
ERRATA FOR: REPRESENTATION THEORY; A HOMOLOGICAL

ALGEBRA POINT OF VIEW

ALEXANDER ZIMMERMANN

page 7 line 16: φi(mi) instead of φ(mi) (thanks to Daniel Lopez Aguayo).

page 26 line 27:
∏m
i=1Ki (thanks to Daniel Lopez Aguayo).

page 36 line -10 ff: Let A be an algebra and let M be a finitely generated artinian
A-module.... Further in the proof: Let F := {T ≤M |M/T is semisimple}. This set is not
empty, and hence contains maximal submodules, which yield simple quotients. Indeed, let
S be the set of proper submodules of M . This set contains 0, and is therefore not empty.
If (Ti)i∈I is an increasing chain in S, then the union is in S, since else it contains the finite
generating set, and therefore some element T0 in the chain does, which contradicts the fact
that T0 is in S. By consequence M has maximal submodules. Since M is artinian.... The
hypothesis that M is finitely generated is necessary as shows the Prüfer group. A simpler
proof can be given if M is supposed to be Noetherian.

page 49 lines 3 and 6: β̂−1 : B → A restricting to β−1 on SB..... β̂ ◦ β̂−1 = idB.
(thanks to Daniel Lopez Aguayo).

page 50 line -2: Proposition 1.7.5 ∀m ∈ M,n1, n2 ∈ N (thanks to Daniel Lopez
Aguayo).

page 50 line -3: Proposition 1.7.5 φ : N⊗M → B (thanks to Daniel Lopez Aguayo).

page 60 statement of Lemma 1.7.23: ifM is a finite dimensionalKH-module, then....
(thanks to Jorge Ledesma)

page 75 line 8, 9: extend α to... φ(mS) = nS .... (thanks to Arthur Garnier).

page 92 statement of Lemma 1.8.27:

• The diagram is a pullback diagram if and only if it is commutative, γ induces an
isomorphism on the kernels of α and of δ, and β induces a monomorphism on the
cokernels of α and of γ.
• The diagram is a pushout diagram if and only if it is commutative, β induces an
isomorphism on the cokernels of α and of δ, and γ induces an epimorphism on the
kernels of α and of γ.

If the diagram is a pullback, let V be the kernel of the morphism induced by β on the
cokernels of α, respectively δ. Then let W be the preimage of V in B. The embedding of
W into B and the 0 map from W to C makes the diagram commutative, and hence there
is a morphism from W to A composing with α to the identity on W . Hence W is a direct
factor of A, and α is the identity on this direct factor. This contradicts the fact that W
maps onto V .
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Conversely, consider the commutative diagram

L �
� λ //

µ≃
��

A
α //

γ

��

B
π // //

β
��

X� _

β
��

K �
� κ // C

δ // D
ν // // Y

Let X
ρ−→ B and X

σ−→ C be morphisms with δ ◦ σ = β ◦ ρ. Then β ◦ π ◦ ρ = ν ◦ δ ◦ σ = 0
and since β is a monomorphism, π ◦ ρ = 0. Hence ρ has image in im(α) and for all x ∈ X
there is a ∈ A with α(a) = ρ(x). Since δ ◦ γ(a) = β ◦ α(a) = β ◦ ρ(x) = δ ◦ σ(x), we get
γ(a) − σ(x) = κ(k) = κ ◦ µ(ℓ) for some k ∈ K and ℓ ∈ L, and hence Put ϕ(x) = a − λ(ℓ).
Then α ◦ ϕ(x) = α(a) = ρ(x) and γ ◦ ϕ(x) = γ(a)− κ(k) = σ(x). Hence the triangles in the
diagram commute. Since µ is an isomorphism, ℓ is the unique possible modification on a.
This shows the unicity. The fact that ϕ is a homomorphism is readily verified. Hence the
diagram has the universal property of a pullback, and there is a pullback. Note that this
simplifies and rectifies the proof on page 92 considerably. (thanks to Jin Zhang)

page 92 lines 16, 17, 18, 19: Moreover, λ◦ω◦µ = ν◦µ, and hence γ◦ν◦µ = κ◦µ = γ◦λ.
Unicity implies γ ◦µ = λ, and therefore λ◦ω◦µ = ν ◦µ = λ◦ id. Since λ is mono, ω◦µ = id.
(thanks to Arthur Garnier).

page 96 line 5, 10: We need that also for the first part of the statement that A is
projective as B-modules. Then the exactness of line 5 of the proof is assured. Without this
hypothesis the sequence A⊗B X → A⊗B Y → A⊗B Z is not exact anymore. The second
isomorphism should read as ExtiA(M,HomB(A,N)) ≃ ExtiB(A⊗B M,N).

