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Let K be a field,
@ such as complex numbers
@ or some field of algebraic numbers

@ or of finite characteristic.

A K-algebra (A, +,-) is a ring; i.e. we can
@ form the sum of two elements,
@ multiply two elements with the usual axioms
(such as Z or 2 x 2-matrices over K) such that in addition A is a

K-vector space (with compatible structure).

A group is a set G together with a multiplication rule G x G — G
satisfying the usual axioms (associativity, neutral element 1,
inverse element)

Both concepts can be really complicated.
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Representations of Algebras and Groups

A representation (or module) of dimension n of a

@ K-algebra A is given by a set of n X n matrices over K,
e one M, foreachac A
e such that M., = M, M,
e and Ma+b =M, + M,
e and M; = 1.

@ group G over K is given by a set of n X n matrices over K,
e one M, for each g € G
o such that Mgy = MM,
e and M; = 1.
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Algebras versus Representations

Hence, the principle is to replace
something abstract by something explicit
(group, algebra) (matrices)
Question: What do we loose?

Answer: A lot, but

if we look at the class
of all representations at once
denoted by A — mod (or KG — mod for groups)

then we recover most information for algebras A,
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Morita equivalence

The concept is called
o Morita equivalence of algebras, and
@ Morita equivalent algebras are very similar in structure.

@ Basically it is like passing from K to Mat,(K), the n x n
square matrices over K.

Similar for groups, but:
Two groups G and H with KG — mod ~ KH — mod are really rare

(at least if the field is of finite characteristic p and the group is
finite, order divisible by p).
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@ more frequent

@ carries less information than Morita equivalence

A. Zimmermann On equivalences between categories of representations



Morita equivalence

Problems for Morita equivalence:

@ too rare in the case of groups

@ gives too much information in case of algebras

A wish-list:

We need a concept which is
@ more frequent
@ carries less information than Morita equivalence

@ but still enough information to be interesting
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If there is invertible T such that for all a € A
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for some m x m-matrices S,, and n — m x n — m matrices Q,, then
Then
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e A> a— Q,is a quotient representation (quotient module)
Now iterate this ! It cannot go forever (finite dimension!)

e A simple representation (simple module) is one with no
proper sub-representations (submodules)
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Composition Series

Recall that a representation is given by a set of n x n-matrices M,,
one for each a € A.

Central point:

If there is invertible T such that for all a € A

4 (S X,
T™,T (o o

for some m x m-matrices S,;, and n — m x n — m matrices Q;, then
Then
@ A>aw— S, is a sub-representation (submodule)
e A> a— Q,is a quotient representation (quotient module)
Now iterate this ! It cannot go forever (finite dimension!)
e A simple representation (simple module) is one with no
proper sub-representations (submodules)
@ A sequence of submodules with simple quotients is a
composition series

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

e For finite dimensional K-algebra A (or finite group G)

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

e For finite dimensional K-algebra A (or finite group G)
there are only finitely many simple modules Si,...,5,.

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

e For finite dimensional K-algebra A (or finite group G)
there are only finitely many simple modules Si,...,5,.

@ Two composition series yield to the same set of simple
quotients

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

e For finite dimensional K-algebra A (or finite group G)
there are only finitely many simple modules Si,...,5,.

@ Two composition series yield to the same set of simple
quotients

Classify all representations by

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

e For finite dimensional K-algebra A (or finite group G)
there are only finitely many simple modules Si,...,5,.

@ Two composition series yield to the same set of simple
quotients

Classify all representations by
@ gluing the “bricks” (simples)

A. Zimmermann On equivalences between categories of representations



Classification problems in A — mod

Facts:

e For finite dimensional K-algebra A (or finite group G)
there are only finitely many simple modules Si,...,5,.

@ Two composition series yield to the same set of simple
quotients

Classify all representations by
@ gluing the “bricks” (simples)
@ determine the “mortar” to glue the bricks
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Classifies A-modules L containing N such that L/N ~ M.

Globalising all these Ext}(M, N) for all M and N including all
relations between them is encoded by

The derived category D’(A)
introduced by Grothendieck, Verdier in 1960's, 1970's

This is a quite sophisticated and technical gadget.
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The derived category; what is this good for?

The “mortar” to glue M with N in some A — mod is called
homology Ext}(M, N).
Classifies A-modules L containing N such that L/N ~ M.

Globalising all these Ext}(M, N) for all M and N including all
relations between them is encoded by

The derived category D’(A)
introduced by Grothendieck, Verdier in 1960's, 1970's

This is a quite sophisticated and technical gadget.
But we want to study it systematically.
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The derived category; what does is encode?

