Representations of finite sets

Serge Bouc

CNRS-LAMFA
Université de Picardie

joint work with

Jacques Thévenaz

EPFL

- Blocks of Finite Groups and Beyond -
in honor of
Burkhard Külshammer
Correspondences, Relations

Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X. Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{ (z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R \}$. This composition is associative. In particular $C(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X$. More generally $R \circ \Delta_X = R$ for any Y and any $R \in C(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in C(X, Z)$.
Let X and Y be finite sets.
Let X and Y be finite sets. A **correspondence** from X to Y
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$.

$C(Y, X)$ denotes the set of correspondences from X to Y. A correspondence from X to X is called a relation on X. Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R (= SR) = \{ (z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R \}$. This composition is associative. In particular $C(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X$. More generally $R \circ \Delta_X = R$ for any Y and any $R \in C(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in C(X, Z)$.

Serge Bouc (CNRS-LAMFA)
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R = \{ (z, x) \in Z \times X : \exists y \in Y, (z, y) \in S, (y, x) \in R \}$. This composition is associative.

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element $\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X$.

More generally $R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.

Serge Bouc (CNRS-LAMFA)
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then $S \circ R (= SR) = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}$. This composition is associative. In particular $\mathcal{C}(X, X)$ is a monoid, with identity element $\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X$. More generally $R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.

Serge Bouc (CNRS-LAMFA)
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed:

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$,

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

This composition is associative. In particular $\mathcal{C}(X, X)$ is a monoid, with identity element $\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X$.

More generally $R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.
Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R$$
Let X and Y be finite sets. A **correspondence** from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a **relation** on X.

Correspondences can be **composed**: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(= SR)$$
Correspondences, Relations

Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(= SR) = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

This composition is associative. In particular $\mathcal{C}(X, X)$ is a monoid, with identity element $\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X$.

More generally $R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.

Serge Bouc (CNRS-LAMFA)

Representations of finite sets

Jena, 2015/07/25 2 / 19
Correspondences, Relations

Let X and Y be finite sets. A **correspondence** from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a **relation** on X.

Correspondences can be **composed**: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}.$$

This composition is associative.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
2 / 19
Let X and Y be finite sets. A **correspondence** from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a **relation** on X.

Correspondences can be **composed**: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

This composition is associative.

In particular $\mathcal{C}(X, X)$ is a **monoid**.
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{ (z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R \} .$$

This composition is associative.

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{ (x, x) \mid x \in X \} \subseteq X \times X .$$
Let X and Y be finite sets. A **correspondence** from X to Y is a subset of $Y \times X$. Let $C(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a **relation** on X.

Correspondences can be **composed**: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R (= SR) = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\} .$$

This composition is associative.

In particular $C(X, X)$ is a **monoid**, with identity element

$$\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X .$$

More generally
Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

This composition is associative.

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X.$$

More generally

$$R \circ \Delta_X = R$$

for any Y and any $R \in \mathcal{C}(Y, X)$.

Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R = \{(z, x) \in Z \times X \mid \exists y \in Y, (z, y) \in S, (y, x) \in R\}.$$

This composition is associative.

In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X.$$

More generally

$R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$,

$\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.
When k is a commutative ring, let kC be the following category: the objects of kC are the finite sets, $\text{Hom}_{kC}(X, Y) = kC(Y, X)$, composition of morphisms extends composition of correspondences, the identity morphism of X is $\Delta_X \in kC(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k. It is an abelian category.
When k is a commutative ring
When k is a commutative ring, let kC be the following category:
When \(k \) is a commutative ring, let \(kC \) be the following category:
- the objects of \(kC \) are the finite sets
When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X,Y) = kC(Y,X)$
When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X,Y) = kC(Y,X)$ (free k-module with basis $C(Y,X)$)
When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X, Y) = kC(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in kC(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod.

Let F_k denote the category of correspondence functors over k.

It is an abelian category.
When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X, Y) = kC(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in kC(X, X)$.
When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X, Y) = kC(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in kC(X, X)$.

A **correspondence functor** (over k) is a k-linear functor from kC to k-Mod.
Correspondence functors

When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X, Y) = kC(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in kC(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k.
Correspondence functors

When k is a commutative ring, let kC be the following category:

- the objects of kC are the finite sets,
- $\text{Hom}_{kC}(X, Y) = kC(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in kC(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k. It is an abelian category.
Examples

The functor $\mathbf{Y}^E, k : X \mapsto k C(X, E)$, e.g. $E = \emptyset$, then $\mathbf{Y}^\emptyset, k \sim = k C(\emptyset)$, $\forall X$.

$E = \{•\}$: then $\mathbf{Y}^{\{•\}}, k(X) \sim = k(2X)$, $\forall X$.

The functor \mathbf{Y}^E, k is a projective object of F_k, for any E.

Direct summands of \mathbf{Y}^E, k: by Yoneda Lemma

$\text{End} F_k(\mathbf{Y}^E, k) \sim = k C(E, E)$.

Let R be a preorder on E, i.e. $R \in C(E, E)$ such that $\Delta_E \subseteq R = R^2$.

Then $\mathbf{Y}^{E, k_R}: X \mapsto k C(X, E)$ is a projective object of F_k.

Theorem

Let E be a finite set. Then $R^E := k C(E, E) \sim = \text{End} F_k(\mathbf{Y}^E, k)$ is a symmetric algebra (for an explicit symmetrizing form).
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ (E fixed finite set)
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$:
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

Direct summands of $Y_{E,k}$:

By Yoneda Lemma $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong kC(E,E)$.

Let R be a preorder on E, i.e. $R \in C(E,E)$ such that $\Delta E \subseteq R = R^2$.

Then $Y_{E,k,R} : X \mapsto kC(X,E)$ is a projective object of \mathcal{F}_k.

Theorem

Let E be a finite set.

Then $R_E = kC(E,E) \cong \text{End}_{\mathcal{F}_k}(Y_{E,k})$ is a symmetric algebra (for an explicit symmetrizing form).

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$:
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

The functor $Y_{E,k}$ is a projective object of F_k for any E.

Direct summands of $Y_{E,k}$:
by Yoneda Lemma $End_{F_k}(Y_{E,k}) \cong kC(E,E)$.

Let R be a preorder on E, i.e. $R \in C(E,E)$ such that $\Delta_E \subseteq R = R^2$.
Then $Y_{E,k,R} : X \mapsto kC(X, E)_R$ is a projective object of F_k.

Theorem Let E be a finite set.
Then $R_E := kC(E, E) \cong End_{F_k}(Y_{E,k})$ is a symmetric algebra (for an explicit symmetrizing form).
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k, \forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$:
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong \ldots$
Examples

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

The functor $Y_{E,k}$ is a **projective** object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$.

Examples

- Yoneda functors $Y_{E,k}: X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

 The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

 The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong kC(E, E)$. Let R be a preorder on E, i.e. $R \in C(E, E)$ such that $\Delta_E \subseteq R = R^2$.
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 \[\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong kC(E, E). \]
 Let R be a preorder on E, i.e. $R \in C(E, E)$ such that $\Delta_E \subseteq R = R^2$.
 Then $Y_{E,k}R : X \mapsto kC(X, E)R$ is a projective object of \mathcal{F}_k.

Theorem

Let E be a finite set.

$R_E := kC(E, E) \cong \text{End}_{\mathcal{F}_k}(Y_{E,k})$ is a symmetric algebra (for an explicit symmetrizing form).
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

 The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma

 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong kC(E, E)$. Let R be a preorder on E, i.e. $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$.

 Then $Y_{E,k}R : X \mapsto kC(X, E)R$ is a projective object of \mathcal{F}_k.

Theorem

Let E be a finite set.
Examples

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

The functor $Y_{E,k}$ is a **projective** object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a **preorder** on E, i.e.
 $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$.
 Then $Y_{E,k}R : X \mapsto k\mathcal{C}(X, E)R$ is a projective object of \mathcal{F}_k.

Theorem

Let E be a finite set. Then $\mathcal{R}_E := k\mathcal{C}(E, E) \cong \text{End}_{\mathcal{F}_k}(Y_{E,k})$
Examples

- Yoneda functors $Y_{E,k} : X \mapsto kC(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k$, $\forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X)$, $\forall X$.

 The functor $Y_{E,k}$ is a **projective** object of \mathcal{F}_k, for any E.

- Direct summands of $Y_{E,k}$: by Yoneda Lemma
 $\text{End}_{\mathcal{F}_k}(Y_{E,k}) \cong kC(E, E)$. Let R be a **preorder** on E, i.e.
 $R \in C(E, E)$ such that $\Delta_E \subseteq R = R^2$.
 Then $Y_{E,k}R : X \mapsto kC(X, E)R$ is a projective object of \mathcal{F}_k.

Theorem

*Let E be a finite set. Then $\mathcal{R}_E := kC(E, E) \cong \text{End}_{\mathcal{F}_k}(Y_{E,k})$ is a **symmetric** algebra (for an explicit symmetrizing form).*
Bounded generation

Let $M \in \mathcal{F}_k$.

1. M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.

2. M is finitely generated if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in \mathcal{F}_k$.

The following are equivalent:

1. M is finitely generated.

2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^n Y_E^i$, k.

If moreover k is a field, these conditions are equivalent to:

3. there exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab|X|^r$ for any finite set X with $|X| \geq r$.

4. M has finite length.
Bounded generation - Finite generation

Definition

Let $M \in \mathcal{F}_k$.

1. M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.

2. M is finitely generated if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in \mathcal{F}_k$.

The following are equivalent:

1. M is finitely generated.

2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^n Y_{E_i} k$.

If moreover k is a field, these conditions are equivalent to:

3. there exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab |X|^r$ for any finite set X with $|X| \geq r$.

4. M has finite length.
Definition

Let $M \in F_k$. M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.

M is finitely generated if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in F_k$. The following are equivalent:

1. M is finitely generated.
2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_E$,

If moreover k is a field, these conditions are equivalent to:

3. there exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab |X|$ for any finite set X with $|X| \geq r$.

4. M has finite length.
Definition

Let $M \in \mathcal{F}_k$.

Theorem

Let $M \in \mathcal{F}_k$.

The following are equivalent:

1. M is finitely generated.
2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^n Y_i$, k.

If moreover k is a field, these conditions are equivalent to:

3. There exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab|X|$ for any finite set X with $|X| \geq r$.
4. M has finite length.
Definition

Let $M \in \mathcal{F}_k$.

1. M has **bounded type**

Theorem

Let $M \in \mathcal{F}_k$.

The following are equivalent:

1. M is finitely generated.
2. M is isomorphic to a quotient of a finite direct sum $\oplus_{i=1}^{n} Y_{E_i}, k$.

If moreover k is a field, these conditions are equivalent to:

3. There exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab |X|$ for any finite set X with $|X| \geq r$.
4. M has finite length.
Definition

Let $M \in \mathcal{F}_k$.

