
Bisets and associated functors

Recall that the letter R denotes a commutative and associative ring with
unit, and G denotes a finite group.

1. Functors between categories of G-sets

In view of Dress’s definition of Mackey functors, it is natural to consider
the following problem : if G and H are finite groups, find all functors from
H-set to G-set which preserve disjoint unions and cartesian squares. If F is
such a functor and M is a Mackey functor for G over R, then the composition
M ◦ F will be a Mackey functor for H over R.

1.1. Bisets and related products.

Definition 1.1.1 : If G and H are groups, a (G, H)-biset, or G-set-H, is
a set U with a left G action and a right H action which commute, i.e. are
such that

∀g ∈ G, ∀u ∈ U, ∀h ∈ H, (gu)h = g(uh) .

If G, H, and K are groups, if U is a G-set-H, and V is an H-set-K, the
product U ×H V is the quotient of the direct product U ×V by the right action
of H given by

∀(u, v) ∈ U × V, ∀h ∈ H, (u, v)h = (uh, h−1v) .

It is a G-set-K for the action induced by

∀g ∈ G, ∀k ∈ K, ∀(u, v) ∈ U × V, g(u, v)k = (gu, vk) .

The product U ◦V is the set of pairs (u, v) in ×V such that whenever uh = u
for some h ∈ H, there exists k ∈ K with hv = vk. The set U ◦V is invariant
under the right action of H on U × V , and the set of H-orbits on U ◦ V is
denoted by U ◦H V . It is a sub-G-set-K of U ×H V .

Proposition 1.1.2 : Let G, H, K and L be groups. Let U be a (G, H)-biset,
let V be an (H, K)-biset, and let W be a (K, L)-biset. Then the canonical
bijection

(U × V ) × W → U × (V × W )
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induces isomorphisms of (G, L)-bisets

(U ×H V ) ×K W ∼= U ×H (V ×K W )

(U ◦H V ) ◦K W ∼= U ◦H (V ◦K W ) .

Remark 1.1.3 : Let G and H be finite groups, and let U be a finite G-set-
H. If X is a finite H-set, consider X as an H-set-{1}. Then U ◦H X is a
G-set-{1}, i.e. a G-set. Note that in this case

U ◦H X = {(u, x) ∈ U × X | ∀h ∈ H, uh = u ⇒ hx = x}/H ⊆ U ×H X ,

If f : X → Y is a morphism of G-sets, denote by U ◦H f the map from
U ◦H X to U ◦H Y defined by (U ◦H f)(u, x) = (u, f(x)). This shows that
any finite (G, H)-biset U gives rise to a functor U ◦H − from H-set to G-set.

1.2. Classification of functors.

Proposition 1.2.1 : [[1] Théorème 1] Let G and H be finite groups.

1. If F : H-set → G-set is a functor which commutes with disjoint
unions, and preserves cartesian squares, then there exists a finite (G, H)-
biset U such that F is isomorphic to the functor U ◦H −. Such a biset
U is unique up to isomorphism.

2. Conversely, if U is a finite (G, H)-biset, then the functor U ◦H −
commutes with disjoint unions and preserves cartesian squares.

3. If K is another finite group, and if V is a finite (H, K)-biset, then the
composition of the functors V ◦K − and U ◦H − is isomorphic to the
functor (U ◦H V ) ◦K −.

1.3. Examples.

• Let H be a subgroup of G, and let U be the set G, viewed as an (H, G)-
biset by left and right multiplication. Then the functor U ◦G − is isomorphic
to the restriction functor ResG

H : G-set → H-set.

• Let H be a subgroup of G, and let U be the set G, viewed as a (G, H)-biset
by left and right multiplication. Then the functor U ◦H − is isomorphic to
the induction functor IndG

H : H-set → G-set.
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• Let N be a normal subgroup of G, and set H = G/N . Let U be the set H,
viewed as a (G, H)-biset, by right multiplication, and by projection G → H
followed by left multiplication. Then the functor U ◦H − is isomorphic to the
inflation functor InfGH : H-set → G-set.

