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The origin: Gabriel et al

Let k be an algebraically closed field and A a finite dimensional
k-algebra.

Generators of A: {a1, . . . , an}
relations: {ρ1(a1, . . . , an), . . . , ρm(a1, . . . , an)}

where ρi are polynomials in non-commuting variables (free
algebra).
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The origin: Gabriel et al

A representation of A of dimension d is given by

{generators} 3 ai 7→ Ai ∈ Matd×d(k)

{relations} 3 ρj(a1, . . . , an) 7→ ρj(A1, . . . ,An) = 0

These are polynomial equations
in the n · d2 variables ”matrix coefficients”.

Definition

The module variety mod(A, d) is the Zariski closed subset of the
nd2-dimensional affine space defined by the above polynomial
equations.

In particular mod(A, d) is an affine variety.
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The origin: Gabriel et al

The group G := GLd(k) acts on mod(A, d) by simultaneous
conjugation of matrices.

Two A-modules M and N correspond to the points m and n
of mod(A, d). Then

M ' N ⇔ G ·m = G · n
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The origin: Gabriel et al

Summary

Hence

d-dimensional A-modules correspond to points in mod(A, d).

Isomorphism classes of d-dimensional A-modules correspond
to G -orbits in mod(A, d).

In general orbits are not Zariski closed. Examples will follow.
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The origin: Gabriel et al

Main classical definition

A-module M corresponds to m ∈ mod(A, d)
A-module N corresponds to n ∈ mod(A, d)

M degenerates to N if n belongs to the Zariski closure of the
G -orbit of m. Denote this by M ≤deg N.

n ∈ G ·m⇔ M ≤deg N
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The origin: Gabriel et al

Consequences:

≤deg is a partial order on the set of isomorphism classes of
A-modules:
Transitivity: easy geometrically

Antisymmetry: Auslander’s lemma (Bongartz simplification).

S ≤ M, then M ≤deg S ⊕M/S :

A 3 a acts by matrices

(
aS bS
0 aM/S

)
.

Deform this to

(
aS bS · t
0 aM/S

)
for a parameter t ∈ k,

and t 6= 0 is isomorphic to original action;

t = 0 is in the Zariski closure and corresponds to the direct sum.

semisimple modules are the maximal objects.
Ext1

A(M,M) = 0⇒ M is minimal.
(Voigt’s lemma; open orbit in this case)
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Zwara’s breakthrough

Observe: degeneration is a geometric notion

Goal: Characterise algebraically.
Numerous weaker degeneration notions.

Theorem: (Riedtmann 1986)

If there is an A-module Z and a ses:

0→ Z → M ⊕ Z → N → 0

then M ≤deg N.
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Zwara’s breakthrough

Observe: degeneration is a geometric notion
Goal: Characterise algebraically.
Numerous weaker degeneration notions.

Theorem: (Riedtmann 1986, Zwara 2000)

If there is an A-module Z and a ses:

0→ Z → M ⊕ Z → N → 0

then M ≤deg N and conversely degeneration implies the existence
of Z and a ses as above.
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Zwara’s breakthrough

Z is finite dimensional, but one may need to go to high
dimension.

M ≤deg N ⇔ ∃Z and ses 0→ Z → Z ⊕M → N → 0

⇔ ∃Z ′ and ses 0→ N → Z ′ ⊕M → Z ′ → 0

Z and Z ′ may be quite different in general

and difficult to construct.
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Where did I learn all this ?

Reading group first semester 2003/4
module varieties; around 10 lectures
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Classical Theory: Drawbacks

Need

algebraically closed fields

finite dimensional algebras

module categories

Want

concept that works for general rings

also for stable and derived categories

or even triangulated categories
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Examples limiting our ambition

Recall an example due to Swan (1962):

Theorem: (Swan 1962)

Q32 the generalised quaternion group of order 32. Then there is an
ideal a of ZQ32 such that

a 6' ZQ32

ZQ32 ⊕ a ' ZQ32 ⊕ ZQ32
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Examples limiting our ambition

0→
Z︷ ︸︸ ︷

ZQ32 →
Z︷ ︸︸ ︷

ZQ32⊕ZQ32︸ ︷︷ ︸
ZQ32⊕a

→ a→ 0

Hence ZQ32 ≤deg a.

0→
Z︷ ︸︸ ︷

ZQ32 →
Z︷ ︸︸ ︷

ZQ32⊕a︸ ︷︷ ︸
ZQ32⊕ZQ32

→ ZQ32 → 0

Hence a ≤deg ZQ32.

What do we learn?

There are problems without Krull-Schmidt.
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Examples limiting our ambition

A an algebra, M and N be two A-modules. K :=
⊕∞

i=1 M ⊕ N.

