Bisets and associated functors

Recall that the letter R denotes a commutative and associative ring with
unit, and G denotes a finite group.

1. Functors between categories of G-sets

In view of Dress’s definition of Mackey functors, it is natural to consider
the following problem : if G and H are finite groups, find all functors from
H-set to G-set which preserve disjoint unions and cartesian squares. If F is
such a functor and M is a Mackey functor for GG over R, then the composition
M o F will be a Mackey functor for H over R.

1.1. Bisets and related products.

Definition 1.1.1 : If G and H are groups, a (G, H)-biset, or G-set-H, is
a set U with a left G action and a right H action which commute, i.e. are
such that

Vg € G,Yu € U,Yh € H, (gu)h = g(uh)
If G, H, and K are groups, if U is a G-set-H, and V is an H-set-K, the

product U x gV is the quotient of the direct product U X'V by the right action
of H given by

V(u,v) € U x V,Yh € H, (u,v)h = (uh, h"'v)
It is a G-set-K for the action induced by
Vg € G,Vk € K,Y(u,v) € U xV, g(u,v)k = (gu, vk)

The product U oV is the set of pairs (u,v) in XV such that whenever uh = u
for some h € H, there exists k € K with hv = vk. The set U oV is invariant
under the right action of H on U X V', and the set of H-orbits on U oV is
denoted by U oy V. It is a sub-G-set-K of U xg V.

Proposition 1.1.2 : Let G, H, K and L be groups. Let U be a (G, H)-biset,
let V be an (H, K)-biset, and let W be a (K, L)-biset. Then the canonical
bijection

(UxV)xW —=Ux (VxW)



induces isomorphisms of (G, L)-bisets
(UXHV) XKW%JUXH(V XKW)
(UOHV)OKWgUOH (VOKW)

Remark 1.1.3 : Let G and H be finite groups, and let U be a finite G-set-
H. If X is a finite H-set, consider X as an H-set-{1}. Then U oy X is a
G-set-{1}, i.e. a G-set. Note that in this case

Uog X ={(u,z) eUx X |Vhe H uh=u=hr=x}/HCUxygX |,

If f: X — Y is a morphism of G-sets, denote by U oy f the map from
Uopy X to UoyY defined by (U oy f)(u,z) = (u, f(x)). This shows that
any finite (G, H)-biset U gives rise to a functor U oy — from H-set to G-set.

1.2. Classification of functors.

Proposition 1.2.1 : [[1] Théoreme 1] Let G and H be finite groups.

1. If F : H-set — G-set is a functor which commutes with disjoint
unions, and preserves cartesian squares, then there exists a finite (G, H)-
biset U such that F' is isomorphic to the functor U oy —. Such a biset
U is unique up to isomorphism.

2. Conversely, if U is a finite (G, H)-biset, then the functor U oy —
commutes with disjoint unions and preserves cartesian Squares.

3. If K is another finite group, and if V is a finite (H, K)-biset, then the
composition of the functors V ox — and U oy — is isomorphic to the
functor (U oy V) ox —.

1.3. Examples.

e Let H be a subgroup of G, and let U be the set G, viewed as an (H, G)-
biset by left and right multiplication. Then the functor U og — is isomorphic
to the restriction functor Res$; : G-set — H-set.

e Let H be a subgroup of GG, and let U be the set G, viewed as a (G, H)-biset
by left and right multiplication. Then the functor U oy — is isomorphic to
the induction functor Ind$, : H-set — G-set.



e Let N be a normal subgroup of G, and set H = G/N. Let U be the set H,
viewed as a (G, H)-biset, by right multiplication, and by projection G — H
followed by left multiplication. Then the functor U oy — is isomorphic to the
inflation functor Inf% : H-set — G-set.

e Let N be a normal subgroup of G, and set H = G/N. Let U be the set H,
viewed as a (H, G)-biset, by left multiplication, and by projection G — H
followed by right multiplication. Then the functor U og — is isomorphic to
the fized points by N functor Fix(N) : G-set — H-set.

o Let f : G — H be a group isomorphism, and let U be the set H,
viewed as an (H, G)-biset by left multiplication, and by f followed by right
multiplication. Then the functor U og — is the transport by f functor

IsoZ (f) : G-set — H-set.

e One can show that any functor F' : G-set — H-set which commutes with
disjoint unions and preserves pull-back squares is isomorphic to a disjoint
union of a finite number of functors which are composed of the five previous
cases, i.e. of the form

Ind% o Infg/M o Isof//]i\,d(f) o Fix(N) o Res? |

for some subgroups M < K C G and N <L C H, and some group isomorphism
f:L/N— K/M.

