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Module Varieties

The origin: Gabriel et al

Let k be an algebraically closed field and A a finite dimensional
k-algebra.

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties

The origin: Gabriel et al

Let k be an algebraically closed field and A a finite dimensional
k-algebra.

o Generators of A: {a1,...,an}
e relations: {pi(a1,...,an)s---,pm(a1,...,3n)}

where p; are polynomials in non-commuting variables (free
algebra).
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The origin: Gabriel et al

A representation of A of dimension d is given by

{generators} > a; — A; € Matyxq(k)
{relations} > pj(a1,...,an) — pj(A1,...,As) =0
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The origin: Gabriel et al

A representation of A of dimension d is given by

{generators} > a; — A; € Matyxq(k)
{relations} > pj(a1,...,an) — pj(A1,...,As) =0

These are polynomial equations
in the n - d? variables " matrix coefficients” .

Definition

The module variety mod(A, d) is the Zariski closed subset of the
nd?-dimensional affine space defined by the above polynomial
equations.
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Module Varieties

The origin: Gabriel et al

A representation of A of dimension d is given by

{generators} > a; — A; € Matyxq(k)
{relations} > pj(a1,...,an) — pj(A1,...,As) =0

These are polynomial equations
in the n - d? variables " matrix coefficients” .

Definition

The module variety mod(A, d) is the Zariski closed subset of the
nd?-dimensional affine space defined by the above polynomial
equations.

In particular mod(A, d) is an affine variety.
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Module Varieties

The origin: Gabriel et al

@ The group G := GL4(k) acts on mod(A, d) by simultaneous
conjugation of matrices.
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Module Varieties

The origin: Gabriel et al

@ The group G := GL4(k) acts on mod(A, d) by simultaneous
conjugation of matrices.

@ Two A-modules M and N correspond to the points m and n
of mod(A, d). Then
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Module Varieties

The origin: Gabriel et al

@ The group G := GL4(k) acts on mod(A, d) by simultaneous
conjugation of matrices.

@ Two A-modules M and N correspond to the points m and n
of mod(A, d). Then

M~N&G-m=G-n
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Module Varieties

The origin: Gabriel et al

Hence

@ d-dimensional A-modules correspond to points in mod(A, d).
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Module Varieties

The origin: Gabriel et al

Hence

@ d-dimensional A-modules correspond to points in mod(A, d).

@ Isomorphism classes of d-dimensional A-modules correspond
to G-orbits in mod(A, d).
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Module Varieties

The origin: Gabriel et al

Hence

@ d-dimensional A-modules correspond to points in mod(A, d).

@ Isomorphism classes of d-dimensional A-modules correspond
to G-orbits in mod(A, d).

@ In general orbits are not Zariski closed. Examples will follow.

<
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Module Varieties

The origin: Gabriel et al

Main classical definition

A-module M corresponds to m € mod(A, d)
A-module N corresponds to n € mod(A, d)
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Module Varieties

The origin: Gabriel et al

Main classical definition

A-module M corresponds to m € mod(A, d)

A-module N corresponds to n € mod(A, d)

M degenerates to N if n belongs to the Zariski closure of the
G-orbit of m. Denote this by M <gez N.
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Module Varieties

The origin: Gabriel et al

Main classical definition

A-module M corresponds to m € mod(A, d)

A-module N corresponds to n € mod(A, d)

M degenerates to N if n belongs to the Zariski closure of the
G-orbit of m. Denote this by M <gez N.

n6G-m<:>I\/I§degN
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Module Varieties

The origin: Gabriel et al

Consequences:
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The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of
A-modules:
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Module Varieties

The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of

A-modules:
Transitivity: easy geometrically
Antisymmetry: Auslander’s lemma (Bongartz simplification).
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Module Varieties

The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of
A-modules:
Transitivity: easy geometrically
Antisymmetry: Auslander’s lemma (Bongartz simplification).