1. M has **bounded type** if there is a finite set E such that $M = \langle M(E) \rangle$.
Bounded generation - Finite generation - Finite length

Definition

Let $M \in \mathcal{F}_k$.

1. M has **bounded type** if there is a finite set E such that $M = \langle M(E) \rangle$.
2. M is **finitely generated**
Bounded generation - Finite generation - Finite length

Definition

Let $M \in F_k$.

1. *M has bounded type* if there is a finite set E such that $M = \langle M(E) \rangle$.

2. *M is finitely generated* if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in F_k$.

1. The following are equivalent:
 - M is finitely generated.
 - M is isomorphic to a quotient of a finite direct sum $\oplus_{i=1}^n Y E_i \otimes k$.

 If moreover k is a field, these conditions are equivalent to:

2. There exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab |X|$ for any finite set X with $|X| \geq r$.

3. M has finite length.
Definition

Let \(M \in \mathcal{F}_k \).

1. \(M \) has **bounded type** if there is a finite set \(E \) such that \(M = \langle M(E) \rangle \).
2. \(M \) is **finitely generated** if moreover \(M(E) \) is a finitely generated \(k \)-module.

Theorem

Let \(M \in \mathcal{F}_k \).

The following are equivalent:

1. \(M \) is finitely generated.
2. \(M \) is isomorphic to a quotient of a finite direct sum \(\bigoplus_{i=1}^{n} Y_E \), \(k \).

If moreover \(k \) is a field, these conditions are equivalent to:

3. There exist positive real numbers \(a, b, r \) such that \(\dim_k M(X) \leq ab |X| \) for any finite set \(X \) with \(|X| \geq r \).
4. \(M \) has finite length.
Definition

Let $M \in \mathcal{F}_k$.

1. *M has bounded type* if there is a finite set E such that $M = \langle M(E) \rangle$.
2. *M is finitely generated* if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

1. M is finitely generated.
2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i}, k$.
3. If moreover k is a field, these conditions are equivalent to:
 - There exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab |X|$ for any finite set X with $|X| \geq r$.
4. M has finite length.
Definition

Let $M \in \mathcal{F}_k$.

1. M has **bounded type** if there is a finite set E such that $M = \langle M(E) \rangle$.
2. M is **finitely generated** if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

1. M is finitely generated.
Definition

Let \(M \in \mathcal{F}_k \).

1. \(M \) has **bounded type** if there is a finite set \(E \) such that \(M = \langle M(E) \rangle \).
2. \(M \) is **finitely generated** if moreover \(M(E) \) is a finitely generated \(k \)-module.

Theorem

Let \(M \in \mathcal{F}_k \). The following are equivalent:

1. \(M \) is finitely generated.
2. \(M \) is isomorphic to a quotient of a finite direct sum \(\bigoplus_{i=1}^{n} Y_{E_i,k} \).
Definition

Let \(M \in \mathcal{F}_k \).

1. \(M \) has bounded type if there is a finite set \(E \) such that \(M = \langle M(E) \rangle \).
2. \(M \) is finitely generated if moreover \(M(E) \) is a finitely generated \(k \)-module.

Theorem

Let \(M \in \mathcal{F}_k \). The following are equivalent:

1. \(M \) is finitely generated.
2. \(M \) is isomorphic to a quotient of a finite direct sum \(\bigoplus_{i=1}^{n} Y_{E_i,k} \).

If moreover \(k \) is a field, these conditions are equivalent to:

3. there exist positive real numbers \(a, b, r \) such that \(\dim_k M(X) \leq ab |X|^r \) for any finite set \(X \) with \(|X| \geq r \).
Definition

Let $M \in \mathcal{F}_k$.

1. M has **bounded type** if there is a finite set E such that $M = \langle M(E) \rangle$.
2. M is **finitely generated** if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

1. M is finitely generated.
2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

If moreover k is a field, these conditions are equivalent to:

3. there exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab^{|X|}$ for any finite set X with $|X| \geq r$.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
5 / 19
Definition

Let $M \in \mathcal{F}_k$.

1. M has **bounded type** if there is a finite set E such that $M = \langle M(E) \rangle$.
2. M is **finitely generated** if moreover $M(E)$ is a finitely generated k-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

1. M is finitely generated.
2. M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

If moreover k is a field, these conditions are equivalent to:

3. there exist positive real numbers a, b, r such that $\dim_k M(X) \leq ab^{|X|}$ for any finite set X with $|X| \geq r$.
4. M has finite length.
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $M(E) = M(E) / \sum_{|F| < |E|} k \mathcal{C}(E,F) M(F)$.

Theorem
Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $M(E) \neq 0$, then $|E| \leq 2|F|$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2|F|$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary
Functors of bounded type form an abelian subcategory \mathcal{F}_b of \mathcal{F}_k.

Finitely generated functors form an abelian subcategory \mathcal{F}_f of \mathcal{F}_b.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25 6 / 19
Let $M \in \mathcal{F}_k$ and E be a finite set.
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define
\[\overline{M}(E) = M(E) / \]
Let $M \in F_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/ \sum_{|F| < |E|} kC(E, F)M(F).$$
The noetherian case

Let \(M \in \mathcal{F}_k \) and \(E \) be a finite set. Define

\[
\overline{M}(E) = M(E) / \sum_{|F|<|E|} kC(E,F)M(F).
\]

Theorem

Let \(k \) be a noetherian (commutative) ring
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k

1. If $L = \langle L(F) \rangle$ and $M(E) \neq 0$, then $|E| \leq 2|F|$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2|F|$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory $\mathcal{F}_b k$ of \mathcal{F}_k.

Finitely generated functors form an abelian subcategory $\mathcal{F}_f k$ of $\mathcal{F}_b k$.
Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/ \sum_{|F|<|E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $M(E) \neq 0$, then $|E| \leq 2|F|$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2|F|$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory $\mathcal{F}_b k$ of \mathcal{F}_k.

Finitely generated functors form an abelian subcategory $\mathcal{F}_f k$ of $\mathcal{F}_b k$.
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$
\overline{M}(E) = M(E)/ \sum_{|F| < |E|} kC(E,F)M(F).
$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_{b_k} of \mathcal{F}_k.

Finitely generated functors form an abelian subcategory \mathcal{F}_{f_k} of \mathcal{F}_{b_k}.
Let \(M \in \mathcal{F}_k \) and \(E \) be a finite set. Define
\[
\overline{M}(E) = M(E) \cap \sum_{|F| < |E|} kC(E, F)M(F).
\]

Theorem

Let \(k \) be a noetherian ring, let \(M \subseteq L \) in \(\mathcal{F}_k \), and let \(E \) and \(F \) be finite sets.

1. If \(L = \langle L(F) \rangle \) and \(\overline{M}(E) \neq 0 \), then \(|E| \leq 2^{|F|} \).
2. If \(L = \langle L(F) \rangle \) and \(|E| \geq 2^{|F|} \)
The noetherian case

Let \(M \in \mathcal{F}_k \) and \(E \) be a finite set. Define

\[
\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E, F)M(F).
\]

Theorem

Let \(k \) be a noetherian ring, let \(M \subseteq L \) in \(\mathcal{F}_k \), and let \(E \) and \(F \) be finite sets.

1. If \(L = \langle L(F) \rangle \) and \(\overline{M}(E) \neq 0 \), then \(|E| \leq 2^{|F|} \).
2. If \(L = \langle L(F) \rangle \) and \(|E| \geq 2^{|F|} \), then \(M = \langle M(E) \rangle \).
Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/\sum_{|F|<|E|} kC(E,F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/ \sum_{|F|<|E|} kC(E,F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/\sum_{|F|<|E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_b_k of \mathcal{F}_k.

Finitely generated functors form an abelian subcategory \mathcal{F}_f_k of \mathcal{F}_b_k.
Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/ \sum_{|F| < |E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$M(E) = M(E)/ \sum_{|F| < |E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory $\mathcal{F}_{b,k}$ of \mathcal{F}_k. Finitely generated functors form an abelian subcategory $\mathcal{F}_{f,k}$ of $\mathcal{F}_{b,k}$.
Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/\sum_{|F|<|E|} kC(E,F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = \frac{M(E)}{\sum_{|F| < |E|} kC(E,F)M(F)}.$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k.
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k. Finitely generated functors
The noetherian case

Let $M \in \mathcal{F}_k$ and E be a finite set. Define

$$\overline{M}(E) = M(E)/ \sum_{|F| < |E|} kC(E, F)M(F).$$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k, and let E and F be finite sets.

1. If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
2. If $L = \langle L(F) \rangle$ and $|E| \geq 2^{|F|}$, then $M = \langle M(E) \rangle$.
3. If L has bounded type, then M has bounded type.
4. If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k. Finitely generated functors form an abelian subcategory \mathcal{F}_k^f of \mathcal{F}_k^b.
Let E be a finite set. The evaluation functor $M \mapsto M(E) \in R^E$-Mod has a left adjoint $V \mapsto L_E(V)$, defined by $X \mapsto L_E(V)(X) := kC(X,E) \otimes_R E V$.

If V is projective (resp. indecomposable), so is $L_E(V)$.

If M is projective in F_k, and $M = \langle M(E) \rangle$, then $M \sim L_{F,F}(M(F))$ for any finite set F with $|F| \geq |E|$, and $M(F)$ is a projective R_F-module.

If k is a field, any finitely generated projective in F_k is also injective.

$F_{f,k}$ has infinite global dimension.
Let E be a finite set.
Let E be a finite set. The evaluation functor
\[M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod} \]
If V is projective (resp. indecomposable), so is $L_E(V)$.
If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$, then $M \cong L_{\mathcal{F}_k}(M(F))$ for any finite set F with $|F| \geq |E|$, and $M(F)$ is a projective \mathcal{R}_F-module.
If k is a field, any finitely generated projective in \mathcal{F}_k is also injective.
\mathcal{F}_k has infinite global dimension.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$.

If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.

If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$, then $M \simeq L_{\mathcal{F}_k}(M(F))$ for any finite set F with $|F| \geq |E|$, and $M(F)$ is a projective \mathcal{R}_F-module.

If k is a field, any finitely generated projective in \mathcal{F}_k is also injective.

\mathcal{F}_k has infinite global dimension.
Let E be a finite set. The evaluation functor
\[M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod} \]
has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by
\[X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V. \]
Let E be a finite set. The evaluation functor

$$ M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod} $$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$ X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V. $$

If V is projective

If k is a field, any finitely generated projective in \mathcal{F}_k is also injective. $\mathcal{F}_f k$ has infinite global dimension.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V.$$

If V is projective (resp. indecomposable)

If k is a field, any finitely generated projective in \mathcal{F}_k is also injective.

\mathcal{F}_k has infinite global dimension.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V.$$

If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V.$$

If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.

If M is projective in \mathcal{F}_k
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-}\text{Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V.$$

- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$.

