$ to $\mathbb{K}H\text{-Mod}$, which induces a map $R_\mathbb{K}(U) : R_\mathbb{K}(G) \rightarrow R_\mathbb{K}(H)$, if $\text{char} \mathbb{K} \nmid |G| \ \forall u \in U \ldots$

- If $H \leq G$, let $\text{Res}^G_H = _HG$. Then $R_\mathbb{K}(\text{Res}^G_H)$ is the restriction map $R_\mathbb{K}(G) \rightarrow R_\mathbb{K}(H)$.
- Let $\text{Ind}^G_H = _GG$. Then $R_\mathbb{K}(\text{Ind}^G_H)$ is the induction map $R_\mathbb{K}(H) \rightarrow R_\mathbb{K}(G)$.

Serge Bouc (CNRS - Université de Picardie)
If $N \trianglelefteq G$, and $H = G/N$, let $\text{Inf}_H^G = gH_H$.
If \(N \trianglelefteq G \), and \(H = G/N \), let \(\text{Inf}^G_H = gHg \). Then \(R_K(\text{Inf}^G_H) \) is the inflation map \(R_K(H) \to R_K(G) \).
Bisets

- If $N \trianglelefteq G$, and $H = G/N$, let $\text{Inf}^G_H = gH$. Then $R_K(\text{Inf}^G_H)$ is the inflation map $R_K(H) \rightarrow R_K(G)$.
- Let $\text{Def}^G_H = hHg$.
If $N \trianglelefteq G$, and $H = G/N$, let $\text{Inf}_H^G = {}_G H_\cdot$. Then $R_K(\text{Inf}_H^G)$ is the inflation map $R_K(H) \to R_K(G)$.

Let $\text{Def}_H^G = \cdot_H G$. Then $R_K(\text{Def}_H^G)$ is the deflation map $R_K(G) \to R_K(H)$.
If \(N \unlhd G \), and \(H = G/N \), let \(\text{Inf}_H^G = g H_g \). Then \(R_K(\text{Inf}_H^G) \) is the inflation map \(R_K(H) \to R_K(G) \).

Let \(\text{Def}_H^G = h H_g \). Then \(R_K(\text{Def}_H^G) \) is the deflation map \(R_K(G) \to R_K(H) \).

If \(f : G \to H \), let \(\text{Iso}(f) = h H_f g \).
If $N \trianglelefteq G$, and $H = G/N$, let $\text{Inf}^G_H = gH_H$. Then $R_K(\text{Inf}^G_H)$ is the inflation map $R_K(H) \to R_K(G)$.

Let $\text{Def}^G_H = hH_G$. Then $R_K(\text{Def}^G_H)$ is the deflation map $R_K(G) \to R_K(H)$.

If $f : G \xrightarrow{\cong} H$, let $\text{Iso}(f) = hH_{fG}$. Then $R_K(\text{Iso}(f))$ is the transport by isomorphism $R_K(G) \to R_K(H)$.
If $N \trianglelefteq G$, and $H = G/N$, let $\text{Inf}_G^H = {}_GH_H$. Then $R^K(\text{Inf}_G^H)$ is the inflation map $R^K(H) \rightarrow R^K(G)$.

Let $\text{Def}_G^H = {}_HG_H$. Then $R^K(\text{Def}_G^H)$ is the deflation map $R^K(G) \rightarrow R^K(H)$.

If $f : G \xrightarrow{\cong} H$, let $\text{Iso}(f) = {}_fH_G$. Then $R^K(\text{Iso}(f))$ is the transport by isomorphism $R^K(G) \rightarrow R^K(H)$.

When $H = G$ and $f = \text{Id}$, set $\text{Id}_G = \text{Iso}(f)$. Thus Id_G is the set G, for its (G, G)-biset structure by multiplication.
If $N \trianglelefteq G$, and $H = G/N$, let $\text{Inf}^G_H = \lambda_H^G$. Then $R_K(\text{Inf}^G_H)$ is the inflation map $R_K(H) \to R_K(G)$.

Let $\text{Def}^G_H = \kappa_H^G$. Then $R_K(\text{Def}^G_H)$ is the deflation map $R_K(G) \to R_K(H)$.

If $f : G \to H$, let $\text{Iso}(f) = \kappa_f^G$. Then $R_K(\text{Iso}(f))$ is the transport by isomorphism $R_K(G) \to R_K(H)$.

When $H = G$ and $f = \text{Id}$, set $\text{Id}_G = \text{Iso}(f)$. Thus Id_G is the set G, for its (G, G)-biset structure by multiplication. The map $R_K(\text{Id}_G)$ is the identity map of $R_K(G)$.
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset.
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The composition of V and U is the set $V \circ U = (V \times U) / \langle (vh, u) = (v, hu) \mid \forall v \in V, \forall h \in H, \forall u \in U \rangle = V \times H U$. It is a (K, G)-biset by $k(v, H u) g = (kv, H u g)$, for $k \in K$, $v \in V$, $u \in U$, and $g \in G$.

$K V \otimes K H K U \sim \Rightarrow R_K(V) \circ R_K(U) = R_K(V \circ U)$.

Serge Bouc (CNRS - Université de Picardie)
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The *composition* of V and U is the set

$$V \circ U =$$
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The composition of V and U is the set

$$V \circ U = (V \times U)/$$
Composition

Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The composition of V and U is the set

$$V \circ U = (V \times U)/\langle (vh, u) = (v, hu) \mid \forall v \in V, \forall h \in H, \forall u \in U \rangle$$
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The **composition** of V and U is the set

$$V \circ U = \frac{(V \times U)}{<(vh, u) = (v, hu) \; \forall v \in V, \forall h \in H, \forall u \in U>}$$

$$= V \times_H U$$.
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The composition of V and U is the set

$$V \circ U = (V \times U)/ <(vh, u) = (v, hu) \forall v \in V, \forall h \in H, \forall u \in U >$$

$$= V \times_H U.$$

It is a (K, G)-biset by $k(v, u)g = (kv, u g)$.
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \xrightarrow{R_K(U)} R_K(H) \xrightarrow{R_K(V)} R_K(K)$.

Definition

The composition of V and U is the set

$$V \circ U = \frac{(V \times U)}{<(vh, u) = (v, hu) \forall v \in V, \forall h \in H, \forall u \in U>} = V \times_H U .$$

It is a (K, G)-biset by $k(v, u)g = (kv, u g)$, for $k \in K$, $v \in V$, $u \in U$, and $g \in G$.
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R_K(G) \overset{R_K(U)}{\rightarrow} R_K(H) \overset{R_K(V)}{\rightarrow} R_K(K)$.

Definition

The composition of V and U is the set

\[
V \circ U = (V \times U)/ \langle (vh, u) = (v, hu) \mid \forall v \in V, \forall h \in H, \forall u \in U >
\]

\[
= V \times_H U.
\]

It is a (K, G)-biset by $k(v, u)g = (kv, u g)$, for $k \in K$, $v \in V$, $u \in U$, and $g \in G$.

\[
K \V K U \cong K(V \times_H U)
\]
Let G, H, and K be groups. Let U be an (H, G)-biset, and V be a (K, H)-biset. This gives maps $R^K(G) \xrightarrow{R^K(U)} R^K(H) \xrightarrow{R^K(V)} R^K(K)$.

Definition

The composition of V and U is the set

$$V \circ U = (V \times U) / \langle (vh, u) = (v, hu) \mid \forall v \in V, \forall h \in H, \forall u \in U \rangle = V \times_H U.$$

It is a (K, G)-biset by $k(v, u)g = (kv, H , ug)$, for $k \in K$, $v \in V$, $u \in U$, and $g \in G$.

$$K V \otimes_{K H} K U \cong K (V \times_H U) \Rightarrow R^K (V) \circ R^K (U) = R^K (V \circ U).$$
Properties of R_K

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H,G)-biset, then $F(U) : F(G) \to F(H)$.
3. If U and U' are isomorphic (H,G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H,G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H,G)-biset and V is a (K,H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $F(Id_G) = Id_{F(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H,G)$ of (H,G)-bisets.
1. If G is a group, then $R_K(G)$ is an abelian group.
Properties of R_K

1. If G is a group, then $R_K(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \to R_K(H)$.
Properties of R_K

1. If G is a group, then $R_K(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \rightarrow R_K(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
Properties of R_K

1. If G is a group, then $R_K(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \rightarrow R_K(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \rightarrow F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
Properties of R_K

1. If G is a group, then $R_K(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \to R_K(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$ for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
Properties of R_K

1. If G is a group, then $R_K(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \to R_K(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.
6. If G is a group, then $R_K(Id_G) = Id_{R_K(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $R_K(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \to R_K(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.
6. If G is a group, then $R_K(Id_G) = Id_{R_K(G)}$.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $R_K(U) : R_K(G) \to R_K(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.
6. If G is a group, then $R_K(Id_G) = Id_{R_K(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $R_K(U) = R_K(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.
6. If G is a group, then $R_K(Id_G) = Id_{R_K(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $R_K(U \sqcup U') = R_K(U) + R_K(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.
6. If G is a group, then $R_K(Id_G) = Id_{R_K(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.

2. If U is an (H, G)-biset, then $F(U) : F(G) \rightarrow F(H)$.

3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.

4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.

5. If U is an (H, G)-biset and V is a (K, H)-biset, then $R_K(V) \circ R_K(U) = R_K(V \circ U)$.

6. If G is a group, then $R_K(Id_G) = Id_{R_K(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \rightarrow F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $R_K(\text{Id}_G) = \text{Id}_{R_K(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $F(Id_G) = Id_{F(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
A biset functor F consists of the following data:

1. If G is a group, then $F(G)$ is an abelian group.
2. If U is an (H, G)-biset, then $F(U) : F(G) \to F(H)$.
3. If U and U' are isomorphic (H, G)-bisets, then $F(U) = F(U')$.
4. If U and U' are (H, G)-bisets, then $F(U \sqcup U') = F(U) + F(U')$.
5. If U is an (H, G)-biset and V is a (K, H)-biset, then $F(V) \circ F(U) = F(V \circ U)$.
6. If G is a group, then $F(Id_G) = Id_{F(G)}$.

