The algebra of essential relations on a finite set

Serge Bouc

CNRS-LAMFA
Université de Picardie

joint work with

Jacques Thévenaz

EPFL

Third International Symposium on
Groups, Algebras, and Related Topics.
Peking University
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X. Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{(z, x) \in Z \times X | \exists y \in Y, (z, y) \in S, (y, x) \in R\}$.

In particular $C(X, X)$ is a monoid, with identity element $\Delta_X = \{(x, x) | x \in X\} \subseteq X \times X$.

When k is a commutative ring, let $R^X = kC(X, X)$ denote the algebra of relations on X. Serge Bouc (CNRS-LAMFA)
Let X and Y be finite sets.
Let X and Y be finite sets. A correspondence from X to Y
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$.

Correspondences can be composed:

If $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{ (z, x) \in Z \times X | \exists y \in Y, (z, y) \in S, (y, x) \in R \}$.

In particular $C(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) | x \in X \} \subseteq X \times X$.

When k is a commutative ring, let $R_X = kC(X, X)$ denote the algebra of relations on X.
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y.

A correspondence from X to X is called a relation on X. Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{ (z, x) \in Z \times X | \exists y \in Y, (z, y) \in S, (y, x) \in R \}$.

In particular $C(X, X)$ is a monoid, with identity element \(\Delta X = \{ (x, x) | x \in X \} \subseteq X \times X$.

When k is a commutative ring, let $R X = k C(X, X)$ denote the algebra of relations on X.

Serge Bouc (CNRS-LAMFA)
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{ (z, x) \in Z \times X | \exists y \in Y, (z, y) \in S, (y, x) \in R \}$. In particular $C(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) | x \in X \} \subseteq X \times X$.

When k is a commutative ring, let $R_X = kC(X, X)$ denote the algebra of relations on X.
Correspondences, Relations

Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed:

\[
S \circ R = \{ (z, x) \in Z \times X : \exists y \in Y, (z, y) \in S, (y, x) \in R \}
\]

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X$.

When k is a commutative ring, let $R^X = k \mathcal{C}(X, X)$ denote the algebra of relations on X.

Serge Bouc (CNRS-LAMFA)
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{ (z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R \}$.

In particular $C(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X$.

When k is a commutative ring, let $R(k) = kC(X, X)$ denote the algebra of relations on X.

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013
Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element $\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X$.

When k is a commutative ring, let $R_X = k \mathcal{C}(X, X)$ denote the algebra of relations on X.
Let X and Y be finite sets. A **correspondence** from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a **relation** on X.

Correspondences can be **composed**: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

In particular $C(X, X)$ is a **monoid**.
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\} .$$

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X .$$
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{ (z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R \}.$$

In particular $C(X, X)$ is a monoid, with identity element

$$\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X.$$

When k is a commutative ring
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X.$$

When k is a commutative ring, let $\mathcal{R}_X = k\mathcal{C}(X, X)$ denote the algebra of relations on X.

Serge Bouc (CNRS-LAMFA)
A relation $R \in C(X, X)$ is called inessential if there exists Y with $|Y| < |X|$, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X T R Y S > > >$

A relation $R \in C(X, X)$ is called essential if it is not inessential.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.

Let $I_X \subseteq R_X = k C(X, X)$ denote the set of linear combinations of inessential relations on X. Then I_X is a two sided ideal of R_X, and the quotient $E_X = R_X / I_X$ is called the algebra of essential relations on X.
A relation \(R \in \mathcal{C}(X, X) \) is called inessential if there exists \(Y \) with \(|Y| < |X|\), and correspondences \(S \in \mathcal{C}(X, Y) \) and \(T \in \mathcal{C}(Y, X) \) such that \(R = S \circ T \), i.e. \(X T R / / X Y S > > > > > > > > A \)

A relation \(R \in \mathcal{C}(X, X) \) is called essential if it is not inessential.
A relation $R \in \mathcal{C}(X, X)$ is called \textit{inessential} if there exists Y with $|Y| < |X|$.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.
A relation $R \in \mathcal{C}(X, X)$ is called **inessential** if there exists Y with $|Y| < |X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$.
A relation \(R \in C(X, X) \) is called \textit{inessential} if there exists \(Y \) with \(|Y| < |X| \), and correspondences \(S \in C(X, Y) \) and \(T \in C(Y, X) \) such that \(R = S \circ T \).
A relation $R \in C(X, X)$ is called **inessential** if there exists Y with $|Y| < |X|$, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e.

\[
\begin{array}{ccc}
X & \xrightarrow{R} & X \\
\downarrow{T} & & \downarrow{S} \\
Y & &
\end{array}
\]
Essential relations

- A relation \(R \in C(X, X) \) is called **inessential** if there exists \(Y \) with \(|Y| < |X| \), and correspondences \(S \in C(X, Y) \) and \(T \in C(Y, X) \) such that \(R = S \circ T \), i.e.

 ![Diagram with relations]

- A relation \(R \in C(X, X) \) is called **essential**
A relation $R \in C(X, X)$ is called inessential if there exists Y with $|Y| < |X|$, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e.

\[
\begin{array}{ccc}
X & \xrightarrow{R} & X \\
\downarrow{T} & & \uparrow{S} \\
Y & & \\
\end{array}
\]

A relation $R \in C(X, X)$ is called essential if it is not inessential.
A relation $R \in \mathcal{C}(X, X)$ is called **inessential** if there exists Y with $|Y| < |X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R = S \circ T$, i.e.

![Diagram]

A relation $R \in \mathcal{C}(X, X)$ is called **essential** if it is not inessential.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$.
A relation $R \in \mathcal{C}(X, X)$ is called **inessential** if there exists Y with $|Y| < |X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R = S \circ T$, i.e.

![Diagram](attachment:image.png)

A relation $R \in \mathcal{C}(X, X)$ is called **essential** if it is not inessential.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$.

\square
Essential relations

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y| < |X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R = S \circ T$, i.e.

$$
\begin{array}{ccc}
X & \xrightarrow{R} & X \\
\downarrow{T} & & \downarrow{S} \\
Y & &
\end{array}
$$

- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.
A relation $R \in C(X, X)$ is called \textbf{inessential} if there exists Y with $|Y| < |X|$, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e.

\begin{equation}
\begin{array}{c}
X \\
\downarrow \quad R \\
X
\end{array} \quad \begin{array}{c}
Y \\
\downarrow T \\
\uparrow S
\end{array}
\end{equation}

A relation $R \in C(X, X)$ is called \textbf{essential} if it is not inessential.

\textbf{Example:} Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.

Let $\mathcal{I}_X \subseteq \mathcal{R}_X = kC(X, X)$ denote the set of linear combinations of inessential relations on X.
A relation $R \in \mathcal{C}(X, X)$ is called **inessential** if there exists Y with $|Y| < |X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R = S \circ T$, i.e.