@ S < M, then M <yeg S® M/S:
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Module Varieties

The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of
A-modules:
Transitivity: easy geometrically
Antisymmetry: Auslander’s lemma (Bongartz simplification).
@ S < M, then M <yeg S® M/S:
A > a acts by matrices ( s bs >
0 aM/s
as bs-t

for a parameter t € k,
0 aM/5

Deform this to (
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Module Varieties

The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of
A-modules:
Transitivity: easy geometrically
Antisymmetry: Auslander’s lemma (Bongartz simplification).
@ S < M, then M <yeg S® M/S:
A > a acts by matrices ( s bs >
0 aM/s
as bs-t

0 aM/5
and t # 0 is isomorphic to original action;

t = 0 is in the Zariski closure and corresponds to the direct sum.

Deform this to > for a parameter t € k,
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Module Varieties

The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of
A-modules:
Transitivity: easy geometrically
Antisymmetry: Auslander’s lemma (Bongartz simplification).
@ S < M, then M <yeg S® M/S:
A > a acts by matrices ( s bs >
0 aM/s
as bs-t

0 aM/5
and t # 0 is isomorphic to original action;

t = 0 is in the Zariski closure and corresponds to the direct sum.
@ semisimple modules are the maximal objects.

Deform this to > for a parameter t € k,
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Module Varieties

The origin: Gabriel et al

Consequences:
@ <4eg is a partial order on the set of isomorphism classes of
A-modules:
Transitivity: easy geometrically
Antisymmetry: Auslander’s lemma (Bongartz simplification).
@ S < M, then M <yeg S® M/S:
A > a acts by matrices ( s bs >
0 aM/s
as bs-t

0 aM/5
and t # 0 is isomorphic to original action;

t = 0 is in the Zariski closure and corresponds to the direct sum.
@ semisimple modules are the maximal objects.
o Exti(M,M)=0= M is minimal.

(Voigt's lemma; open orbit in this case)

Deform this to > for a parameter t € k,
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Module Varieties

Zwara's breakthrough

Observe: degeneration is a geometric notion
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Zwara's breakthrough

Observe: degeneration is a geometric notion
Goal: Characterise algebraically.
Numerous weaker degeneration notions.

Theorem: (Riedtmann 1986)

If there is an A-module Z and a ses:

0O—-Z—-MaoZ—-N-—=0

then M <qeg N.
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Module Varieties

Zwara's breakthrough

Observe: degeneration is a geometric notion
Goal: Characterise algebraically.
Numerous weaker degeneration notions.

Theorem: (Riedtmann 1986)

If there is an A-module Z and a ses:

0O—-Z—-MaoZ—-N-—=0

then M <qeg N.
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Module Varieties

Zwara's breakthrough

Observe: degeneration is a geometric notion
Goal: Characterise algebraically.
Numerous weaker degeneration notions.

Theorem: (Riedtmann 1986, Zwara 2000

If there is an A-module Z and a ses:

)

0O—-Z2—-MsZ—-N-—=0

then M <4eg NV and conversely degeneration implies the existence
of Z and a ses as above.

SWISS
MADE
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Module Varieties

Zwara's breakthrough

@ Z is finite dimensional, but one may need to go to high
dimension.
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Module Varieties

Zwara's breakthrough

@ Z is finite dimensional, but one may need to go to high
dimension.

M<geg N & dZandses0 2 —>ZOM—-N—=0
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Module Varieties

Zwara's breakthrough

@ Z is finite dimensional, but one may need to go to high
dimension.

M<geg N & dZandses0 2 —>ZOM—-N—=0
& 3FZ andses0 >N —>Z2"eM—- 2 =0
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Module Varieties

Zwara's breakthrough

@ Z is finite dimensional, but one may need to go to high
dimension.

M<geg N & dZandses0 2 —>ZOM—-N—=0
& 3FZ andses0 >N —>Z2"eM—- 2 =0

e Z and Z' may be quite different in general
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Module Varieties

Zwara's breakthrough

@ Z is finite dimensional, but one may need to go to high
dimension.

M<geg N & dZandses0 2 —>ZOM—-N—=0
& 3FZ andses0 >N —>Z2"eM—- 2 =0

Z and Z’' may be quite different in general

and difficult to construct.
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Module Varieties

Where did | learn all this ?