2. Composition with bisets

2.1. Functors between categories of Mackey functors.

Proposition 2.1.1 : Let G and H be finite groups, and let U be a finite
(G, H)-biset. If M is a Mackey functor for G over R, viewed as a bivariant
functor G-set — R-Mod, denote by M o U— the bivariant functor H-set —
R-Mod obtained by precomposition of M with the functor Uoy : H-set —
G-set.

Then M o U is a Mackey functor for H over R, and the correspondence
M — M oU is an R-linear exact functor from Mackg(G) to Mackg(H).

This composition of Mackey functors with bisets can be extended to Green
functors :



Proposition 2.1.2 : Let G and H be finite groups, and let U be a finite
(G, H)-biset. If A is a Green functor for G over R, and if X andY are finite
H-sets, define a product xV : (AoU)(X) x (AoU)(Y) — (AoU)(X xY) by

Va € (AoU)(X),¥be (AoU)(Y), axVb= A* (u“ﬁfy) (axb) ,

where (:jjy) is the map from U oy (X xY) to (Uoyg X) x (UoyY)

sending | u, (a:,y)) to <(u,:c), (u,y) Let moreover € ooy denote the element
A*(pusu)(ea) of AQU/H) = (Ao U)(e), where py g is the unique map from
U/H to e.

Then Ao U is a Green functor for H over R for the product xY and the
wdentity element € gor

Similarly, if M is an module over the Green functor A, then M o U is a
module over the Green functor Ao U :

Proposition 2.1.3 : Let G and H be finite groups, and let U be a finite
(G,H)-b iset. Let A be a Green functor for G over R, and let M be an
A-module. If X andY are finite H-sets, define a product xV : (AoU)(X) x
(MoU)(Y)— (MoU)(X XY) by

Va € (Ao U)(X),Ym € (MoU)(Y), axV b= M* (“’f’y) (a x m)

u7:v7u7y

Then M o U is a module over the Green functor Ao U, for the product xY,
and the correspondence M +— MoU is an R-linear exact functor from A-Mod

to Ao U-Mod.

2.2. Examples.

e Let H be a subgroup of G, and let U be the set GG, viewed as an (H, G)-
biset by left and right multiplication. Then the functor M +— M o U is
the induction functor for Mackey functors. If M is a Mackey functor for H
over R, this induced Mackey functor IndgM can be computed by

(Ind% M)(X) = M(Res% X)
for a finite G-set X.

e Let H be a subgroup of G, and let U be the set G, viewed as a (G, H)-
biset by left and right multiplication. Then the functor M — M o U is the



restriction functor for Mackey functors. If M is a Mackey functor for G
over R, this restricted Mackey functor Res% M can be computed by

(Res% M)(X) = M(Ind% X)
for a finite H-set X.

e Let N be a normal subgroup of G, and set H = G/N. Let U be the set H,
viewed as a (G, H)-biset, by right multiplication, and by projection G — H
followed by left multiplication. Then the functor M +— M oU is the deflation
functor for Mackey functors. If M is a Mackey functor for G over R, this
deflated Mackey functor DefﬁM can be computed by

(DefS M) (X) = M(Inf$ X)
for a finite H-set X.

e Let N be a normal subgroup of G, and set H = G/N. Let U be the
set H, viewed as a (H,G)-biset, by left multiplication, and by projection
G — H followed by right multiplication. Then the functor M — M o U is
the inflation functor for Mackey functors. If M is a Mackey functor for H
over R, this inflated Mackey functor Inf% M can be computed by

(Inf§ M) (X) = M(XV)

for a finite G-set X.

3. Adjoint constructions.

3.1. Left and right adjoints.

Proposition 3.1.1 : [[2] Chapters 9 and 10]

1. Let G and H be finite groups, and let U be a finite (G, H)-biset. The
functor
M — M o U : Mackg(G) — Mackg(H)
admits a left adjoint Ly and a right adjoint Ry .

2. If G, H, and K are finite groups, if U is a finite (G, H)-biset and V

is a finite (H, K)-biset, there are isomorphisms of functors

LioLy = Lyoyv RuoRy = Ryoyv



3. If A is a Green functor for H over R, then Ly(A) has a natural
structure of Green functor for G over R. The correspondence A —
Li(A) is a functor from Greeng(H) to Greeng(G).

4. If M is an A-module, then Ly (M) has a natural structure of Ly(A)-
module, and the correspondence M +— Ly(M) is a functor from A-Mod
to Ly (A)-Mod.