![Diagram](https://via.placeholder.com/150)

A relation $R \in \mathcal{C}(X, X)$ is called **essential** if it is not inessential.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.

Let $\mathcal{I}_X \subseteq \mathcal{R}_X = k\mathcal{C}(X, X)$ denote the set of linear combinations of inessential relations on X. Then \mathcal{I}_X is a **two sided ideal** of \mathcal{R}_X.
Essential relations

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y| < |X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R = S \circ T$, i.e.

$$
\begin{align*}
X & \xrightarrow{R} X \\
\downarrow T & \quad & \downarrow S \\
Y & \quad \quad \quad \quad \\
\end{align*}
$$

- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.

Example: Suppose $|X| \geq 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.

- Let $\mathcal{I}_X \subseteq \mathcal{R}_X = k\mathcal{C}(X, X)$ denote the set of linear combinations of inessential relations on X. Then \mathcal{I}_X is a two sided ideal of \mathcal{R}_X, and the quotient $\mathcal{E}_X = \mathcal{R}_X / \mathcal{I}_X$ is called the algebra of essential relations on X.

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013
From now on, the set X is fixed (and understood).

$\text{Set } n = |X|, \quad E = E_X, \quad \Delta = \Delta_X, \ldots$

The algebra E has a k-basis consisting of the essential relations on X.

In E, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions:

- If R is a relation, set $R^{\text{op}} = \{(x, y) \mid (y, x) \in R\}$.
- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{\text{op}}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{\text{op}} = R^2$.
- R is antisymmetric $\iff R \cap R^{\text{op}} \subseteq \Delta$.
- R is an order $\iff R = R^2$ and $R \cap R^{\text{op}} \subseteq \Delta$.

Serge Bouc (CNRS-LAMFA)
From now on, the set X is fixed (and understood).
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, ...
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, etc.

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X.

From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, …

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, ...

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Example: Let $X = \{1, 2\}$.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Example: Let $X = \{1, 2\}$.

If $R = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, then $R \circ S = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$.
• From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, . . .

• The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

• **Example:** Let $X = \{1, 2\}$.
 If $R = 1 \xrightarrow{1} 1$, then $R^2 = 1 \xrightarrow{1} 1$

 $2 \xrightarrow{2} 2$ $2 \xrightarrow{2} 2$
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, ...

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Example: Let $X = \{1, 2\}$.
If $R = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$, then $R^2 = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = X \times X = 0$.

![Diagram](http://example.com/diagram.png)
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions:
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, . . .

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, ...

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.
- R is reflexive
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, …

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.

From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, \ldots

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive

\[\Delta = \Delta_X \subseteq \mathcal{E} = \mathcal{E}_X \]
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set

$R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.

Serge Bouc (CNRS-LAMFA)
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, ...

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder
• From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, \ldots

• The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

• **Classical definitions:** if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.
 • R is reflexive $\iff \Delta \subseteq R$.
 • R is transitive $\iff R^2 \subseteq R$.
 • R is a preorder $\iff \Delta \subseteq R = R^2$.

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, \ldots

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is **reflexive** \iff $\Delta \subseteq R$.
- R is **transitive** \iff $R^2 \subseteq R$.
- R is a **preorder** \iff $\Delta \subseteq R = R^2$.
- R is **symmetric**
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, …

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{op}$.
• From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, . . .

• The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

• **Classical definitions:** if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

 • R is reflexive $\iff \Delta \subseteq R$.
 • R is transitive $\iff R^2 \subseteq R$.
 • R is a preorder $\iff \Delta \subseteq R = R^2$.
 • R is symmetric $\iff R = R^{op}$.
 • R is an equivalence relation
From now on, the set X is fixed (and understood). Set $n = |X|$, $E = E_X$, $\Delta = \Delta_X$,

The algebra E has a k-basis consisting of the essential relations on X. In E, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{op}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, . . .

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{\text{op}} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{\text{op}}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{\text{op}} = R^2$.
- R is antisymmetric
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, …

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{op}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
- R is antisymmetric $\iff R \cap R^{op} \subseteq \Delta$.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, . . .

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{op}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
- R is antisymmetric $\iff R \cap R^{op} \subseteq \Delta$.
- R is an order
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, …

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{op}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
- R is antisymmetric $\iff R \cap R^{op} \subseteq \Delta$.
- R is an order $\iff R = R^2$ and $R \cap R^{op} = \Delta$.
From now on, the set X is fixed (and understood). Set $n = |X|$, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$, …

The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}$.

- R is reflexive $\iff \Delta \subseteq R$.
- R is transitive $\iff R^2 \subseteq R$.
- R is a preorder $\iff \Delta \subseteq R = R^2$.
- R is symmetric $\iff R = R^{op}$.
- R is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
- R is antisymmetric $\iff R \cap R^{op} \subseteq \Delta$.
- R is an order $\iff R = R^2$ and $R \cap R^{op} = \Delta$.
Characterization

Recall that X is a finite set of cardinality n.

Lemma A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

If R is a preorder, and not an order, then R is inessential.

If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.

Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{ (\sigma(x), x) | x \in X \} \in C(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$, i.e. $R = S \Delta_\sigma$, where S is reflexive.

Proof: One direct proof, another one using a theorem of P. Hall (1935).
Characterization

Recall that X is a finite set of cardinality n.
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential

\[R = n - 1 \bigcup \bigcup_{i=1}^{n-1} (U_i \times V_i) \]

If R is a preorder, and not an order, then R is inessential.

If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.

Let Σ the group of permutations of X.

Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in C(X,X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X.

Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$, i.e. $R = S \Delta_\sigma$, where S is reflexive.

Proof:

One direct proof, another one using a theorem of P. Hall (1935).
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013
Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta \sigma$, i.e. $R = S \Delta \sigma$, where S is reflexive.

Proof: One direct proof, another one using a theorem of P. Hall (1935).
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto$.
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$
Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma} = \{ (\sigma(x), x) \mid x \in X \} \in C(X, X)$ is a monoid homomorphism.
Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in C(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$, i.e. $R = S \Delta_\sigma$, where S is reflexive.

Proof: One direct proof, another one using a theorem of P. Hall (1935).
Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in C(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$.
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{ (\sigma(x), x) \mid x \in X \} \in C(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$, i.e. $R = S \Delta_\sigma$, where S is reflexive.
Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma} = \{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R = S \Delta_{\sigma}$, where S is reflexive.

Proof:

One direct proof, another one using a theorem of P. Hall (1935).
Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$, i.e. $R = S\Delta_\sigma$, where S is reflexive.

Proof: One direct proof
Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \leq i \leq n - 1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_\sigma = \{(\sigma(x), x) \mid x \in X\} \in C(X, X)$ is a monoid homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_\sigma$, i.e. $R = S\Delta_\sigma$, where S is reflexive.

Proof: One direct proof, another one using a theorem of P. Hall (1935).
A nilpotent ideal

If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by S_*. It is a preorder.