Clearly A— mod ~ B — mod = DP(A) ~ D®(B)
(call A and B derived equivalent in the latter)

Morita equivalence implies derived equivalence

but the converse is VERY false

If the algebras A and B are derived equivalent, then their
@ (Hochschild) (co-)homology
@ centers coincide
e cyclic (co-)homology
o K-theory

@ Tamarkin-Tsygan calculus

coincide.
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How can we prove
o that A and B are derived equivalent?
o that A and B are not derived equivalent?

The first is very complicated in general.
The second is more complicated even, (except in case of showing
that one of the invariants in the list do not coincide.
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The Drawback

How can we prove
o that A and B are derived equivalent?
o that A and B are not derived equivalent?
The first is very complicated in general.
The second is more complicated even, (except in case of showing
that one of the invariants in the list do not coincide. (But this is

somehow absurd.))
For the first problem, we have Rickard's criterion:
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Rickard’s first theorem

Theorem (Rickard’s first main theorem 1989)

Let A and B be (associative unital) rings. Then A and B are
derived equivalent if and only if
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Let A and B be (associative unital) rings. Then A and B are
derived equivalent if and only if

there is an object T in D°(A) such that Endpsa)(T) ~ B,

satisfying two main properties

@ not being too small (add(T) generates the same as A in
D5(A))

@ not being too big (T having no morphisms to shifted copies).
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Rickard’s first theorem

Theorem (Rickard’s first main theorem 1989)

Let A and B be (associative unital) rings. Then A and B are
derived equivalent if and only if

there is an object T in D°(A) such that Endpsa)(T) ~ B,

satisfying two main properties
@ not being too small (add(T) generates the same as A in
D5(A))
@ not being too big (T having no morphisms to shifted copies).

So, need to find such T.
Several strategies were developed for this purpose.
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For more precise statements need some technical gadget.
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For more precise statements need some technical gadget.

Algebraic geometry: affine varieties V' correspond to
commutative algebras

V = V/(A) for some algebra A.
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For more precise statements need some technical gadget.

Algebraic geometry: affine varieties V' correspond to
commutative algebras

V = V/(A) for some algebra A.

Example:

circle Q s XEHXZ =1 oo, CIX, X /X + X3 — 1))

Cartesian product of two complex varieties is the tensor product
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Tensor product algebras

For more precise statements need some technical gadget.

Algebraic geometry: affine varieties V' correspond to
commutative algebras

V = V/(A) for some algebra A.

Example:

circle Q s XEHXZ =1 oo, CIX, X /X + X3 — 1))

Cartesian product of two complex varieties is the tensor product
of their algebras

V(A1) x V(A2) = V(A1 ®c A2)

Morality: Tensor product is some kind of multiplication
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Rickard’s second theorem

A particular case is if A, B are algebras over a field, like complex
numbers.
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Rickard’s second theorem

A particular case is if A, B are algebras over a field, like complex
numbers.

Theorem (Rickard'’s second main theorem 1992)

If A and B are derived equivalent algebras over a field, then there
is some X in the derived category of A — B-bimodules such that

M — X @k M

is an equivalence.
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Rickard’s second theorem

A particular case is if A, B are algebras over a field, like complex
numbers.

Theorem (Rickard'’s second main theorem 1992)

If A and B are derived equivalent algebras over a field, then there
is some X in the derived category of A — B-bimodules such that

M — X @k M

is an equivalence.

In some sense the equivalence is
given by some kind of multiplication.
In this case say

A and B are derived equivalent of standard type
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stable equivalent of Morita type

For some kind of algebras A (self-injective)
a quotient of the derived category is the

stable category A — mod.
It can be understood as modules modulo direct factors of some A”.
Morality:
e DP(A) is much bigger than A — mod.