For the proof in the second case, let P ↠ M be a free resolution of M as A-module.
Since A is a projective B-module, this is also a projective resolution of M as B-modules.
Moreover, again since A is projective as B-modules, A ⊗B P is a projective resolution of
A ⊗B M as B-modules. Now, ExtiA(M,HomB(A,N)) ≃ H i(HomA(P,HomB(A,N)) ≃
H i(HomB(A⊗B P, N) ≃ ExtiB(A⊗B M,N). (thanks to Mamadou Sene)

page 101 Definition 1.8.37: and let R = Z be the ring of integers.

page 114 line 22 (in the statement of Theorem 1.8.47) ... finite group, let N ⊴E,
and denote G := E/N . Suppose....

page 116, statement of Lemma 1.9.1: Let A be an artinian algebra and let P be an
indecomposable projective A-module. (thanks to Jin Zhang)

page 159 line -16: ...every B-module is relatively A-projective, and ....

page 159 line -2: If P is A-projective, hence a direct factor of some An, then B ⊗A P
is a direct factor of B ⊗A An, and B ⊗A P is a direct factor of B ⊗A An = Bn. Hence P is
B-projective. By Proposition 2.1.6 every B-module is relatively A-projective.

page 171 line 10: Mi ↓IG(M)
N =Mmi for some integer mi. Moreover,

Mi ↑GIG(M)↓
G
N= |G : IG(M)| ·Mi = |G : IG(M)| ·mi ·M

as R-module. However, ⊕
gIG(M)∈G/IG(M)

( gM)ni = ni · |G : IG(M)| ·M

as R-module. Hence, ni = mi.
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page 180 line -4ff: By Lemma 1.7.44, kG is isomorphic to⊕
NG(D)gNG(D)∈NG(D)\G/NG(D)

k(NG(D)gNG(D))

as kNG(D)−NG(D)-bimodule. Now, denoting N := NG(D),

NgN
β−→ (N ×N)/ (∆(N ∩ gN))(1,g)

n1gn2 7→ (n1, n
−1
2 )

is well-defined and bijective. Indeed,

n1gn2 = n′1gn
′
2 ⇔ ñ := (n′1)

−1n1 =
g(n′2n

−1
2 ) ∈ NG(D) ∩ gNG(D),

and so n′1 · ñ · g · (ñg)−1 · n′2 = n1gn2. However,

β(n1gn2) ·∆(ñ)(1,g) = (n1, n
−1
2 ) ·∆(ñ)(1,g) = (n1ñ, n

−1
2 (ñg)) = β(n1 · ñ · g · (ñg)−1 · n2).

Hence,
kNG(D)gNG(D) ≃ k(NG(D)×NG(D))⊗

k(∆(NG(D)∩gNG(D)))(1,g)
k

as k(NG(D)×NG(D))-modules. Therefore, the vertex of k(NG(D)gNG(D)) is in the group

(∆(NG(D) ∩ gNG(D)))(1,g).
The following now comes from the proof of Lemma 13.7.c in Alperin: Local representa-

tion theory; Cambridge University Press 1986. We claim that ∆(D) is not conjugate to a

subgroup of (∆(NG(D) ∩ gNG(D)))(1,g). Indeed, let (h1, h2) ∈ NG(D) × NG(D) such that

∆(D)(h1,h2) ≤ (∆(NG(D) ∩ gNG(D)))(1,g), then ∆(D)(h1,h2g
−1) ≤ (∆(NG(D) ∩ gNG(D))) ≤

∆(G). Hence, for any d ∈ D we have h1gh
−1
2 ∈ CG(D) ≤ NG(D), which implies g ∈ NG(D),

a contradiction.
Therefore, the vertex of k(NG(D)gNG(D)) for g ̸∈ NG(D) is different from of ∆(D).