Remark: Conditions 3 and 4 allow to define a map $F(\alpha) : F(G) \to F(H)$, for any α in the Burnside group $B(H, G)$ of (H, G)-bisets.
The biset category

Let p be a prime number.

Definition

The biset category C_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{C_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times HU$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A p-biset functor is an additive functor from C_p to \mathbb{Z}-Mod.

p-Biset functors form an abelian category \mathcal{F}_p.

Remark:

One can also consider only some types of bisets (e.g. left or right free).
The biset category

The **biset category** C for finite groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{C}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times HU$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **p-biset functor** is an additive functor from C to \mathbb{Z}-Mod.

p-Biset functors form an abelian category F_p.

Remark: One can also consider only some types of bisets (e.g. left or right free).
The biset category

Definition

The **biset category** \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.

A p-biset functor is an additive functor from \mathcal{C} to \mathbb{Z}-Mod.

p-Biset functors form an abelian category \mathcal{F}_p.

Remark: One can also consider only some types of bisets (e.g. left or right free).
The biset category

Definition

The **biset category** \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_{\mathcal{C}}(G, H) = B(H, G)$.

Remark: One can also consider only some types of bisets (e.g. left or right free).
The biset category

Definition

The biset category C for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_C (G, H) = B(H, G)$.
- The composition of morphisms $G \rightarrow H \rightarrow K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
The biset category

Definition

The biset category \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{\mathcal{C}_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Remark:

One can also consider only some types of bisets (e.g. left or right free).
The biset category

Definition

The **biset category** \mathcal{C} for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_\mathcal{C}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **biset functor** is an additive functor from \mathcal{C} to $\mathbb{Z}\text{-Mod}$.
The biset category

Definition

The biset category \mathcal{C} for finite groups is defined as follows:

- The objects are finite groups.
- If G, H are finite groups, then $\text{Hom}_{\mathcal{C}}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A biset functor is an additive functor from \mathcal{C} to \mathbb{Z}-Mod.

Biset functors form an abelian category \mathcal{F}.
Let p be a prime number.

Definition

The **biset category** \mathcal{C} for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_\mathcal{C}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **biset functor** is an additive functor from \mathcal{C} to \mathbb{Z}-Mod.

Biset functors form an abelian category \mathcal{F}.
Let \(p \) be a prime number.

Definition

The *biset category* \(\mathcal{C}_p \) for finite groups is defined as follows:

- The objects are finite groups.
- If \(G, H \) are finite groups, then \(\text{Hom}_{\mathcal{C}_p} (G, H) = B(H, G) \).
- The composition of morphisms \(G \to H \to K \) is obtained by linearly extending the product \((V, U) \mapsto V \times_H U \) of bisets.
- The identity morphism of \(G \) is the (class of) the \((G, G)\)-biset \(\text{Id}_G \).

Definition

A *biset functor* is an additive functor from \(\mathcal{C}_p \) to \(\mathbb{Z}\text{-Mod} \).

Biset functors form an abelian category \(\mathcal{F} \).
Let p be a prime number.

Definition

The biset category \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_\mathcal{C}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **biset functor** is an additive functor from \mathcal{C} to \mathbb{Z}-Mod.

Biset functors form an abelian category \mathcal{F}.
Let p be a prime number.

Definition

The *biset category* \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite groups, then $\text{Hom}_{\mathcal{C}} (G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A *biset functor* is an additive functor from \mathcal{C} to $\mathbb{Z}\text{-Mod}$.

Biset functors form an abelian category \mathcal{F}.
Let \(p \) be a prime number.

Definition

The *biset category* \(\mathcal{C}_p \) for finite \(p \)-groups is defined as follows:

- The objects are finite \(p \)-groups.
- If \(G, H \) are finite \(p \)-groups, then \(\text{Hom}_\mathcal{C}(G, H) = B(H, G) \).
- The composition of morphisms \(G \to H \to K \) is obtained by linearly extending the product \((V, U) \mapsto V \times_H U \) of bisets.
- The identity morphism of \(G \) is the (class of) the \((G, G)\)-biset \(\text{Id}_G \).

Definition

A *biset functor* is an additive functor from \(\mathcal{C} \) to \(\mathbb{Z}-\text{Mod} \).

Biset functors form an abelian category \(\mathcal{F} \).
Let p be a prime number.

Definition

The *biset category* \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{\mathcal{C}_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A *biset functor* is an additive functor from \mathcal{C} to $\mathbb{Z}\text{-}\text{Mod}$.

Biset functors form an abelian category \mathcal{F}.
Let p be a prime number.

Definition
The biset category C_p for finite p-groups is defined as follows:
- The objects are finite p-groups.
- If G, H are finite p-groups, then $Hom_{C_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition
A p-biset functor is an additive functor from C to \mathbb{Z}-Mod.

Biset functors form an abelian category \mathcal{F}.
Let p be a prime number.

Definition

The **biset category** \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{\mathcal{C}_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **p-biset functor** is an additive functor from \mathcal{C}_p to \mathbb{Z}-Mod.

Biset functors form an abelian category \mathcal{F}.
Let p be a prime number.

Definition

The **biset category** \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{\mathcal{C}_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **p-biset functor** is an additive functor from \mathcal{C}_p to $\mathbb{Z}\text{-Mod}$.

p-biset functors form an abelian category \mathcal{F}.
Let \(p \) be a prime number.

Definition

The **biset category** \(\mathcal{C}_p \) for finite \(p \)-groups is defined as follows:

- The objects are finite \(p \)-groups.
- If \(G, H \) are finite \(p \)-groups, then \(\text{Hom}_{\mathcal{C}_p}(G, H) = B(H, G) \).
- The composition of morphisms \(G \to H \to K \) is obtained by linearly extending the product \((V, U) \mapsto V \times_H U\) of bisets.
- The identity morphism of \(G \) is the (class of) the \((G, G)\)-biset \(\text{Id}_G \).

Definition

A **\(p \)-biset functor** is an additive functor from \(\mathcal{C}_p \) to \(\mathbb{Z}\text{-Mod} \).

\(p \)-biset functors form an abelian category \(\mathcal{F}_p \).
Let p be a prime number.

Definition

The **biset category** C_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{C_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \to H \to K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A **p-biset functor** is an additive functor from C_p to $\mathbb{Z}\text{-Mod}$.

p-biset functors form an abelian category \mathcal{F}_p.

Remark : One can also consider only some types of bisets (e.g. left or right free).
Let p be a prime number.

Definition

The *biset category* \mathcal{C}_p for finite p-groups is defined as follows:

- The objects are finite p-groups.
- If G, H are finite p-groups, then $\text{Hom}_{\mathcal{C}_p}(G, H) = B(H, G)$.
- The composition of morphisms $G \rightarrow H \rightarrow K$ is obtained by linearly extending the product $(V, U) \mapsto V \times_H U$ of bisets.
- The identity morphism of G is the (class of) the (G, G)-biset Id_G.

Definition

A *p-biset functor* is an additive functor from \mathcal{C}_p to $\mathbb{Z}\text{-Mod}$.

p-biset functors form an abelian category \mathcal{F}_p.

Remark: One can define similarly biset functors with values in $R\text{-Mod}$ (where R is a commutative ring).
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).
- $N \triangleleft G \Rightarrow \text{Def}^G_{G/N} \circ \text{Inf}^G_{G/N} \cong \text{Id}_{G/N}$,
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).
- $N \trianglelefteq G \Rightarrow \text{Def}_{G/N}^G \circ \text{Inf}_{G/N}^G \cong \text{Id}_{G/N}$, thus “$G/N \mid G$” in \mathcal{C}.

Serge Bouc (CNRS - Université de Picardie)
The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).

$N \trianglelefteq G \Rightarrow \text{Def}_{G/N}^G \circ \text{Inf}_{G/N}^G \cong \text{Id}_{G/N}$, thus “$G/N \mid G$” in \mathcal{C}.

\mathcal{C} is also an \ast-category:

- $\alpha \mapsto \alpha^{\text{op}}$ from $B(H, G)$ to $B(G, H)$.
- The functor $\ast : \mathcal{C} \rightarrow \mathcal{C}^{\text{op}}$ is an equivalence of categories $\mathcal{C} \rightarrow \mathcal{C}^{\text{op}}$.
- This gives a duality in the category \mathcal{F}: if \mathcal{F} is a biset functor, the dual functor \mathcal{F}^{\ast} is defined as the composition $\mathcal{C}^{\ast} \rightarrow \mathcal{C}^{\text{op}} \mathcal{F} \rightarrow (\mathcal{Z}-\text{Mod})^{\text{op}} \rightarrow \mathcal{Z}-\text{Mod}$.

In other words $\{\mathcal{F}^{\ast}(G) = \text{Hom}_{\mathcal{Z}}(\mathcal{F}(G), \mathcal{Z})\}$. $\mathcal{F}^{\ast}(\alpha) = t^{\mathcal{F}(\alpha^{\text{op}})}$.

Serge Bouc (CNRS - Université de Picardie)
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).
- $N \triangleleft G \Rightarrow Def^G_{G/N} \circ Inf^G_{G/N} \cong Id_{G/N}$, thus “$G/N \triangleright G$” in \mathcal{C}.
- \mathcal{C} is also an $*$-category: if U is an (H, G)-biset,
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).
- $N \trianglelefteq G \Rightarrow \text{Def}_{G/N}^G \circ \text{Inf}_{G/N}^G \cong \text{Id}_{G/N}$, thus “$G/N \rhd G$” in \mathcal{C}.
- \mathcal{C} is also an \ast-category: if U is an (H, G)-biset, define the opposite biset U^{op} as the set U, with (G, H)-action defined by $g \cdot u \cdot h$ (in U^{op}) $= h^{-1}ug^{-1}$ (in U).
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).