If k is a field, any finitely generated projective in \mathcal{F}_k is also injective.

\mathcal{F}_k has infinite global dimension.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$$

If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.

If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set F with $|F| \geq |E|$.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V.$$

If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.

If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set F with $|F| \geq |E|$, and $M(F)$ is a projective \mathcal{R}_F-module.
Let E be a finite set. The evaluation functor
\[M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod} \]
has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by
\[X \mapsto \mathcal{L}_{E,V}(X) := k \mathcal{C}(X,E) \otimes_{\mathcal{R}_E} V. \]
If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set F with $|F| \geq |E|$, and $M(F)$ is a projective \mathcal{R}_F-module.
If k is a field, any finitely generated projective in \mathcal{F}_k is also injective.
Let E be a finite set. The evaluation functor

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by

$$X \mapsto \mathcal{L}_{E,V}(X) := kC(X, E) \otimes_{\mathcal{R}_E} V.$$

If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.

If M is projective in \mathcal{F}_k, and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set F with $|F| \geq |E|$, and $M(F)$ is a projective \mathcal{R}_F-module.

If k is a field, any finitely generated projective in \mathcal{F}_k is also injective. \mathcal{F}_k^f has infinite global dimension.
If V is simple, then L_E, V has a unique maximal subfunctor J_E, V, so $S_E, V = L_E, V / J_E, V$ is a simple functor. Conversely, if $S \in F_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple R_E-module, and $S \sim S_E, V$.

If moreover E is minimal such that $S(E) \neq 0$, then $V = S(E)$ is a module for the algebra of essential relations on $E_E = kC(E, E) / \sum |F| < |E| kC(F, E)$.
If V is simple

Conversely, if $S \in F_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple R-module, and $S \sim S(E)$. If moreover E is minimal such that $S(E) \neq 0$, then $V = S(E)$ is a module for the algebra of essential relations on $E = kC(E,F) / \sum |F| < |E| kC(F,E)$.
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$.
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple...
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple R_E-module.
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V} / J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E-module, and $S \cong S_{E,V}$.
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E-module, and $S \cong S_{E,V}$.

If moreover E is minimal such that $S(E) \neq 0$
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E-module, and $S \cong S_{E,V}$.

If moreover E is minimal such that $S(E) \neq 0$, then $V = S(E)$ is a module for the algebra of essential relations on E.
If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E-module, and $S \cong S_{E,V}$.

If moreover E is minimal such that $S(E) \neq 0$, then $V = S(E)$ is a module for the algebra of essential relations on E

$$\mathcal{E}_E = k\mathcal{C}(E,E)/ \sum_{|F|<|E|} k\mathcal{C}(E,F)\mathcal{C}(F,E).$$
Evaluation - Simple functors

- If V is simple, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V} / J_{E,V}$ is a simple functor.

- Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E-module, and $S \cong S_{E,V}$.

- If moreover E is minimal such that $S(E) \neq 0$, then $V = S(E)$ is a module for the algebra of essential relations on E

$$\mathcal{E}_E = k\mathcal{C}(E, E)/\sum_{|F|<|E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$$
Simple functors

Theorem

There is a bijection

Simple correspondence

functors over k

up to isomorphism

\leftrightarrow

Triples (E, R, W)

$\begin{cases}
E \text{ finite set} \\
R \text{ partial order on } E \\
W \text{ simple } k\text{Aut}(E, R)\text{-module}
\end{cases}$

\uparrow up to isomorphism.

Examples:

Let k be a field.

The functor Y_{\emptyset}, k is simple (and projective, and injective), isomorphic to $S_{\emptyset}, \text{tot}, k$.

The functor Y_{\bullet}, k is semisimple (and projective, and injective), isomorphic to $S_{\emptyset}, \text{tot}, k \oplus S_{\bullet}, \text{tot}, k$.

Theorem

There is a bijection between simple functors over k up to isomorphism and triples (E, R, W):

- E is a finite set,
- R is a partial order on E,
- W is a simple k-module over $\text{Aut}(E, R)$.

Examples:

Let k be a field. The functor $Y_{\emptyset, k}$ is simple (and projective, and injective), isomorphic to $S_{\emptyset, \text{tot}, k}$. The functor $Y_{\bullet, k}$ is semisimple (and projective, and injective), isomorphic to $S_{\emptyset, \text{tot}, k} \oplus S_{\bullet, \text{tot}, k}$.

Serge Bouc (CNRS-LAMFA)
Simple functors

Theorem

There is a bijection

Simple correspondence

functors over k up to isomorphism

\leftrightarrow

Triples (E, R, W)

$\begin{cases}
E \text{ finite set} \\
R \text{ partial order on } E \\
W \text{ simple } k\text{Aut}(E, R) - \text{module}
\end{cases}$

Examples:

Let k be a field.

The functor Y^\emptyset, k is simple (and projective, and injective), isomorphic to $S^\emptyset, \text{tot}, k$.

The functor Y^\bullet, k is semisimple (and projective, and injective), isomorphic to $S^\emptyset, \text{tot}, k \oplus S^\bullet, \text{tot}, k$.
Theorem

There is a bijection
Simple functors

Theorem

There is a bijection

Simple correspondence functors over \(k \)

up to isomorphism

Examples:

Let \(k \) be a field. The functor \(Y^{\emptyset}, k \) is simple (and projective, and injective), isomorphic to \(S^{\emptyset}, \text{tot}, k \).

The functor \(Y^{\bullet}, k \) is semisimple (and projective, and injective), isomorphic to \(S^{\emptyset}, \text{tot}, k \oplus S^{\bullet}, \text{tot}, k \).
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

Triples (E, R, W)

Examples:

Let k be a field. The functor Y_{\emptyset}, k is simple (and projective, and injective), isomorphic to $S_{\emptyset}, \text{tot}, k$. The functor Y_{\emptyset}, k is semisimple (and projective, and injective), isomorphic to $S_{\emptyset}, \text{tot}, k \oplus S_{\emptyset}, \text{tot}, k$.
Simple functors

Theorem

There is a bijection

Simple correspondence
functors over \(k \)

up to isomorphism

\[
\begin{align*}
\text{Triples } & (E, R, W) \\
\{ & \\
E & \text{ finite set}
\end{align*}
\]

Examples:
Let \(k \) be a field.
The functor \(Y_{\emptyset}, k \)
is simple (and projective, and injective),
isomorphic to \(S_{\emptyset}, \text{tot}, k \).
The functor \(Y_{\cdot}, k \)
is semisimple (and projective, and injective),
isomorphic to \(S_{\emptyset}, \text{tot}, k \) \(\oplus \) \(S_{\cdot}, \text{tot}, k \).
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

\leftrightarrow

Triples (E, R, W)

$\begin{cases}
E \text{ finite set} \\
R \text{ partial order on } E
\end{cases}$
Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

\leftrightarrow

Triples (E, R, W)

\[
\begin{cases}
E \text{ finite set} \\
R \text{ partial order on } E \\
W \text{ simple } k\text{Aut}(E, R)-\text{module}
\end{cases}
\]
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

Triples (E, R, W)

\[
\begin{align*}
E & \text{ finite set} \\
R & \text{ partial order on } E \\
W & \text{ simple } k\text{Aut}(E, R)-\text{module} \\
& \text{up to isomorphism.}
\end{align*}
\]
Simple functors

Theorem

There is a bijection

Simple correspondence
functors over k

up to isomorphism

$S_{E,R,W} \leftrightarrow (E, R, W)$

Triples (E, R, W)

\[
\begin{align*}
E & \text{ finite set} \\
R & \text{ partial order on } E \\
W & \text{ simple } k\text{Aut}(E, R)\text{-module} \\
\text{up to isomorphism.}
\end{align*}
\]

Examples:

Let k be a field.

The functor $Y \emptyset, k$ is simple (and projective, and injective), isomorphic to $S \emptyset, \text{tot}, k$.

The functor $Y \bullet, k$ is semisimple (and projective, and injective), isomorphic to $S \emptyset, \text{tot}, k \oplus S \bullet, \text{tot}, k$.

Serge Bouc (CNRS-LAMFA)

Representations of finite sets

Jena, 2015/07/25
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k up to isomorphism

$S_{E,R,W} \leftrightarrow$ Triangles (E, R, W)

E finite set
R partial order on E
W simple $k\text{Aut}(E, R)$-module up to isomorphism.

Examples:

Let k be a field.
The functor Y_{\emptyset}, k is simple (and projective, and injective), isomorphic to $S_{\emptyset}, \text{tot}, k$.
The functor Y_{\bullet}, k is semisimple (and projective, and injective), isomorphic to $S_{\emptyset}, \text{tot}, k \oplus S_{\bullet}, \text{tot}, k$.
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k *up to isomorphism*

$S_{E,R,W}$ ↔ Triples (E, R, W)

- E finite set
- R partial order on E
- W simple $k\operatorname{Aut}(E, R)$-module *up to isomorphism."

Examples: Let k be a field.
Simple functors

Theorem

There is a bijection

Simple correspondence

functors over \(k \)

up to isomorphism

\[S_{E,R,W} \leftrightarrow \text{Triples } (E, R, W) \]

\[\begin{cases}
E \text{ finite set} \\
R \text{ partial order on } E \\
W \text{ simple } k\text{Aut}(E, R)\text{-module up to isomorphism.}
\end{cases} \]

Examples: Let \(k \) be a field.

- The functor \(Y_{\emptyset, k} \)
Simple functors

Theorem

There is a bijection between simple correspondence functors over k up to isomorphism and triples (E, R, W) where:

- E is a finite set
- R is a partial order on E
- W is a simple $k\text{Aut}(E, R)$-module up to isomorphism.

Let k be a field. Then:

- The functor $Y_{\emptyset, k}$ is simple.

Examples: Let k be a field. Then:

- The functor $Y_{\emptyset, k}$ is simple.
Theorem

There is a bijection

Simple correspondence
functors over k
up to isomorphism

$S_{E,R,W} \iff (E, R, W)$

Triples (E, R, W)

- E finite set
- R partial order on E
- W simple $k\text{Aut}(E, R)$-module
up to isomorphism.

Examples: Let k be a field.

- The functor $Y_{\emptyset,k}$ is simple (and projective
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k up to isomorphism

\[S_{E,R,W} \leftrightarrow \begin{cases}
E \text{ finite set} \\
R \text{ partial order on } E \\
W \text{ simple } k\text{Aut}(E,R)-\text{module}
\end{cases} \text{ up to isomorphism.} \]

Examples: Let k be a field.

- The functor $Y_{\emptyset,k}$ is simple (and projective, and injective)
Simple functors

Theorem

There is a bijection

Simple correspondence
functors over \(k \)

up to isomorphism

\[
S_{E,R,W} \leftrightarrow \text{Triples } (E, R, W)
\]

\[
\begin{align*}
E & \text{ finite set} \\
R & \text{ partial order on } E \\
W & \text{ simple } k\text{Aut}(E, R)-\text{module} \\
& \text{up to isomorphism.}
\end{align*}
\]

Examples: Let \(k \) be a field.