Reading group first semester 2003 /4
module varieties; around 10 lectures
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Module Varieties

Classical Theory: Drawbacks

Need

@ algebraically closed fields
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Classical Theory: Drawbacks

Need

@ algebraically closed fields

o finite dimensional algebras
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Classical Theory: Drawbacks

Need

@ algebraically closed fields
o finite dimensional algebras

@ module categories
Want

@ concept that works for general rings
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Module Varieties

Classical Theory: Drawbacks

Need

@ algebraically closed fields
o finite dimensional algebras

@ module categories
Want

@ concept that works for general rings

@ also for stable and derived categories
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Module Varieties

Classical Theory: Drawbacks

Need

@ algebraically closed fields
o finite dimensional algebras

@ module categories
Want
@ concept that works for general rings

@ also for stable and derived categories

@ or even triangulated categories
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General rings

Examples limiting our ambition

Recall an example due to Swan (1962):
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General rings

Examples limiting our ambition

Recall an example due to Swan (1962):

Theorem: (Swan 1962)

Q@32 the generalised quaternion group of order 32. Then there is an
ideal a of ZQ3, such that
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General rings

Examples limiting our ambition

Recall an example due to Swan (1962):

Theorem: (Swan 1962)

Q@32 the generalised quaternion group of order 32. Then there is an
ideal a of ZQ3, such that
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General rings

Examples limiting our ambition

V4 V4
~ = ~
0= ZQ3 — ZQ3 PZQ3p — a — 0
—_——
ZQ32da
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General rings

Examples limiting our ambition

V4 V4
~ = ~
0= ZQ3 — ZQ3 PZQ3p — a — 0
—_——
ZQ32da

Hence Z Q32 <deg a.
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General rings

Examples limiting our ambition

V4 V4
~ = ~
0= 7ZQ3 = ZQ3®ZQ3 —a— 0
—_—
7Z.Q32®a
Hence Z Q32 <deg a.
V4 V4
~= ~—=
00— ZQ3 — ZQ3Pa — ZQ3 — 0
——
Z.Q32DZQ32

Hence a <geg ZQ32.
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General rings

Examples limiting our ambition

V4 V4
~ = ~
0= 7ZQ3 = ZQ3®ZQ3 —a— 0
—_—
7Z.Q32®a
Hence Z Q32 <deg a.
V4 V4
~= ~—=
00— ZQ3 — ZQ3Pa — ZQ3 — 0
——
Z.Q32DZQ32

Hence a <geg ZQ32.

What do we learn?
There are problems without Krull-Schmidt.

A. Zimmermann Degeneration in Triangulated Categories



General rings

Examples limiting our ambition

A an algebra, M and N be two A-modules. K := @2, M @& N.
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General rings

Examples limiting our ambition

A an algebra, M and N be two A-modules. K := @2, M @& N.

0-mM Y mePMen—PMan—o

i=1 i=1
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General rings

Examples limiting our ambition

A an algebra, M and N be two A-modules. K := @2, M @& N.

. o o0
0-mM Y mePMen—PMan—o
=1 i=1

Since

D o o
M@@M@N:@M@N:N@@M@N
i=1 i=1 i=1
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General rings

Examples limiting our ambition

A an algebra, M and N be two A-modules. K := @2, M @& N.

i o] 00
0-mM Y mePMen—PMan—o
i=1 i=1
Since
o0 o0 o0
M@@M@N:@M@N:N@@M@N
i=1 i=1 i=1

we get M <qeg N for any two modules.
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General rings

Examples limiting our ambition

A an algebra, M and N be two A-modules. K := @2, M @& N.

i o] 00
0-mM Y mePMen—PMan—o
i=1 i=1
Since
o0 o0 o0
M@@M@N:@M@N:N@@M@N
i=1 i=1 i=1

we get M <qeg N for any two modules.