However, for g = 1 we get kNG(D) as direct factor of the restriction of kG as kNG(D) −
NG(D)-bimodule. We observe now.... (Thanks to Erik Darpö.)

page 215 Lemma 2.9.3: line 2 of the lemma: Then, the mapping... (Of course, µp :
A→ A is not additive)

page 260 line before Example 3.1.2: ...possible when dealing with sets rather than
with classes. (thanks to Jin Zhang)

page 262 line before Definition 3.1.7: The coproduct in the category of commutative
K-algebras is the tensor product over K. (thanks to Subham Jaiswal)

page 264 line -7: A−Mod (thanks to Arthur Garnier)

page 265 line 19: F a contravariant functor. (thanks to Arthur Garnier)

page 266 lines 1ff: Proposition 3.1.18 The index of the coproduct is not consistent,
and actually incorrect in this generality, throughout the statement and the proof. Thanks
to Arthur Garnier for pointing out these inconsistencies. Here is a correction:

Proposition 3.1.18: Let A be an algebra and let C = A −Mod. Further let (I,≤) be a
codirected system. Let M be the functor mapping i ∈ I to the object Mi of C and i < j to
ι(i,j) ∈ HomC(Mi,Mj). If we define Mi,j :=Mi for every i < j and φ by∐

i,j∈I;i<j
Mi −→

∐
i∈I

Mi

Mi,j ∋ mi 7→ ιi,j(mi)−mi ∈Mj ⊕Mi

we get that this defines a homomorphism with cokernel the colimit colimi∈IMi.
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Proof. We first get a homomorphism

Mi

(
ι(i,j)
−id

)
−→ Mj ⊕Mi.

The universal property of the coproduct induces a homomorphism

Mi −→
∐
i∈I

Mi

and again by the universal property of the coproduct a homomorphism φ as requested. The
universal property of the cokernel implies the universal property of the colimit.

page 267 line 11: the argument at the very left and the very right is F (f) and not just
f . (thanks to Arthur Garnier)

page 280 statement of Definition 3.3.8 line 5 of the definition: an inflation is a
morphism which occurs as the second components of a conflation. (thanks to Jin Zhang)

page 283 statement of Lemma 3.3.13: ...Then the functor HomA(M,−) commutes
with arbitrary colimits (not only on inductive systems) if and only ifM is finitely presented.
(thanks to Pooyan Moradifar)

page 283 statement of Definition 3.3.14: compact ifMorC : C → Z−Mod commutes
with arbitrary colimits. (thanks to Pooyan Moradifar)

page 284 line 4: the proof of Lemma 3.3.13 remains valid using N = colimi∈INi instead.

page 284 line 11, 12: Suppose now that HomA(M,−) commutes with arbitrary colim-
its. Now, M is the colimit...

page 291 lines -1, -2: C1
τ1−→ C2, C2

τ2−→ C3, C3
τ3−→ TC1, A3

α3−→ B3, B3
β3−→ C3 and

C3
γ3−→ TA3

page 293 lines -8, -9: τ1 should be τ ′1.

page 297: Lemma 3.4.10: ... If two of the three left most vertical morphisms are
isomorphism....

page 301 end of line -7: H(φ)(m+ dM (M)) := .... (thanks to Jin Zhang)
page 301 end of line -3: ker(φM ). (thanks to Jin Zhang)

page 302 line -11: ... d
(i−1)
N .... (thanks to Arthur Garnier)

page 310 Lemma 3.5.21: truncation τ≤m yields objects in C+ and τ≥m yields objects
in C− (thanks to Arthur Garnier)

page 312 Proposition 3.5.25: Let A be an additive subcategory of an abelian category
(thanks to Arthur Garnier)

page 313 line 3 after Definition 3.5.26: onto the first component

page 330 line -2 f: ZX → X ← X̃ gives a morphism ZX
ζ−→ ZY in the homotopy

category making the diagram ... (thanks to Gustina Elfiyanti)

page 337 last line: HomK−(A)(pX, Y )... (thanks to Jin Zhang)

page 349: Proposition 3.6.14: For group algebras the standard symmetrising form
has the property that ψ(1) = 1. We do not claim here that the basis B is formed by paths
only. In particular, the form is not described by the values on the socle elements only.
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page 357 first line at the end: ....HomK−(A)(pX, Y ) (thanks to Jin Zhang)

page 389 line 12: the action of A on the right of HomA(M,A) is given by (f · a)(m) =
f(m)a for all f ∈ HomA(M,A) and a ∈ A. Setting (f · a)(m) = f(am) will not produce
an A-linear map f · a again, unless A is (for example) commutative. (Thanks to Benjamin
Sambale.)