Remark 3.1.2 : The explicit description of the functors L£y(M) is rather
complicated in the general case (see [2] Chapter 9). However, a partial de-
scription can be obtained by the following argument, which also gives a proof
for the existence of the functors Ly and Ry : recall that the Mackey algebra
pr(G) can be identified with RB(Qq x Q¢), where Qg = . G/K.If M is a

Mackey functor for G over R, then M(Q¢) is a pg(G)-module. Set similarly
Qp = U H/L, and identify ur(H) with RB(Qy x Qp).

Now consider

RBy = RB (QG x (U og QH))

This is a (,uR(G), pr(H ))—bimodule, for the actions extending linearly the
following products : suppose that (X, (a, b)) is a G-set over g X (g, that

(Y, (c, d)) is an H-set over Qg x Qp, and that (Z, (e,f)) is a G-set over
Qg x (U oy Q). Build the following diagram

E
SN
C D
SN N
X A UopgY
/ X / \\onfc/ Uopyd
QG’ QG’ UOHQH UOHQH

where all the squares are pull-back squares. Then the left and right actions
on RBy are defined by

(X, (a, b)) . (z, (e, f)) . (Y, (c, d)) _ (E (agk, (U oy d) jl))

It is easy to this from this definition that there is an isomorphism of left
pr(G)-modules
RBy = RByo, 0, (Q6)
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In particular RBy is projective and finitely generated as pgr(G)-module.
Moreover, one can show that if M is a Mackey functor for G over R, then
the natural isomorphism of R-modules

(M o U)(Qp) = M(U oy Q) = Hom,,,c) <RBU, M(QG)>

is an isomorphism or pg(H)-modules. Thus if N is a Mackey functor for H
over R, this gives by standard arguments

Ly(N)(Qa) = RBy @upy N(Qm)

But since RBy is projective and finitely generated as a left pur(G)-module,
one has also that

(M o U)(Qu) = RBf; @puic) M(Q)
where
RB!, = Hom,,e (RBU,,LLR(G)>
— Hom,, (RBU, RBao,, (QG)>

= (RBqg o U)(Qy) = RB((U op Q) x QG>
RBy
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In other words RB:; can be identified to RBy, viewed as a (uR(H), uR(G)>—
bimodule for the action defined by

Va € pr(H),Vb € pr(G),Ve € RBy, a.c.b=og(b)coy(a)

where o¢ (resp. op) is the anti-automorphism of ur(G) (resp.ur(H)).
Now it follows that if IV is a Mackey functor for H over R,

Ry (N)(©a) = Homuyon) (RBG, N ()

3.2. Examples.
e Let H be a subgroup of G. Then the functors

Mackp(G) > M +— Res$ M € Mackg(H)



Mackz(H) 3 N — Ind§ N € Mackg(G)
are mutual left and right adjoint functors ([4] Prop. 4.2).

e Let NaG, and H = G/N. Then then inflation functor Inf% : Mackg(H) —
Mackg(G) has a left adjoint M — MY and a right adjoint M — My, which
can be computed as follows : if K/N is a subgroup of H = G/N, then

MN(K/N) = /Y ML N(K/N)= (] Kerrf

NZLCK NZLCK

In the same situation, the left and right adjoints to the deflation functor
Def$; are described in Section 9.9.3 of [2].

4. Biset functors

4.1. Bisets as morphisms. The previous sections suggest the following
idea : if G and H are finite group, then a finite (G, H)-biset is a kind of
generalized morphism from H to G. At least it gives a way in many situations
to transport to the group G known structures associated to H. This idea
can be formalized as follows :

Definition 4.1.1 : Let Cr denote the following category :

e The objects of Cr are finite groups.
e If H and G are finite groups, then

Home, (H,G) = RB(G x H?)

is the Burnside group of (G, H)-bisets, with coefficients in R.

o Composition of morphisms is obtained by linearity from the product
(U, V) — U XH V.

o The identity morphism of the group G is the biset G itself, for left and
right multiplication.

Let Fr denote the category of R-linear functors from Cg to R-Mod.

Remark 4.1.2 : It is often interesting to consider proper subcategories of
Cr (consisting for example only of finite p-groups, for some prime p), which
need not be full subcategories (it may be appropriate to consider only those
bisets which are free on the right, or on the left, or both, in building the
Hom-sets).



In particular if one allows only left and right free bisets as morphisms,
the objects of Fr are called global Mackey functors : this is because left
and right free bisets can be viewed as disjoint unions of bisets composed of
restrictions, group isomorphisms, and inductions.

It is also interesting to replace the composition product Xy by the com-
position product ogy. This gives examples of categories with the same ob-
jects, the same morphisms, but with different composition product. Such
categories may have completely different properties.