There are two cases:

- either S is not an order. Then $S = 0$ in E.
- or S is an order. Then $\Delta \subseteq S \subseteq S = \Rightarrow S$ is essential.

Proposition

Let N be the k-submodule of E generated by the element of the form $(S - S)\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then N is a two sided nilpotent ideal of E.

Proof (sketch):

Let $S \supseteq \Delta$, and $m \in N$ such that $S^m = S$. Let $Q \supseteq \Delta$. Then $Q(S - S) = QS - QS = (QS - QS) - (Q(S - S))$ since $QS = QS$. Hence $QN \subseteq N$.

$(S - S)^m = m \sum_{i=0}^{\infty} (-1)^i (m_i S^m - i S^i) = (m \sum_{i=0}^{\infty} (-1)^i (m_i S^m)) = 0$.

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013

6 / 13
A nilpotent ideal

- If S is reflexive
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S$
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2$
A nilpotent ideal

If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m$

Proposition

Let N be the k-submodule of E generated by the element of the form $(S - S)\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then N is a two sided nilpotent ideal of E.

Proof (sketch):

Let $S \supseteq \Delta$, and $m \in N$ such that $S^m = S$.

Let $Q \supseteq \Delta$. Then $Q(S - S) = QS - QS = (QS - QS) - (Q(S - S))$ since $QS = QS$.

Hence $QN \subseteq N$.

$(S - S)^m = m \sum_{i=0}^{\infty} (-1)^i (m^i) S^m - i S^i = \left(m \sum_{i=0}^{\infty} (-1)^i (m^i) \right) S = 0$.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}.
If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition
If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.

There are two cases:

- either \overline{S} is not an order. Then $\overline{S} = 0$ in E.
- or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of E generated by the element of the form $(S - \overline{S})\Delta_\sigma$
A nilpotent ideal

- If \(S \) is reflexive, then \(\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1} \). This limit is the transitive closure of \(S \), denoted by \(\overline{S} \). It is a preorder.
- There are two cases:
 - either \(\overline{S} \) is not an order. Then \(\overline{S} = 0 \) in \(\mathcal{E} \).
 - or \(\overline{S} \) is an order. Then \(\Delta \subseteq S \subseteq \overline{S} \implies S \) is essential.

Proposition

Let \(\mathcal{N} \) be the \(k \)-submodule of \(\mathcal{E} \) generated by the element of the form \((S - \overline{S})\Delta_{\sigma}\), for \(\Delta \subseteq S \) and \(\sigma \in \Sigma \).
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
 - either \bar{S} is not an order. Then $\bar{S} = 0$ in \mathcal{E}.
 - or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \bar{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
A nilpotent ideal

- If \(S \) is reflexive, then \(\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1} \). This limit is the transitive closure of \(S \), denoted by \(S \). It is a preorder.
- There are two cases:
 - either \(S \) is not an order. Then \(S = 0 \) in \(E \).
 - or \(S \) is an order. Then \(\Delta \subseteq S \subseteq S \implies S \) is essential.

Proposition

Let \(\mathcal{N} \) be the \(k \)-submodule of \(E \) generated by the element of the form \((S - S)\Delta_\sigma \), for \(\Delta \subseteq S \) and \(\sigma \in \Sigma \).

Then \(\mathcal{N} \) is a two sided nilpotent ideal of \(E \).

Proof (sketch): Let \(S \supseteq \Delta \)
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} =$
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in E.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of E generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of E.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - Q\overline{S})$ since $Q\overline{S} = Q\overline{S}$.

Serge Bouc (CNRS-LAMFA)
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.

- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - \overline{Q}S) - (Q\overline{S} - Q\overline{S})$ since $Q\overline{S} = \overline{Q}S$. Hence $QN \subseteq \mathcal{N}$.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in E.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of E generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of E.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - \overline{Q\overline{S}})$ since $\overline{Q\overline{S}} = Q\overline{S}$. Hence $QN \subseteq \mathcal{N}$.

- $(S - \overline{S})^m = \ldots$
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - Q\overline{S})$

 since $Q\overline{S} = \overline{QS}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.

- $(S - \overline{S})^m = \sum_{i=0}^{m} (-1)^i \binom{m}{i} S^{m-i} \overline{S}^i = \ldots$
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in E.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of E generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of E.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - \overline{Q}S) - (Q\overline{S} - \overline{Q}S)$ since $\overline{Q}S = \overline{QS}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.
- $(S - \overline{S})^m = \sum_{i=0}^{m} (-1)^i \binom{m}{i} S^{m-i} \overline{S}^i = \overline{S} + \ldots$
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.

- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - Q\overline{S})$ since $Q\overline{S} = Q\overline{S}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.

- $(S - \overline{S})^m = \sum_{i=0}^{m} (-1)^i \binom{m}{i} S^{m-i} \overline{S}^i = \overline{S} + \sum_{i=1}^{m} (-1)^i \binom{m}{i} \underbrace{S^{m-i} \overline{S}}_{\overline{S}}$
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - \overline{Q\overline{S}})$ since $Q\overline{S} = \overline{Q\overline{S}}$. Hence $QN \subseteq \mathcal{N}$.
- $(S - \overline{S})^m = \sum_{i=0}^{m}(-1)^i \binom{m}{i} S^{m-i} \overline{S}^i = \left(\sum_{i=0}^{m}(-1)^i \binom{m}{i}\right) \overline{S} = 0$.
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in E.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of E generated by the element of the form $(S - \overline{S})\Delta_\sigma$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of E.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - Q\overline{S})$ since $Q\overline{S} = Q\overline{S}$. Hence $QN \subseteq \mathcal{N}$.
- $(S - \overline{S})^m = \sum_{i=0}^{m} (-1)^i \binom{m}{i} S^{m-i}\overline{S}^i = \left(\sum_{i=0}^{m} (-1)^i \binom{m}{i} \right) \overline{S} = 0$.

Serge Bouc (CNRS-LAMFA)
A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$. This limit is the transitive closure of S, denoted by \overline{S}. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E}.
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the element of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - Q\overline{S}) - (Q\overline{S} - Q\overline{S})$ since $Q\overline{S} = Q\overline{S}$. Hence $QN \subseteq \mathcal{N}$.
- $(S - \overline{S})^m = \sum_{i=0}^{m} (-1)^i \binom{m}{i} S^{m-i}\overline{S}^i = \left(\sum_{i=0}^{m} (-1)^i \binom{m}{i} \right) \overline{S} = 0$.
Permuted orders

Let $P = E / N$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta \sigma$, where S is an order and $\sigma \in \Sigma$.

The product of $S \Delta \sigma \cdot T \Delta \tau$ in P is equal to $S \cdot \sigma T \Delta \sigma \tau$ if $S \cdot \sigma T$ is an order, and to 0 otherwise, where $\sigma T = \Delta \sigma \cdot \Delta^{-1}$.