- The functor \(Y_{\emptyset, k} \) is simple (and projective, and injective), isomorphic to \(S_{\emptyset, \text{tot}, k} \).
Theorem

There is a bijection

Simple correspondence

functors over \(k \)

denote a bijection

up to isomorphism

\[S_{E,R,W} \leftrightarrow (E, R, W) \]

Examples: Let \(k \) be a field.

- The functor \(Y_{\emptyset,k} \) is simple (and projective, and injective),
 isomorphic to \(S_{\emptyset,tot,k} \).
- The functor \(Y_{\bullet,k} \)
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

$$S_{E,R,W} \leftrightarrow (E, R, W)$$

Triples (E, R, W)

- E finite set
- R partial order on E
- W simple $k\operatorname{Aut}(E, R)$-module

up to isomorphism.

Examples: Let k be a field.

- The functor $Y_{\emptyset,k}$ is simple (and projective, and injective), isomorphic to $S_{\emptyset,\text{tot},k}$.
- The functor $Y_{\bullet,k}$ is semisimple
Simple functors

Theorem

There is a bijection

\[
S_{E,R,W} \leftrightarrow \left\{ \begin{array}{l}
E \text{ finite set} \\
R \text{ partial order on } E \\
W \text{ simple } kAut(E, R)-\text{module up to isomorphism.}
\end{array} \right.
\]

Examples: Let \(k \) be a field.

- The functor \(Y_{\emptyset,k} \) is simple (and projective, and injective), isomorphic to \(S_{\emptyset,tot,k} \).
- The functor \(Y_{\bullet,k} \) is semisimple (and projective...
Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

$S_{E,R,W} \leftrightarrow \text{Triples } (E, R, W)$

- E finite set
- R partial order on E
- W simple $k\text{Aut}(E, R)$-module

up to isomorphism.

Examples: Let k be a field.

- The functor $Y_{\emptyset, k}$ is simple (and projective, and injective), isomorphic to $S_{\emptyset, \text{tot}, k}$.
- The functor $Y_{\bullet, k}$ is semisimple (and projective, and injective)
Simple functors

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

$$S_{E,R,W} \leftrightarrow (E, R, W)$$

Triples (E, R, W)

- E finite set
- R partial order on E
- W simple $k\text{Aut}(E, R)$-module

up to isomorphism.

Examples: Let k be a field.

- The functor $Y_{\emptyset,k}$ is simple (and projective, and injective), isomorphic to $S_{\emptyset,\text{tot},k}$.
- The functor $Y_{\bullet,k}$ is semisimple (and projective, and injective), isomorphic to $S_{\emptyset,\text{tot},k} \oplus S_{\bullet,\text{tot},k}$.
Theorem

Let \(k \) be a noetherian ring, let \(M, N \in \mathcal{F}_k \), and let \(E, F \) be finite sets.

1. If \(M = \langle M(E) \rangle \), then for \(|F| \geq 2|E| \), the evaluation map
 \[\text{Hom}_{\mathcal{F}_k}(M, N) \rightarrow \text{Hom}_{\mathcal{R}_F}(M(F), N(F)) \]
 is an isomorphism.

2. If \(M \) has bounded type, then for any \(i \in \mathbb{N} \), there exists \(n_i \in \mathbb{N} \) such that if \(|F| \geq n_i \), the map
 \[\text{Ext}^i_{\mathcal{F}_k}(M, N) \rightarrow \text{Ext}^i_{\mathcal{R}_F}(M(F), N(F)) \]
 is an isomorphism.
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2|E|$, the evaluation map $\text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F))$ is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$ such that if $|F| \geq n_i$, the map $\text{Ext}^i_{\mathcal{F}_k}(M, N) \to \text{Ext}^i_{\mathcal{R}_F}(M(F), N(F))$ is an isomorphism.
Theorem

Let k be a noetherian ring, let $M, N \in F_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$
Evaluation - Stability

Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map $\text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F))$ is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$ such that if $|F| \geq n_i$, the map $\text{Ext}^i_{\mathcal{F}_k}(M, N) \to \text{Ext}^i_{\mathcal{R}_F}(M(F), N(F))$ is an isomorphism.
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map
 \[\text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{R_F}(M(F), N(F)) \]
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map
 \[
 \text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F))
 \]
 is an isomorphism.
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map
 \[\text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F)) \]
 is an isomorphism.

2. If M has bounded type
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map
 \[
 \text{Hom}_{\mathcal{F}_k}(M, N) \rightarrow \text{Hom}_{\mathcal{R}_F}(M(F), N(F))
 \]
 is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map

 $$\text{Hom}_{\mathcal{F}_k}(M, N) \rightarrow \text{Hom}_{\mathcal{R}_F}(M(F), N(F))$$

 is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$ such that if $|F| \geq n_i$
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map
 \[\text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F)) \]
 is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$ such that if $|F| \geq n_i$, the map
 \[\text{Ext}^i_{\mathcal{F}_k}(M, N) \to \text{Ext}^i_{\mathcal{R}_F}(M(F), N(F)) \]
Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map

 $$\text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F))$$

 is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$ such that if $|F| \geq n_i$, the map

 $$\text{Ext}^i_{\mathcal{F}_k}(M, N) \to \text{Ext}^i_{\mathcal{R}_F}(M(F), N(F))$$

 is an isomorphism.
Evaluation - Stability

Theorem

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

1. If $M = \langle M(E) \rangle$, then for $|F| \geq 2^{|E|}$, the evaluation map
 \[
 \text{Hom}_{\mathcal{F}_k}(M, N) \to \text{Hom}_{\mathcal{R}_F}(M(F), N(F))
 \]
 is an isomorphism.

2. If M has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$ such
 that if $|F| \geq n_i$, the map
 \[
 \text{Ext}^i_{\mathcal{F}_k}(M, N) \to \text{Ext}^i_{\mathcal{R}_F}(M(F), N(F))
 \]
 is an isomorphism.
An equivalence of categories

Definition

Let G_k be the following category:

- The objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- A morphism $(E, U) \to (F, V)$ is a morphism of R_E-modules $U \to kC(E, F) \otimes R_F V$.

The composition of $U \to kC(E, F) \otimes R_F V$ and $V \to kC(F, G) \otimes R_G W$ is $U \to kC(E, F) \otimes R_F V \to kC(F, G) \otimes R_G W \to kC(E, G) \otimes R_G W$.

The identity morphism of (E, U) is $U \sim \to kC(E, E) \otimes R_E U$.

Theorem 1

The assignment $(E, U) \mapsto L_E, U$ is a fully faithful k-linear functor $G_k \to F_k$.

Theorem 2

When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.
Definition

Let \mathcal{G}_k be the following category:

- The objects are pairs (E, U), where E is a finite set and U is an R_E-module.
- A morphism $(E, U) \to (F, V)$ is a morphism of R_E-modules $U \to kC(E, F) \otimes R_F V$.
- The composition of $U \to kC(E, F) \otimes R_F V$ and $V \to kC(F, G) \otimes R_G W$ is $U \to kC(E, F) \otimes R_F V \to kC(F, G) \otimes R_G W \to kC(E, G) \otimes R_G W$.
- The identity morphism of (E, U) is $U \sim \to kC(E, E) \otimes R_E U$.

Theorem

1. The assignment $(E, U) \mapsto L_E, U$ is a fully faithful k-linear functor $\mathcal{G}_k \to \mathcal{F}_k$.
2. When k is noetherian, it is an equivalence of categories. In particular \mathcal{G}_k is abelian.
An equivalence of categories

Definition

Let G_k be the following category:
- the **objects** are pairs (E, U)

The composition of $U \to k \text{C}(E, F) \otimes R F V$ and $V \to k \text{C}(F, G) \otimes R G W$ is $U \to k \text{C}(E, F) \otimes R F V \to k \text{C}(E, F) \otimes R F k \text{C}(F, G) \otimes R G W \to k \text{C}(E, G) \otimes R G W$.

The identity morphism of (E, U) is $U \sim \to k \text{C}(E, E) \otimes R E U$.

Theorem

1. The assignment $(E, U) \to \text{L}_E, U$ is a fully faithful k-linear functor $G_k \to F_b k$.
2. When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.
An equivalence of categories

Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set

Theorem

1. The assignment $(E, U) \mapsto L^E, U$ is a fully faithful k-linear functor $G_k \rightarrow F^b_k$.
2. When k is noetherian, it is an equivalence of categories G_k. In particular G_k is abelian.
An equivalence of categories

Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.

Theorem

1. The assignment $(E, U) \mapsto L^E, U$ is a fully faithful k-linear functor $G_k \rightarrow F^k$.
2. When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- a morphism $(E, U) \to (F, V)$
An equivalence of categories

Definition

Let \mathcal{G}_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E-modules $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$.

Theorem

1. The assignment $(E, U) \mapsto L(E, U)$ is a fully faithful k-linear functor $\mathcal{G}_k \to \mathcal{F}_k$.
2. When k is noetherian, it is an equivalence of categories. In particular \mathcal{G}_k is abelian.

Serge Bouc (CNRS-LAMFA) Representations of finite sets Jena, 2015/07/25
An equivalence of categories

Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of R_E-modules $U \to kC(E, F) \otimes_{R_F} V$.
- the composition of $U \to kC(E, F) \otimes_{R_F} V$ and $V \to kC(F, G) \otimes_{R_G} W$
An equivalence of categories

Definition

Let G_k be the following category:

- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E-modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
- the composition of $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$ and $V \rightarrow k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ is $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$
An equivalence of categories

Definition

Let G_k be the following category:

- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of R_E-modules $U \to kC(E, F) \otimes_{R_F} V$.
- the composition of $U \to kC(E, F) \otimes_{R_F} V$ and $V \to kC(F, G) \otimes_{R_G} W$ is $U \to kC(E, F) \otimes_{R_F} V \to kC(E, F) \otimes_{R_F} kC(F, G) \otimes_{R_G} W$.
An equivalence of categories

Definition

Let \mathcal{G}_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E-modules $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$.
- the composition of $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$ and $V \to kC(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to kC(E, F) \otimes_{\mathcal{R}_F} V \to kC(E, F) \otimes_{\mathcal{R}_F} kC(F, G) \otimes_{\mathcal{R}_G} W$.

Theorem 1

The assignment $(E, U) \mapsto L^E, U$ is a fully faithful k-linear functor $\mathcal{G}_k \to \mathcal{F}_k$.