4.2. Examples.

o Let R =7Z. Let Rg(G) denote the Grothendieck group of the category of
(finite dimensional) QG-modules. If H is another finite group, if L is a finite
dimensional QH-module, and if U is a finite (G, H)-biset, then QU ®qy L is
a finite dimensional QG-module.

This construction gives a linear map Iy : Ro(H) — Ro(G). If U’ is
another finite (G, H)-biset, then clearly Iy v = Iy + Iy. Moreover, if K
is another finite group, and if V is a finite (H, K)-biset, it is clear that
Iy o Iy = Iyx,v. Hence the correspondence G +— Rg(G) can be viewed as
an object of F,.

e Let R = Z, and let k be a field of characteristic p > 0. Let Ri(G) be
the Grothendieck group of the category of the category of (finite dimen-
sional) kG-modules, for relations given by short exact sequences. The pre-
vious example cannot be extended to this situation, because the functor
L — kU ®y L does not preserve short exact sequences in general. It does
indeed if the module kU is flat as a right kH-module, which happens for
example if U is free on the right. This shows the interest of restricting the
set of morphisms in the category Cg.

e Let p be a prime number, and let k = F,, be the field with p elements. If
G is a finite p-group, let Dy (G) denote the Dade group of endo-permutation
kG-modules. One can show (see [3]) that the correspondence G +— Dy(G)
is a functor on the full subcategory of Cy consisting of finite p-groups. This
shows the interest of restricting the class of objects in the category Cg.

e Let F(G) = K, (uR(G)> be the Grothendieck group of finitely generated

pr(G)-modules. If H is a finite group and U is a finite (G, H)-biset, then
the functor Ly is left adjoint to an exact functor. Hence it maps projec-
tive pugr(H )-modules to projective pg(G)-modules. This defines a linear map
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FU) : F(H) — F(G). If K is another finite group and if V' is a finite
(H, K)-biset, it is clear that F(U) o F(V) = F(U og V). In other words, we
get a functor on the category Cyz, equipped with the product oy instead of
X H-

4.3. Simple biset functors. The category Fg is an abelian category. One
can try to classify and describe its simple objects.

Lemma 4.3.1 : There is a direct sum decomposition
Ench (G) = AG S z—G

where Zg is a two sided ideal of Ende, (G), and Ag is a subalgebra isomorphic
to the algebra over R of the group Out(G) of outer automorphisms of G.

In particular, any ROut(G)-module can be viewed as a module for the algebra
Ench (G) .

Notation 4.3.2 : Let H be an object of Cr, and let V' be an ROut(H)-
module. If G is an object of Cgr, set

Ly v(G) = Home, (H, G) ®Ench(H) v,

where the right Ende,, (H)-module structure on Home, (H, G) is given by com-
position of morphisms in Cg.

If f: G — G is a morphism in Cg, define a map Lyy(f) : Luv(G) —
Ly yv(G') by composition with f on the left.

Clearly Ly v is an R-linear functor from Cr to R-Mod, i.e. an object of Fpg.

Proposition 4.3.3 : 1. Let H be an object of Cr, and let V' be a simple
ROut(H)-module. Then Ly y admits a unique maximal proper sub-
functor Jgyv. The quotient Spyy = Luy/Juy is a simple object of
Fr, and Sy v (K) =0 for any object K of Cr with |K| < |H]|.

2. If S is a simple object of Fg, let H be an object of Cr of minimal
order such that S(H) # 0. Then S(H) is a simple ROut(H )-module,
and S = Spyv.

3. If H (resp. K) is an object of Cg, and if V' (resp. W) is a simple
ROut(H)-module (resp. a simple ROut(K)-module), then the functors

Sy and Skw are isomorphic if and only if there is a group isomor-
phism ¢ : H — K such that (V) = W.
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Remark 4.3.4 : This proposition gives a nice classification of the simple
objects in Fr. Unfortunately, this does not give any easy way to compute the
evaluations Sy v (G) of a simple functor at the finite group G. For example,
suppose that R = k is a field, that Cr consists of all finite groups, that all
finite bisets are allowed as morphisms, and that the composition product
1S Xg.

Let H be a finite group, and let V = k be the trivial kOut(H )-module.
If G is a finite group, let By (G) denote the k-vector space with basis the
set of conjugacy classes of pairs (K, L) of subgroups of G, with L<K and
K/L = H. Define a bilinear form on By (G), with values in k, by

(K,L) | (K, L)) = |{z € K\G/K' | K*L' = L”K' Kn°L' = LN*K'}|

Then one can show that Sy x(G) ~ By(G)/Rad( | ). It is far from obvious
however even to compute in general the k-dimension of this space.
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