What do we learn?
Be careful with embedding Z - Z & M
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The triangle degeneration

The algebraic degeneration in a triangulated setting

For modules

M <geg N 3Zandses0 -2 —+ZOM—N—=0
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The triangle degeneration

The algebraic degeneration in a triangulated setting

For modules

M <geg N 3Zandses0 -2 —+ZOM—N—=0

For objects in a triangulated category
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The triangle degeneration

The algebraic degeneration in a triangulated setting

For modules

M <geg N 3Zandses0 -2 —+ZOM—N—=0

For objects in a triangulated category
M <a N :& 3Z and distinguished triangle Z — Z&M — N — Z[1]

<A is called the triangle degeneration.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of <a.
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The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of <a.
Need to avoid the above counterexamples.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of <a.
Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let 7 be a triangulated category with split idempotents.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of <a.
Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let 7 be a triangulated category with split idempotents.
Suppose VX € obj(T) : Endr(X) is artinian.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of <a.
Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let 7 be a triangulated category with split idempotents.
Suppose VX € obj(T) : Endr(X) is artinian.
Then <A is reflexive and transitive.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of <a.
Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let 7 be a triangulated category with split idempotents.
Suppose VX € obj(T) : Endr(X) is artinian.
Then <A is reflexive and transitive.

The proof is a construction of iterated cones, then using Fitting's
lemma in some sophisticated way (artinian endomorphism algebra).
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The triangle degeneration

The algebraic degeneration in a triangulated setting

How what anti-symmetry?
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The triangle degeneration

The algebraic degeneration in a triangulated setting

How what anti-symmetry?
This uses the Hom-order and Bongartz' proof for the module case.

What is the Hom-order?

M Sdeg N = dimk(HomA(U, M)) < dimk(HomA(U, N))VU

Call this last property Hom-order <pom.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

How what anti-symmetry?
This uses the Hom-order and Bongartz' proof for the module case.
What is the Hom-order?

M Sdeg N = dimk(HomA(U, M)) < dimk(HomA(U, N))VU

Call this last property Hom-order <pom.
Auslander (1982), then Bongartz (1989) show that

dimg(Homa(U, M)) = dimyx(Homa(U, N))VU = M ~ N
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Get easily if T is triangulated R-linear category, R a commutative
ring, and if Homy(X, Z) is of finite R-length for all X, Z, then

MSANjMSHomN-
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Get easily if T is triangulated R-linear category, R a commutative
ring, and if Homy(X, Z) is of finite R-length for all X, Z, then

MSANiMSHomN-

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let 7 be a triangulated R-linear category with split idempotents,
R a commutative ring, and Hom1 (X, Y') is of finite R-length for
all X, Y.
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The triangle degeneration

The algebraic degeneration in a triangulated setting

Get easily if T is triangulated R-linear category, R a commutative
ring, and if Homy(X, Z) is of finite R-length for all X, Z, then

MSANiMSHomN-

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let 7 be a triangulated R-linear category with split idempotents,
R a commutative ring, and Hom1 (X, Y') is of finite R-length for
all X, Y. If thereis an n € Z\ {0} such that Homy(M, N[n]) = 0,
then

MSHomNSHomM:M:N'
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The triangle degeneration

Where did | learn all this ?

Reading group February/March 2010
partial orders on isomorphism classes
of modules
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Yoshino’s method

Generic points, abstract description

We are still missing a geometric interpretation.
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Generic points, abstract description

We are still missing a geometric interpretation. Yuji Yoshino gave
an alternative scheme theoretic approach: M degenerates to N if
N can be reached by a line starting in the orbit of M.
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Yoshino’s method

Generic points, abstract description

We are still missing a geometric interpretation. Yuji Yoshino gave
an alternative scheme theoretic approach: M degenerates to N if
N can be reached by a line starting in the orbit of M.

Definition (Yoshino)

Let A be a k-algebra. Then M degenerates to N along a dvr if
there is a discrete valuation k-algebra V/, maximal ideal p = tV
and k = V/p, and a V-flat V @4 A-module Q such that

Q/tQ ~ N and Q[%] ~ M Q®j V[%] as A ®y V[%]—modules. Write
M <dvr N.
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Yoshino’s method

Generic points, abstract description

Yoshino analyzes (2004, 2011) that
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Yoshino’s method

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

e following the second example (infinite sum) one has to be
careful with the morphism Z — Z & M.
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Yoshino’s method

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

e following the second example (infinite sum) one has to be
careful with the morphism Z — Z & M.

@ the correct setting for modules is that
M <zwara + nil N 1< 3Z and ses

(%)

0—>Z—M®Z— N— 0 with ¥ nilpotent
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Yoshino’s method

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

e following the second example (infinite sum) one has to be
careful with the morphism Z — Z & M.