When k is noetherian, it is an equivalence of categories. In particular \mathcal{G}_k is abelian.
An equivalence of categories

Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E-modules $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$.
- the composition of $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$ and $V \to kC(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to kC(E, F) \otimes_{\mathcal{R}_F} V \to kC(E, F) \otimes_{\mathcal{R}_G} kC(F, G) \otimes_{\mathcal{R}_G} W \to kC(E, G)$.
An equivalence of categories

Definition

Let G_k be the following category:

- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- a morphism $(E, U) \rightarrow (F, V)$ is a morphism of R_E-modules $U \rightarrow kC(E, F) \otimes_{R_F} V$.
- the composition of

 $U \rightarrow kC(E, F) \otimes_{R_F} V$ and $V \rightarrow kC(F, G) \otimes_{R_G} W$

 is $U \rightarrow kC(E, F) \otimes_{R_F} V \rightarrow kC(E, F) \otimes_{R_F} kC(F, G) \otimes_{R_G} W$

 $\rightarrow kC(E, G) \otimes_{R_G} W$
An equivalence of categories

Definition

Let \mathcal{G}_k be the following category:

- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E-modules $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$.
- the composition of

 \[
 U \to kC(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to kC(F, G) \otimes_{\mathcal{R}_G} W
 \]

 is $U \to kC(E, F) \otimes_{\mathcal{R}_F} V \to kC(E, F) \otimes_{\mathcal{R}_F} kC(F, G) \otimes_{\mathcal{R}_G} W
 \]

 $\to kC(E, G) \otimes_{\mathcal{R}_G} W$

- the identity morphism of (E, U)
An equivalence of categories

Definition

Let G_k be the following category:

- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E-modules $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$.
- the composition of $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$ and $V \to kC(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to kC(E, F) \otimes_{\mathcal{R}_F} V \to kC(E, F) \otimes_{\mathcal{R}_F} kC(F, G) \otimes_{\mathcal{R}_G} W \to kC(E, G) \otimes_{\mathcal{R}_G} W$.
- the identity morphism of (E, U) is $U \to kC(E, E) \otimes_{\mathcal{R}_E} U$.

Theorem 1

The assignment $(E, U) \to \mathcal{L}_E$, U is a fully faithful k-linear functor $G_k \to F_k$. When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.
An equivalence of categories

Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E-modules $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$.
- the composition of $U \to kC(E, F) \otimes_{\mathcal{R}_F} V$ and $V \to kC(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to kC(E, F) \otimes_{\mathcal{R}_F} V \to kC(E, F) \otimes_{\mathcal{R}_F} kC(F, G) \otimes_{\mathcal{R}_G} W \to kC(E, G) \otimes_{\mathcal{R}_G} W$
- the identity morphism of (E, U) is $U \to kC(E, E) \otimes_{\mathcal{R}_E} U$.

Theorem

1. The assignment $(E, U) \mapsto \mathcal{L}_{E, U}$ is a fully faithful k-linear functor $G_k \to \mathcal{F}^b_k$.
An equivalence of categories

Definition

Let G_k be the following category:

- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of R_E-modules $U \to kC(E, F) \otimes_{R_F} V$.
- the composition of

 $U \to kC(E, F) \otimes_{R_F} V$ and $V \to kC(F, G) \otimes_{R_G} W$

 is $U \to kC(E, F) \otimes_{R_F} V \to kC(E, F) \otimes_{R_F} kC(F, G) \otimes_{R_G} W$

 $\to kC(E, G) \otimes_{R_G} W$

- the identity morphism of (E, U) is $U \overset{\text{id}}{\to} kC(E, E) \otimes_{R_E} U$.

Theorem

1. The assignment $(E, U) \mapsto \mathcal{L}_{E, U}$ is a fully faithful k-linear functor $G_k \to \mathcal{F}_k^b$.
2. When k is noetherian, it is an equivalence of categories.
An equivalence of categories

Definition

Let G_k be the following category:
- the objects are pairs (E, U), where E is a finite set, and U is an R_E-module.
- a morphism $(E, U) \to (F, V)$ is a morphism of R_E-modules $U \to kC(E, F) \otimes_{R_F} V$.
- the composition of $U \to kC(E, F) \otimes_{R_F} V$ and $V \to kC(F, G) \otimes_{R_G} W$ is $U \to kC(E, F) \otimes_{R_F} V \to kC(E, F) \otimes_{R_F} kC(F, G) \otimes_{R_G} W \to kC(E, G) \otimes_{R_G} W$.
- the identity morphism of (E, U) is $U \to kC(E, E) \otimes_{R_E} U$.

Theorem

1. The assignment $(E, U) \mapsto \mathcal{L}_{E,U}$ is a fully faithful k-linear functor $G_k \to \mathcal{F}_{k}^b$.
2. When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.
Functors and lattices

Let $T = (T, \lor, \land)$ be a finite lattice.

For a finite set X, set $F_T(X) = k(T \times X)$.

For $R \in C(Y, X)$ and $\phi: X \to T$, define $R \phi: Y \to T$ by $\forall y \in Y, (R \phi)(y) = \bigvee \{ y, x \in R \phi(x) \}$.

Theorem 1 F_T is a correspondence functor.

Theorem 2 F_T is projective in $F_k \iff T$ is distributive.

Let kL be the following category:

The objects of kL are the finite lattices.

$Hom_{kL}(T, T') = \{ f: T \to T' | f(\bigvee t \in A t) = \bigvee t \in A f(t), \forall A \subseteq T \}$.

Theorem The assignment $T \mapsto \rightarrow F_T$ is a fully faithful k-linear functor $kL \to F_k$.

Serge Bouc (CNRS-LAMFA)

Representations of finite sets

Jena, 2015/07/25
Let $T = (T, \lor, \land)$ be a finite lattice.
Functors and lattices

- Let $T = (T, \lor, \land)$ be a finite lattice.
 - For a finite set X

Theorem 1 F_T is a correspondence functor.

Theorem 2 F_T is projective in F_k \iff T is distributive.

Let kL be the following category:
- The objects of kL are the finite lattices.
- $\Hom_{kL}(T, T') = k\{f: T \to T' \mid f(\bigvee t \in A t) = \bigvee t \in A f(t), \forall A \subseteq T\}$.

Theorem The assignment $T \mapsto F_T$ is a fully faithful k-linear functor $kL \to F_k$.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Let $T = (T, \lor, \land)$ be a finite lattice.

For a finite set X, set $F_T(X) = k(T^X)$.

Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R \varphi : Y \to T$ by
 $$\forall y \in Y, (R \varphi)(y) = \bigvee \{ y, x \in R \varphi(x) \}.$$
Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 \[\forall y \in Y, (R\varphi)(y) = \bigvee \{ y, x \in R \varphi(x) \} \]
Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 $$\forall y \in Y, (R\varphi)(y) =$$
Let $T = (T, \lor, \land)$ be a finite lattice.

For a finite set X, set $F_T(X) = k(T^X)$.

For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
$$\forall y \in Y, (R\varphi)(y) = \bigvee_{(y,x) \in R} (T^X)(x).$$
Functors and lattices

- Let $T = (T, \vee, \wedge)$ be a finite lattice.
 - For a finite set X, set $F_T(X) = k(T^X)$.
 - For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 \[
 \forall y \in Y, \quad (R\varphi)(y) = \bigvee_{(y, x) \in R} \varphi(x).
 \]

Theorem 1

F_T is a correspondence functor.

Theorem 2

F_T is projective in F^k \iff T is distributive.

Let kL be the following category:

The objects of kL are the finite lattices.

Hom $kL(T, T') = k\{f : T \to T' | f(\bigvee t \in A t) = \bigvee f(t), \forall A \subseteq T\}$.

Theorem

The assignment $T \mapsto F_T$ is a fully faithful k-linear functor $kL \to F^k$.
Functors and lattices

- Let \(T = (T, \lor, \land) \) be a finite lattice.
 - For a finite set \(X \), set \(F_T(X) = k(T^X) \).
 - For \(R \in C(Y, X) \) and \(\varphi : X \to T \), define \(R\varphi : Y \to T \) by
 \[
 \forall y \in Y, \ (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x).
 \]

Theorem

The assignment \(T \mapsto F_T \) is a fully faithful \(k \)-linear functor \(kL \to Fk \).
Functors and lattices

Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in C(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 $$\forall y \in Y, (R\varphi)(y) = \lor_{(y,x) \in R} \varphi(x).$$

Theorem

1. F_T is a correspondence functor.
Functors and lattices

Let $T = (T, \lor, \land)$ be a finite lattice.

For a finite set X, set $F_T(X) = k(T^X)$.

For $R \in C(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
\[
\forall y \in Y, (R\varphi)(y) = \lor_{(y,x)\in R} \varphi(x).
\]

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in \mathcal{F}_k \iff T is distributive.
Functors and lattices

Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in C(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 $\forall y \in Y, (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x)$.

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
Let $T = (T, \lor, \land)$ be a finite lattice.

For a finite set X, set $F_T(X) = k(T^X)$.

For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by

$$\forall y \in Y, (R\varphi)(y) = \lor_{(y,x) \in R} \varphi(x).$$

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in \mathcal{F}_k \iff T is distributive.

Let \mathcal{L} be the following category:
Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 $$\forall y \in Y, (R\varphi)(y) = \lor_{(y,x) \in R} \varphi(x).$$

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in $\mathcal{F}_k \iff T$ is distributive.

Let \mathcal{L} be the following category:

- The objects of \mathcal{L} are the finite lattices.
Functors and lattices

Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R \varphi : Y \to T$ by
 \[
 \forall y \in Y, (R \varphi)(y) = \bigvee_{(y, x) \in R} \varphi(x).
 \]

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in \mathcal{F}_k \iff T is distributive.

Let \mathcal{L} be the following category:

- The objects of \mathcal{L} are the finite lattices.
- $\text{Hom}_{\mathcal{L}}(T, T') = \{ f : T \to T' \mid f(\bigvee t) = \bigvee_{t \in A} f(t), \forall A \subseteq T \}$.

Serge Bouc (CNRS-LAMFA) Representation of finite sets Jena, 2015/07/25
Let $T = (T, \lor, \land)$ be a finite lattice.

For a finite set X, set $F_T(X) = k(T^X)$.

For $R \in C(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by

$$\forall y \in Y, (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x).$$

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in \mathcal{F}_k \iff T is distributive.

Let $k\mathcal{L}$ be the following category:

- The objects of $k\mathcal{L}$ are the finite lattices.
- $\text{Hom}_{k\mathcal{L}}(T, T') = k\{f : T \to T' | f(\bigvee t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$
Let \(T = (T, \lor, \land) \) be a finite lattice.

- For a finite set \(X \), set \(F_T(X) = k(T^X) \).
- For \(R \in \mathcal{C}(Y, X) \) and \(\varphi : X \to T \), define \(R\varphi : Y \to T \) by
 \[
 \forall y \in Y, \ (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x).
 \]

Theorem

1. \(F_T \) is a correspondence functor.
2. \(F_T \) is projective in \(\mathcal{F}_k \) \(\iff \) \(T \) is distributive.

