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Algebras and Groups

Let K be a field,

such as complex numbers

or some field of algebraic numbers

or of finite characteristic.

A K -algebra (A,+, ·) is a ring; i.e. we can

form the sum of two elements,

multiply two elements with the usual axioms

(such as Z or 2× 2-matrices over K ) such that in addition A is a
K -vector space (with compatible structure).

A group is a set G together with a multiplication rule G × G → G
satisfying the usual axioms (associativity, neutral element 1,
inverse element)

Both concepts can be really complicated.
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Representations of Algebras and Groups

A representation (or module) of dimension n of a

K -algebra A is given by a set of n × n matrices over K ,

one Ma for each a ∈ A
such that Mab = MaMb

and Ma+b = Ma + Mb

and M1 = 1.

group G over K is given by a set of n × n matrices over K ,

one Mg for each g ∈ G
such that Mgh = MgMh

and M1 = 1.
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Algebras versus Representations

Hence, the principle is to replace

something abstract
(group, algebra)

by something explicit
(matrices)

Question: What do we loose?

Answer: A lot, but

if we look at the class
of all representations at once

denoted by A−mod (or KG −mod for groups)

then we recover most information for algebras A,
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Morita equivalence

The concept is called

Morita equivalence of algebras, and

Morita equivalent algebras are very similar in structure.

Basically it is like passing from K to Matn(K ), the n × n
square matrices over K .

Similar for groups, but:

Two groups G and H with KG −mod ' KH −mod are really rare
(at least if the field is of finite characteristic p and the group is
finite, order divisible by p).
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Morita equivalence

Problems for Morita equivalence:

too rare in the case of groups

gives too much information in case of algebras

A wish-list:

We need a concept which is

more frequent

carries less information than Morita equivalence

but still enough information to be interesting
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Composition Series

Recall that a representation is given by a set of n× n-matrices Ma,
one for each a ∈ A.

Central point:
If there is invertible T such that for all a ∈ A

TMaT
−1 =

(
Sa Xa

0 Qa

)
for some m×m-matrices Sa, and n−m× n−m matrices Qa, then
Then

A 3 a 7→ Sa is a sub-representation (submodule)

A 3 a 7→ Qa is a quotient representation (quotient module)

Now iterate this ! It cannot go forever (finite dimension!)

A simple representation (simple module) is one with no
proper sub-representations (submodules)

A sequence of submodules with simple quotients is a
composition series
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Classification problems in A−mod

Facts:

For finite dimensional K -algebra A (or finite group G )
there are only finitely many simple modules S1, . . . ,Sn.

Two composition series yield to the same set of simple
quotients

Classify all representations by

gluing the “bricks” (simples)

determine the “mortar” to glue the bricks
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The derived category; what is this good for?

The “mortar” to glue M with N in some A−mod is called

homology Ext1
A(M,N).

Classifies A-modules L containing N such that L/N ' M.

Globalising all these Ext1
A(M,N) for all M and N including all

relations between them is encoded by

The derived category Db(A)
introduced by Grothendieck, Verdier in 1960’s, 1970’s

This is a quite sophisticated and technical gadget.
But we want to study it systematically.
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The derived category; what does is encode?

Clearly

A−mod ' B −mod ⇒ Db(A) ' Db(B)
(call A and B derived equivalent in the latter)

Morita equivalence implies derived equivalence

but the converse is VERY false

If the algebras A and B are derived equivalent, then their

(Hochschild) (co-)homology

centers coincide

cyclic (co-)homology

K -theory

Tamarkin-Tsygan calculus

.....

coincide.
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The Drawback

How can we prove

that A and B are derived equivalent?

that A and B are not derived equivalent?