@ A — mod is smaller than A — mod.
For the expert:

@ it has the same objects as A — mod

@ morphism spaces are equivalence classes of module homomorphisms
modulo those factoring through projective modules
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Derived, Morita, stable equivalences

We have seen already
Two algebras A and B can be

@ Morita equivalent A — mod ~ B — mod

o derived equivalent D?(A) ~ D?(B)

@ derived equivalent of standard type
(DP(A) > M X @4 M € D(B).)
(Rickard’s second main theorem)

Add two more cases
@ stably equivalent A — mod ~ B — mod

@ stably equivalent of Morita type
A—mod >M—= X®4 M e B— mod

On equivalences between categories of representations
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We get a hierarchy

derived equiva-
Morita equiva- lent of standard derived equiva-
lence —[type ——> llence
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Derived, Morita, stable equivalences

We get a hierarchy and in case A is selfinjective

derived equiva-
Morita equiva-] lent of standard derived equiva-
lence —>[type ———>llence
stable equivalent stable equiva-

of Morita type —— lence
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Invariants become weaker. Example for the centre
Z(A)={ac A| ba=abvbe A}
If Aand B are
e Morita equivalent, then Z(A) ~ Z(B) (Morita 1950's)
@ derived equivalent of standard type, then Z(A) ~ Z(B)
(Rickard 1992)
@ derived equivalent, then Z(A) ~ Z(B) (Rickard 1992)
@ stably equivalent of Morita type, then Zy(A) ~ Zy(B)
(Broué 1995)
@ stably equivalent, then nothing known
Stable centre Z(A) = Z(A)/Zp-(A) a proper quotient.
For the expert: Z,(A) are the A — A-bimodule endomorphisms
which factor through a projective bimodule.
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In the scheme in case A is self-injective

Morita equiva-]
lence

Z(A) invariant
(Morita 1950)

derived equiva-
lent of standard
type

Z(A) invariant

— |(Rickard 1992) | |(Rickard 1992)

if A H/ selfinjective

stable equivalent
of Morita type

only Zg(A) in-
variant (Broué

Behaviour of centers

derived equiva-]
lence
Z(A) invariant

if A || selfinjective

1995)

stable equivalence
center not invari-
ant

A. Zimmermann

On equivalences between categories of representations



Rickard’s question

A property:
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Rickard’s question

A property:
Morita 1950's:

A1 and A, Morita equivalent N A1 ® By and Ao ® By
B; and B, Morita equivalent Morita equivalent.
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Rickard’s question

A property:
Morita 1950's:

A1 and A, Morita equivalent N A1 ® By and Ao ® By
B; and B, Morita equivalent Morita equivalent.
Rickard 1992:

A1 and A, derived equivalent N A1 ® By and Ao ® By
B; and B, derived equivalent derived equivalent.
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Rickard’s question

A property:
Morita 1950's:

(Al and A, Morita equivalent> N <A1 ® By and Ay ® Bg)

B; and B, Morita equivalent Morita equivalent.

Rickard 1992:

<A1 and A, derived equivalent> N (Al ® By and Ay ® Bz)

B; and B, derived equivalent derived equivalent.

A Question (Rickard 1998):
Is the same true for “stable equivalent of Morita type” ?

A. Zimmermann On equivalences between categories of representations



Disproving Rickard’'s question

Answer is NO.
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Disproving Rickard’'s question

How can we prove this? Use invariant. The stable center is
invariant for stable equivalent of Morita type.

Theorem (Yuming Liu, Guodong Zhou, A.Z. 2012; Mathematische

Zeitschrift)

For any algebra A we get
o Z,(A)=H(A) = AnnZ(A)(Ext}@Ao,,(A, —)), the Higman
ideal.
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For any algebra A we get
o Z,(A)=H(A) = AnnZ(A)(Ext}@Ao,,(A, —)), the Higman
ideal.
e If A is symmetric over an algebraically closed field k of
characteristic p, then dimy H(A) is the rank of the Cartan
matrix over Z/ pZ.
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Disproving Rickard’'s question

How can we prove this? Use invariant. The stable center is
invariant for stable equivalent of Morita type.

Theorem (Yuming Liu, Guodong Zhou, A.Z. 2012; Mathematische

Zeitschrift)
For any algebra A we get

o Z,(A)=H(A) = AnnZ(A)(Ext}@Ao,,(A, —)), the Higman
ideal.

e If A is symmetric over an algebraically closed field k of
characteristic p, then dimy H(A) is the rank of the Cartan
matrix over Z/ pZ.

Lemma (Yuming Liu, Guodong Zhou, A.Z. 2017; Proceedings of
the AMS)

For any algebra A over an algebraically closed field k of
characteristic p > 0 the Cartan matrix of A®y k[X]/XP has rank 0
over k.
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The non symmetric counterexample

Theorem (Yuming Liu, Guodong Zhou, A.Z. 2017; Proceedings of

the AMS)

Let A and B be self-injective indecomposable finite dimensional

A0 B 0 .
k-algebras. Then ( A A ) and ( B B ) are stable equivalent
of Morita type implies A and B are Morita equivalent.
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The non symmetric counterexample

Theorem (Yuming Liu, Guodong Zhou, A.Z. 2017; Proceedings of

the AMS)

Let A and B be self-injective indecomposable finite dimensional

A0 B 0 .
k-algebras. Then ( A A ) and ( B B ) are stable equivalent
of Morita type implies A and B are Morita equivalent.