- $N \trianglelefteq G \Rightarrow \text{Def}^G_{G/N} \circ \text{Inf}^G_{G/N} \simeq \text{Id}_{G/N}$, thus “$G/N \mid G$” in \mathcal{C}.

- \mathcal{C} is also an \ast-category: if U is an (H, G)-biset, define the opposite biset U^{op}.
 This extends to a map $\alpha \mapsto \alpha^{\text{op}}$ from $B(H, G)$ to $B(G, H)$.
Some properties of the biset category

- The biset category \(\mathcal{C} \) is a pre-additive category (cf. Mc Lane).
- \(N \trianglelefteq G \Rightarrow \text{Def}^G_{G/N} \circ \text{Inf}^G_{G/N} \cong \text{Id}_{G/N} \), thus “\(G/N \triangleright G \)” in \(\mathcal{C} \).
- \(\mathcal{C} \) is also an \(*\)-category: if \(U \) is an \((H, G)\)-biset, define the opposite biset \(U^{\text{op}} \).
 This extends to a map \(\alpha \mapsto \alpha^{\text{op}} \) from \(B(H, G) \) to \(B(G, H) \).
 The functor \(* : \begin{cases} G \leftrightarrow G \\ \alpha \mapsto \alpha^{\text{op}} \end{cases} \) is an equivalence of categories \(\mathcal{C} \rightarrow \mathcal{C}^{\text{op}} \).
Some properties of the biset category

- The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).

- $N \trianglelefteq G \Rightarrow Def_{G/N}^G \circ Inf_{G/N}^G \cong Id_{G/N}$, thus “$G/N | G$” in \mathcal{C}.

- \mathcal{C} is also an \ast-category: if U is an (H,G)-biset, define the opposite biset U^{op}.

 This extends to a map $\alpha \mapsto \alpha^{\text{op}}$ from $B(H,G)$ to $B(G,H)$.

 The functor $\ast : \begin{cases} G \mapsto G \\ \alpha \mapsto \alpha^{\text{op}} \end{cases}$ is an equivalence of categories $\mathcal{C} \to \mathcal{C}^{\text{op}}$.

- This gives a duality in the category \mathcal{F}:
The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).

- $N \trianglelefteq G \Rightarrow Def^G_{G/N} \circ Inf^G_{G/N} \cong Id_{G/N}$, thus “$G/N \triangleright G$” in \mathcal{C}.

- \mathcal{C} is also an \ast-category: if U is an (H, G)-biset, define the opposite biset U^{op}.

 This extends to a map $\alpha \mapsto \alpha^{\text{op}}$ from $B(H, G)$ to $B(G, H)$.

 The functor $\ast : \begin{cases} G \mapsto G \\ \alpha \mapsto \alpha^{\text{op}} \end{cases}$ is an equivalence of categories $\mathcal{C} \to \mathcal{C}^{\text{op}}$.

- This gives a duality in the category \mathcal{F}: if F is a biset functor, the dual functor F^{\ast} is defined as the composition $\mathcal{C} \xrightarrow{\ast} \mathcal{C}^{\text{op}} \xrightarrow{F} (\mathbb{Z}\text{-Mod})^{\text{op}} \xrightarrow{\ast} \mathbb{Z}\text{-Mod}$.
The biset category \mathcal{C} is a pre-additive category (cf. Mc Lane).

$N \trianglelefteq G \Rightarrow Def^G_{G/N} \circ \text{Inf}^G_{G/N} \cong \text{Id}_{G/N}$, thus “$G/N \mid G$” in \mathcal{C}.

\mathcal{C} is also an \ast-category: if U is an (H, G)-biset, define the opposite biset U^{op}.

This extends to a map $\alpha \mapsto \alpha^{\text{op}}$ from $B(H, G)$ to $B(G, H)$.

The functor $\ast : \left\{ \begin{array}{l} G \mapsto G \\ \alpha \mapsto \alpha^{\text{op}} \end{array} \right.$ is an equivalence of categories $\mathcal{C} \to \mathcal{C}^{\text{op}}$.

This gives a duality in the category \mathcal{F}: if F is a biset functor, the dual functor F^\ast is defined as the composition $\mathcal{C} \xrightarrow{\ast} \mathcal{C}^{\text{op}} \xrightarrow{F} (\mathbb{Z}\text{-Mod})^{\text{op}} \xrightarrow{\ast} \mathbb{Z}\text{-Mod}$.

In other words $\left\{ \begin{array}{l} F^\ast(G) = \text{Hom}_\mathbb{Z}(F(G), \mathbb{Z}) \\ F^\ast(\alpha) = t F(\alpha^{\text{op}}) \end{array} \right.$
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones.
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma (Goursat)
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition

\[\text{Ind}^H_D \circ \text{Inf}^D_{D/C} \circ \text{Iso}(f) \circ \text{Def}^B_{B/A} \circ \text{Res}^G_B, \]
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).

- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition
\[\text{Ind}_D^H \circ \text{Inf}_{D/C} \circ \text{Iso}(f) \circ \text{Def}_{B/A} \circ \text{Res}_B^G,\]
where \(A \triangleleft B \leq G\),

\[\text{Ind}_D^H \circ \text{Inf}_{D/C} \circ \text{Iso}(f) \circ \text{Def}_{B/A} \circ \text{Res}_B^G,\]
Remarks

- Any (H, G)-biset is a disjoint union of transitive ones. The classes of transitive (H, G)-bisets form a \mathbb{Z}-basis of $B(H, G)$.
- Up to isomorphism, a transitive (H, G)-biset is determined by a subgroup of $H \times G$, unique up to conjugation.

Lemma

Any transitive (H, G)-biset is isomorphic to a composition
\[\text{Ind}_D^H \circ \text{Inf}_D^C \circ \text{Iso}(f) \circ \text{Def}_{B/A}^B \circ \text{Res}_D^G, \]
where $A \trianglelefteq B \leq G$, $C \trianglelefteq D \leq H$.
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition
\[\text{Ind}_D^H \circ \text{Inf}_{D/C}^D \circ \text{Iso}(f) \circ \text{Def}_{B/A}^B \circ \text{Res}_B^G,\]
where \(A \trianglelefteq B \leq G\), \(C \trianglelefteq D \leq H\), and \(f : B/A \rightarrow D/C\).
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition

\[\text{Ind}^H_D \circ \text{Inf}^D_{D/C} \circ \text{Iso}(f) \circ \text{Def}^B_{B/A} \circ \text{Res}^G_B,\]

where \(A \trianglelefteq B \leq G\), \(C \trianglelefteq D \leq H\), and \(f : B/A \rightarrow D/C\).

- A biset functor is a correspondence \(G \mapsto F(G)\),
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition
\[
\text{Ind}_D^H \circ \text{Inf}_{D/C}^D \circ \text{Iso}(f) \circ \text{Def}_{B/A}^B \circ \text{Res}_B^G,
\]
where \(A \trianglelefteq B \trianglelefteq G\), \(C \trianglelefteq D \trianglelefteq H\), and \(f : B/A \xrightarrow{\sim} D/C\).

- A biset functor is a correspondence \(G \mapsto F(G)\), with operations of induction, inflation, transport by isomorphism, deflation and restriction,
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition

\[
\text{Ind}_D^H \circ \text{Inf}_{D/C}^D \circ \text{Iso}(f) \circ \text{Def}_{B/A}^B \circ \text{Res}_G^B,
\]

where \(A \trianglelefteq B \leq G\), \(C \trianglelefteq D \leq H\), and \(f : B/A \xrightarrow{\cong} D/C\).

- A biset functor is a correspondence \(G \mapsto F(G)\), with operations of induction, inflation, transport by isomorphism, deflation and restriction, fulfilling a long (explicit) list of compatibility conditions,
Remarks

- Any \((H, G)\)-biset is a disjoint union of transitive ones. The classes of transitive \((H, G)\)-bisets form a \(\mathbb{Z}\)-basis of \(B(H, G)\).
- Up to isomorphism, a transitive \((H, G)\)-biset is determined by a subgroup of \(H \times G\), unique up to conjugation.

Lemma

Any transitive \((H, G)\)-biset is isomorphic to a composition

\[
\text{Ind}^H_D \circ \text{Inf}^D_{D/C} \circ \text{Iso}(f) \circ \text{Def}^B_{B/A} \circ \text{Res}^G_B,
\]

where \(A \trianglelefteq B \leq G\), \(C \trianglelefteq D \leq H\), and \(f : B/A \xrightarrow{\sim} D/C\).

- A biset functor is a correspondence \(G \mapsto F(G)\), with operations of induction, inflation, transport by isomorphism, deflation and restriction, fulfilling a long (explicit) list of compatibility conditions, e.g. transitivity of restrictions, of inflations, etc. . . , Mackey formula, etc. . .
Definition

Let F be a biset functor, and G be a group. The set $\partial F(G)$ of faithful elements in $F(G)$ is defined by

$$\partial F(G) = \bigcap_{1 < N \trianglelefteq G} \text{Ker Def}_{G/G/N}.$$

Lemma

The map $\bigoplus_{N \trianglelefteq G} \text{Inf}_{G/G/N} : \bigoplus_{N \trianglelefteq G} \partial F(G/N) \to F(G)$ is an isomorphism.

