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If p is a prime number, the poset of all nontrivial elementary abelian p -
subgroups of a finite group plays an important role in both group theory
and representation theory. It was studied by Quillen [Qu], who proved among
many other things that it is homotopy equivalent to the poset of all nontrivial
p-subgroups. In the case of a p -group P , one might believe that this poset has
no interest since it is contractible (because the poset of all p - subgroups has a
maximal element, namely P). However, it turns out that the subposet A(P)≥2

consisting of elementary abelian subgroups of rank at least 2 plays a key role
in some recent work about endo-trivial and endo-permutation modules (see
[CT], [BT], [Bo], [Th]). Actually it appeared much before in problems related
to the classification of finite simple groups (see Sections 1 and 10 of [GLS]).

The purpose of this note is to show the following result and then state an
open question related to A(P)≥2 .

THEOREM 1.1. Let P be a finite p-group. The poset A(P)≥2 of elementary
abelian subgroups of P of rank at least 2 has the homotopy type of a wedge
of spheres (of possibly different dimensions).

If X is a poset, we write ∆(X) for the simplicial complex associated
with X , whose set of n -simplices consists of all chains x0 < x1 < . . . < xn

in X . If X is empty, we view ∆(X) as a sphere of dimension −1. Its
suspension consists of 2 points and is therefore a sphere of dimension 0.

Proof. For the reader’s convenience, we split the proof in a series of
steps.

1. The proof proceeds by induction on |P| and starts with the case where
P has rank 1 (i.e. P is either cyclic or generalized quaternion), so A(P)≥2 is
empty, hence a sphere of dimension −1. We assume from now on that the
rank of P is at least 2, that is, P is neither cyclic nor quaternion.

2. If the centre Z(P) is not cyclic, there is a central elementary abelian
subgroup U of rank 2 and A(P)≥2 is contractible on U via the conical
contraction Q ≤ QU ≥ U (see 1.5 in [Qu]). Thus we obtain a point, that is,
a wedge indexed by the empty set. Therefore we assume from now on that
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the centre Z(P) is cyclic and we write Z for the unique subgroup of order p
in Z(P) .

3. Let A(P)>Z be the poset of all elementary abelian subgroups strictly
containing Z . There is a homotopy equivalence A(P)≥2 −→ A(P)>Z given
by Q 7→ QZ . We therefore work with A(P)>Z .

4. If p = 2 and P is either dihedral or semidihedral, there is no elementary
abelian subgroup of rank ≥ 3. So A(P)>Z consists of isolated points and
is therefore a wedge of spheres of dimension 0. Thus we can assume that
P is not cyclic, quaternion, dihedral, or semidihedral, and it follows that P
has an elementary abelian subgroup E0 of rank 2 which is normal in P (see
Lemma 10.11 in [GLS]). We set M = CP(E0) . Note that M is a normal
subgroup of index p (because P/M embeds in Aut(E0) ∼= GL2(Fp) whose
order is divisible by p , but not by p2 ).

5. Let {E1, . . . , En} be the subset of A(P)>Z consisting of all elementary
abelian subgroups of rank 2 not contained in M . In other words, in the
lattice of subgroups of P containing Z , the subgroups E1, . . . , En are the
complements of M which are elementary abelian (i.e. not cyclic of order p2 ).
Any such subgroup can be written Ei = Z × Si where Si is a complement of
M in P . Any F ∈ A(P)>Z is either in M or contains some Ei , in which
case F ∈ A(

CP(Ei)
)
>Z . Thus if we define

Ai = A(M)>Z ∪ A(P)≥Ei ,

we have

A(P)>Z =
n⋃

i=1

Ai and ∆
(A(P)>Z

)
=

n⋃

i=1

∆(Ai) .

6. For any subset I of {1, . . . , n} of cardinality ≥ 2, the intersection⋂
i∈I Ai is contractible. Indeed if Q ∈ ⋂

i∈I Ai but Q 6≤ M , then Q contains
Ei and Ej where i, j ∈ I (and i 6= j) and therefore Q has rank ≥ 3. Thus
Q ∩ M > Z and we have the contraction Q 7→ Q ∩ M of

⋂
i∈I Ai onto the

poset A(M)>Z , which is contractible by step 2 (the centre of M contains E0 ).
It follows (see for instance Lemma 2.8 in [KT]) that ∆

(A(P)>Z
)

has the
homotopy type

∆
(A(P)>Z

) ' ∨n
i=1∆(Ai) .