page 390 line 3: 1A

page 403: Proposition 4.4.4: The statement of the proposition is false as presented,
even if one assumes the additional hypothesis gcd(|H|, |N |) = 1. (Thanks to Benjamin
Sambale.)

page 417, statement of Lemma 4.5.6: Let K be a field and let A be a finite dimen-
sional self-injective K-algebra. (thanks to Jin Zhang)

page 446: Definition 5.3.5: Let M be a finitely generated B−A-bimodule, and let N
be a finitely generated A−B-bimodule such that....

This hypothesis is coherent with Lemma 5.3.1. We need M to be finitely generated, in
order to get a functorM⊗A− : A−mod→ B−mod between the stable categories of finitely
generated modules. Indeed, if X is a quotient of An, and M is a quotient of (B ⊗K Aop)m,
then M ⊗A X is a quotient of (B ⊗K Aop)m ⊗A Am = Bnm.

I am grateful to Serge Bouc for pointing out this mistake.

page 449: Proposition 5.3.11: line 4 of the proposition: .... A ⊗K Aop-module,
provided that P is projective as left A-module.
line 6 of the proposition: .... A ⊗K Aop-module, provided that P is projective as right
A-module. (thanks to Fernando Muro).

The additional hypothesis is used in Step 2 to ensure that X ⊗A Q• is still exact. For
this, it is marked in the proof that P is right projective, hence Q• is split as right modules.
But in the following line we need Q• to be split as complex of left modules. Proposition
5.3.11 is used in 5.3.13, and in 5.3.17. In both cases this additional hypothesis is verified.
In 5.3.17 this follows from the fact that the algebras considered there are self-injective.

page 452: A similar condition as in Definition 5.3.5 could be imposed in Definition
5.3.15.

In both cases one may also consider the stronger condition that M is finitely generated
projective as A-module and as B-module, and N is finitely generated projective as A-module
and as B-module. Then M and N are compact and the corresponding functors have better
properties (cf Lemma 3.3.13). Working with infinite dimensional algebras it seems to be
useful to include conditions on the behaviour of functors under colimits.

page 508: In the diagram for P (3, 2), the entry (3, 1) should be replaced with (2, 1).
(thanks to Klaus Lux)

page 510: Arrows in the quiver are going the opposite direction to the arrows in the
ordering on page 506. (thanks to Klaus Lux)

page 511: The first relation of type 2 should have α1
2α

2
2 replaced with α2

2α
2
1. The first

relation of type 3 should be α1
2α

2
2α

1
2. (thanks to Klaus Lux)

page 513: statement of Proposition 5.10.11: ... which admits only one isomorphism
class of simple A-modules.... (thanks to Erik Darpö).
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page 557 line -11: ... if F : B −Mod −→ A−Mod is an equivalence... (thanks to Jin
Zhang)

page 570 ff: Example 6.2.12 Item 5: Observe that given a coderivation bC of a
coalgebra (C,∆, η), then a coderivation of the comodule (M,ρ) with respect to bC is a
K-linear endomorphism b of M making the diagram

M
ρ //

b
��

C ⊗M

1C⊗b+bC⊗1M
��

M
ρ // C ⊗M

commutative. If bC = 0, then this is just the condition of b being a comodule homomorphism.
The space X = T (A) ⊗ L is a cofree T (A)-comodule, in the sense that for any T (A)-

comodule Y the space of T (A)-comodule homomorphisms Y −→ X is in bijection with the
space of vector space homomorphisms Y −→ L and the bijection is given by composing
with ε : X −→ L. This implies that any K-linear homomorphism b : X −→ L can be lifted
to a T (A)-comodule homomorphism γ : X −→ X such that ε ◦ γ = b. For e ̸= −1 the
coderivation we use for T (A) is just 0, and hence for e ̸= −1 the coderivation