Let \(k\mathcal{L} \) be the following category:

- The objects of \(k\mathcal{L} \) are the finite lattices.
- \(\text{Hom}_{k\mathcal{L}}(T, T') = k\{f : T \to T' \mid f(\bigvee t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\} \).
Functors and lattices

Let $T = (T, \lor, \land)$ be a finite lattice.
- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 \[\forall y \in Y, (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x). \]

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in \mathcal{F}_k \iff T is distributive.

Let $k\mathcal{L}$ be the following category:
- The objects of $k\mathcal{L}$ are the finite lattices.
- $\text{Hom}_{k\mathcal{L}}(T, T') = k\{f : T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}$.

Theorem
Functors and lattices

- Let $T = (T, \vee, \wedge)$ be a finite lattice.
 - For a finite set X, set $F_T(X) = k(T^X)$.
 - For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R \varphi : Y \to T$ by
 \[\forall y \in Y, (R \varphi)(y) = \bigvee_{(y, x) \in R} \varphi(x). \]

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in $\mathcal{F}_k \iff T$ is distributive.

- Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.
 - $\text{Hom}_{k\mathcal{L}}(T, T') = k\{f : T \to T' \mid f(\bigvee t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}$.

Theorem

The assignment $T \mapsto F_T$
Functors and lattices

- Let $T = (T, \lor, \land)$ be a finite lattice.
 - For a finite set X, set $F_T(X) = k(T^X)$.
 - For $R \in \mathcal{C}(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 \[\forall y \in Y, (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x) .\]

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in $\mathcal{F}_k \iff T$ is distributive.

- Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.
 - $\text{Hom}_{k\mathcal{L}}(T, T') = k\{f : T \to T' \mid f(\bigvee_t t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$

Theorem

The assignment $T \mapsto F_T$ is a functor $k\mathcal{L} \to \mathcal{F}_k$.
Functors and lattices

- Let $T = (T, \lor, \land)$ be a finite lattice.
 - For a finite set X, set $F_T(X) = k(T^X)$.
 - For $R \in C(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by $\forall y \in Y, (R\varphi)(y) = \bigvee_{(y,x) \in R} \varphi(x)$.

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in $\mathcal{F}_k \iff T$ is distributive.

- Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.
 - $\text{Hom}_{k\mathcal{L}}(T, T') = k\{f : T \to T' \mid f(\bigvee t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}$.

Theorem

The assignment $T \mapsto F_T$ is a k-linear functor $k\mathcal{L} \to \mathcal{F}_k$.
Let $T = (T, \lor, \land)$ be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in C(Y, X)$ and $\varphi : X \to T$, define $R\varphi : Y \to T$ by
 \[\forall y \in Y, (R\varphi)(y) = \bigvee_{(y, x) \in R} \varphi(x). \]

Theorem

1. F_T is a correspondence functor.
2. F_T is projective in $\mathcal{F}_k \iff T$ is distributive.

Let $k\mathcal{L}$ be the following category:

- The objects of $k\mathcal{L}$ are the finite lattices.
- $\text{Hom}_{k\mathcal{L}}(T, T') = k\{ f : T \to T' \mid f(\bigvee t) = \bigvee_{t \in A} f(t), \forall A \subseteq T \}$.

Theorem

The assignment $T \mapsto F_T$ is a fully faithful k-linear functor $k\mathcal{L} \to \mathcal{F}_k$.
A subfunctor of F_T

Let T be a finite lattice. Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee t \in A \Rightarrow e \in A$.

Let $\text{Irr}(T)$ be the set of irreducible elements of T.

For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\phi : X \to T$ such that $\phi(X) \not\subseteq \text{Irr}(T)$.

Lemma 1

Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\phi : X \to T$. Then $(R\phi)(Y) \cap \text{Irr}(T) \subseteq \phi(X) \cap \text{Irr}(T)$.

2

The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T.

Serge Bouc (CNRS-LAMFA)

Representations of finite sets

Jena, 2015/07/25
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$.

Lemma 1

Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\phi : X \to T$. Then $(R \phi)(Y) \cap \text{Irr}(T) \subseteq \phi(X) \cap \text{Irr}(T)$.

2

The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T.
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t$.

Let $Irr(T)$ be the set of irreducible elements of T.

For a finite set X, denote by $H^T(X)$ the k-submodule of $F^T(X) = k(T)$ generated by all $\phi: X \to T$ such that $\phi(X) \not\subseteq Irr(T)$.

Lemma 1
Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\phi: X \to T$. Then $(R \phi)(Y) \cap Irr(T) \subseteq \phi(X) \cap Irr(T)$.

2. The assignment $X \mapsto H^T(X)$ is a subfunctor of F^T.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.

Lemma 1

Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\phi : X \to T$. Then $(R \phi)(Y) \cap \text{Irr}(T) \subseteq \phi(X) \cap \text{Irr}(T)$.

The assignment $X \mapsto H_T(X)$ **is a subfunctor of** F_T.

Serge Bouc (CNRS-LAMFA)

Representations of finite sets

Jena, 2015/07/25
Let T be a finite lattice.

- Recall that $e \in T$ is **irreducible** if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.

Let $Irr(T)$ be the set of irreducible elements of T.

Lemma 1

Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\phi : X \to T$.

Then $(R\phi)(Y) \cap Irr(T) \subseteq \phi(X) \cap Irr(T)$.

2

The assignment $X \mapsto \mathcal{H}_T(X)$ is a subfunctor of F_T.

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
- Let $\text{Irr}(T)$ be the set of irreducible elements of T.
- For a finite set X
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
- Let $Irr(T)$ be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$.

Lemma 1

Let Y, X be finite sets, let $R \in \mathcal{C}(Y, X)$, and let $\phi : X \to T$.

Then $(R\phi)(Y) \cap Irr(T) \subseteq \phi(X) \cap Irr(T)$.

The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T.
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
- Let $\text{ Irr}(T)$ be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$.
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is *irreducible* if $\forall A \subseteq T, e = \bigvee_{t \in A} t \implies e \in A$. Let $\text{Irr}(T)$ be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\subseteq \text{Irr}(T)$.

Serge Bouc (CNRS-LAMFA) Representations of finite sets Jena, 2015/07/25 13 / 19
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \lor_{t \in A} t \implies e \in A$.

 Let $\text{Irr}(T)$ be the set of irreducible elements of T.

- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \notin \text{Irr}(T)$.

Lemma
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.

- Let $\text{Irr}(T)$ be the set of irreducible elements of T.

- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\subseteq \text{Irr}(T)$.

Lemma

1. Let Y, X be finite sets
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
- Let $\text{Irr}(T)$ be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \nsubseteq \text{Irr}(T)$.

Lemma

1. Let Y, X be finite sets, let $R \in C(Y,X)$
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.

 Let $\text{Irr}(T)$ be the set of irreducible elements of T.

- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\phi : X \to T$ such that $\phi(X) \nsubseteq \text{Irr}(T)$.

Lemma

1. Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\phi : X \to T$.

\[\]
A subfunctor of F_T

Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
- Let $\text{Irr}(T)$ be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\subseteq \text{Irr}(T)$.

Lemma

Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap \text{Irr}(T)$
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.

- Let $\text{Irr}(T)$ be the set of irreducible elements of T.

- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\phi : X \to T$ such that $\phi(X) \not\subseteq \text{Irr}(T)$.

Lemma

1. Let Y, X be finite sets, let $R \in \mathcal{C}(Y, X)$, and let $\phi : X \to T$. Then $\left(R\phi \right)(Y) \cap \text{Irr}(T) \subseteq \phi(X) \cap \text{Irr}(T)$.

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
 Let $\text{Irr}(T)$ be the set of irreducible elements of T.

- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\subseteq \text{Irr}(T)$.

Lemma

1. Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap \text{Irr}(T) \subseteq \varphi(X) \cap \text{Irr}(T)$.

2. The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T.
Let T be a finite lattice.

- Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.
- Let $\text{Irr}(T)$ be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\subseteq \text{Irr}(T)$.

Lemma

1. Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap \text{Irr}(T) \subseteq \varphi(X) \cap \text{Irr}(T)$.
2. The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T.

Serge Bouc (CNRS-LAMFA) Representations of finite sets Jena, 2015/07/25 13 / 19
The case of a total order

Let $n \in \mathbb{N}$. Set $\mathcal{N} = \{0 < 1 < \ldots < n\}$, and $\mathcal{N}^\times = \mathcal{N} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = \mathbb{F}_n / H_n$. Then:

1. The surjection $\mathbb{F}_n \to S(n)$ splits.
2. The functor $S(n)$ is projective.
3. If X is a finite set, then $S(n)(X)$ is a free k-module of rank $n \sum_{i=0}^{n} (-1)^{n-i} (n \choose i) (i+1)$.
4. $\mathbb{F}_n \cong \bigoplus_{\mathcal{N}^\times} S(|A|)$.
5. If k is a field, then $S(n)$ is simple (and projective, and injective), isomorphic to $S[n]$, \textup{tot}, k.
The case of a total order

Let $n \in \mathbb{N}$.
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$
The case of a total order

Let \(n \in \mathbb{N} \). Set \(n = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\}\).
The case of a total order

Let \(n \in \mathbb{N} \). Set \(n = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\}\).

Theorem

1. The surjection \(F_n \to S(n) \) splits.
2. The functor \(S(n) \) is projective.
3. If \(X \) is a finite set, then \(S(n)(X) \) is a free \(k \)-module of rank \(\sum_{i=0}^{n} (-1)^i n - i (n+i) / |X| \).
4. \(F_n \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{n-j} \).
5. If \(k \) is a field, then \(S(n) \) is simple (and projective, and injective), isomorphic to \(S(n, k)_{\text{tot}} \).
The case of a total order

Let \(n \in \mathbb{N} \). Set \(\underline{n} = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\} \).

Theorem

For \(n \in \mathbb{N} \), set \(S(n) = F_n/H_n \). Then:

1. The surjection \(F_n \twoheadrightarrow S(n) \) splits.
2. The functor \(S(n) \) is projective.
3. If \(X \) is a finite set, then \(S(n)(X) \) is a free \(k \)-module of rank \(n \sum_{i=0}^{n-1} (-1)^i n_i i+1 |X| \).
4. \(F_n \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong n \bigoplus_{j=0}^{n-1} S(j) \oplus (n-j) \).
5. If \(k \) is a field, then \(S(n) \) is simple (and projective, and injective), isomorphic to \(S([n]) \), tot, \(k \).
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \rightarrow S(n)$ splits.
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \to S(n)$ splits. The functor $S(n)$ is projective.
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_n/H_n$. Then:

1. The surjection $F_n \twoheadrightarrow S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \to S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set, then $S(\underline{n})(X)$ is a free k-module.
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \to S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank
 $$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)|X|.$$
The case of a total order

Let \(n \in \mathbb{N} \). Set \(\underline{n} = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\} \).