0→ M
(id 0)−→ M ⊕

∞⊕
i=1

M ⊕ N →
∞⊕
i=1

M ⊕ N → 0

Since

M ⊕
∞⊕
i=1

M ⊕ N '
∞⊕
i=1

M ⊕ N ' N ⊕
∞⊕
i=1

M ⊕ N

we get M ≤deg N for any two modules.

What do we learn?

Be careful with embedding Z → Z ⊕M

A. Zimmermann Degeneration in Triangulated Categories
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For modules

M ≤deg N ⇔ ∃Z and ses 0→ Z → Z ⊕M → N → 0

For objects in a triangulated category

M ≤∆ N :⇔ ∃Z and distinguished triangle Z → Z⊕M → N → Z [1]

≤∆ is called the triangle degeneration.
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Question: Order theoretic properties of ≤∆.

Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let T be a triangulated category with split idempotents.
Suppose ∀X ∈ obj(T ) : EndT (X ) is artinian.
Then ≤∆ is reflexive and transitive.

The proof is a construction of iterated cones, then using Fitting’s
lemma in some sophisticated way (artinian endomorphism algebra).
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How what anti-symmetry?

This uses the Hom-order and Bongartz’ proof for the module case.
What is the Hom-order?

M ≤deg N ⇒ dimk(HomA(U,M)) ≤ dimk(HomA(U,N))∀U

Call this last property Hom-order ≤Hom.
Auslander (1982), then Bongartz (1989) show that

dimk(HomA(U,M)) = dimk(HomA(U,N))∀U ⇒ M ' N
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Get easily if T is triangulated R-linear category, R a commutative
ring, and if HomT (X ,Z ) is of finite R-length for all X ,Z , then

M ≤∆ N ⇒ M ≤Hom N.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let T be a triangulated R-linear category with split idempotents,
R a commutative ring, and HomT (X ,Y ) is of finite R-length for
all X ,Y . If there is an n ∈ Z \ {0} such that HomT (M,N[n]) = 0,
then

M ≤Hom N ≤Hom M ⇒ M ' N.
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Where did I learn all this ?

Reading group February/March 2010
partial orders on isomorphism classes
of modules

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

Generic points, abstract description

We are still missing a geometric interpretation.

Yuji Yoshino gave
an alternative scheme theoretic approach: M degenerates to N if
N can be reached by a line starting in the orbit of M.

Definition (Yoshino)

Let A be a k-algebra. Then M degenerates to N along a dvr if
there is a discrete valuation k-algebra V , maximal ideal ℘ = tV
and k = V /℘, and a V -flat V ⊗k A-module Q such that
Q/tQ ' N and Q[ 1

t ] ' M ⊗k V [ 1
t ] as A⊗k V [ 1

t ]-modules. Write
M ≤dvr N.
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Generic points, abstract description

Yoshino analyzes (2004, 2011) that

following the second example (infinite sum) one has to be
careful with the morphism Z → Z ⊕M.

the correct setting for modules is that
M ≤Zwara + nil N :⇔ ∃Z and ses

0→ Z
(φψ)
−→ M ⊕ Z → N → 0 with ψ nilpotent

and for triangulated categories
M ≤∆+ nil N :⇔ ∃Z and distinguished triangle

Z
(φψ)
−→ M ⊕ Z → N → Z [1] with ψ nilpotent
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Yoshino shows (2004, 2011) that

if A is any k-algebra then M ≤ Zwara+nil N ⇔ M ≤dvr N

for the stable category of maximal Cohen-Macaulay modules
over a local commutative Gorenstein k-algebra A we get
M ≤∆ + nil N ⇒ M ≤dvr N. If A is in addition artinian, then
we get ⇔.

partial order properties for ≤dvr .

Maximal elements do not exist in the triangulated setting:

X → 0→ X [1]
id→ X [1] is distinguished triangle. Hence

X
0→ U ⊕ X → U ⊕ X ⊕ X [1]→ X [1] is distinguished triangle

and therefore U ≤∆ + nil U ⊕ X ⊕ X [1]
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A line in a triangulated category, jt with Saorin

We model Yoshino’s setting in a general triangulated k-category C◦k
for a commutative ring k.

Recall that an element t of the centre of a triangulated category is
a natural transformation t : idC → idC .

May form the Gabriel-Zisman localisation C[t−1] of C
inverting all tX for all objects X of C.

If C is triangulated, C[t−1] is as well.