γb(a1 ⊗ · · · ⊗ an−1 ⊗ x) =
n∑
ℓ=1

(−1)e(n−ℓ)(a1 ⊗ · · · ⊗ an−ℓ ⊗ bℓ(an−ℓ+1 ⊗ · · · ⊗ an−1 ⊗ x))

is the one needed for the inverse Φ.
The formula on page 571 line 3,4,5 only works for e = −1. Note that γb, defined on page

571 lines 3,4,5 has two sums, the first one of degree −1 and the second one of degree e.
However, the map Φ is homogeneous. A twosided inverse of a homogeneous map needs to
be homogeneous, and therefore the formula given here assumes e = −1. Note that in the
subsequent arguments, notably on page 579 ff, there we only need the case e = −1. The
case e ̸= −1 is the above argument on X being cofree.

(thanks to Xiao-Wu Chen for pointing out the problem with the degrees)

page 571 line -8: The sign in the second sum should be (−1)e(n−ℓ).

page 579 line -16: Item 5.

page 593 line -13: An argument is missing why an equivalence Db(A−mod) ≃ Db(B−
mod) maps the regular module BB to a tilting complex. We basically follow Rickard’s
argument. Since A and B are Noetherian, Db(A − mod) ≃ K−,b(A − proj) and Db(B −
mod) ≃ K−,b(B−proj). Let hence F : K−,b(B−proj) −→ K−,b(A−proj) be an equivalence
of triangulated categories with quasi-inverse G. We may assume that

G(A) = Q• = . . . −→ Q0 −→ Q−1 −→ . . . −→ Qs+1 −→ Qs −→ 0 −→ . . .

and Hn(Q•) = 0 for n > 0. Let

P • = F (BB) = . . .
dt+1

−→ P t
dt−→ P t−1 dt−1

−→ . . .

and let P̌ := τ≥−s+1P
• be the stupid truncation of P • in degree −s + 1. In other words,

P̌ coincides with P • in degrees higher or equal to −s + 1. Now, there is a natural map

τ≤tP̌
ιt−→ τ≤t+1P̌ for all t. In general our category K−,b(A − proj) does not allow the

construction of countable colimits, but this particular inductive system has a colimit P̌ :

P̌ = colimt≥−s+1(τ≤tP̌ )

by taking iterated cones. Indeed,

τ≤t+1P̌ = cone(P t+1[t]
(dt+1,0,0... )−→ τ≤tP̌ )
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and hence

G(τ≤t+1P̌ ) = G(cone(P t+1[t]→ τ≤tP̌ )) = cone(G(P t+1)[t]→ G(τ≤tP̌ )).

Let us verify the universal property of a colimit. Take X = (X, ∂X) a complex in K−,b(B−
proj) and let φt : τ≤tP̌ −→ X be maps in K−,b(B − proj) so that φt+1 ◦ ιt = φt. Hence,
there are maps hu : P u −→ Xu+1 for 1 ≤ u ≤ t such that

φt+1 ◦ ιt|Pu = φt|Pu + ∂t+1
X ◦ hu + hu−1 ◦ du

as morphisms of modules, giving an equality of morphisms of complexes τ≤tP̌ −→ X. But
then, putting ht+1 = 0 we define

φ′
t+1|Pu := φt+1|Pu − ∂u+1

X ◦ hu − hu−1 ◦ du.
Then φ′

t+1 is homotopy equivalent to φt+1, but we get furthermore φ′
t+1|Pu ◦ ιt|Pu = φt|Pu ,

and hence φ′
t+1 ◦ ιt = φt as morphisms of complexes. We replace φt+1 by the (homotopy

equivalent) φ′
t+1. Taking appropriate representatives in the homotopy equivalence class of