Theorem

For \(n \in \mathbb{N} \), set \(S(n) = \overline{F_n}/\overline{H_n} \). Then:

1. The surjection \(\overline{F_n} \to S(n) \) splits. The functor \(S(n) \) is projective.
2. If \(X \) is a finite set, then \(S(\underline{n})(X) \) is a free \(k \)-module of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i+1)^{|X|} \).
3. \(\overline{F_n} \cong \bigoplus_{A \subseteq [n]} S(|A|) \).
Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \to S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank
 \[
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}.
 \]
3. $F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j) \oplus (n)$.

Serge Bouc (CNRS-LAMFA)

Representations of finite sets

Jena, 2015/07/25
The case of a total order

Let \(n \in \mathbb{N} \). Set \(\underline{n} = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\} \).

Theorem

For \(n \in \mathbb{N} \), set \(S(n) = F_{\underline{n}}/H_{\underline{n}} \). Then:

1. The surjection \(F_{\underline{n}} \to S(n) \) splits. The functor \(S(n) \) is projective.
2. If \(X \) is a finite set, then \(S(n)(X) \) is a free \(k \)-module of rank
 \[
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}.
 \]
3. \(F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus (n)} \).
4. \(\text{End}_{k\mathcal{L}}(\underline{n}) \cong \)
The case of a total order

Let \(n \in \mathbb{N} \). Set \(\underline{n} = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\}\).

Theorem

For \(n \in \mathbb{N} \), set \(S(n) = F_{\underline{n}}/H_{\underline{n}} \). Then:

1. The surjection \(F_{\underline{n}} \to S(n) \) splits. The functor \(S(n) \) is projective.
2. If \(X \) is a finite set, then \(S(\underline{n})(X) \) is a free \(k \)-module of rank
 \[
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|} .
 \]
3. \(F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus (n)} \).
4. \(\text{End}_{k\mathcal{L}}(\underline{n}) \cong \text{End}_{\mathcal{F}_k}(F_{\underline{n}}) \cong \ldots \)
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_n$. Then:

1. The surjection $F_{\underline{n}} \rightarrow S(n)$ splits. The functor $S(n)$ is projective.

2. If X is a finite set, then $S(n)(X)$ is a free k-module of rank

\[\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}. \]

3. $F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus (n)}$.

4. $\text{End}_{kL}(n) \cong \text{End}_{\mathcal{F}_k}(F_{\underline{n}}) \cong \prod_{j=0}^{n} M(n^j)(k)$.
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_n/H_n$. Then:

1. The surjection $F_n \to S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank
 $$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}.$$
3. $F_n \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus \binom{n}{j}}$.
4. $\text{End}_{k\mathcal{L}}(\underline{n}) \cong \text{End}_{\mathcal{F}_k}(F_n) \cong \prod_{j=0}^{n} M_{\binom{n}{j}}(k)$.
5. If k is a field
Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \rightarrow S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set, then $S(n)(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}$.
3. $F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus (n)}$.
4. $\text{End}_{k\mathcal{L}}(\underline{n}) \cong \text{End}_{\mathcal{F}_k}(F_{\underline{n}}) \cong \prod_{j=0}^{n} M_{(n)}(k)$.
5. If k is a field, then $S(n)$ is simple.
The case of a total order

Let \(n \in \mathbb{N} \). Set \(\underline{n} = \{0 < 1 < \ldots < n\} \), and \([n] = n - \{0\}\).

Theorem

For \(n \in \mathbb{N} \), set \(S(n) = F_{\underline{n}}/H_{\underline{n}} \). Then:

1. The surjection \(F_{\underline{n}} \to S(n) \) splits. The functor \(S(n) \) is projective.
2. If \(X \) is a finite set, then \(S(n)(X) \) is a free \(k \)-module of rank
 \[
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}.
 \]
3. \(F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus \binom{n}{j}} \).
4. \(\text{End}_{k\mathcal{L}}(n) \cong \text{End}_{\mathcal{F}_k}(F_{\underline{n}}) \cong \prod_{j=0}^{n} M_{\binom{n}{j}}(k) \).
5. If \(k \) is a field, then \(S(n) \) is simple (and projective, and injective).
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_\underline{n}/H_\underline{n}$. Then:

1. The surjection $F_\underline{n} \twoheadrightarrow S(n)$ splits. The functor $S(n)$ is projective.

2. If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank

 $\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}$.

3. $F_\underline{n} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j)^{\oplus (\binom{n}{j})}$.

4. $\text{End}_{k\mathcal{L}}(\underline{n}) \cong \text{End}_{\mathcal{F}_k}(F_\underline{n}) \cong \prod_{j=0}^{n} M(\binom{n}{j})(k)$.

5. If k is a field, then $S(\underline{n})$ is simple (and projective, and injective).
The case of a total order

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = n - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(n) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1. The surjection $F_{\underline{n}} \rightarrow S(n)$ splits. The functor $S(n)$ is projective.
2. If X is a finite set, then $S(n)(X)$ is a free k-module of rank
 \[
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + 1)^{|X|}.
 \]
3. $F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(|A|) \cong \bigoplus_{j=0}^{n} S(j) \oplus(n).
4. $\text{End}_{kL}(\underline{n}) \cong \text{End}_{\mathcal{F}_k}(F_{\underline{n}}) \cong \prod_{j=0}^{n} M_{\binom{n}{j}}(k).
5. If k is a field, then $S(n)$ is simple (and projective, and injective), isomorphic to $S_{[n],\text{tot},k}$.
Let \((E, R)\) be a finite poset, and set \(n = |E|\).

Choose \(T\) such that \((E, R) \sim = \text{Irr}(T)\), and \(\text{Aut}(T) \sim = \text{Aut}(E, R)\).

Let \(S(E, R)\) be the subfunctor of \(F\) generated by \(\gamma\).

Theorem 1 \(S(E, R)\) doesn't depend on the choice of \(T\), up to isomorphism.

Theorem 2 \(\exists f = f_{E, R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank

\[
\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (n^i + f)
\]

It is moreover a free right \(k\text{Aut}(E, R)\)-module.

Theorem 3 Let \(W\) be a \(k\text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes k\text{Aut}(E, R)W\) is a correspondence functor, denoted by \(S(E, R, W)\).

Theorem 4 If \(k\) is a field and \(W\) is simple, then \(S(E, R, W) \sim = S_{E, R, W}\).
Let \((E, R)\) be a finite poset.
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Simple functors: the general case

Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose a finite lattice \(T\).

Theorem 1

\(S(E, R)\) doesn't depend on the choice of \(T\), up to isomorphism.

\(\exists f = f_{E, R} \in \mathbb{N} - \{0\}\) (explicit)

such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\)

is free of rank \(n \sum_{i=0}^{\infty} (-1)^{n-i} \binom{n}{i} (i+f) |X|

It is moreover a free right \(k\Aut(E, R)\)-module.

Let \(W\) be a \(k\Aut(E, R)\)-module.

Then the assignment \(X \mapsto S(E, R)(X) \otimes k\Aut(E, R) W\)

is a correspondence functor, denoted by \(S(E, R, W)\).

If \(k\) is a field and \(W\) is simple, then \(S(E, R, W) \cong S_E, R, W\).
Simple functors: the general case

Let \((E, R)\) be a finite poset, and set \(n = |E|\). Choose a finite lattice \(T\) such that \((E, R) \cong \text{Irr}(T)\) as a full subposet.
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\),

\[
\text{Theorem 1: } S(E, R) \text{ doesn't depend on the choice of } T, \text{ up to isomorphism.}
\]

\[
\exists f = f_{E, R} \in \mathbb{N} - \{0\} \text{ (explicit)}\text{ such that, for any finite set } X,
\]

\[
S(E, R)(X) \text{ is free of rank } n \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f) |X|.
\]

It is moreover a free right \(\text{Aut}(E, R)\)-module.

\[
\text{Theorem 2: } \text{Let } W \text{ be a } \text{Aut}(E, R)\text{-module. Then the assignment } X \mapsto S(E, R)(X) \otimes \text{Aut}(E, R) W \text{ is a correspondence functor, denoted by } S(E, R, W).
\]

\[
\text{If } k \text{ is a field and } W \text{ is simple, then } S(E, R, W) \cong S(E, R, W).
\]
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\)
Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\) (e.g. \(T = \{\text{lower ideals}(E, R)\}\)).
Simple functors: the general case

Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e]_T\).

Let \(S(E, R)\) be the subfunctor of \(\text{F}_{\text{Top}}(E)\) generated by \(\gamma_I\).

Theorem 1
\(S(E, R)\) doesn't depend on the choice of \(T\), up to isomorphism.

Theorem 2
\(\exists f = f_{E, R} \in N - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(n \sum_{i=0}^{n-1} (-1)^{n-i} n^i (i + f) |X|\).

It is moreover a free right \(k \text{Aut}(E, R)\)-module.

Theorem 3
Let \(W\) be a \(k \text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes k \text{Aut}(E, R) W\) is a correspondence functor, denoted by \(S(E, R, W)\).

Theorem 4
If \(k\) is a field and \(W\) is simple, then \(S(E, R, W) \cong S(E, R, W)\).
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

- If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e[T\).

- For \(A \subseteq E\), let \(\gamma_A : E \to T\) be the function

\[
\forall e \in E, \gamma_A(e) = \]

Theorem 1: \(S(E, R)\) doesn't depend on the choice of \(T\), up to isomorphism.

2: \(\exists f = f_{E, R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(n \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f) |X|\).

It is moreover a free right \(\text{Aut}(E, R)\)-module.

3: Let \(W\) be a \(\text{Aut}(E, R)\)-module.
Then the assignment \(X \mapsto S(E, R)(X) \otimes \text{Aut}(E, R)W\) is a correspondence functor, denoted by \(S(E, R, W)\).

4: If \(k\) is a field and \(W\) is simple, then \(S(E, R, W) \cong S(E, R, W)\).

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong Irr(T)\), and \(Aut(T) \cong Aut(E, R)\).

- If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e]_T\).

- For \(A \subseteq E\), let \(\gamma_A : E \to T\) be the function
 \[
 \forall e \in E, \quad \gamma_A(e) = \begin{cases}
 e & \text{if } e \notin A \\
 \end{cases}
 \]
Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e[_T\).

For \(A \subseteq E\), let \(\gamma_A : E \to T\) be the function

\[
\forall e \in E, \quad \gamma_A(e) = \begin{cases}
 e & \text{if } e \notin A \\
 r(e) & \text{if } e \in A
\end{cases}
\]
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

- If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e[T\).

- For \(A \subseteq E\), let \(\gamma_A : E \to T\) be the function
 \[
 \forall e \in E, \quad \gamma_A(e) = \begin{cases}
 e & \text{if } e \notin A \\
 r(e) & \text{if } e \in A
 \end{cases}.
 \]

- Let \(\gamma = \sum_{A \subseteq E} (-1)^{|A|} \gamma_A\)
Simple functors: the general case

Let (E, R) be a finite poset, and set $n = |E|$. Choose T such that $(E, R) \cong \text{Irr}(T)$, and $\text{Aut}(T) \cong \text{Aut}(E, R)$.