The algebra P is Σ-graded: for $\sigma \in \Sigma$, the degree σ part P_σ of P is the k-submodule generated by the elements $S \Delta \sigma$, where S is an order.

The subalgebra P_1 has a k-basis consisting of the set O of orders on X. For $S, T \in O$, the product ST in P_1 is equal to $ST = S \cup T$.

Hence P_1 is commutative.

The group Σ acts on P_1 by conjugation, and P is the semidirect product $P_1 \rtimes \Sigma$.

Serge Bouc (CNRS-LAMFA)
Permuted orders

Let $\mathcal{P} = \mathcal{E} / \mathcal{N}$
Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X.

Serge Bouc (CNRS-LAMFA)
Let $P = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$.
Permuted orders

- Let $P = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$.

The algebra P is Σ-graded: for $\sigma \in \Sigma$, the degree σ part P_{σ} of P is the k-submodule generated by the elements $S\Delta_{\sigma}$, where S is an order.

The subalgebra P_1 has a k-basis consisting of the set O of orders on X. For $S, T \in O$, the product ST in P_1 is equal to $ST = S \cup T$. Hence P_1 is commutative.

The group Σ acts on P_1 by conjugation, and P is the semidirect product $P_1 \rtimes \Sigma$.

Serge Bouc (CNRS-LAMFA)
Permuted orders

Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. ($S\Delta_{\sigma} = \overline{S}\Delta_{\sigma}$ in \mathcal{P}, and $\overline{S} = 0$ if \overline{S} is not an order)
Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_\sigma.T \Delta_\tau$ in \mathcal{P} is equal to $S.\sigma^{-1} T \Delta_{\sigma \tau}$.
Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma . T\Delta_\tau$ in \mathcal{P} is equal to $\overline{S.\sigma T}\Delta_{\sigma\tau}$ if $\overline{S.\sigma T}$ is an order.
Permutated orders

Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma . T\Delta_\tau$ in \mathcal{P} is equal to $S.\sigma T\Delta_{\sigma\tau}$ if $S.\sigma T$ is an order, and to 0 otherwise.
Permuted orders

Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma . T\Delta_\tau$ in \mathcal{P} is equal to $\overline{S.\sigma} \overline{T} \Delta_{\sigma\tau}$ if $\overline{S.\sigma} \overline{T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T \Delta_{\sigma^{-1}}$.

Serge Bouc (CNRS-LAMFA)
Permutated orders

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma \cdot T\Delta_\tau$ in \mathcal{P} is equal to $\widehat{S.\sigma T}\Delta_\sigma T$ if $\widehat{S.\sigma T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T\Delta_\sigma^{-1}$.

- The algebra \mathcal{P} is Σ-graded:

\bullet The algebra \mathcal{P} is Σ-graded:
Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_\sigma . T \Delta_\tau$ in \mathcal{P} is equal to $\overline{S.\sigma T} \Delta_\sigma \tau$ if $\overline{S.\sigma T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T \Delta_\sigma^{-1}$.

The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$
Permuted orders

Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma \cdot T\Delta_\tau$ in \mathcal{P} is equal to $\overline{S.\sigma T}\Delta_{\sigma\tau}$ if $\overline{S.\sigma T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T\Delta_{\sigma^{-1}}$.

The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_σ of \mathcal{P} is the k-submodule generated by the elements $S\Delta_\sigma$, where S is an order.
Permuted orders

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma.T\Delta_\tau$ in \mathcal{P} is equal to $\overline{S.\sigma T}\Delta_{\sigma\tau}$ if $\overline{S.\sigma T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T\Delta_{\sigma^{-1}}$.

- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_σ of \mathcal{P} is the k-submodule generated by the elements $S\Delta_\sigma$, where S is an order.

- The subalgebra \mathcal{P}_1 has a k-basis consisting of the set \mathcal{O} of orders on X.

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013

7 / 13
Let \(\mathcal{P} = \mathcal{E}/\mathcal{N} \), called the algebra of permuted orders on \(X \). It has a \(k \)-basis consisting of relations \(S\Delta_\sigma \), where \(S \) is an order and \(\sigma \in \Sigma \). The product of \(S\Delta_\sigma \cdot T\Delta_\tau \) in \(\mathcal{P} \) is equal to \(\overline{S.\sigma T}\Delta_{\sigma\tau} \) if \(\overline{S.\sigma T} \) is an order, and to 0 otherwise, where \(\sigma T = \Delta_\sigma T\Delta_{\sigma^{-1}} \).

The algebra \(\mathcal{P} \) is \(\Sigma \)-graded: for \(\sigma \in \Sigma \), the degree \(\sigma \) part \(\mathcal{P}_\sigma \) of \(\mathcal{P} \) is the \(k \)-submodule generated by the elements \(S\Delta_\sigma \), where \(S \) is an order.

The subalgebra \(\mathcal{P}_1 \) has a \(k \)-basis consisting of the set \(\mathcal{O} \) of orders on \(X \). For \(S, T \in \mathcal{O} \), the product \(ST \) in \(\mathcal{P}_1 \)
Permutated orders

Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma . T\Delta_\tau$ in \mathcal{P} is equal to $\overline{S.\sigma T}\Delta_{\sigma\tau}$ if $\overline{S.\sigma T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T\Delta_{\sigma^{-1}}$.

The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_σ of \mathcal{P} is the k-submodule generated by the elements $S\Delta_\sigma$, where S is an order.

The subalgebra \mathcal{P}_1 has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product ST in \mathcal{P}_1 is equal to $\overline{ST} = \overline{S} \cup \overline{T}$.
Let $P = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma . T\Delta_\tau$ in P is equal to $\overline{S.\sigma T}\Delta_{\sigma \tau}$ if $\overline{S.\sigma T}$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T\Delta_{\sigma^{-1}}$.

The algebra P is Σ-graded: for $\sigma \in \Sigma$, the degree σ part P_σ of P is the k-submodule generated by the elements $S\Delta_\sigma$, where S is an order.

The subalgebra P_1 has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product ST in P_1 is equal to $\overline{ST} = \overline{S} \cup \overline{T}$. Hence P_1 is commutative.
Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of \textit{permuted orders} on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma.T\Delta_\tau$ in \mathcal{P} is equal to $S.\sigma T \Delta_{\sigma \tau}$ if $S.\sigma T$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T \Delta_{\sigma^{-1}}$.

The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_σ of \mathcal{P} is the k-submodule generated by the elements $S\Delta_\sigma$, where S is an order.

The subalgebra \mathcal{P}_1 has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product ST in \mathcal{P}_1 is equal to $ST = S \cup T$. Hence \mathcal{P}_1 is commutative.