Remark:

In particular $\partial F(G)$ is always a direct summand of $F(G)$.
Faithful elements

Definition

Let \(F \) be a biset functor, and \(G \) be a group.

\[\partial F(G) = \bigcap_{N \triangleleft G} \ker \text{Def} G G / N. \]

Lemma

The map \(\bigoplus \bigcap_{N \triangleleft G} \text{Inf} G G / N : \bigoplus \bigcap_{N \triangleleft G} \partial F(G / N) \to F(G) \) is an isomorphism.

Remark:

In particular, \(\partial F(G) \) is always a direct summand of \(F(G) \).
Faithful elements

Definition

Let F be a biset functor, and G be a group. The set $\partial F(G)$ of faithful elements in $F(G)$ is defined by

$$ \partial F(G) = \bigcap_{1 < N \leq G} \ker \text{Def}^G_{G/N}.$$

Lemma

The map $\bigoplus_{1 < N \leq G} \text{Inf}^G_{G/N} : \bigoplus_{1 < N \leq G} \partial F(G/N) \to F(G)$ is an isomorphism.

Remark:

In particular $\partial F(G)$ is always a direct summand of $F(G)$.

Serge Bouc (CNRS - Université de Picardie)
Faithful elements

Definition

Let F be a biset functor, and G be a group. The set $\partial F(G)$ of **faithful elements** in $F(G)$ is defined by

$$
\partial F(G) = \bigcap_{1 < N \leq G} \text{Ker Def}_{G/N}^G.
$$

Example: If $F = R_K$, then $\partial F(G)$ is the set of linear combinations of faithful irreducible K^G-modules.

Remark: In particular $\partial F(G)$ is always a direct summand of $F(G)$.

Serge Bouc (CNRS - Université de Picardie)
Faithful elements

Definition

Let F be a biset functor, and G be a group. The set $\partial F(G)$ of faithful elements in $F(G)$ is defined by

$$\partial F(G) = \bigcap_{1 < N \leq G} \ker \text{Def}_{G/N}^G G / N.$$

Lemma

The map

$$\bigoplus_{N \leq G} \text{Inf}_{G/N}^G : \bigoplus_{N \leq G} \partial F(G/N) \to F(G)$$

is an isomorphism.
Definition

Let F be a biset functor, and G be a group. The set $\partial F(G)$ of faithful elements in $F(G)$ is defined by

$$\partial F(G) = \bigcap_{1 < N \leq G} \ker \text{Def}_{G/N}^G .$$

Lemma

The map

$$\bigoplus_{N \leq G} \text{Inf}_{G/N}^G : \bigoplus_{N \leq G} \partial F(G/N) \to F(G)$$

is an isomorphism.

Remark: In particular $\partial F(G)$ is always a direct summand of $F(G)$.
The category \mathcal{F} of biset functors is an abelian category.
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an abelian category.
- The Burnside functor is a projective object of \mathcal{F},
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an abelian category.
- The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong Hom_C(1, -)$.

Remark: It is generally difficult to compute the evaluation $S_H, L(-)$. It has been done only in some cases.
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an **abelian category**.
- The Burnside functor is a **projective** object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_C(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

Simple biset functors with values in \mathbb{R}-Mod up to isomorphism \leftrightarrow Pairs $(H, L) \{ H \text{ finite group} \}

L simple $\text{ROut}(H)$-module up to isomorphism

$S_H, L \leftarrow (H, L)$

Remark:

It is generally difficult to compute the evaluation $S_H, L(G)$. It has been done only in some cases.
Some properties of the category of biset functors

• The category \mathcal{F} of biset functors is an abelian category.

• The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_C(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

Remark: It is generally difficult to compute the evaluation $S_H^L(G)$. It has been done only in some cases.
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an abelian category.
- The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(\cdot) \cong \text{Hom}_C(1, \cdot)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

Simple biset functors

with values in R-Mod

up to isomorphism

Remark: It is generally difficult to compute the evaluation $S^H_L(\cdot)$. It has been done only in some cases.
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an abelian category.
- The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_\mathcal{C}(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

<table>
<thead>
<tr>
<th>Simple biset functors</th>
<th>Pairs (H, L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>with values in R-Mod up to isomorphism</td>
<td>{ H finite group |</td>
</tr>
<tr>
<td></td>
<td>L simple $ROut(H)$-module up to isomorphism }</td>
</tr>
</tbody>
</table>

Remark: It is generally difficult to compute the evaluation $S_H, L(\cdot)$.
It has been done only in some cases.

Serge Bouc (CNRS - Université de Picardie)
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an **abelian category**.
- The Burnside functor is a **projective** object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_C(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

Simple biset functors

with values in R-Mod

up to isomorphism

$$\leftrightarrow$$

Pairs (H, L)

- H finite group
- L simple $ROut(H)$-module

up to isomorphism

(H, L)
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an abelian category.
- The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_\mathcal{C}(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

<table>
<thead>
<tr>
<th>Simple biset functors</th>
<th>$S_{H,L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>with values in R-Mod up to isomorphism</td>
<td>\leftrightarrow</td>
</tr>
<tr>
<td>Pairs (H, L)</td>
<td>(H, L)</td>
</tr>
</tbody>
</table>
| \{ H finite group \}
| \{ L simple $\text{ROut}(H)$-module up to isomorphism \} |

Remark: It is generally difficult to compute $S_{H,L}(G)$. It has been done only in some cases.
The category \mathcal{F} of biset functors is an abelian category.

The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_\mathcal{C}(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

<table>
<thead>
<tr>
<th>Simple biset functors</th>
<th>Pairs (H, L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>with values in R-Mod up to isomorphism</td>
<td>$\left{ \begin{array}{l} H \text{ finite group} \ L \text{ simple } R\text{Out}(H)\text{-module} \end{array} \right.$ up to isomorphism</td>
</tr>
<tr>
<td>$S_{H,L}$</td>
<td>(H, L)</td>
</tr>
</tbody>
</table>

Remark: It is generally difficult to compute the evaluation $S_{H,L}(G)$.
Some properties of the category of biset functors

- The category \mathcal{F} of biset functors is an abelian category.
- The Burnside functor is a projective object of \mathcal{F}, by Yoneda’s Lemma, since $B(-) \cong \text{Hom}_C(1, -)$. The category \mathcal{F} has “enough projectives”.

Theorem

There is an explicit one-to-one correspondence

Simple biset functors

with values in R-Mod

up to isomorphism

$S_{H,L}$

Pairs (H, L)

\[
\begin{align*}
\left\{ & H \text{ finite group} \\
& L \text{ simple } R\text{Out}(H)\text{-module} \\
\end{align*}
\]

up to isomorphism

(H, L)

Remark: It is generally difficult to compute the evaluation $S_{H,L}(G)$. It has been done only in some cases.
Problem: Describe the p-biset functor R^Q?

One can describe the full lattice of subfunctors of R^Q.

Main tool: the linearization morphism $\chi: B \to R^Q$, induced by $X \mapsto QX$.

Look at the rational representations of p-groups. . .

Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.

Definition

A finite p-group has normal p-rank 1 if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.

Lemma

If Q has normal p-rank 1, then Q has a unique faithful rational irreducible representation Φ_Q. In other words $\partial R_Q(Q) = \langle \Phi_Q \rangle \cong Z$.
Problem: Describe the biset functor R_Q?
Problem : Describe the biset functor R_Q? In general, not much can be said.
Problem: Describe the p-biset functor R_Q?
Problem: Describe the p-biset functor R_Q. One can describe the full lattice of subfunctors of R_Q.

Definitions:

A finite p-group has normal p-rank 1 if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.

Lemma: If Q has normal p-rank 1, then Q has a unique faithful rational irreducible representation Φ_Q. In other words, $\partial R_Q(Q) = \langle \Phi_Q \rangle \cong \mathbb{Z}$.

Main tool: the linearization morphism $\chi: B \rightarrow R_Q$, induced by $X \mapsto Q^X$.

Look at the rational representations of p-groups. Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.
Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the *linearization* morphism $\chi : B \to R_Q$.
Problem: Describe the p-biset functor R_{Q}? One can describe the full lattice of subfunctors of R_{Q}. Main tool: the linearization morphism $\chi : B \to R_{Q}$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups. . .

Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.

Definition

A finite p-group has normal p-rank 1 if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.

Lemma

If Q has normal p-rank 1, then Q has a unique faithful rational irreducible representation Φ_{Q}.

In other words $\partial R_{Q}(Q) = \langle \Phi_{Q} \rangle \sim = \mathbb{Z}$.

Serge Bouc (CNRS - Université de Picardie)
Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi: B \to R_Q$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups...
Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi : B \rightarrow R_Q$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups... Revisit a theorem of Roquette (1958),

Definition
A finite p-group has normal p-rank 1 if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.

Lemma
If Q has normal p-rank 1, then Q has a unique faithful rational irreducible representation Φ_Q.

In other words $\partial R_Q(Q) = \langle \Phi_Q \rangle \simeq \mathbb{Z}$.
Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi: B \to R_Q$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups... Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.
Problem: Describe the p-biset functor R_Q. One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi: B \to R_Q$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups. Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.

Definition

A finite p-group has **normal p-rank 1** if all its normal abelian subgroups are cyclic.
Rational representations of p-groups

Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi : B \to R_Q$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups... Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.

Definition

A finite p-group has **normal p-rank 1** if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.
Rational representations of p-groups

Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi : B \to R_Q$, induced by $X \mapsto \mathbb{Q}X$.

Look at the rational representations of p-groups... Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.

Definition

A finite p-group has **normal p-rank 1** if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.

Lemma

*If Q has normal p-rank 1, then Q has a unique faithful rational irreducible representation Φ_Q.***
Problem: Describe the p-biset functor R_Q? One can describe the full lattice of subfunctors of R_Q. Main tool: the linearization morphism $\chi : B \to R_Q$, induced by $X \mapsto QX$.

Look at the rational representations of p-groups. Revisit a theorem of Roquette (1958), to obtain a description of the rational irreducible representations of a p-group P in purely combinatorial terms.