φt, by induction we can assume that the equations φt+1 ◦ ιt = φt hold as morphisms of
complexes. Let now φt : τ≤tP̌ −→ X be a family of morphisms such that φt+1 ◦ ιt = φt.
By the above we may assume that this holds in the category of complexes. Then, there
is a morphism of complexes φ : P̌ −→ X such that φ ◦ λt = φt, where λt : τ≤tP̌ −→ P̌
is the natural morphism. Indeed, φ|Pu = φt|Pu for t >> u defines such a morphism. Let
ψ : P̌ −→ X be another morphism such that ψ ◦ λt = φt . Then, ψ − φ is homotopy
equivalent to 0. Hence, we may assume that φt = 0 for all t and have to show that then ψ
is homotopy equivalent to 0. Both X and P̌ have bounded homology, and so there is k > 0
such that Ht(X) = 0 = Ht(P̌ ) for all t > k. Since ψ ◦ λt = φt for all t, we choose t = k + 2
and know that we may modify ψ by some homotopy (in degrees smaller than k + 2, and 0
in higher degrees) such that the modified ψ satisfies ψ(P u) = 0 for all u < k + 2. We can
hence assume that ψ(P u) = 0 for all u < k + 2. Consider τ≥kP̌ =: M• and τ≥kX =: N•.
The objects M• respectively N• have homology M , respectively N , concentrated in degree

k only. Moreover, ψ induces the 0 homomorphism M
0−→ N , and ψ is a lift M• ψ−→ N• of

the 0 morphism M
0−→ N . Lemma 3.5.16 shows that ψ is homotopy equivalent to 0.

By induction on t, the homology of G(τ≤tP̌ ) is concentrated in strictly positive degrees,
and since P t+1 is projective, hence a direct factor of a finitely generated free module, GP t+1

is a direct factor of a finite direct sum of Q•. Since Q•[t] is concentrated in degrees greater
than t+s > 0 we are done. Moreover, G(P̌ ) = colimt≥−s+1G(τ≤tP̌ ) again by taking iterated
cones, since G is an equivalence and the universal property is hence preserved. Hence G(P̌ )
has homology concentrated in strictly positive degrees only. But

0 = H0(G(P̌ )) = HomK−,b(B−proj)(BB,G(P̌ ))

≃ HomK−,b(A−proj)(F (BB), P̌ )

= HomK−,b(A−proj)(P
•, P̌ )

The natural map P • → P̌ can be completed to a distinguished triangle

P̂ −→ P • 0−→ P̌ −→ P̂ [1]

and hence P̂ ≃ P • ⊕ P̌ [−1] for a bounded complex P̂ of projectives. Therefore, P • is
isomorphic to a direct factor of a bounded complex of projectives. Since ExtiB(B,B) = 0 ≃
HomKb(A−proj)(P

•, P •) for all non zero i, we get that P • is a tilting complex. We are done.

(Thanks to Henning Krause for reminding me that I have lost sight of this question.)

page 601 line 3: E0,q
1 = ExtqA(H0(X), H0(Y ))⊕ ExtqA(H1(X), H1(Y ))

page 601 line 9: E0,0
1 = HomA(H0(X), H0(Y ))⊕HomA(H1(X), H1(Y ))
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page 601 statement of Proposition 6.6.2:

HomDb(A)(X,Y ) //

��

HomA(H0(X), H0(Y ))

��
HomA(H1(X), H1(Y )) // Ext2A(H0(X), H1(Y ))

(thanks to Shigeo Koshitani)

page 602 line -6: Corollary 6.6.4 is incorrect as stated. One needs the additional
hypothesis Ext1A(H0(X), H1(X)) = 0. Without this hypothesis a counterexample is given

by the tilting complex page 678 line -6. Indeed, let T (2) := X2 ⊗A A and let n = 3.
Then H0(T

(2)) is semisimple of dimension 2, corresponding to the endomorphisms of the
simples S1 := P1/rad(P1) and S3 := P3/rad(P3). H1(T ) = P2 ⊕ U3,2 ⊕ U1,2, where Ui,j
is the 2-dimensional uniserial module with top Pi/rad(Pi) and socle Pj/rad(Pj). Now,
Ext1A(S3, U1,2) ̸= 0 since rad(P2) is indecomposable and has a submodule V isomorphic to
U1,2 with rad(P2)/V ≃ S3. The proof of Corollary 6.6.4 affirms that this extension group is
0, which is not correct. In the proof of Corollary 6.6.4 lines 4 to 15 should be erased.

page 614 line 1: ...and let A and B be two derived equivalent Noetherian.... (thanks
to Jin Zhang)

page 678 line -6: The proof can be given similar to the proof in Section 6.7.1.
I thank Yuya Mizuno for pointing out that there are problems at this point and with

Corollary 6.6.4.