• Let N be a normal subgroup of G, and set H = G/N . Let U be the set H,
viewed as a (H, G)-biset, by left multiplication, and by projection G → H
followed by right multiplication. Then the functor U ◦G − is isomorphic to
the fixed points by N functor Fix(N) : G-set → H-set.

• Let f : G → H be a group isomorphism, and let U be the set H,
viewed as an (H, G)-biset by left multiplication, and by f followed by right
multiplication. Then the functor U ◦G − is the transport by f functor
IsoH

G (f) : G-set → H-set.

• One can show that any functor F : G-set → H-set which commutes with
disjoint unions and preserves pull-back squares is isomorphic to a disjoint
union of a finite number of functors which are composed of the five previous
cases, i.e. of the form

IndG
K ◦ InfKK/M ◦ Iso

K/M
L/N (f) ◦ Fix(N) ◦ ResH

L ,

for some subgroups M /K ⊆ G and N / L ⊆ H, and some group isomorphism
f : L/N → K/M .

2. Composition with bisets

2.1. Functors between categories of Mackey functors.

Proposition 2.1.1 : Let G and H be finite groups, and let U be a finite
(G, H)-biset. If M is a Mackey functor for G over R, viewed as a bivariant
functor G-set → R-Mod, denote by M ◦ U− the bivariant functor H-set →
R-Mod obtained by precomposition of M with the functor U◦H : H-set →
G-set.

Then M ◦ U is a Mackey functor for H over R, and the correspondence
M 7→ M ◦ U is an R-linear exact functor from MackR(G) to MackR(H).

This composition of Mackey functors with bisets can be extended to Green
functors :
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Proposition 2.1.2 : Let G and H be finite groups, and let U be a finite
(G, H)-biset. If A is a Green functor for G over R, and if X and Y are finite
H-sets, define a product ×U : (A ◦U)(X)× (A ◦U)(Y ) → (A ◦U)(X ×Y ) by

∀a ∈ (A ◦ U)(X), ∀b ∈ (A ◦ U)(Y ), a ×U b = A∗
( u,x,y

↓
u,x,u,y

)

(a × b) ,

where
( u,x,y

↓
u,x,u,y

)

is the map from U ◦H (X × Y ) to (U ◦H X) × (U ◦H Y )

sending
(

u, (x, y)
)

to
(

(u, x), (u, y
)

. Let moreover εA◦U denote the element

A∗(pU/H)(εA) of A(U/H) = (A ◦ U)(•), where pU/H is the unique map from
U/H to •.

Then A ◦ U is a Green functor for H over R for the product ×U and the
identity element εA◦U .

Similarly, if M is an module over the Green functor A, then M ◦ U is a
module over the Green functor A ◦ U :

Proposition 2.1.3 : Let G and H be finite groups, and let U be a finite
(G, H)-b iset. Let A be a Green functor for G over R, and let M be an
A-module. If X and Y are finite H-sets, define a product ×U : (A ◦U)(X)×
(M ◦ U)(Y ) → (M ◦ U)(X × Y ) by

∀a ∈ (A ◦ U)(X), ∀m ∈ (M ◦ U)(Y ), a ×U b = M∗
( u,x,y

↓
u,x,u,y

)

(a × m) .

Then M ◦ U is a module over the Green functor A ◦ U , for the product ×U ,
and the correspondence M 7→ M ◦U is an R-linear exact functor from A-Mod

to A ◦ U-Mod.

2.2. Examples.

• Let H be a subgroup of G, and let U be the set G, viewed as an (H, G)-
biset by left and right multiplication. Then the functor M 7→ M ◦ U is
the induction functor for Mackey functors. If M is a Mackey functor for H
over R, this induced Mackey functor IndG

HM can be computed by

(IndG
HM)(X) = M(ResG

HX)

for a finite G-set X.

• Let H be a subgroup of G, and let U be the set G, viewed as a (G, H)-
biset by left and right multiplication. Then the functor M 7→ M ◦ U is the

4



restriction functor for Mackey functors. If M is a Mackey functor for G
over R, this restricted Mackey functor ResG

HM can be computed by

(ResG
HM)(X) = M(IndG

HX)

for a finite H-set X.