Definition

A finite p-group has **normal p-rank 1** if all its normal abelian subgroups are cyclic.

If Q has normal p-rank 1, then Q is cyclic, generalized quaternion, dihedral of order at least 16, or semi-dihedral.

Lemma

*If Q has normal p-rank 1, then Q has a unique faithful rational irreducible representation Φ_Q. In other words $\partial R_Q(Q) = \langle \Phi_Q \rangle \cong \mathbb{Z}$.***
Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $\frac{N_P(S)}{S}$ defined by $Z_P(S) = \frac{Z(N_P(S))}{S}$.

Definition

The subgroup S is a genetic subgroup of P if the following two conditions hold:

1. The group $\frac{N_P(S)}{S}$ has normal p-rank 1.
2. If $x \in P$ is such that $Sx \cap Z_P(S) \leq S$, then $Sx = S$.

Notation

If S is a genetic subgroup of P, set $V(S) = \text{Ind}_P^{N_P(S)} \text{Inf}_{N_P(S)} N_P(S)/S \Phi_{N_P(S)/S}$.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Serge Bouc (CNRS - Université de Picardie)
Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a **genetic subgroup** of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $Sx \cap Z_P(S) \leq S$, then $Sx = S$.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a genetic subgroup of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a **genetic subgroup** of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a **genetic subgroup** of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Notation

If S is a genetic subgroup of P, consider $\Phi_{N_P(S)/S}$.
Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a genetic subgroup of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Notation

If S is a genetic subgroup of P, consider $\text{Inf}^N_{N_P(S)/S} \Phi_{N_P(S)/S}$.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a genetic subgroup of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $S^x \cap Z_S(S) \leq S$, then $S^x = S$.

Notation

If S is a genetic subgroup of P, consider $\text{Ind}_{N_P(S)}^P \text{Inf}_{N_P(S)/S}^{N_P(S)} \Phi_{N_P(S)/S}$.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a **genetic subgroup** of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Notation

If S is a genetic subgroup of P, set $V(S) = \text{Ind}^P_{N_P(S)} \text{Inf}^{N_P(S)}_{N_P(S)/S} \Phi_{N_P(S)/S}$.
Genetic subgroups

Let P be a p-group.

Notation

If $S \leq P$, let $Z_P(S)$ be the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$.

Definition

The subgroup S is a **genetic subgroup** of P if the following two conditions hold:

1. The group $N_P(S)/S$ has normal p-rank 1.
2. If $x \in P$ is such that $S^x \cap Z_P(S) \leq S$, then $S^x = S$.

Notation

If S is a genetic subgroup of P, set $V(S) = \text{Ind}_{N_P(S)/S}^P \Phi_{N_P(S)/S}$.
Definition

Define a relation \triangleleft_P on the set of subgroups of P by

$S \triangleleft_P T \iff \exists x \in P, \quad S^x \cap Z_P(T) \leq T \quad \text{and} \quad T \cap Z_P(S^x) \leq S^x.$
Genetic bases of p-groups

Definition

Define a relation \triangleleft_P on the set of subgroups of P by

$S \triangleleft_P T \iff \exists x \in P, \ S^x \cap Z_P(T) \leq T$ and $T \cap Z_P(S^x) \leq S^x$.

Theorem

1. If S is a genetic subgroup of P, then $V(S)$ is a simple $\mathbb{Q}P$-module.

In particular, \triangleleft_P is an equivalence relation on the set of genetic subgroups of P. A genetic basis of P is a set of representatives of equivalence classes. A genetic basis of P is in one-to-one correspondence with Irr$_\mathbb{Q}(P)$.

Serge Bouc (CNRS - Université de Picardie)

Biset functors

MSRI - 02/08/2008 16 / 26
Genetic bases of p-groups

Definition
Define a relation \triangleleft_P on the set of subgroups of P by
\[S \triangleleft_P T \iff \exists x \in P, \ S^x \cap Z_P(T) \leq T \text{ and } T \cap Z_P(S^x) \leq S^x. \]

Theorem
1. If S is a genetic subgroup of P, then $V(S)$ is a simple $\mathbb{Q}P$-module.
2. If V is a simple $\mathbb{Q}P$-module, then there exists a genetic subgroup S of P such that $V \cong V(S)$.

A genetic basis of P is a set of representatives of equivalence classes. A genetic basis of P is in one-to-one correspondence with $\text{Irr}_{\mathbb{Q}}(P)$.

Serge Bouc (CNRS - Université de Picardie)
Genetic bases of \(p \)-groups

Definition

Define a relation \(\triangleleft_P \) on the set of subgroups of \(P \) by

\[
S \triangleleft_P T \iff \exists x \in P, \; S^x \cap Z_P(T) \leq T \text{ and } T \cap Z_P(S^x) \leq S^x.
\]

Theorem

1. If \(S \) is a genetic subgroup of \(P \), then \(V(S) \) is a simple \(\mathbb{Q}P \)-module.
2. If \(V \) is a simple \(\mathbb{Q}P \)-module, then there exists a genetic subgroup \(S \) of \(P \) such that \(V \cong V(S) \).
3. If \(S \) and \(T \) are genetic subgroups of \(P \), then \(V(S) \cong V(T) \) if and only if \(S \triangleleft_P T \).

In particular \(\triangleleft_P \) is an equivalence relation on the set of genetic subgroups of \(P \).

A genetic basis of \(P \) is a set of representatives of equivalence classes.

A genetic basis of \(P \) is in one-to-one correspondence with \(\text{Irr} \mathbb{Q}P \).
Genetic bases of p-groups

Definition

Define a relation \sqsubseteq_P on the set of subgroups of P by

\[S \sqsubseteq_P T \iff \exists x \in P, \ S^x \cap Z_P(T) \leq T \text{ and } T \cap Z_P(S^x) \leq S^x. \]

Theorem

1. If S is a genetic subgroup of P, then $V(S)$ is a simple $\mathbb{Q}P$-module.
2. If V is a simple $\mathbb{Q}P$-module, then there exists a genetic subgroup S of P such that $V \cong V(S)$.
3. If S and T are genetic subgroups of P, then $V(S) \cong V(T)$ if and only if $S \sqsubseteq_P T$.

In particular \sqsubseteq_P is an equivalence relation on the set of genetic subgroups of P.
Define a relation \triangleleft_P on the set of subgroups of P by
\[S \triangleleft_P T \iff \exists x \in P, \ S^x \cap Z_P(T) \leq T \text{ and } T \cap Z_P(S^x) \leq S^x. \]

Theorem

1. If S is a genetic subgroup of P, then $V(S)$ is a simple $\mathbb{Q}P$-module.
2. If V is a simple $\mathbb{Q}P$-module, then there exists a genetic subgroup S of P such that $V \cong V(S)$.
3. If S and T are genetic subgroups of P, then $V(S) \cong V(T)$ if and only if $S \triangleleft_P T$.

In particular \triangleleft_P is an equivalence relation on the set of genetic subgroups of P. A genetic basis of P is a set of representatives of equivalence classes.
Genetic bases of p-groups

Definition
Define a relation \unrhd_P on the set of subgroups of P by
\[
S \unrhd_P T \iff \exists x \in P, \ S^x \cap Z_P(T) \leq T \text{ and } T \cap Z_P(S^x) \leq S^x.
\]

Theorem
1. If S is a genetic subgroup of P, then $V(S)$ is a simple $\mathbb{Q}P$-module.
2. If V is a simple $\mathbb{Q}P$-module, then there exists a genetic subgroup S of P such that $V \cong V(S)$.
3. If S and T are genetic subgroups of P, then $V(S) \cong V(T)$ if and only if $S \unrhd_P T$.

In particular \unrhd_P is an equivalence relation on the set of genetic subgroups of P. A genetic basis of P is a set of representatives of equivalence classes. A genetic basis of P is in one-to-one correspondence with $\text{Irr}_{\mathbb{Q}}(P)$.
Let P be a p-group, and G be a genetic basis of P. The map
\[\bigoplus_{S \in G} \text{Ind}_{G}^{P} (N_{P}(S)/S) \rightarrow R_{Q}(P) \]
is an isomorphism.

The functor F is called rational if $I_{P,G}$ is an isomorphism, for any P and G.
Let P be a p-group, and \mathcal{G} be a genetic basis of P. Then the map

$$I_{P,\mathcal{G}} = \bigoplus_{S \in \mathcal{G}} \text{Ind}_{\mathcal{N}_P(S)/S}^G : \bigoplus_{S \in \mathcal{G}} \partial R_\mathbb{Q}(\mathcal{N}_P(S)/S) \to R_\mathbb{Q}(P)$$

The functor F is called rational if $I_{P,\mathcal{G}}$ is an isomorphism, for any P and \mathcal{G}. A rational p-biset functor is determined by its values at p-groups of normal p-rank 1, which are generally (hopefully) easy to compute.
Let P be a p-group, and G be a genetic basis of P. Then the map

$$I_{P,G} = \bigoplus_{S \in G} \text{Ind}_{N_P(S)/S}^G : \bigoplus_{S \in G} \partial R_\mathbb{Q}(N_P(S)/S) \to R_\mathbb{Q}(P)$$

is an isomorphism.
Let F be a p-biset functor.

Theorem

Let P be a p-group, and \mathcal{G} be a genetic basis of P. Then the map

$$I_{P,\mathcal{G}} = \bigoplus_{S \in \mathcal{G}} \text{Ind}_{N_P(S)/S}^G \partial R_Q(N_P(S)/S) / S \rightarrow R_Q(P)$$

is an isomorphism.
Let F be a p-biset functor.

Theorem

Let P be a p-group, and G be a genetic basis of P. Then the map

$$I_{P,G} = \bigoplus_{S \in G} \text{Indinf}^G_{NP(S)/S} : \bigoplus_{S \in G} \partial R_Q(N_P(S)/S) \to R_Q(P)$$

is an isomorphism.
Let F be a p-biset functor.