The first is very complicated in general.
The second is more complicated even, (except in case of showing
that one of the invariants in the list do not coincide. (But this is
somehow absurd.))
For the first problem, we have Rickard’s criterion:
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Rickard’s first theorem

Theorem (Rickard’s first main theorem 1989)

Let A and B be (associative unital) rings. Then A and B are
derived equivalent if and only if

there is an object T in Db(A) such that EndDb(A)(T ) ' B,

satisfying two main properties

not being too small (add(T ) generates the same as A in
Db(A))

not being too big (T having no morphisms to shifted copies).

So, need to find such T .
Several strategies were developed for this purpose.
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Tensor product algebras

For more precise statements need some technical gadget.

Algebraic geometry: affine varieties V correspond to
commutative algebras

V = V (A) for some algebra A.

Example:

circle ��
��

! X 2
1 + X 2

2 = 1 ! C[X1,X2]/(X 2
1 + X 2

2 − 1)

Cartesian product of two complex varieties is the tensor product
of their algebras

V (A1)× V (A2) = V (A1 ⊗C A2)

Morality: Tensor product is some kind of multiplication
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Rickard’s second theorem

A particular case is if A,B are algebras over a field, like complex
numbers.

Theorem (Rickard’s second main theorem 1992)

If A and B are derived equivalent algebras over a field, then there
is some X in the derived category of A− B-bimodules such that

M 7→ X ⊗L
A M

is an equivalence.

In some sense the equivalence is

given by some kind of multiplication.

In this case say

A and B are derived equivalent of standard type
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stable equivalent of Morita type

For some kind of algebras A (self-injective)

a quotient of the derived category is the

stable category A−mod .

It can be understood as modules modulo direct factors of some An.
Morality:

Db(A) is much bigger than A−mod .

A−mod is smaller than A−mod .

For the expert:

it has the same objects as A−mod

morphism spaces are equivalence classes of module homomorphisms
modulo those factoring through projective modules
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Derived, Morita, stable equivalences

We have seen already

Two algebras A and B can be

Morita equivalent A−mod ' B −mod

derived equivalent Db(A) ' Db(B)

derived equivalent of standard type
(Db(A) 3 M 7→ X ⊗A M ∈ Db(B).)
(Rickard’s second main theorem)

Add two more cases

stably equivalent A−mod ' B −mod

stably equivalent of Morita type
A−mod 3 M 7→ X ⊗A M ∈ B −mod
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Derived, Morita, stable equivalences

We get a hierarchy

Morita equiva-
lence +3

derived equiva-
lent of standard
type +3

derived equiva-
lence
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Derived, Morita, stable equivalences

We get a hierarchy and in case A is selfinjective

Morita equiva-
lence +3

derived equiva-
lent of standard
type +3

��

derived equiva-
lence

��
stable equivalent
of Morita type +3

stable equiva-
lence
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Behaviour of centers

Invariants become weaker.

Example for the centre
Z (A) = {a ∈ A | ba = ab∀b ∈ A}:
If A and B are

Morita equivalent, then Z (A) ' Z (B) (Morita 1950’s)

derived equivalent of standard type, then Z (A) ' Z (B)
(Rickard 1992)

derived equivalent, then Z (A) ' Z (B) (Rickard 1992)

stably equivalent of Morita type, then Zst(A) ' Zst(B)
(Broué 1995)

stably equivalent, then nothing known

Stable centre Zst(A) = Z (A)/Zpr (A) a proper quotient.
For the expert: Zpr (A) are the A− A-bimodule endomorphisms
which factor through a projective bimodule.
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derived equivalent, then Z (A) ' Z (B) (Rickard 1992)

stably equivalent of Morita type, then Zst(A) ' Zst(B)
(Broué 1995)

stably equivalent, then nothing known

Stable centre Zst(A) = Z (A)/Zpr (A) a proper quotient.
For the expert: Zpr (A) are the A− A-bimodule endomorphisms
which factor through a projective bimodule.
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Behaviour of centers

In the scheme in case A is self-injective

Morita equiva-
lence
Z (A) invariant
(Morita 1950) +3

derived equiva-
lent of standard
type
Z (A) invariant
(Rickard 1992) +3

if A selfinjective
��

derived equiva-
lence
Z (A) invariant
(Rickard 1992)

if A selfinjective

��

stable equivalent
of Morita type
only Zst(A) in-
variant (Broué
1995) +3

stable equivalence
center not invari-
ant
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Rickard’s question

A property:

Morita 1950’s:(
A1 and A2 Morita equivalent

B1 and B2 Morita equivalent

)
⇒

(
A1 ⊗ B1 and A2 ⊗ B2

Morita equivalent.