• Let N be a normal subgroup of G, and set H = G/N . Let U be the set H,
viewed as a (G, H)-biset, by right multiplication, and by projection G → H
followed by left multiplication. Then the functor M 7→ M ◦U is the deflation
functor for Mackey functors. If M is a Mackey functor for G over R, this
deflated Mackey functor DefGHM can be computed by

(DefGHM)(X) = M(InfGHX)

for a finite H-set X.

• Let N be a normal subgroup of G, and set H = G/N . Let U be the
set H, viewed as a (H, G)-biset, by left multiplication, and by projection
G → H followed by right multiplication. Then the functor M 7→ M ◦ U is
the inflation functor for Mackey functors. If M is a Mackey functor for H
over R, this inflated Mackey functor InfGHM can be computed by

(InfGHM)(X) = M(XN )

for a finite G-set X.

3. Adjoint constructions.

3.1. Left and right adjoints.

Proposition 3.1.1 : [[2] Chapters 9 and 10]

1. Let G and H be finite groups, and let U be a finite (G, H)-biset. The
functor

M 7→ M ◦ U : MackR(G) → MackR(H)

admits a left adjoint LU and a right adjoint RU .

2. If G, H, and K are finite groups, if U is a finite (G, H)-biset and V
is a finite (H, K)-biset, there are isomorphisms of functors

LU ◦ LV
∼= LU◦HV RU ◦ RV

∼= RU◦HV .
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3. If A is a Green functor for H over R, then LU(A) has a natural
structure of Green functor for G over R. The correspondence A 7→
LU(A) is a functor from GreenR(H) to GreenR(G).

4. If M is an A-module, then LU(M) has a natural structure of LU(A)-
module, and the correspondence M 7→ LU(M) is a functor from A-Mod

to LU(A)-Mod.

Remark 3.1.2 : The explicit description of the functors LU(M) is rather
complicated in the general case (see [2] Chapter 9). However, a partial de-
scription can be obtained by the following argument, which also gives a proof
for the existence of the functors LU and RU : recall that the Mackey algebra
µR(G) can be identified with RB(ΩG×ΩG), where ΩG = t

K⊆G
G/K. If M is a

Mackey functor for G over R, then M(ΩG) is a µR(G)-module. Set similarly
ΩH = t

L⊆H
H/L, and identify µR(H) with RB(ΩH × ΩH).

Now consider

RBU = RB
(

ΩG × (U ◦H ΩH)
)

.

This is a
(

µR(G), µR(H)
)

-bimodule, for the actions extending linearly the

following products : suppose that
(

X, (a, b)
)

is a G-set over ΩG × ΩG, that
(

Y, (c, d)
)

is an H-set over ΩH × ΩH , and that
(

Z, (e, f)
)

is a G-set over

ΩG × (U ◦H ΩH). Build the following diagram
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k
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ΩG ΩG U ◦H ΩH U ◦H ΩH

where all the squares are pull-back squares. Then the left and right actions
on RBU are defined by

(

X, (a, b)
)

.
(

Z, (e, f)
)

.
(

Y, (c, d)
)

=
(

E, (agk, (U ◦H d)jl)
)

.

It is easy to this from this definition that there is an isomorphism of left
µR(G)-modules

RBU
∼= RBU◦HΩH

(ΩG) .
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In particular RBU is projective and finitely generated as µR(G)-module.
Moreover, one can show that if M is a Mackey functor for G over R, then
the natural isomorphism of R-modules

(M ◦ U)(ΩH) = M(U ◦H ΩH) ∼= HomµR(G)

(

RBU , M(ΩG)
)

is an isomorphism or µR(H)-modules. Thus if N is a Mackey functor for H
over R, this gives by standard arguments

LU(N)(ΩG) ∼= RBU ⊗µR(H) N(ΩH) .