Theorem

Let P be a p-group, and \mathcal{G} be a genetic basis of P. Then the map

$$I_{P,\mathcal{G}} = \bigoplus_{S \in \mathcal{G}} \text{Ind}_{N_P(S)/S}^G : \bigoplus_{S \in \mathcal{G}} \partial F(N_P(S)/S) \to F(P)$$

is an isomorphism.
Let F be a p-biset functor.

Theorem

Let P be a p-group, and G be a genetic basis of P. Then the map

$$I_{P,G} = \bigoplus_{S \in G} \text{Ind}_{N_P(S)/S}^G : \bigoplus_{S \in G} \partial F(N_P(S)/S) \to F(P)$$

is split injective.
Let F be a p-biset functor.

Theorem and Definition

Let P be a p-group, and G be a genetic basis of P. Then the map

$$\mathcal{I}_{P,G} = \bigoplus_{S \in G} \text{Ind}_{N_{P}(S)/S}^{G} : \bigoplus_{S \in G} \partial F\left(N_{P}(S)/S\right) \rightarrow F(P)$$

is split injective. The functor F is called **rational** if $\mathcal{I}_{P,G}$ is an isomorphism, for any P and G.
Let F be a p-biset functor.

Theorem and Definition

Let P be a p-group, and G be a genetic basis of P. Then the map

$$I_{P,G} = \bigoplus_{S \in G} \text{Indinf}_{N_P(S)/S}^G : \bigoplus_{S \in G} \partial F(N_P(S)/S) \to F(P)$$

is split injective. The functor F is called **rational** if $I_{P,G}$ is an isomorphism, for any P and G.

A rational p-biset functor is determined by its values at p-groups of normal p-rank 1, which are generally (hopefully ?) easy to compute.
- Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, closed by duality.
Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, closed by duality.

There are several characterizations of rational p-biset functors,
Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, closed by duality.

There are several characterizations of rational p-biset functors, independent of the knowledge of genetic bases.
Rational p-biset functors form a Serre subcategory of \mathcal{F}_p, closed by duality.

Units of Burnside rings

Let $B \times (G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

Problem:
Describe $B \times (G)$: find its order, and generators.

In general, this is a hard problem: e.g. (tom Dieck):
"If $|G|$ is odd, then $B \times (G) = \{ \pm 1 \}$" ⇔ the Odd Order Theorem.

The correspondence $G \mapsto B \times (G)$ has a natural structure of biset functor, denoted by $B \times$.

The restriction of $B \times$ to p-groups is a rational p-biset functor.

Theorem (2007)
If P is a p-group, then $B \times (P) \simeq \left(\mathbb{Z}/2\mathbb{Z} \right)^{d_P}$, where d_P is the number of subgroups S in a given genetic basis of P for which $N_P(S)/S$ has order 1 or 2, or is a dihedral 2-group.
Units of Burnside rings

- Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$.
Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

Problem: Describe $B^\times(G)$: find its order, and generators.

In general, this is a hard problem: e.g. (tom Dieck):

“If $|G|$ is odd, then $B^\times(G) = \{\pm 1\}$”

\iff the Odd Order Theorem.

The correspondence $G \mapsto B^\times(G)$ has a natural structure of biset functor, denoted by B^\times.

The restriction of B^\times to p-groups is a rational p-biset functor.

Theorem (2007)

If P is a p-group, then $B^\times(P) \cong (\mathbb{Z}/2\mathbb{Z})^d_P$, where d_P is the number of subgroups S in a given genetic basis of P for which $N_P(S)/S$ has order 1 or 2, or is a dihedral 2-group.
Units of Burnside rings

- Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.
- **Problem**: Describe $B^\times(G)$?
Units of Burnside rings

- Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.
- **Problem**: Describe $B^\times(G)$: find its order, and generators.
Units of Burnside rings

- Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

- **Problem**: Describe $B^\times(G)$: find its order, and generators.

- In general, this is a hard problem:
Units of Burnside rings

- Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.
- **Problem**: Describe $B^\times(G)$: find its order, and generators.
- In general, this is a hard problem: e.g. (tom Dieck):
 “If $|G|$ is odd, then $B^\times(G) = \{\pm 1\}$”
Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

Problem: Describe $B^\times(G)$: find its order, and generators.

In general, this is a hard problem: e.g. (tom Dieck):
“If $|G|$ is odd, then $B^\times(G) = \{\pm 1\}$” \iff the Odd Order Theorem.
Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

Problem: Describe $B^\times(G)$: find its order, and generators.

In general, this is a hard problem: e.g. (tom Dieck):
"If $|G|$ is odd, then $B^\times(G) = \{\pm 1\}$" ⇔ the Odd Order Theorem.

The correspondence $G \mapsto B^\times(G)$ has a natural structure of biset functor, denoted by B^\times.
Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

Problem: Describe $B^\times(G)$: find its order, and generators.

In general, this is a hard problem: e.g. (tom Dieck):

“If $|G|$ is odd, then $B^\times(G) = \{\pm 1\}$” \iff the Odd Order Theorem.

The correspondence $G \mapsto B^\times(G)$ has a natural structure of biset functor, denoted by B^\times.

The restriction of B^\times to p-groups is a rational p-biset functor.
Units of Burnside rings

- Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

- **Problem**: Describe $B^\times(G)$: find its order, and generators.

- In general, this is a hard problem: e.g. (tom Dieck):
 “If $|G|$ is odd, then $B^\times(G) = \{\pm1\}$” ⇔ the Odd Order Theorem.

- The correspondence $G \mapsto B^\times(G)$ has a natural structure of biset functor, denoted by B^\times.

- The restriction of B^\times to p-groups is a rational p-biset functor.

Theorem (2007)

If P is a p-group, then $B^\times(P) \cong (\mathbb{Z}/2\mathbb{Z})^{d_P}$,
Let $B^\times(G)$ denote the group of units of the Burnside ring $B(G)$. It is an elementary abelian 2-group.

Problem: Describe $B^\times(G)$: find its order, and generators.

In general, this is a hard problem: e.g. (tom Dieck):

“If $|G|$ is odd, then $B^\times(G) = \{\pm 1\}$” ⇔ the Odd Order Theorem.

The correspondence $G \mapsto B^\times(G)$ has a natural structure of biset functor, denoted by B^\times.

The restriction of B^\times to p-groups is a rational p-biset functor.

Theorem (2007)

If P is a p-group, then $B^\times(P) \cong (\mathbb{Z}/2\mathbb{Z})^{d_P}$, where d_P is the number of subgroups S in a given genetic basis of P for which $N_P(S)/S$ has order 1 or 2, or is a dihedral 2-group.
Linearly isomorphic permutation representations

Let $H = \text{PGL}_3(F_p)$. Then H acts on the set Π of points and the set Λ of lines of the projective plane. The incidence matrix of the geometry yields an isomorphism of $\mathbb{Q}H$-modules $\mathbb{Q}\Pi \cong \mathbb{Q}\Lambda$. Still $\Pi \not\cong \Lambda$ as H-sets.

Problem: More generally, when G is a finite group, describe all pairs (X, Y) of G-sets such that $\mathbb{Q}X \cong \mathbb{Q}Y$. In other words, let K denote the kernel of the linearization morphism $\chi : B \to \text{R}Q$. Describe $K(G)$?
Let $H = PGL_3(\mathbb{F}_p)$.
Let $H = PGL_3(\mathbb{F}_p)$. Then H acts on the set Π of points and the set Λ of lines of the projective plane.
Linearly isomorphic permutation representations

Let $H = PGL_3(\mathbb{F}_p)$. Then H acts on the set Π of points and the set Λ of lines of the projective plane. The incidence matrix of the geometry yields an isomorphism of $\mathbb{Q}H$-modules $\mathbb{Q}\Pi \cong \mathbb{Q}\Lambda$.
Let $H = \text{PGL}_3(\mathbb{F}_p)$. Then H acts on the set Π of points and the set Λ of lines of the projective plane. The incidence matrix of the geometry yields an isomorphism of $\mathbb{Q}H$-modules $\mathbb{Q}\Pi \cong \mathbb{Q}\Lambda$. Still $\Pi \not
cong \Lambda$ as H-sets.
Let $H = PGL_3(\mathbb{F}_p)$. Then H acts on the set Π of points and the set Λ of lines of the projective plane. The incidence matrix of the geometry yields an isomorphism of $\mathbb{Q}H$-modules $\mathbb{Q}\Pi \cong \mathbb{Q}\Lambda$. Still $\Pi \not\cong \Lambda$ as H-sets.

Problem: More generally, when G is a finite group, describe all pairs (X, Y) of G-sets such that $\mathbb{Q}X \cong \mathbb{Q}Y$.
The kernel of $B \to R_\mathbb{Q}$

- Let $H = \text{PGL}_3(\mathbb{F}_p)$. Then H acts on the set Π of points and the set Λ of lines of the projective plane. The incidence matrix of the geometry yields an isomorphism of $\mathbb{Q}H$-modules $\mathbb{Q}\Pi \cong \mathbb{Q}\Lambda$. Still $\Pi \not\cong \Lambda$ as H-sets.

- **Problem**: More generally, when G is a finite group, describe all pairs (X, Y) of G-sets such that $\mathbb{Q}X \cong \mathbb{Q}Y$.

- In other words, let K denote the kernel of the linearization morphism $\chi : B \to R_\mathbb{Q}$. Describe $K(G)$?
The kernel K of $B \to R_Q$

Recall that $H = \text{PGL}_3(F_p)$, that Π is the set of points and Λ the set of lines of the projective plane, and that $\Pi - \Lambda \in K(H)$.

1. Let S be a Sylow p-subgroup of H, and set $\delta = \text{Res}^H_S(\Pi - \Lambda) \in K(S)$.
 Then K is generated as a p-biset subfunctor of B by the single element δ.