The group Σ acts on \mathcal{P}_1 by conjugation.
Permuted orders

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_\sigma$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_\sigma.T\Delta_\tau$ in \mathcal{P} is equal to $S.\sigma T\Delta_{\sigma\tau}$ if $S.\sigma T$ is an order, and to 0 otherwise, where $\sigma T = \Delta_\sigma T\Delta_{\sigma^{-1}}$.

- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_σ of \mathcal{P} is the k-submodule generated by the elements $S\Delta_\sigma$, where S is an order.

- The subalgebra \mathcal{P}_1 has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product ST in \mathcal{P}_1 is equal to $ST = S \cup T$. Hence \mathcal{P}_1 is commutative.

- The group Σ acts on \mathcal{P}_1 by conjugation, and \mathcal{P} is the semidirect product $\mathcal{P}_1 \rtimes \Sigma$.
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$.

If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_\mathcal{O}(R, S)$ or 0.

Notation
For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.

Theorem 1
The elements f_R, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1, and $\sum_{R \in \mathcal{O}} f_R = 1$.

Moreover $\mathcal{P}_1 f_R = kf_R$, for $R \in \mathcal{O}$.

The algebra \mathcal{P}_1 is isomorphic to $\prod_{R \in \mathcal{O}} kf_R \cong k |\mathcal{O}|$.
The algebra of permuted orders

If \(R \in \mathcal{O} \), then \(R^2 = R \).
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S$.
If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_\mathcal{O}(R, S)$ or 0.
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_\mathcal{O}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by
If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_{\mathcal{O}}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by

$$f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$$

where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = \text{Sup}_\mathcal{O}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_\mathcal{O}(R, S)S$, where $\mu_\mathcal{O}$ is the Möbius function of the poset \mathcal{O}.
If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_{\mathcal{O}}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_\mathcal{O}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_\mathcal{O}(R, S)S$, where $\mu_\mathcal{O}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.

Theorem

1. The elements f_R, for $R \in \mathcal{O}$
If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_{\mathcal{O}}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.

Theorem

1. The elements f_R, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1.
The algebra of permuted orders

If \(R \in \mathcal{O} \), then \(R^2 = R \). If \(R, S \in \mathcal{O} \), then \(RS = R \cup S = \text{Sup}_\mathcal{O}(R, S) \) or 0.

Notation

For \(R \in \mathcal{O} \), let \(f_R \in \mathcal{P}_1 \) defined by \(f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S \), where \(\mu_{\mathcal{O}} \) is the Möbius function of the poset \(\mathcal{O} \), ordered by inclusion.

Theorem

1. The elements \(f_R \), for \(R \in \mathcal{O} \), are orthogonal idempotents of \(\mathcal{P}_1 \), and \(\sum_{R \in \mathcal{O}} f_R = 1 \).
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = R \cup S = \text{Sup}_\mathcal{O}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.

Theorem

1. The elements f_R, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1, and $\sum_{R \in \mathcal{O}} f_R = 1$.

2. Moreover $\mathcal{P}_1 f_R = k f_R$, for $R \in \mathcal{O}$.
The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = \text{Sup}_\mathcal{O}(R, S)$ or 0.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_\mathcal{O}(R, S)S$, where $\mu_\mathcal{O}$ is the Möbius function of the poset \mathcal{O}, ordered by inclusion.

Theorem

1. The elements f_R, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1, and $\sum_{R \in \mathcal{O}} f_R = 1$.
2. Moreover $\mathcal{P}_1 f_R = kf_R$, for $R \in \mathcal{O}$.
3. The algebra \mathcal{P}_1 is isomorphic to $\prod_{R \in \mathcal{O}} kf_R \cong k^{|\mathcal{O}|}$.
The algebra of permuted orders

If \(R \in \mathcal{O} \), then \(R^2 = R \). If \(R, S \in \mathcal{O} \), then \(RS = \overline{R \cup S} = \text{Sup}_\mathcal{O}(R, S) \) or 0.

Notation

For \(R \in \mathcal{O} \), let \(f_R \in \mathcal{P}_1 \) defined by

\[
 f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_\mathcal{O}(R, S)S,
\]

where \(\mu_\mathcal{O} \) is the Möbius function of the poset \(\mathcal{O} \), ordered by inclusion.

Theorem

1. The elements \(f_R \), for \(R \in \mathcal{O} \), are orthogonal idempotents of \(\mathcal{P}_1 \), and \(\sum_{R \in \mathcal{O}} f_R = 1 \).
2. Moreover \(\mathcal{P}_1 f_R = k f_R \), for \(R \in \mathcal{O} \).
3. The algebra \(\mathcal{P}_1 \) is isomorphic to \(\prod_{R \in \mathcal{O}} k f_R \cong k^{\mid \mathcal{O} \mid} \).
The algebra of permuted orders

Notation
For $R \in O$, set $\Sigma_R = \{ \sigma \in \Sigma | \sigma R = R \}$, and $e_R = \sum_{\sigma \in \Sigma / \Sigma_R} f_{\sigma R}$.

Theorem
1. The elements e_R, for $R \in [\Sigma O]$, are orthogonal central idempotents of P, and $\sum_{R \in [\Sigma O]} e_R = 1$.
2. The algebra P is isomorphic to $\prod_{R \in [\Sigma O]} P e_R$.
3. For $R \in O$, the algebra $P e_R$ is isomorphic to $\text{Mat}_{\Sigma: \Sigma_R} (k \Sigma_R)$.

Serge Bouc (CNRS-LAMFA)
Notation

For $R \in \mathcal{O}$, set $\Sigma_R = \{ \sigma \in \Sigma \mid \sigma R = R \}$
Notation

For \(R \in \mathcal{O} \), set \(\Sigma_R = \{ \sigma \in \Sigma \mid \sigma R = R \} \), and \(e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma R} \).
The algebra of permuted orders

Notation

For $R \in \mathcal{O}$, set $\Sigma_R = \{ \sigma \in \Sigma \mid \sigma R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma R}$.

Theorem

1. The elements e_R, for $R \in [\Sigma \setminus \mathcal{O}]$, are orthogonal central idempotents of \mathcal{P}.
Notation

For $R \in \mathcal{O}$, set $\Sigma_R = \{ \sigma \in \Sigma \mid \sigma R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma R}$.

Theorem

1. The elements e_R, for $R \in [\Sigma/\mathcal{O}]$, are orthogonal central idempotents of \mathcal{P}, and $\sum_{R \in [\Sigma/\mathcal{O}]} e_R = 1$.
The algebra of permuted orders

Notation

For \(R \in O \), set \(\Sigma_R = \{ \sigma \in \Sigma \mid \sigma R = R \} \), and \(e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma R} \).

Theorem

1. The elements \(e_R \), for \(R \in [\Sigma \setminus O] \), are orthogonal central idempotents of \(P \), and \(\sum_{R \in [\Sigma \setminus O]} e_R = 1 \).
2. The algebra \(P \) is isomorphic to \(\prod_{R \in [\Sigma \setminus O]} P e_R \).
The algebra of permuted orders

Notation
For $R \in \mathcal{O}$, set $\Sigma_R = \{ \sigma \in \Sigma \mid \sigma R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma R}$.