@ the correct setting for modules is that

M <zwara + nil N 1< 3Z and ses

¢

0—>ZM>M@Z—>N—>Owitth nilpotent
@ and for triangulated categories

M <A+ nil N i< 3Z and distinguished triangle

¢
Z M) M@ Z — N — Z[1] with ¢ nilpotent
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M <A it N=M <4y N.
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M <A 4 nit N= M <4, N. If Ais in addition artinian, then
we get <.
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M <A 4 nit N= M <4, N. If Ais in addition artinian, then
we get <.

@ partial order properties for <g,,.
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get

M <A 4 nit N= M <4, N. If Ais in addition artinian, then
we get <.

@ partial order properties for <g,,.

Maximal elements do not exist in the triangulated setting:
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M <A 4 nit N= M <4, N. If Ais in addition artinian, then
we get <.

@ partial order properties for <g,,.

Maximal elements do not exist in the triangulated setting:
X —0— X[1] “ X[1] is distinguished triangle.
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M <A 4 nit N= M <4, N. If Ais in addition artinian, then
we get <.

@ partial order properties for <g,,.
Maximal elements do not exist in the triangulated setting:
X —0— X[1] “ X[1] is distinguished triangle. Hence
XSUueXoUax @ X[1] — X[1] is distinguished triangle
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Yoshino’s method

Generic points, abstract description

Yoshino shows (2004, 2011) that

e if Ais any k-algebra then M < zparatnit N & M <4y N

@ for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M <A 4 nit N= M <4, N. If Ais in addition artinian, then
we get <.

@ partial order properties for <g,,.

Maximal elements do not exist in the triangulated setting:

X —0— X[1] “ X[1] is distinguished triangle. Hence
XSUueXoUax @ X[1] — X[1] is distinguished triangle
and therefore U <a 4+ nj U® X @& X[1]
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A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k-category C}
for a commutative ring k.

Recall that an element t of the centre of a triangulated category is
a natural transformation t : ide — id¢.

e May form the Gabriel-Zisman localisation C[t™!] of C
inverting all tx for all objects X of C.

e If C is triangulated, C[t™!] is as well.
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Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k-category C}
for a commutative ring k.

Recall that an element t of the centre of a triangulated category is
a natural transformation t : ide — id¢.
e May form the Gabriel-Zisman localisation C[t™!] of C
inverting all tx for all objects X of C.
e If C is triangulated, C[t™!] is as well.

e Comes with a triangle functor C — C[t™1].

A. Zimmermann Degeneration in Triangulated Categories



Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

Let C; be a triangulated k-category with split idempotents. A
degeneration data for C} is given by
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A line in a triangulated category, jt with Saorin

Definition
Let C; be a triangulated k-category with split idempotents. A
degeneration data for C} is given by

e triangulated k-categories Cy, Cy and Cy, with split
idempotents

@ triangle functors CsC ~ Cy

2 lnv

@ Cy
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A line in a triangulated category, jt with Saorin

Definition

Let C; be a triangulated k-category with split idempotents. A
degeneration data for C} is given by

e triangulated k-categories Cy, Cy and Cy, with split
idempotents

@ triangle functors CsC ~ Cy

2 lnv
e 2y
o tc Z(C\/)
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Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

Definition
Let C; be a triangulated k-category with split idempotents. A
degeneration data for C} is given by

e triangulated k-categories Cy, Cy and Cy, with split
idempotents

@ triangle functors CsC ~ Cy

2 lnv
e 2y
o tc Z(C\/)

@ such that YM € C} : ¢(tMTL/) is split mono and
qﬁ(cone(tMT‘\(/)) ~ M
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Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

module setting (Ay := V ® A)

triangulated setting

A — mod——~ A — Mod

JJVWW l\/@k_

Ay — mod———— A\, — Mod

 —)
lr ° lnv
c Cv
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A line in a triangulated category, jt with Saorin

module setting (Ay := V ® A) triangulated setting
A — mod—— A — Mod C,e———=Cx
lmk—”‘"“ty’/ lvez)k— J/TL/ 4 lnv
Ay — mod—— Ay — Mod cy Cy
multiplication by uniformizer t € V te Z(Cy)
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A line in a triangulated category, jt with Saorin