But since RBU is projective and finitely generated as a left µR(G)-module,
one has also that

(M ◦ U)(ΩH) ∼= RB]
U ⊗µR(G) M(ΩG) ,

where

RB]
U = HomµR(G)

(

RBU , µR(G)
)

= HomµR(G)

(

RBU , RBΩG
(ΩG)

)

= (RBΩG
◦ U)(ΩH) ∼= RB

(

(U ◦H ΩH) × ΩG

)

∼= RBU .

In other words RB]
U can be identified to RBU , viewed as a

(

µR(H), µR(G)
)

-

bimodule for the action defined by

∀a ∈ µR(H), ∀b ∈ µR(G), ∀c ∈ RBU , a.c.b = σG(b)cσH(a) ,

where σG (resp. σH) is the anti-automorphism of µR(G) (resp.µR(H)).
Now it follows that if N is a Mackey functor for H over R,

RU(N)(ΩG) ∼= HomµR(H)

(

RB]
U , N(ΩH)

)

.

3.2. Examples.

• Let H be a subgroup of G. Then the functors

MackR(G) 3 M 7→ ResG
HM ∈ MackR(H)
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MackR(H) 3 N 7→ IndG
HN ∈ MackR(G)

are mutual left and right adjoint functors ([4] Prop. 4.2).

• Let N /G, and H = G/N . Then then inflation functor InfGH : MackR(H) →
MackR(G) has a left adjoint M 7→ MN , and a right adjoint M 7→ MN , which
can be computed as follows : if K/N is a subgroup of H = G/N , then

MN (K/N) = M(K)/
∑

N 6⊆L⊆K

tKL M(L) MN (K/N) =
⋂

N 6⊆L⊆K

Ker rK
L .

In the same situation, the left and right adjoints to the deflation functor
DefGH are described in Section 9.9.3 of [2].

4. Biset functors

4.1. Bisets as morphisms. The previous sections suggest the following
idea : if G and H are finite group, then a finite (G, H)-biset is a kind of
generalized morphism from H to G. At least it gives a way in many situations
to transport to the group G known structures associated to H. This idea
can be formalized as follows :

Definition 4.1.1 : Let CR denote the following category :

• The objects of CR are finite groups.

• If H and G are finite groups, then

HomCR
(H, G) = RB(G × Hop)

is the Burnside group of (G, H)-bisets, with coefficients in R.

• Composition of morphisms is obtained by linearity from the product
(U, V ) 7→ U ×H V .

• The identity morphism of the group G is the biset G itself, for left and
right multiplication.

Let FR denote the category of R-linear functors from CR to R-Mod.

Remark 4.1.2 : It is often interesting to consider proper subcategories of
CR (consisting for example only of finite p-groups, for some prime p), which
need not be full subcategories (it may be appropriate to consider only those
bisets which are free on the right, or on the left, or both, in building the
Hom-sets).
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In particular if one allows only left and right free bisets as morphisms,
the objects of FR are called global Mackey functors : this is because left
and right free bisets can be viewed as disjoint unions of bisets composed of
restrictions, group isomorphisms, and inductions.

It is also interesting to replace the composition product ×H by the com-
position product ◦H . This gives examples of categories with the same ob-
jects, the same morphisms, but with different composition product. Such
categories may have completely different properties.

4.2. Examples.

• Let R = Z. Let RQ(G) denote the Grothendieck group of the category of
(finite dimensional) QG-modules. If H is another finite group, if L is a finite
dimensional QH-module, and if U is a finite (G, H)-biset, then QU ⊗QH L is
a finite dimensional QG-module.

This construction gives a linear map IU : RQ(H) → RQ(G). If U ′ is
another finite (G, H)-biset, then clearly IUtU ′ = IU + IU ′. Moreover, if K
is another finite group, and if V is a finite (H, K)-biset, it is clear that
IU ◦ IV = IU×HV . Hence the correspondence G 7→ RQ(G) can be viewed as
an object of FZ.