Theorem
1. The elements e_R, for $R \in [\Sigma \setminus \mathcal{O}]$, are orthogonal central idempotents of \mathcal{P}, and $\sum_{R \in [\Sigma \setminus \mathcal{O}]} e_R = 1$.
2. The algebra \mathcal{P} is isomorphic to $\prod_{R \in [\Sigma \setminus \mathcal{O}]} \mathcal{P} e_R$.
3. For $R \in \mathcal{O}$, the algebra $\mathcal{P} e_R$ is isomorphic to $\text{Mat}_{|\Sigma : \Sigma R|}(k\Sigma_R)$.
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $P = \mathcal{E}/N$, where N is nilpotent, and that $P \cong \prod_{\Sigma : \Sigma} R \otimes k$.

Theorem 1
The surjection \mathcal{E}/P induces a one to one correspondence between the simple \mathcal{E}-modules and the simple P-modules.

Theorem 2
The simple P-modules (up to isomorphism) are the modules of the form $P f R \otimes k$, where $R \in \Sigma O$, and V is a simple k-module (up to isomorphism).

If $\text{char}(k) > n$, then P is semisimple, and $N = J(E)$.

Serge Bouc (CNRS-LAMFA)
The algebra of essential relations
Peking University, 14/06/2013 10 / 13
The simple \mathcal{E}-modules

Assume that k is a field.
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$
Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent.
Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \emptyset]} \text{Mat}_{\Sigma : \Sigma_R}(k\Sigma_R)$.

Theorem 1

The surjection $\mathcal{E} \to \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P}f_R \otimes k\Sigma_R V$, where $R \in [\Sigma \setminus \emptyset]$, and V is a simple $k\Sigma_R$-module (up to isomorphism).

If $\text{char}(k) > n$, then \mathcal{P} is semisimple, and $\mathcal{N} = J(E)$.
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that

$$\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \emptyset]} \text{Mat}_{|\Sigma : \Sigma_R|}(k\Sigma_R).$$

Theorem

1. The surjection $\mathcal{E} \longrightarrow \mathcal{P}$
Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \backslash \emptyset]} \text{Mat}_{\Sigma: \Sigma_R}(k\Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \mathcal{O}]} \text{Mat}_{|\Sigma : \Sigma_R|}(k\Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

2. The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P}f_R \otimes_{k\Sigma_R} V$.

Serge Bouc (CNRS-LAMFA)
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \mathcal{O}]} \text{Mat}_{|\Sigma: \Sigma_R|}(k\Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
2. The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P}f_R \otimes_{k\Sigma_R} V$, where $R \in [\Sigma \setminus \mathcal{O}]$.

Serge Bouc (CNRS-LAMFA)

The algebra of essential relations

Peking University, 14/06/2013
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \mathcal{O}]} \text{Mat}_{|\Sigma : \Sigma R|}(k\Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

2. The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P}f_R \otimes_{k\Sigma_R} V$, where $R \in [\Sigma \setminus \mathcal{O}]$, and V is a simple $k\Sigma_R$-module (up to isomorphism).
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \mathcal{O}]} \text{Mat}_{\Sigma : \Sigma_R}(k \Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

2. The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P} f_R \otimes_{k \Sigma_R} V$, where $R \in [\Sigma \setminus \mathcal{O}]$, and V is a simple $k \Sigma_R$-module (up to isomorphism).

3. If $\text{char}(k) > n$, then \mathcal{P} is semisimple.
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma \setminus \mathcal{O}]} \text{Mat}_{\Sigma: \Sigma_R}(k\Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

2. The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P}f_R \otimes_{k\Sigma_R} V$, where $R \in [\Sigma \setminus \mathcal{O}]$, and V is a simple $k\Sigma_R$-module (up to isomorphism).

3. If $\text{char}(k) > n$, then \mathcal{P} is semisimple, and $\mathcal{N} = J(\mathcal{E})$.

Serge Bouc (CNRS-LAMFA)
The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in [\Sigma\setminus \mathcal{O}]} \text{Mat}_{\Sigma: \Sigma_R}(k\Sigma_R)$.

Theorem

1. The surjection $\mathcal{E} \twoheadrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

2. The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P}f_R \otimes_{k\Sigma_R} V$, where $R \in [\Sigma\setminus \mathcal{O}]$, and V is a simple $k\Sigma_R$-module (up to isomorphism).

3. If $\text{char}(k) > n$, then \mathcal{P} is semisimple, and $\mathcal{N} = J(\mathcal{E})$.
Some simple \mathcal{R}_X-modules

Proposition

Let \mathcal{R} be an order on X. If $\mathcal{S} \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta(\mathcal{S})$ of $k\Sigma$ by

$$
\beta(\mathcal{S}) : \sigma \in \Sigma \mapsto \begin{cases}
\tau \sigma & \text{if } \tau \in \Sigma, \Delta \subseteq \tau - 1 \mathcal{S} \subseteq \sigma, \\
0 & \text{if no such } \tau.
\end{cases}
$$

The map $\beta(\mathcal{S})$ is well defined, and its image is contained in $\text{End}_{k\Sigma}(k\Sigma)$.

The map $\mathcal{S} \mapsto \beta(\mathcal{S})$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma\mathcal{R})$-bimodule.

If V is a simple $k\Sigma\mathcal{R}$-module, then $k\Sigma \otimes k\Sigma\mathcal{R}V$ is a simple \mathcal{R}_X-module $\Lambda(\mathcal{R}, V)$.

If (\mathcal{R}', V') is another pair consisting of an order \mathcal{R}' on X and a simple $k\Sigma\mathcal{R}'$-module, then the \mathcal{R}_X-modules $\Lambda(\mathcal{R}, V)$ and $\Lambda(\mathcal{R}', V')$ are isomorphic if and only if the pairs (\mathcal{R}, V) and (\mathcal{R}', V') are conjugate by Σ.

Serge Bouc (CNRS-LAMFA)
Proposition

Let R be an order on X.

The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $kC(X, X) \to \text{End}_{k\Sigma R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma R)$-bimodule.

If V is a simple $k\Sigma R$-module, then $k\Sigma \otimes k\Sigma R V$ is a simple \mathcal{R}_X-module $\Lambda R, V$.

If (\mathcal{R}_X', V') is another pair consisting of an order \mathcal{R}_X' on X and a simple $k\Sigma R'$-module, then the \mathcal{R}_X-modules $\Lambda R, V$ and $\Lambda R', V'$ are isomorphic if and only if the pairs (\mathcal{R}_X, V) and (\mathcal{R}_X', V') are conjugate by Σ.

Serge Bouc (CNRS-LAMFA)
Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto$$

The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_k k\Sigma_R(k\Sigma)$. This endows $k\Sigma$ with a structure of $(R_X, k\Sigma_R)$-bimodule.