7. Define a poset Bi = {•}∪A(P)≥Ei where • < Q for every Q ∈ A(P)>Ei

but there is no order relation between • and Ei . There is an order preserving
map f : Ai → Bi which is the identity on A(P)≥Ei and such that f (X) = •
for every X ∈ A(M)>Z . Since ∆

(A(M)>Z
)

is a contractible subcomplex
of ∆(Ai) , the map f is a homotopy equivalence (see Lemma 2.2 in [BW]).
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Alternatively, f is a homotopy equivalence by Quillen’s fibre theorem (see
Prop. 1.6 in [Qu] or Theorem 2.2 in [Wa]), because f−1

(
(Bi)≥Y

)
is easily

seen to be contractible for every Y ∈ Bi (if Y = • , use the contraction of
step 6).

8. Clearly both ∆
({•}∪A(P)>Ei

)
and ∆

(A(P)≥Ei

)
are cones on ∆

(A(P)>Ei

)
and their union is ∆(Bi) . Hence ∆(Bi) is the suspension Σ∆

(A(P)>Ei

)
, and

therefore ∆(Ai) has the homotopy type of Σ∆
(A(P)>Ei

)
(by the previous

step).
9. There is a poset isomorphism

A(P)>Ei −→ A(
CM(Ei)

)
>Z , F 7→ (F ∩M) ,

with inverse given by G 7→ GEi .
10. From steps 6, 7, 8, and 9, we obtain that

∆
(A(P)>Z

) ' ∨n
i=1Σ∆

(A(P)>Ei

) ' ∨n
i=1Σ∆

(
A(

CM(Ei)
)
>Z

)
.

Note that A(
CM(Ei)

)
>Z has the same homotopy type as A(

CM(Ei)
)
≥2 by

step 3. By induction, every ∆
(
A(

CM(Ei)
)
≥2

)
has the homotopy type of a

wedge of spheres. Suspending and taking the wedge ∨n
i=1 , it follows that

∆
(A(P)>Z

)
has the homotopy type of a wedge of spheres.

REMARK 1.2. (a) We have actually used a well-known technique to split
the homotopy type as a wedge of suspensions, according to the set of all
complements of a given element in a lattice. This result first appears in [BW]
(and in a weak form in [KT]).

(b) The theorem is almost the same as a theorem of Conlon [Co] and
the proof follows also the same pattern (see Prop. 2.3 in [Co]). The only
difference lies in the definition of the poset : Conlon considers the poset of
abelian subgroups Q containing Z such that Q/Z is elementary abelian, so he
allows for elements of order p2 in Q , whereas we only deal with elementary
abelian subgroups.

(c) According to the last sentence of Fumagalli’s article [Fu], the theorem
above also follows from the techniques developed in his paper. However, he
only deals with odd primes and his methods are not as direct as the ones
developed here.

Computer computations with 3-groups of order ≤ 36 show that all spheres
which appear in these examples have the same dimension. However, for 2-
groups of order ≤ 29 , there are examples (see below) where one gets spheres
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of 2 different dimensions (actually 2 consecutive dimensions). This raises the
following question :

QUESTION 1.3. Which dimensions of spheres occur in the above result ?
Are they all equal if p is odd ? Does one get only 2 consecutive dimensions
when p = 2 ?

The evidence we have does not seem to be sufficient for stating a conjecture,
but there is clearly an open problem which deserves some attention.

EXAMPLE 1.4. Here is an example with p = 2. The group P has order
64 and is number 258 among groups of order 64 in the computer package
GAP. It has a centre of order 2 and its Frattini subgroup, equal to its derived
group, is cyclic of order 4. It is defined below by generators and relations. It
turns out that A(P)≥2 has the homotopy type of a wedge of two spheres of
dimension 0 and four spheres of dimension 1.

Generators : f1, f2, f3, f4, f5, f6 .

Relations : f 2
1 = f6 , f 2

2 = 1 , f 2
3 = 1 , f 2

4 = 1 , f 2
5 = f6 , f 2

6 = 1 ,

[f1, f2] = f5f6 , [f1, f3] = 1 , [f1, f4] = 1 , [f1, f5] = f6 , [f1, f6] = 1 ,

[f2, f3] = 1 , [f2, f4] = 1 , [f2, f5] = f6 , [f2, f6] = 1 , [f3, f4] = f6 ,

[f3, f5] = 1 , [f3, f6] = 1 , [f4, f5] = 1 , [f4, f6] = 1 , [f5, f6] = 1 .
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[KT] C. Kratzer, J. Thévenaz, Type d’homotopie des treillis et treillis des sous-

groupes d’un groupe fini, Comment. Math. Helv. 60 (1985), 85–106.
[GLS] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple

groups, Number 2, Math. Surveys and Monographs Vol. 40.2, Amer.
Math. Soc., Providence, 1996.



GUIDO’S BOOK OF CONJECTURES 5

[Qu] D. Quillen, Homotopy properties of the poset of nontrivial p - subgroups of
a group, Adv. Math. 28 (1978), 101–128.
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