module setting (Ay := V ® A) triangulated setting
A — mod—— A — Mod C,e———=Cx
lmk—”‘"“ty’/ lvez)k— J/TL/ 4 lnv
Ay — mod—— Ay — Mod cy Cy
multiplication by uniformizer t € V te Z(Cy)
V[ ®k A— Mod Cyv[t™!]
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A line in a triangulated category, jt with Saorin

module setting (Ay := V ® A)

triangulated setting

A — mod——~ A — Mod

JJVWW l\/@k_

Ay — mod———— A\, — Mod

multiplication by uniformizer t € V
V[ ®k A— Mod
mult. by t is split mono over A

Coe————~Cy
lr ° lnv

cy Cv

te Z(Cy)

Cv[t_l]

d)(tMT,\(/) is split mono
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A line in a triangulated category, jt with Saorin

module setting (Ay := V ® A) triangulated setting

A— mod~— A — Mod C,e———=Cx
\LV@(W lV@Jk— J/TL/ /¢ lTL/

Ay — mod—— Ay — Mod cy Cy

multiplication by uniformizer t € V te Z(Cy)

V[ ®k A— Mod Cyv[t™!]

mult. by t is split mono over A ¢(tM¢,\(/) is split mono

(VeM)/(tVeM)=V/tVeM=M qﬁ(cone(tMT‘\(/)):I\/l
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Degeneration in a triangulated category, jt with Saorin

Recall that if t € Z(Cy/), then there is a triangle functor

Cvy L) C\/[t_l].

A. Zimmermann Degeneration in Triangulated Categories



Geometric degeneration for triangulated categories

Degeneration in a triangulated category, jt with Saorin

Recall that if t € Z(Cy/), then there is a triangle functor

Cvy L) C\/[t_l].

Definition
M,N € Cp. Then M < geg N if

o there is a degeneration data (Ck,Cy, t)
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Degeneration in a triangulated category, jt with Saorin

Recall that if t € Z(Cy/), then there is a triangle functor

Cvy L) C\/[t_l].

Definition
M,N € Cp. Then M < geg N if

o there is a degeneration data (Ck,Cy, t)

@ and an object Q of Cy,
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Degeneration in a triangulated category, jt with Saorin

Recall that if t € Z(Cy/), then there is a triangle functor

Cvy L) C\/[t_l].

Definition
M,N € Cp. Then M < geg N if

o there is a degeneration data (Ck,Cy, t)

@ and an object Q of Cy,
o such that p(Q) ~ p(M 1Y) in Cy[t1] and ¢(cone(tq)) ~ N.
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Degeneration in a triangulated category, jt with Saorin

Recall that if t € Z(Cy/), then there is a triangle functor

cy 2 eyt

Definition
M,N € Cp. Then M < geg N if

o there is a degeneration data (Ck,Cy, t)

@ and an object Q of Cy,
o such that p(Q) ~ p(M 1Y) in Cy[t1] and ¢(cone(tq)) ~ N.

This specialises to Yoshino in the obvious sense in his setting.
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The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let C; be a triangulated
k-category with split idempotents. Let M, N € ob(C}).
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The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let C; be a triangulated
k-category with split idempotents. Let M, N € ob(C}).

@ Then M Scdeg N=M <A + nil N.
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The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let C; be a triangulated
k-category with split idempotents. Let M, N € ob(C}).

@ Then M <cgeg N = M <A 4 it N.

e If C; is the category of compact objects of a compactly

generated algebraic triangulated k-category,
then M Scdeg N<=M<, &+ nil N.
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The result, jt with Saorin

Theorem (Saorin and Z. (2014))
Let k be a commutative ring and let C; be a triangulated
k-category with split idempotents. Let M, N € ob(C}).

@ Then M <cgeg N = M <A 4 it N.

e If C; is the category of compact objects of a compactly
generated algebraic triangulated k-category,
then M Scdeg N<=M<, &+ nil N.

Second part uses Keller's characterisation of those categories as
derived categories of dg-categories.
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Geometric degeneration for triangulated categories

Where did | learn all this ?

Happy birthday Serge !
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