There are plenty such algebras A and B, e.g. derived equivalent
but not Morita equivalent indecomposable self-injective algebras.
or the example below

A=17/27Z4 and B = By(Z/27Us).
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The symmetric counterexample

Let p be a prime and k = Z/pZ.

e G(q) = PSU(3, q) the projective special unitary group of size
3 x 3 over a field with g = p° elements.

e H(q) the normalizer of a Sylow p-subgroup of G(q).
e C, the cyclic group of order p.

A. Zimmermann On equivalences between categories of representations



The symmetric counterexample

Let p be a prime and k = Z/pZ.

e G(q) = PSU(3, q) the projective special unitary group of size
3 x 3 over a field with g = p° elements.

e H(q) the normalizer of a Sylow p-subgroup of G(q).
e C, the cyclic group of order p.

How big are these examples?

q | size of G(q) | size of H(q)
3 5616 27

4 20160 64

5 372000 125

7 1876896 343

8 16482816 512

9 42456960 729

11 || 212427600 1331
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The symmetric counterexample

Then kG(q) = Bo(q) x M where M is some matrix algebra over k
(Steinberg block).
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The symmetric counterexample

Then kG(q) = Bo(q) x M where M is some matrix algebra over k
(Steinberg block).

Theorem (Serge Bouc, A.Z. 2017; Experimental Mathematics)

@ By(q) and H(q) are stably equivalent of Morita type.

o Ifqe{3,4,57,8,9,11} then By(q) @k kCp and H(q) @« kCp
are not stably equivalent of Morita type.
(Jiirgen Miiller for q € {9,11}.)
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The symmetric counterexample

Then kG(q) = Bo(q) x M where M is some matrix algebra over k
(Steinberg block).

Theorem (Serge Bouc, A.Z. 2017; Experimental Mathematics)

@ By(q) and H(q) are stably equivalent of Morita type.

o Ifqe{3,4,57,8,9,11} then By(q) @k kCp and H(q) @« kCp
are not stably equivalent of Morita type.
(Jiirgen Miiller for q € {9,11}.)

Note: kCp, ~ k[X]/XP
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The symmetric counterexample, using the computer

Why is this true?
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Why is this true?

e By(q) and H(q) are stably equivalent of Morita type by Green
correspondence; G is a Tl-group!
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e Z(Bo(q)) # Z(H(q)) using GAP (groups, algorithms and
programming for g € {3,4,5,7,8,9,11}.)
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Why is this true?

e By(q) and H(q) are stably equivalent of Morita type by Green
correspondence; G is a Tl-group!

e Z(Bo(q)) # Z(H(q)) using GAP (groups, algorithms and
programming for g € {3,4,5,7,8,9,11}.)

@ Since p-rank of the Cartan matrices is 0, get
Z(Bo(q) @k kIX]/XP) = Zst(Bo(q) @ KIX]/XP) and
Z(H(q) @k k[X]/XP) = Zst(H(q) ®« k[X]/XP).
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Why is this true?

e By(q) and H(q) are stably equivalent of Morita type by Green
correspondence; G is a Tl-group!

e Z(Bo(q)) # Z(H(q)) using GAP (groups, algorithms and
programming for g € {3,4,5,7,8,9,11}.)

@ Since p-rank of the Cartan matrices is 0, get
Z(Bo(q) @k kIX]/XP) = Zst(Bo(q) @ KIX]/XP) and
Z(H(q) @k k[X]/XP) = Zst(H(q) ®« k[X]/XP).

@ we are done.
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The symmetric counterexample, using the computer

Why is this true?

e By(q) and H(q) are stably equivalent of Morita type by Green
correspondence; G is a Tl-group!

e Z(Bo(q)) # Z(H(q)) using GAP (groups, algorithms and
programming for g € {3,4,5,7,8,9,11}.)

@ Since p-rank of the Cartan matrices is 0, get
Z(Bo(q) @k kIX]/XP) = Zst(Bo(q) @ KIX]/XP) and
Z(H(q) @k k[X]/XP) = Zat(H(q) @k k[X]/XP).

@ we are done.

This is a counterexample to Rickard’s question.
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