If V is a simple $k\Sigma_R$-module, then $k\Sigma \otimes k\Sigma_R V$ is a simple R_X-module Λ_R, V.

If (R', V') is another pair consisting of an order R' on X and a simple $k\Sigma_{R'}$-module, then the R_X-modules Λ_R, V and $\Lambda_{R'}$, V' are isomorphic if and only if the pairs (R, V) and (R', V') are conjugate by Σ.

Serge Bouc (CNRS-LAMFA)
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau\sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1}S \subseteq \sigma R \end{cases}$$
Proposition

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases}
\tau\sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\
0 & \text{if no such } \tau.
\end{cases}$$
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$
\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases}
\tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\
0 & \text{if no such } \tau.
\end{cases}
$$

1. The map $\beta_R(S)$ is well defined
Some simple R_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$
\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases}
\tau \sigma & \text{if } \tau \in \Sigma, \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\
0 & \text{if no such } \tau.
\end{cases}
$$

The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.

2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \rightarrow \text{End}_{k\Sigma_R}(k\Sigma)$.
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.

2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$-bimodule.
Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.
2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $kC(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$-bimodule.
3. If V is a simple $k\Sigma_R$-module

Some simple \mathcal{R}_X-modules
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.

2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$-bimodule.

3. If V is a simple $k\Sigma_R$-module, then $k\Sigma \otimes_{k\Sigma_R} V$ is a simple \mathcal{R}_X-module $\Lambda_{R,V}$.
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.

2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$-bimodule.

3. If V is a simple $k\Sigma_R$-module, then $k\Sigma \otimes_{k\Sigma_R} V$ is a simple \mathcal{R}_X-module $\Lambda_{R,V}$.

4. If (R', V') is another pair consisting of an order R' on X and a simple $k\Sigma_{R'}$-module
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \Delta \subseteq \tau^{-1}S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.

2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$-bimodule.

3. If V is a simple $k\Sigma_R$-module, then $k\Sigma \otimes_{k\Sigma_R} V$ is a simple \mathcal{R}_X-module $\Lambda_{R,V}$.

4. If (R', V') is another pair consisting of an order R' on X and a simple $k\Sigma_{R'}$-module, then the \mathcal{R}_X-modules $\Lambda_{R,V}$ and $\Lambda_{R',V'}$ are isomorphic.
Some simple \mathcal{R}_X-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S) : \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \tau^{-1} S \subseteq \sigma R \\ 0 & \text{if no such } \tau. \end{cases}$$

1. The map $\beta_R(S)$ is well defined, and its image is contained in $\text{End}_{k\Sigma_R}(k\Sigma)$.
2. The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to \text{End}_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$-bimodule.
3. If V is a simple $k\Sigma_R$-module, then $k\Sigma \otimes_{k\Sigma_R} V$ is a simple \mathcal{R}_X-module Λ_R, V.
4. If (R', V') is another pair consisting of an order R' on X and a simple $k\Sigma_{R'}$-module, then the \mathcal{R}_X-modules Λ_R, V and $\Lambda_{R'}, V'$ are isomorphic if and only if the pairs (R, V) and (R', V') are conjugate by Σ.
Examples

$R = \Delta$, then Σ, and $R \times$ maps surjectively to k, by $S \mapsto \sigma$ if $S = \Delta \sigma$, and $S \mapsto 0$ if there is no such $\sigma \in \Sigma$.

If R is a total order, then $\Sigma = \{1\}$, and $P \sim = \text{Mat}_{n!}(k)$.

In this case $k \Sigma$ becomes a simple $R \times$-module.

Remark: Which finite groups can occur as Σ? Answer: all! (Birkhoff 1946, Thornton 1972, Barmak-Minian 2009).
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$,
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.

Remark: Which finite groups can occur as Σ_R? Answer: all! (Birkhoff 1946, Thornton 1972, Barmak-Minian 2009).
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and R_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ if there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_R = \{1\}$.

Remark: Which finite groups can occur as Σ_R? Answer: all! (Birkhoff 1946, Thornton 1972, Barmak-Minian 2009).
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.

- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong \text{Mat}_{n!}(k)$.
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.

- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong \text{Mat}_{n!}(k)$. In this case $k\Sigma$ becomes a simple \mathcal{R}_X-module.
Remark

Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ if there is no such $\sigma \in \Sigma$.

- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P} e_R \cong Mat_n!(k)$. In this case $k\Sigma$ becomes a simple \mathcal{R}_X-module.

Remark: Which finite groups can occur as Σ_R?
Remark

Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong Mat_n!(k)$. In this case $k\Sigma$ becomes a simple \mathcal{R}_X-module.

Remark: Which finite groups can occur as Σ_R? Answer: all!
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.

- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong \text{Mat}_n!(k)$. In this case $k\Sigma$ becomes a simple \mathcal{R}_X-module.

Remark: Which finite groups can occur as Σ_R? Answer: all! (Birkhoff 1946)
Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ if there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong Mat_n!(k)$. In this case $k\Sigma$ becomes a simple \mathcal{R}_X-module.

Remark: Which finite groups can occur as Σ_R? Answer: all! (Birkhoff 1946, Thornton 1972)
Remark

Examples:

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_\sigma$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong \text{Mat}_n!(k)$. In this case $k\Sigma$ becomes a simple \mathcal{R}_X-module.

Remark: Which finite groups can occur as Σ_R? Answer: all! (Birkhoff 1946, Thornton 1972, Barmak-Minian 2009).
The poset of posets

Question:

Compute \(\mu_O(R, S) \), for \(R, S \in O \) with \(R \subseteq S \)?

Proposition 1

\[\mu_O(R, S) \neq 0 \iff \forall (x, y) \in S - R, x \text{ is maximal in } y \text{ (for } S) \, i.e. \]

\[\left((x, z) \in S \text{ and } (z, y) \in S \right) \Rightarrow (x = z \text{ or } z = y) \].

In this case \(\mu_O(R, S) = (-1)^{|S - R|} \).

Proposition

Let \(O \) denote the poset of preorders on \(X \).

Let \(\Gamma \) denote the largest element \(O \) (the coarse preorder).

Then \(O - \{ \Delta, \Gamma \} \) is homotopy equivalent to a wedge of \((n - 1)! \) spheres of dimension \(2n - 4 \).