If $e \in E$, let $r(e)$ denote the unique maximal element of $[0, e]_T$.

For $A \subseteq E$, let $\gamma_A : E \to T$ be the function

$$\forall e \in E, \gamma_A(e) = \begin{cases} e & \text{if } e \notin A \\ r(e) & \text{if } e \in A \end{cases}.$$

Let $\gamma = \sum_{A \subseteq E} (-1)^{|A|} \gamma_A \in k(T^E)$
Let \((E, R)\) be a finite poset, and set \(n = \mid E\mid\).

Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e]_T\).

For \(A \subseteq E\), let \(\gamma_A : E \to T\) be the function

\[
\forall e \in E, \quad \gamma_A(e) = \begin{cases}
 e & \text{if } e \notin A \\
 r(e) & \text{if } e \in A
\end{cases}.
\]

Let \(\gamma = \sum_{A \subseteq E} (-1)^{|A|} \gamma_A \in k(T^E) = F_{\text{Top}}(E)\).
Simple functors: the general case

Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

- If \(e \in E\), let \(r(e)\) denote the unique maximal element of \([0, e]_T\).
- For \(A \subseteq E\), let \(\gamma_A : E \rightarrow T\) be the function
 \[
 \forall e \in E, \; \gamma_A(e) = \begin{cases}
 e & \text{if } e \notin A \\
 r(e) & \text{if } e \in A
 \end{cases}.
 \]
- Let \(\gamma = \sum_{A \subseteq E} (-1)^{|A|} \gamma_A \in k(T^E) = F_{T^{op}}(E)\).

Let \(S(E, R)\) be the subfunctor of \(F_{T^{op}}\) generated by \(\gamma\).
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
- Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{T^{\text{op}}}\) generated by \(\gamma\).
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{\text{Top}}\) generated by \(\gamma\).

Theorem

- Theorem 1: \(S(E, R)\) doesn't depend on the choice of \(T\), up to isomorphism.
- Theorem 2: \(\exists f = f_{E, R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(n \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)|X|\). It is moreover a free right \(k\text{Aut}(E, R)\)-module.
- Theorem 3: Let \(W\) be a \(k\text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes k\text{Aut}(E, R)W\) is a correspondence functor, denoted by \(S(E, R, W)\).
- Theorem 4: If \(k\) is a field and \(W\) is simple, then \(S(E, R, W) \cong S(E, R, W)\).
Simple functors: the general case

Let (E, R) be a finite poset, and set $n = |E|$. Choose T such that $(E, R) \cong \text{Irr}(T)$, and $\text{Aut}(T) \cong \text{Aut}(E, R)$.

Let $S(E, R)$ be the subfunctor of $F_{T^{\text{op}}}$ generated by γ.

Theorem

1. $S(E, R)$ doesn’t depend on the choice of T, up to isomorphism.
Simple functors: the general case

- Let (E, R) be a finite poset, and set $n = |E|$.
 Choose T such that $(E, R) \cong Irr(T)$, and $Aut(T) \cong Aut(E, R)$.
- Let $S(E, R)$ be the subfunctor of $F_{T^{op}}$ generated by γ.

Theorem

1. $S(E, R)$ doesn’t depend on the choice of T, up to isomorphism.
2. $\exists f = f_{E,R} \in \mathbb{N} - \{0\}$ (explicit)
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{T^{op}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\} \) (explicit) such that, for any finite set \(X\)
Simple functors: the general case

Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

Let \(S(E, R)\) be the subfunctor of \(F_{\mathcal{T}^{\text{op}}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\} \) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\)

Serge Bouc (CNRS-LAMFA) Representations of finite sets Jena, 2015/07/25 15 / 19
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{T^{\text{op}}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)|X|\).

Serge Bouc (CNRS-LAMFA)
Representations of finite sets
Jena, 2015/07/25
Simple functors: the general case

- Let (E, R) be a finite poset, and set $n = |E|$.
 Choose T such that $(E, R) \cong \text{Irr}(T)$, and $\text{Aut}(T) \cong \text{Aut}(E, R)$.
- Let $S(E, R)$ be the subfunctor of F_{T^op} generated by γ.

Theorem

1. $S(E, R)$ doesn’t depend on the choice of T, up to isomorphism.
2. $\exists f = f_{E,R} \in \mathbb{N} - \{0\}$ (explicit) such that, for any finite set X, the

 k-module $S(E, R)(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)|X|$.

 It is moreover a free right $k\text{Aut}(E, R)$-module.
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{\mathcal{T}}^{\text{op}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n}(-1)^{n-i}{n \choose i}(i + f)|X|\).
 It is moreover a free right \(k\text{Aut}(E, R)\)-module.
3. Let \(W\) be a \(k\text{Aut}(E, R)\)-module.
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{T^{\text{op}}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)^{|X|}\).
 It is moreover a free right \(k\text{Aut}(E, R)\)-module.
3. Let \(W\) be a \(k\text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes_{k\text{Aut}(E,R)} W\)
Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).

Let \(S(E, R)\) be the subfunctor of \(F_{T^{\text{op}}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\} \) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)|X|\).
 It is moreover a free right \(k\text{Aut}(E, R)\)-module.
3. Let \(W\) be a \(k\text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes_{k\text{Aut}(E,R)} W\) is a correspondence functor.
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong Irr(T)\), and \(Aut(T) \cong Aut(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{T^{op}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f) |X|\).
 It is moreover a free right \(k Aut(E, R)\)-module.
3. Let \(W\) be a \(k Aut(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes_{k Aut(E, R)} W\) is a correspondence functor, denoted by \(S(E, R, W)\).
Simple functors: the general case

Let \((E, R)\) be a finite poset, and set \(n = |E|\).
Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
Let \(S(E, R)\) be the subfunctor of \(F_{T^{\text{op}}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E, R} \in \mathbb{N} - \{0\} \) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)^{|X|}\).
 It is moreover a free right \(k\text{Aut}(E, R)\)-module.
3. Let \(W\) be a \(k\text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes_{k\text{Aut}(E, R)} W\) is a correspondence functor, denoted by \(S(E, R, W)\).
4. If \(k\) is a field and \(W\) is simple \(S(E, R, W) \cong S(E, R, W)\).
Simple functors: the general case

- Let \((E, R)\) be a finite poset, and set \(n = |E|\).
 Choose \(T\) such that \((E, R) \cong \text{Irr}(T)\), and \(\text{Aut}(T) \cong \text{Aut}(E, R)\).
- Let \(S(E, R)\) be the subfunctor of \(F_{T_\text{op}}\) generated by \(\gamma\).

Theorem

1. \(S(E, R)\) doesn’t depend on the choice of \(T\), up to isomorphism.
2. \(\exists f = f_{E,R} \in \mathbb{N} - \{0\}\) (explicit) such that, for any finite set \(X\), the \(k\)-module \(S(E, R)(X)\) is free of rank \(\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (i + f)|X|\).
 - It is moreover a free right \(k\text{Aut}(E, R)\)-module.
3. Let \(W\) be a \(k\text{Aut}(E, R)\)-module. Then the assignment \(X \mapsto S(E, R)(X) \otimes_{k\text{Aut}(E, R)} W\) is a correspondence functor, denoted by \(S(E, R, W)\).
4. If \(k\) is a field and \(W\) is simple, then \(S(E, R, W) \cong S_{E,R,W}\).
Corollary

Let k be a field.

Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module.

Let $d_W = \dim_k \text{End}_{k\text{Aut}(E, R)}(W)$.

Then for any finite set X,

$$\dim_k S_{E, R, W}(X) = \dim_k W \cdot d_W \cdot |\text{Aut}(E, R)| \cdot |E| \cdot \sum_{i=0}^{\mid E \mid} (-1)^{|E| - i} \cdot |E| - i \cdot (i + f_{E, R}) |X|.$$
Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module. Let $d_W = \dim_k \text{End}_{k\text{Aut}(E, R)}(W)$. Then for any finite set X, $\dim_k S_{E, R}(X) = \dim_k W |\text{Aut}(E, R)| |E| \sum_{i=0}^{\infty} (-1)^i |E|^i f_{E, R} |X|$.
Corollary

Let k be a field.
Corollary

Let k be a field. Let (E, R) be a finite poset
Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module.
Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module. Let $d_W = \dim_k \text{End}_{k\text{Aut}(E, R)}(W)$.

then for any finite set X,

$$
\dim_k S_{E, R, W}(X) = \dim_k W |_\text{Aut}(E, R) |_E \sum_{i=0}^{|E|} (-1)^{|E| - i} |E|^{-i} f_{E, R} |_X.
$$
Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module. Let $d_W = \dim_k \text{End}_{k\text{Aut}(E, R)}(W)$. Then for any finite set X,

$$\dim_k S_{E, R, W}(X) = d_W |\text{Aut}(E, R)| |E| \sum_{i=0}^{|E|} (-1)^{|E|-i} (|E|-i)^{i+f_{E, R}} |X|.$$
Let k be a field. Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module. Let $d_W = \dim_k \text{End}_{k\text{Aut}(E, R)}(W)$. Then for any finite set X,

$$\dim_k S_{E, R, W}(X) = \ldots$$
Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple $k\text{Aut}(E, R)$-module. Let $d_W = \dim_k \text{End}_{k\text{Aut}(E, R)}(W)$. Then for any finite set X,

$$\dim_k S_{E,R,W}(X) = \frac{\dim_k W}{d_W|\text{Aut}(E, R)|} \sum_{i=0}^{|E|} (-1)^{|E|-i} \binom{|E|}{i} (i + f_{E,R})|X|.$$
Posets of cardinality 4
Posets of cardinality 4

\[
\begin{array}{cccc}
\bullet \bullet \bullet \bullet & \bullet \bullet \circ & \circ \bullet \circ & \circ \circ \bullet \\
\circ \bullet \bullet & \circ \circ \circ & \bullet \circ \circ & \bullet \circ \circ \\
\circ \circ \circ & \circ \circ \circ & \circ \circ \circ & \circ \circ \circ \\
\bullet & \bullet & \bullet & \circ
\end{array}
\]
Splitting the diamond

The diamond is the following lattice D.

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3 \oplus 2S_\cdot \cdot \cdot \oplus S_\cdot \cdot \cdot.$$
Splitting the diamond

The diamond is the following lattice D
Splitting the diamond

The diamond is the following lattice \(D \)

\[
\text{Over a field of characteristic different from 2, the functor } F\text{ is semisimple:}
\]
\[
F D \cong S^0 \oplus 4 S^1 \oplus 4 S^2 \oplus S^3 \oplus 2 S^{\cdots} \oplus S^{\cdots}.
\]
The **diamond** is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:
Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0$$
Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0 \oplus 4S_1$$
Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2$$
Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3$$
Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3 \oplus 2S_\ldots$$
Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor F_D is semisimple:

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3 \oplus 2S_{\bullet.} \oplus S_{\bullet.}.$$