)

Rickard 1992:(
A1 and A2 derived equivalent

B1 and B2 derived equivalent

)
⇒

(
A1 ⊗ B1 and A2 ⊗ B2

derived equivalent.

)

A Question (Rickard 1998):
Is the same true for “stable equivalent of Morita type” ?
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Disproving Rickard’s question

Answer is NO.
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Disproving Rickard’s question

How can we prove this?

Use invariant. The stable center is
invariant for stable equivalent of Morita type.

Theorem (Yuming Liu, Guodong Zhou, A.Z. 2012; Mathematische
Zeitschrift)

For any algebra A we get

Zpr (A) = H(A) := AnnZ(A)(Ext1
A⊗Aop(A,−)), the Higman

ideal.

If A is symmetric over an algebraically closed field k of
characteristic p, then dimk H(A) is the rank of the Cartan
matrix over Z/pZ.

Lemma (Yuming Liu, Guodong Zhou, A.Z. 2017; Proceedings of
the AMS)

For any algebra A over an algebraically closed field k of
characteristic p > 0 the Cartan matrix of A⊗k k[X ]/X p has rank 0
over k.
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The non symmetric counterexample

Theorem (Yuming Liu, Guodong Zhou, A.Z. 2017; Proceedings of
the AMS)

Let A and B be self-injective indecomposable finite dimensional

k-algebras. Then

(
A 0
A A

)
and

(
B 0
B B

)
are stable equivalent

of Morita type implies A and B are Morita equivalent.

There are plenty such algebras A and B, e.g. derived equivalent
but not Morita equivalent indecomposable self-injective algebras.
or the example below
A = Z/2ZA4 and B = B0(Z/2ZA5).
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The symmetric counterexample

Let p be a prime and k = Z/pZ.

G (q) = PSU(3, q) the projective special unitary group of size
3× 3 over a field with q = ps elements.

H(q) the normalizer of a Sylow p-subgroup of G (q).

Cp the cyclic group of order p.

How big are these examples?

q size of G (q) size of H(q)

3 5616 27
4 20160 64
5 372000 125
7 1876896 343
8 16482816 512
9 42456960 729

11 212427600 1331
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The symmetric counterexample

Then kG (q) = B0(q)×M where M is some matrix algebra over k
(Steinberg block).

Theorem (Serge Bouc, A.Z. 2017; Experimental Mathematics)

B0(q) and H(q) are stably equivalent of Morita type.

If q ∈ {3, 4, 5, 7, 8, 9, 11} then B0(q)⊗k kCp and H(q)⊗k kCp

are not stably equivalent of Morita type.
(Jürgen Müller for q ∈ {9, 11}.)

Note: kCp ' k[X ]/X p
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The symmetric counterexample, using the computer

Why is this true?

B0(q) and H(q) are stably equivalent of Morita type by Green
correspondence; G is a TI-group!

Z (B0(q)) 6' Z (H(q)) using GAP (groups, algorithms and
programming for q ∈ {3, 4, 5, 7, 8, 9, 11}.)
Since p-rank of the Cartan matrices is 0, get
Z (B0(q)⊗k k[X ]/X p) = Zst(B0(q)⊗k k[X ]/X p) and
Z (H(q)⊗k k[X ]/X p) = Zst(H(q)⊗k k[X ]/X p).

we are done.

This is a counterexample to Rickard’s question.
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