Hence \(\mu_O(\Delta, \Gamma) = (n - 1)! \).
Question:

\[\mu_O(R, S) \neq 0 \iff \forall (x, y) \in S - R, x \text{ is maximal in } y \text{ (for } S) \, \exists (x, z) \in S \text{ and } (z, y) \in S \implies (x = z \text{ or } z = y) \]
Question: Compute $\mu_\mathcal{O}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?
The poset of posets

Question: Compute $\mu_{\mathcal{O}}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_{\mathcal{O}}(R, S) \neq 0$
The poset of posets

Question: Compute $\mu_{\mathcal{O}}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_{\mathcal{O}}(R, S) \neq 0 \iff \forall (x, y) \in S - R$, x is maximal in y (for S)
The poset of posets

Question: Compute $\mu_{\mathcal{O}}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_{\mathcal{O}}(R, S) \neq 0 \iff \forall (x, y) \in S - R, x$ is maximal in y (for S) i.e. $(x, z) \in S$ and $(z, y) \in S \Rightarrow (x = z$ or $z = y)$.

$\mu_{\mathcal{O}}(R, S)\neq 0 \iff \forall (x, y) \in S - R, x$ is maximal in y (for S)
The poset of posets

Question: Compute $\mu_\mathcal{O}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_\mathcal{O}(R, S) \neq 0 \iff \forall (x, y) \in S - R, x$ is maximal in y (for S)

 i.e. $(x, z) \in S$ and $(z, y) \in S \implies (x = z$ or $z = y)$.

 In this case $\mu_\mathcal{O}(R, S) = (-1)^{|S-R|}$.

Serge Bouc (CNRS-LAMFA)
The poset of posets

Question: Compute $\mu_\mathcal{O}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_\mathcal{O}(R, S) \neq 0 \iff \forall (x, y) \in S - R, x \text{ is maximal in } y \text{ (for } S) \quad i.e. \quad (x, z) \in S \text{ and } (z, y) \in S \Rightarrow (x = z \text{ or } z = y)$.

 In this case $\mu_\mathcal{O}(R, S) = (-1)^{|S - R|}$.

2. *The poset* $\mathcal{O} - \{\Delta\}$
The poset of preorders

Question: Compute $\mu_O(R, S)$, for $R, S \in O$ with $R \subseteq S$?

Proposition

1. $\mu_O(R, S) \neq 0 \iff \forall (x, y) \in S - R, x \text{ is maximal in } y \text{ (for } S)$

 i.e. $((x, z) \in S \text{ and } (z, y) \in S) \Rightarrow (x = z \text{ or } z = y)$.

 In this case $\mu_O(R, S) = (-1)^{|S-R|}$.

2. The poset $O - \{\Delta\}$ is homotopy equivalent to the sphere S^{n-2}.
The poset of preorders

Question: Compute \(\mu_\mathcal{O}(R, S) \), for \(R, S \in \mathcal{O} \) with \(R \subseteq S \)?

Proposition

1. \(\mu_\mathcal{O}(R, S) \neq 0 \iff \forall (x, y) \in S - R, \ x \text{ is maximal in } y \ (\text{for } S) \)

 i.e. \(((x, z) \in S \text{ and } (z, y) \in S) \Rightarrow (x = z \text{ or } z = y) \).

 In this case \(\mu_\mathcal{O}(R, S) = (-1)^{|S - R|} \).

2. The poset \(\mathcal{O} - \{\Delta\} \) is homotopy equivalent to the sphere \(S^{n-2} \).

Proposition

Let \(\overline{\mathcal{O}} \) denote the poset of preorders on \(X \).
The poset of preorders

Question: Compute \(\mu_{\mathcal{O}}(R, S) \), for \(R, S \in \mathcal{O} \) with \(R \subseteq S \)?

Proposition

1. \(\mu_{\mathcal{O}}(R, S) \neq 0 \iff \forall (x, y) \in S - R, \ x \text{ is maximal in } y \ (\text{for } S) \)

 i.e. \(((x, z) \in S \text{ and } (z, y) \in S) \Rightarrow (x = z \text{ or } z = y) \).

 In this case \(\mu_{\mathcal{O}}(R, S) = (-1)^{|S - R|} \).

2. The poset \(\mathcal{O} - \{\Delta\} \) is homotopy equivalent to the sphere \(S^{n-2} \).

Proposition

Let \(\overline{\mathcal{O}} \) denote the poset of preorders on \(X \). Let \(\Gamma \) denote the largest element \(\overline{\mathcal{O}} \) (the coarse preorder).
The poset of preorders

Question: Compute $\mu_{\mathcal{O}}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_{\mathcal{O}}(R, S) \neq 0 \iff \forall (x, y) \in S - R, \ x \text{ is maximal in } y \ (\text{for } S) \ \text{i.e.} \ ((x, z) \in S \ \text{and} \ (z, y) \in S) \ \Rightarrow \ (x = z \ \text{or} \ z = y).$

 In this case $\mu_{\mathcal{O}}(R, S) = (-1)^{|S - R|}.$

2. The poset $\mathcal{O} - \{\Delta\}$ is homotopy equivalent to the sphere S^{n-2}.

Proposition

Let $\overline{\mathcal{O}}$ denote the poset of preorders on X. Let Γ denote the largest element $\overline{\mathcal{O}}$ (the coarse preorder).

Then $\overline{\mathcal{O}} - \{\Delta, \Gamma\}$
The poset of preorders

Question: Compute $\mu(O)(R, S)$, for $R, S \in O$ with $R \subseteq S$?

Proposition 1

$\mu(O)(R, S) \neq 0 \iff \forall (x, y) \in S - R, x \text{ is maximal in } y \text{ (for } S) \implies (x = z \text{ or } z = y)$.

In this case $\mu(O)(R, S) = (-1)^{|S - R|}$.

Proposition 2

The poset $O - \{\Delta\}$ is homotopy equivalent to the sphere S^{n-2}.

Proposition

Let \overline{O} denote the poset of preorders on X. Let Γ denote the largest element \overline{O} (the coarse preorder).

Then $\overline{O} - \{\Delta, \Gamma\}$ is homotopy equivalent to a wedge of $(n - 1)!$ spheres of dimension $2n - 4$.
The poset of preorders

Question: Compute $\mu_{\mathcal{O}}(R, S)$, for $R, S \in \mathcal{O}$ with $R \subseteq S$?

Proposition

1. $\mu_{\mathcal{O}}(R, S) \neq 0 \iff \forall (x, y) \in S - R, \ x \text{ is maximal in } y \ (\text{for } S)$
 i.e. $((x, z) \in S \text{ and } (z, y) \in S) \Rightarrow (x = z \text{ or } z = y)$.
 In this case $\mu_{\mathcal{O}}(R, S) = (-1)^{|S - R|}$.

2. The poset $\mathcal{O} - \{\Delta\}$ is homotopy equivalent to the sphere S^{n-2}.

Proposition

Let $\overline{\mathcal{O}}$ denote the poset of preorders on X. Let Γ denote the largest element $\overline{\mathcal{O}}$ (the coarse preorder).

Then $\overline{\mathcal{O}} - \{\Delta, \Gamma\}$ is homotopy equivalent to a wedge of $(n - 1)!$ spheres of dimension $2n - 4$. Hence $\mu_{\overline{\mathcal{O}}}(\Delta, \Gamma) = (n - 1)!$.