2. Let P be a p-group. Then $K(P)$ is the set of linear combinations of elements $\text{Ind}_{\text{inf}}^P R/Q \eta$, where $R/Q \sim (\mathbb{Z}/p\mathbb{Z})^2$ or $R/Q \sim \mathbb{S}$, and η is a specific element in each case.

Proof: show that $K/\langle \delta \rangle$ is a rational p-biset functor.

Remark: There is a similar result for $p = 2$.
The kernel K of $B \to R_Q$

Theorem (2006)

Let p be an odd prime.

Let p be an odd prime.
The kernel K of $B \rightarrow R_Q$

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H,
Recall that $H = PGL_3(\mathbb{F}_p)$,

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H,
Recall that $H = PGL_3(\mathbb{F}_p)$.

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set

$$\delta = \text{Res}_S^H(\Pi - \Lambda) \in K(S).$$
Recall that $H = PGL_3(\mathbb{F}_p)$, that Π is the set of points and Λ the set of lines of the projective plane,

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set
 \[
 \delta = \text{Res}^H_S (\Pi - \Lambda) \in K(S).
 \]
Recall that $H = \text{PGL}_3(\mathbb{F}_p)$, that Π is the set of points and Λ the set of lines of the projective plane, and that $\Pi - \Lambda \in K(H)$.

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set $\delta = \text{Res}_S^H(\Pi - \Lambda) \in K(S)$.
The kernel K of $B \to R_Q$

Recall that $H = PGL_3(\mathbb{F}_p)$, that Π is the set of points and Λ the set of lines of the projective plane, and that $\Pi - \Lambda \in K(H)$.

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set $\delta = \text{Res}^H_S(\Pi - \Lambda) \in K(S)$. Then K is generated as a p-biset subfunctor of B by the single element δ.

Proof: show that $K/\langle \delta \rangle$ is a rational p-biset functor.

Remark: There is a similar result for $p = 2$.
Recall that $H = PGL_3(\mathbb{F}_p)$, that Π is the set of points and Λ the set of lines of the projective plane, and that $\Pi - \Lambda \in K(H)$.

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set $\delta = \text{Res}^H_S(\Pi - \Lambda) \in K(S)$. Then K is generated as a p-biset subfunctor of B by the single element δ.

2. Let P be a p-group. Then $K(P)$ is the set of linear combinations of elements $\text{Ind}^{P}_{R/Q}\eta$, where $R/Q \cong (\mathbb{Z}/p\mathbb{Z})^2$ or $R/Q \cong S$, and η is a specific element in each case.
Recall that $H = \text{PGL}_3(\mathbb{F}_p)$, that Π is the set of points and Λ the set of lines of the projective plane, and that $\Pi - \Lambda \in K(H)$.

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set $\delta = \text{Res}^H_S(\Pi - \Lambda) \in K(S)$. Then K is generated as a p-biset subfunctor of B by the single element δ.

2. Let P be a p-group. Then $K(P)$ is the set of linear combinations of elements $\text{Ind}_{R/Q}^P \eta$, where $R/Q \cong (\mathbb{Z}/p\mathbb{Z})^2$ or $R/Q \cong S$, and η is a specific element in each case.

Proof: show that $K/<\delta>$ is a rational p-biset functor.
The kernel K of $B \to R_Q$

Recall that $H = PGL_3(\mathbb{F}_p)$, that Π is the set of points and Λ the set of lines of the projective plane, and that $\Pi - \Lambda \in K(H)$.

Theorem (2006)

Let p be an odd prime.

1. Let S be a Sylow p-subgroup of H, and set $\delta = Res^H_S(\Pi - \Lambda) \in K(S)$. Then K is generated as a p-biset subfunctor of B by the single element δ.

2. Let P be a p-group. Then $K(P)$ is the set of linear combinations of elements $\text{Ind}_{R/Q}^{P} \eta$, where $R/Q \cong (\mathbb{Z}/p\mathbb{Z})^2$ or $R/Q \cong S$, and η is a specific element in each case.

Proof: show that $K/\langle \delta \rangle$ is a rational p-biset functor.

Remark: There is a similar result for $p = 2$.
The Dade group of a p-group

Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D(kP)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤1990) showed that $D(P)$ is always finitely generated. The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q,P)-biset, one can define a map $D(U) : D(P) \to D(Q)$ [with J. Thévenaz (2000)]. Unfortunately, in general $D(V) \circ D(U) \neq D(V \circ U)$. Nevertheless, some closely related objects are genuine p-biset functors: The Q-linear extension $P \mapsto Q \otimes Z D(P)$. The correspondence $P \mapsto D\Omega(P)$, where $D\Omega(P) \leq D(P)$ is the subgroup of relative syzygies.
Let k be a field of characteristic p, and P be a p-group.
The Dade group of a p-group

Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules,
The Dade group of a p-group

Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P),
Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian.
Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (\leq 1990) showed that $D(P)$ is always finitely generated.
Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤ 1990) showed that $D(P)$ is always finitely generated.

The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism.
The Dade group of a p-group

Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤ 1990) showed that $D(P)$ is always finitely generated.

The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q, P)-biset, one can define a map $D(U) : D(P) \rightarrow D(Q)$.
The Dade group of a p-group

- Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤ 1990) showed that $D(P)$ is always finitely generated.

- The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q, P)-biset, one can define a map $D(U) : D(P) \rightarrow D(Q)$ [with J. Thévenaz (2000)].
The Dade group of a p-group

- Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤ 1990) showed that $D(P)$ is always finitely generated.

- The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q, P)-biset, one can define a map $D(U) : D(P) \rightarrow D(Q)$ [with J. Thévenaz (2000)].

- Unfortunately, in general $D(V) \circ D(U) \neq D(V \circ U)$.

Serge Bouc (CNRS - Université de Picardie)
The Dade group of a p-group

- Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (\leq 1990) showed that $D(P)$ is always finitely generated.

- The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q, P)-biset, one can define a map $D(U) : D(P) \rightarrow D(Q)$ [with J. Thévenaz (2000)].

- Unfortunately, in general $D(V) \circ D(U) \neq D(V \circ U)$.

- Nevertheless, some closely related objects are genuine p-biset functors:

\[Q \text{-linear extension } P \mapsto Q \otimes \mathbb{Z} D(P) \]
\[\text{The correspondence } P \mapsto D(\Omega(P)), \text{ where } D(\Omega(P)) \leq D(P) \text{ is the subgroup of relative syzygies.} \]
The Dade group of a p-group

Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤ 1990) showed that $D(P)$ is always finitely generated.

The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q, P)-biset, one can define a map $D(U) : D(P) \rightarrow D(Q)$ [with J. Thévenaz (2000)].

Unfortunately, in general $D(V) \circ D(U) \neq D(V \circ U)$.

Nevertheless, some closely related objects are genuine p-biset functors:
- The \mathbb{Q}-linear extension $P \mapsto \mathbb{Q}D(P) = \mathbb{Q} \otimes_{\mathbb{Z}} D(P)$.

Serge Bouc (CNRS - Université de Picardie)
The Dade group of a p-group

Let k be a field of characteristic p, and P be a p-group. In order to classify endo-permutation kP-modules, Dade (1978) introduced an abelian group $D(P) = D_k(P)$ (now called the Dade group of P), and determined its structure when P is abelian. Later, Puig (≤ 1990) showed that $D(P)$ is always finitely generated.

The Dade group comes with natural operations of restriction, (tensor) induction, inflation, deflation, and transport by isomorphism. Thus, if P and Q are p-groups, and U is a (Q, P)-biset, one can define a map $D(U) : D(P) \to D(Q)$ [with J. Thévenaz (2000)].

Unfortunately, in general $D(V) \circ D(U) \neq D(V \circ U)$.

Nevertheless, some closely related objects are genuine p-biset functors:

- The \mathbb{Q}-linear extension $P \mapsto \mathbb{Q}D(P) = \mathbb{Q} \otimes_{\mathbb{Z}} D(P)$.
- The correspondence $P \mapsto D^\Omega(P)$, where $D^\Omega(P) \leq D(P)$ is the subgroup of relative syzygies.
The Dade group of a p-group

- [with J. Thévenaz (2000)] As a p-biset functor with values in \mathbb{Q}-vector spaces, the functor $\mathbb{Q}D$ is \textbf{simple}, isomorphic to $S(\mathbb{Z}/p\mathbb{Z})^2, \mathbb{Q}$.

There is a surjective morphism of p-biset functors $\Theta : B^* \to D\Omega$, which yields an exact sequence $0 \to R^* \chi^* \to B^* \to D\Omega / D\Omega_{\text{tors}} \to 0$.

In particular $D\Omega / D\Omega_{\text{tors}} \sim \mathbb{K}^*$.

[with E. Yalçın (2007)] The kernel of Θ is naturally isomorphic to the functor of Borel-Smith functions.

$D/\mathbb{D}\Omega$ is a rational p-biset functor.
The Dade group of a p-group

- [with J. Thévenaz (2000)] As a p-biset functor with values in \mathbb{Q}-vector spaces, the functor $\mathbb{Q}D$ is simple, isomorphic to $S(\mathbb{Z}/p\mathbb{Z})^2, \mathbb{Q}$.
- There is a surjective morphism of p-biset functors $\Theta : B^* \rightarrow D^\Omega$,
[with J. Thévenaz (2000)] As a p-biset functor with values in \mathbb{Q}-vector spaces, the functor $\mathbb{Q}D$ is simple, isomorphic to $S(\mathbb{Z}/p\mathbb{Z})^2,\mathbb{Q}$. There is a surjective morphism of p-biset functors $\Theta : B^* \rightarrow D^\Omega$, which yields an exact sequence $0 \rightarrow R^*_Q \xrightarrow{\chi^*} B^* \rightarrow D^\Omega / D^\Omega_{\text{tors}} \rightarrow 0$.