• Let R = Z, and let k be a field of characteristic p > 0. Let Rk(G) be
the Grothendieck group of the category of the category of (finite dimen-
sional) kG-modules, for relations given by short exact sequences. The pre-
vious example cannot be extended to this situation, because the functor
L 7→ kU ⊗kH L does not preserve short exact sequences in general. It does
indeed if the module kU is flat as a right kH-module, which happens for
example if U is free on the right. This shows the interest of restricting the
set of morphisms in the category CR.

• Let p be a prime number, and let k = Fp be the field with p elements. If
G is a finite p-group, let Dk(G) denote the Dade group of endo-permutation
kG-modules. One can show (see [3]) that the correspondence G 7→ Dk(G)
is a functor on the full subcategory of CZ consisting of finite p-groups. This
shows the interest of restricting the class of objects in the category CR.

• Let F (G) = K0

(

µR(G)
)

be the Grothendieck group of finitely generated

µR(G)-modules. If H is a finite group and U is a finite (G, H)-biset, then
the functor LU is left adjoint to an exact functor. Hence it maps projec-
tive µR(H)-modules to projective µR(G)-modules. This defines a linear map
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F (U) : F (H) → F (G). If K is another finite group and if V is a finite
(H, K)-biset, it is clear that F (U) ◦ F (V ) = F (U ◦H V ). In other words, we
get a functor on the category CZ, equipped with the product ◦H instead of
×H .

4.3. Simple biset functors. The category FR is an abelian category. One
can try to classify and describe its simple objects.

Lemma 4.3.1 : There is a direct sum decomposition

EndCR
(G) = AG ⊕ IG

where IG is a two sided ideal of EndCR
(G), and AG is a subalgebra isomorphic

to the algebra over R of the group Out(G) of outer automorphisms of G.

In particular, any ROut(G)-module can be viewed as a module for the algebra
EndCR

(G).

Notation 4.3.2 : Let H be an object of CR, and let V be an ROut(H)-
module. If G is an object of CR, set

LH,V (G) = HomCR
(H, G) ⊗EndCR

(H)
V ,

where the right EndCR
(H)-module structure on HomCR

(H, G) is given by com-
position of morphisms in CR.

If f : G → G′ is a morphism in CR, define a map LH,V (f) : LH,V (G) →
LH,V (G′) by composition with f on the left.

Clearly LH,V is an R-linear functor from CR to R-Mod, i.e. an object of FR.

Proposition 4.3.3 : 1. Let H be an object of CR, and let V be a simple
ROut(H)-module. Then LH,V admits a unique maximal proper sub-
functor JH,V . The quotient SH,V = LH,V /JH,V is a simple object of
FR, and SH,V (K) = 0 for any object K of CR with |K| < |H|.

2. If S is a simple object of FR, let H be an object of CR of minimal
order such that S(H) 6= 0. Then S(H) is a simple ROut(H)-module,
and S ∼= SH,V .

3. If H (resp. K) is an object of CR, and if V (resp. W ) is a simple
ROut(H)-module (resp. a simple ROut(K)-module), then the functors
SH,V and SK,W are isomorphic if and only if there is a group isomor-
phism ϕ : H → K such that ϕ(V ) = W .

10



Remark 4.3.4 : This proposition gives a nice classification of the simple
objects in FR. Unfortunately, this does not give any easy way to compute the
evaluations SH,V (G) of a simple functor at the finite group G. For example,
suppose that R = k is a field, that CR consists of all finite groups, that all
finite bisets are allowed as morphisms, and that the composition product
is ×H .

Let H be a finite group, and let V = k be the trivial kOut(H)-module.
If G is a finite group, let BH(G) denote the k-vector space with basis the
set of conjugacy classes of pairs (K, L) of subgroups of G, with L /K and
K/L ∼= H. Define a bilinear form on BH(G), with values in k, by

〈(K, L) | (K ′, L′)〉 = |{x ∈ K\G/K ′ | K.xL′ = L.xK ′ K∩xL′ = L∩xK ′}| .

Then one can show that SH,k(G) ' BH(G)/Rad〈 | 〉. It is far from obvious
however even to compute in general the k-dimension of this space.
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