Comes with a triangle functor C → C[t−1].
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Definition

Let C◦k be a triangulated k-category with split idempotents. A
degeneration data for C◦k is given by

triangulated k-categories Ck , CV and C◦V with split
idempotents

triangle functors C◦k
↑Vk
��

� � / Ck
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C◦V
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88

� � / CV
t ∈ Z (CV )

such that ∀M ∈ C◦k : φ(tM↑Vk
) is split mono and

φ(cone(tM↑Vk
)) ' M
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module setting (AV := V ⊗ A) triangulated setting

A−mod

V⊗k−
��

� � / A−Mod

V⊗k−
��

AV −mod

restriction
55

� � / AV −Mod

C◦k
↑Vk
��

� � / Ck
↑Vk
��

C◦V

φ

88

� � / CV
multiplication by uniformizer t ∈ V t ∈ Z (CV )
V [ 1

t ]⊗k A−Mod CV [t−1]
mult. by t is split mono over A φ(tM↑Vk

) is split mono

(V ⊗M)/(tV ⊗M) = V /tV ⊗M = M φ(cone(tM↑Vk
)) ' M

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

module setting (AV := V ⊗ A) triangulated setting

A−mod

V⊗k−
��

� � / A−Mod

V⊗k−
��

AV −mod

restriction
55

� � / AV −Mod

C◦k
↑Vk
��

� � / Ck
↑Vk
��

C◦V

φ

88

� � / CV

multiplication by uniformizer t ∈ V t ∈ Z (CV )
V [ 1

t ]⊗k A−Mod CV [t−1]
mult. by t is split mono over A φ(tM↑Vk

) is split mono

(V ⊗M)/(tV ⊗M) = V /tV ⊗M = M φ(cone(tM↑Vk
)) ' M

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

module setting (AV := V ⊗ A) triangulated setting

A−mod

V⊗k−
��

� � / A−Mod

V⊗k−
��

AV −mod

restriction
55

� � / AV −Mod

C◦k
↑Vk
��

� � / Ck
↑Vk
��

C◦V

φ

88

� � / CV
multiplication by uniformizer t ∈ V t ∈ Z (CV )

V [ 1
t ]⊗k A−Mod CV [t−1]

mult. by t is split mono over A φ(tM↑Vk
) is split mono

(V ⊗M)/(tV ⊗M) = V /tV ⊗M = M φ(cone(tM↑Vk
)) ' M

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

module setting (AV := V ⊗ A) triangulated setting

A−mod

V⊗k−
��

� � / A−Mod

V⊗k−
��

AV −mod

restriction
55

� � / AV −Mod

C◦k
↑Vk
��

� � / Ck
↑Vk
��

C◦V

φ

88

� � / CV
multiplication by uniformizer t ∈ V t ∈ Z (CV )
V [ 1

t ]⊗k A−Mod CV [t−1]

mult. by t is split mono over A φ(tM↑Vk
) is split mono

(V ⊗M)/(tV ⊗M) = V /tV ⊗M = M φ(cone(tM↑Vk
)) ' M

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

module setting (AV := V ⊗ A) triangulated setting

A−mod

V⊗k−
��

� � / A−Mod

V⊗k−
��

AV −mod

restriction
55

� � / AV −Mod

C◦k
↑Vk
��

� � / Ck
↑Vk
��

C◦V

φ

88

� � / CV
multiplication by uniformizer t ∈ V t ∈ Z (CV )
V [ 1

t ]⊗k A−Mod CV [t−1]
mult. by t is split mono over A φ(tM↑Vk

) is split mono

(V ⊗M)/(tV ⊗M) = V /tV ⊗M = M φ(cone(tM↑Vk
)) ' M

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

A line in a triangulated category, jt with Saorin

module setting (AV := V ⊗ A) triangulated setting

A−mod

V⊗k−
��

� � / A−Mod

V⊗k−
��

AV −mod

restriction
55

� � / AV −Mod

C◦k
↑Vk
��

� � / Ck
↑Vk
��

C◦V

φ

88

� � / CV
multiplication by uniformizer t ∈ V t ∈ Z (CV )
V [ 1

t ]⊗k A−Mod CV [t−1]
mult. by t is split mono over A φ(tM↑Vk

) is split mono

(V ⊗M)/(tV ⊗M) = V /tV ⊗M = M φ(cone(tM↑Vk
)) ' M

A. Zimmermann Degeneration in Triangulated Categories



Module Varieties
General rings

The triangle degeneration
Yoshino’s method

Geometric degeneration for triangulated categories

Degeneration in a triangulated category, jt with Saorin

Recall that if t ∈ Z (CV ), then there is a triangle functor

CV
p−→ CV [t−1].

Definition

M,N ∈ C◦k . Then M ≤cdeg N if

there is a degeneration data (Ck , C◦V , t)

and an object Q of C◦V
such that p(Q) ' p(M ↑Vk ) in C◦V [t−1] and φ(cone(tQ)) ' N.

This specialises to Yoshino in the obvious sense in his setting.
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The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let C◦k be a triangulated
k-category with split idempotents. Let M,N ∈ ob(C◦k).

Then M ≤cdeg N ⇒ M ≤∆ + nil N.

If C◦k is the category of compact objects of a compactly
generated algebraic triangulated k-category,
then M ≤cdeg N ⇐ M ≤∆ + nil N.

Second part uses Keller’s characterisation of those categories as
derived categories of dg-categories.
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Where did I learn all this ?

Happy birthday Serge !
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