Serge Bouc (CNRS - Université de Picardie)
The Dade group of a p-group

- [with J. Thévenaz (2000)] As a p-biset functor with values in \mathbb{Q}-vector spaces, the functor $\mathbb{Q}D$ is simple, isomorphic to $S_{(\mathbb{Z}/p\mathbb{Z})^2, \mathbb{Q}}$.

- There is a surjective morphism of p-biset functors $\Theta : B^* \to D^\Omega$, which yields an exact sequence $0 \to R^*_Q \to B^* \to D^\Omega / D^\Omega_{\text{tors}} \to 0$. In particular $D^\Omega / D^\Omega_{\text{tors}} \cong K^*$.
The Dade group of a p-group

- [with J. Thévenaz (2000)] As a p-biset functor with values in \mathbb{Q}-vector spaces, the functor $\mathbb{Q}D$ is simple, isomorphic to $S_{(\mathbb{Z}/p\mathbb{Z})^2, \mathbb{Q}}$.

- There is a surjective morphism of p-biset functors $\Theta : B^* \to D^\Omega$, which yields an exact sequence $0 \to R^*_\mathbb{Q} \xrightarrow{\chi^*} B^* \to D^\Omega / D^\Omega_{\text{tors}} \to 0$. In particular $D^\Omega / D^\Omega_{\text{tors}} \cong K^*$.

- [with E. Yalçın (2007)] The kernel of Θ is naturally isomorphic to the functor of Borel-Smith functions.
The Dade group of a p-group

- [with J. Thévenaz (2000)] As a p-biset functor with values in \mathbb{Q}-vector spaces, the functor $\mathbb{Q}D$ is simple, isomorphic to $S_{(\mathbb{Z}/p\mathbb{Z})^2, \mathbb{Q}}$.

- There is a surjective morphism of p-biset functors $\Theta : B^* \to D^\Omega$, which yields an exact sequence $0 \to R^*_Q \xrightarrow{\chi^*} B^* \to D^\Omega / D^\Omega_{tors} \to 0$. In particular $D^\Omega / D^\Omega_{tors} \cong K^*$.

- [with E. Yalçın (2007)] The kernel of Θ is naturally isomorphic to the functor of Borel-Smith functions.

- D / D^Ω is a rational p-biset functor.
The Dade group of a p-group

Theorem (2006)

Suppose $p > 2$. Then $D = D_\Omega$.

If P is a p-group, then

$$D(P) \cong \mathbb{Z}^{nc_P} \oplus \left(\mathbb{Z}/2\mathbb{Z}\right)^{c'_P},$$

where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and c'_P is the number of conjugacy classes of non trivial cyclic subgroups of P.

Suppose $p = 2$. Then $D \neq D_\Omega$.

If P is a 2-group, then

$$D(P) \cong \mathbb{Z}^{nc_P} \oplus \left(\mathbb{Z}/4\mathbb{Z}\right)^{q_P} \oplus \left(\mathbb{Z}/2\mathbb{Z}\right)^{m_P},$$

where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and the integers q_P and m_P are determined from a genetic basis of P.

Proof: D_{tors} is a rational p-biset functor.
Using results proved by J. Carlson and J. Thévenaz (2000-2004-2005) in their classification of endo-trivial modules,

\[\text{Theorem (2006)}\]

Suppose \(p > 2 \). Then \(D = D_{\Omega} \).

If \(P \) is a \(p \)-group, then

\[\text{D}(P) \sim = Z_{nc} \oplus (Z/2Z)_{c'} \]

where \(nc \) is the number of conjugacy classes of non cyclic subgroups of \(P \), and \(c' \) is the number of conjugacy classes of non trivial cyclic subgroups of \(P \).

Suppose \(p = 2 \). Then \(D \neq D_{\Omega} \).

If \(P \) is a \(2 \)-group, then

\[\text{D}(P) \sim = Z_{nc} \oplus (Z/4Z)_{q} \oplus (Z/2Z)_{m} \]

where \(nc \) is the number of conjugacy classes of non cyclic subgroups of \(P \), and the integers \(q \) and \(m \) are determined from a genetic basis of \(P \).

Proof: \(\text{D} \) \(\text{tors} \) is a rational \(p \)-biset functor.
The Dade group of a p-group

Theorem (2006)

Suppose $p > 2$. Then $D = D_{\Omega}$.

If P is a p-group, then $D(P) \cong Z_{ncP} \oplus (Z/2Z)_{c'P}$, where ncP is the number of conjugacy classes of non cyclic subgroups of P, and $c'P$ is the number of conjugacy classes of non trivial cyclic subgroups of P.

Suppose $p = 2$. Then $D \neq D_{\Omega}$.

If P is a 2-group, then $D(P) \cong Z_{ncP} \oplus (Z/4Z)_{qP} \oplus (Z/2Z)_{mP}$, where ncP is the number of conjugacy classes of non cyclic subgroups of P, and the integers qP and mP are determined from a genetic basis of P.

Proof: D_{tors} is a rational p-biset functor.
The Dade group of a p-group

Theorem (2006)

- Suppose $p > 2$. Then $D = D^\Omega$.

The Dade group of a p-group

Theorem (2006)

- Suppose $p > 2$. Then $D = D^\Omega$. If P is a p-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c_P'}$,
The Dade group of a \(p \)-group

Theorem (2006)

- Suppose \(p > 2 \). Then \(D = D^\Omega \). If \(P \) is a \(p \)-group, then
 \[
 D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P},
 \]
 where \(nc_P \) is the number of conjugacy classes of non cyclic subgroups of \(P \),

- Suppose \(p = 2 \). Then \(D \neq D^\Omega \). If \(P \) is a 2-group, then
 \[
 D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/4\mathbb{Z})^{q_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{m_P},
 \]
 where \(nc_P \) is the number of conjugacy classes of non cyclic subgroups of \(P \), and the integers \(q_P \) and \(m_P \) are determined from a genetic basis of \(P \).
The Dade group of a p-group

Theorem (2006)

- Suppose $p > 2$. Then $D = D^\Omega$. If P is a p-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and c'_P is the number of conjugacy classes of non trivial cyclic subgroups of P.

Proof: D_{tors} is a rational p-biset functor.
The Dade group of a p-group

Theorem (2006)

- Suppose $p > 2$. Then $D = D^\Omega$. If P is a p-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and c'_P is the number of conjugacy classes of non trivial cyclic subgroups of P.
- Suppose $p = 2$. Then $D \neq D^\Omega$.

Proof: D tors is a rational p-biset functor.
The Dade group of a \(p \)-group

Theorem (2006)

- Suppose \(p > 2 \). Then \(D = D^\Omega \). If \(P \) is a \(p \)-group, then \(D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P} \), where \(nc_P \) is the number of conjugacy classes of non cyclic subgroups of \(P \), and \(c'_P \) is the number of conjugacy classes of non trivial cyclic subgroups of \(P \).

- Suppose \(p = 2 \). Then \(D \neq D^\Omega \). If \(P \) is a 2-group, then \(D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/4\mathbb{Z})^{q_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{m_P} \).
The Dade group of a p-group

Theorem (2006)

- Suppose $p > 2$. Then $D = D^\Omega$. If P is a p-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and c'_P is the number of conjugacy classes of non trivial cyclic subgroups of P.

- Suppose $p = 2$. Then $D \neq D^\Omega$. If P is a 2-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/4\mathbb{Z})^{q_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{m_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P,
The Dade group of a p-group

Theorem (2006)

- Suppose $p > 2$. Then $D = D^\Omega$. If P is a p-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and c'_P is the number of conjugacy classes of non trivial cyclic subgroups of P.

- Suppose $p = 2$. Then $D \neq D^\Omega$. If P is a 2-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/4\mathbb{Z})^{q_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{m_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and the integers q_P and m_P are determined from a genetic basis of P.
The Dade group of a p-group

Theorem (2006)

- **Suppose $p > 2$.** Then $D = D^\Omega$. If P is a p-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{c'_P}$, where nc_P is the number of conjugacy classes of **non cyclic subgroups** of P, and c'_P is the number of conjugacy classes of **non trivial cyclic subgroups** of P.

- **Suppose $p = 2$.** Then $D \neq D^\Omega$. If P is a 2-group, then $D(P) \cong \mathbb{Z}^{nc_P} \oplus (\mathbb{Z}/4\mathbb{Z})^{q_P} \oplus (\mathbb{Z}/2\mathbb{Z})^{m_P}$, where nc_P is the number of conjugacy classes of non cyclic subgroups of P, and the integers q_P and m_P are determined from a **genetic basis** of P.

Proof: D_{tors} “is” a rational p-biset functor...
Let k be a field of positive characteristic p, and P be a finite p-group. If X is a non empty finite P-set, the relative syzygy Ω_X of the trivial module relative to X is the kernel of the augmentation map $kX \rightarrow k$.

Theorem (Alperin)

If $X^P = \emptyset$, then Ω_X is a cep kP-module (cep=capped endo-permutation).

The group of relative syzygies $D^\Omega(P)$ is the subgroup of $D(P)$ generated by the classes of Ω_X, where X is a non empty finite P-set with $X^P = \emptyset$.
Let F be a p-biset functor. Then F is rational if and only if the following two conditions hold:

1. If P is a p-group with non cyclic centre, then $\partial F(P) = \{0\}$.

2. If P is a p-group, if $E \trianglelefteq P$ with $E \cong (\mathbb{Z}/p\mathbb{Z})^2$, if $Z \leq E \cap Z(P)$ with $|Z| = p$, then the map

$$\text{Res}^P_{C_P(E)} \oplus \text{Def}^P_{P/Z} : F(P) \rightarrow F(C_P(E)) \oplus F(P/Z)$$

is injective.