

Degeneration in Triangulated Categories

Alexander Zimmermann,
joint with Manolo Saorin; Bernt Jensen and Xiuping Su

September 4, 2015

Table of contents

- 1 Module Varieties
- 2 General rings
- 3 The triangle degeneration
- 4 Yoshino's method
- 5 Geometric degeneration for triangulated categories

The origin: Gabriel et al

Let k be an algebraically closed field and A a finite dimensional k -algebra.

The origin: Gabriel et al

Let k be an algebraically closed field and A a finite dimensional k -algebra.

- Generators of A : $\{a_1, \dots, a_n\}$
- relations: $\{\rho_1(a_1, \dots, a_n), \dots, \rho_m(a_1, \dots, a_n)\}$

where ρ_i are polynomials in non-commuting variables (free algebra).

The origin: Gabriel et al

A representation of A of dimension d is given by

$$\{\text{generators}\} \ni a_i \mapsto A_i \in \text{Mat}_{d \times d}(k)$$

$$\{\text{relations}\} \ni \rho_j(a_1, \dots, a_n) \mapsto \rho_j(A_1, \dots, A_n) = 0$$

The origin: Gabriel et al

A representation of A of dimension d is given by

$$\{\text{generators}\} \ni a_i \mapsto A_i \in \text{Mat}_{d \times d}(k)$$

$$\{\text{relations}\} \ni \rho_j(a_1, \dots, a_n) \mapsto \rho_j(A_1, \dots, A_n) = 0$$

These are polynomial equations
in the $n \cdot d^2$ variables "matrix coefficients".

The origin: Gabriel et al

A representation of A of dimension d is given by

$$\{\text{generators}\} \ni a_i \mapsto A_i \in \text{Mat}_{d \times d}(k)$$

$$\{\text{relations}\} \ni \rho_j(a_1, \dots, a_n) \mapsto \rho_j(A_1, \dots, A_n) = 0$$

These are polynomial equations
in the $n \cdot d^2$ variables "matrix coefficients".

Definition

The *module variety* $\text{mod}(A, d)$ is the Zariski closed subset of the nd^2 -dimensional affine space defined by the above polynomial equations.

The origin: Gabriel et al

A representation of A of dimension d is given by

$$\{\text{generators}\} \ni a_i \mapsto A_i \in \text{Mat}_{d \times d}(k)$$

$$\{\text{relations}\} \ni \rho_j(a_1, \dots, a_n) \mapsto \rho_j(A_1, \dots, A_n) = 0$$

These are polynomial equations
in the $n \cdot d^2$ variables "matrix coefficients".

Definition

The *module variety* $\text{mod}(A, d)$ is the Zariski closed subset of the nd^2 -dimensional affine space defined by the above polynomial equations.

In particular $\text{mod}(A, d)$ is an affine variety.

The origin: Gabriel et al

- The group $G := GL_d(k)$ acts on $mod(A, d)$ by simultaneous conjugation of matrices.

The origin: Gabriel et al

- The group $G := GL_d(k)$ acts on $mod(A, d)$ by simultaneous conjugation of matrices.
- Two A -modules M and N correspond to the points m and n of $mod(A, d)$. Then

The origin: Gabriel et al

- The group $G := GL_d(k)$ acts on $mod(A, d)$ by simultaneous conjugation of matrices.
- Two A -modules M and N correspond to the points m and n of $mod(A, d)$. Then

$$M \simeq N \Leftrightarrow G \cdot m = G \cdot n$$

The origin: Gabriel et al

Summary

Hence

- d -dimensional A -modules correspond to points in $\text{mod}(A, d)$.

The origin: Gabriel et al

Summary

Hence

- d -dimensional A -modules correspond to points in $\text{mod}(A, d)$.
- Isomorphism classes of d -dimensional A -modules correspond to G -orbits in $\text{mod}(A, d)$.

The origin: Gabriel et al

Summary

Hence

- d -dimensional A -modules correspond to points in $\text{mod}(A, d)$.
- Isomorphism classes of d -dimensional A -modules correspond to G -orbits in $\text{mod}(A, d)$.
- In general orbits are not Zariski closed. Examples will follow.

The origin: Gabriel et al

Main classical definition

A -module M corresponds to $m \in \text{mod}(A, d)$

A -module N corresponds to $n \in \text{mod}(A, d)$

The origin: Gabriel et al

Main classical definition

A -module M corresponds to $m \in \text{mod}(A, d)$

A -module N corresponds to $n \in \text{mod}(A, d)$

M degenerates to N if n belongs to the Zariski closure of the G -orbit of m . Denote this by $M \leq_{\text{deg}} N$.

The origin: Gabriel et al

Main classical definition

A -module M corresponds to $m \in \text{mod}(A, d)$

A -module N corresponds to $n \in \text{mod}(A, d)$

M degenerates to N if n belongs to the Zariski closure of the G -orbit of m . Denote this by $M \leq_{\deg} N$.

$$n \in \overline{G \cdot m} \Leftrightarrow M \leq_{\deg} N$$

The origin: Gabriel et al

Consequences:

The origin: Gabriel et al

Consequences:

- \leq_{\deg} is a partial order on the set of isomorphism classes of A -modules:

The origin: Gabriel et al

Consequences:

- \leq_{\deg} is a partial order on the set of isomorphism classes of A -modules:
 - Transitivity: easy geometrically
 - Antisymmetry: Auslander's lemma (Bongartz simplification).

The origin: Gabriel et al

Consequences:

- \leq_{deg} is a partial order on the set of isomorphism classes of A -modules:
 - Transitivity: easy geometrically
 - Antisymmetry: Auslander's lemma (Bongartz simplification).
- $S \leq M$, then $M \leq_{\text{deg}} S \oplus M/S$:

The origin: Gabriel et al

Consequences:

- \leq_{\deg} is a partial order on the set of isomorphism classes of A -modules:
 Transitivity: easy geometrically
 Antisymmetry: Auslander's lemma (Bongartz simplification).
- $S \leq M$, then $M \leq_{\deg} S \oplus M/S$:

$A \ni a$ acts by matrices $\begin{pmatrix} a_S & b_S \\ 0 & a_{M/S} \end{pmatrix}$.

Deform this to $\begin{pmatrix} a_S & b_S \cdot t \\ 0 & a_{M/S} \end{pmatrix}$ for a parameter $t \in k$,

The origin: Gabriel et al

Consequences:

- \leq_{deg} is a partial order on the set of isomorphism classes of A -modules:
 Transitivity: easy geometrically
 Antisymmetry: Auslander's lemma (Bongartz simplification).
- $S \leq M$, then $M \leq_{\text{deg}} S \oplus M/S$:
 $A \ni a$ acts by matrices $\begin{pmatrix} a_S & b_S \\ 0 & a_{M/S} \end{pmatrix}$.
 Deform this to $\begin{pmatrix} a_S & b_S \cdot t \\ 0 & a_{M/S} \end{pmatrix}$ for a parameter $t \in k$,
 and $t \neq 0$ is isomorphic to original action;
 $t = 0$ is in the Zariski closure and corresponds to the direct sum.

The origin: Gabriel et al

Consequences:

- \leq_{deg} is a partial order on the set of isomorphism classes of A -modules:
 Transitivity: easy geometrically
 Antisymmetry: Auslander's lemma (Bongartz simplification).
- $S \leq M$, then $M \leq_{\text{deg}} S \oplus M/S$:
 $A \ni a$ acts by matrices $\begin{pmatrix} a_S & b_S \\ 0 & a_{M/S} \end{pmatrix}$.
 Deform this to $\begin{pmatrix} a_S & b_S \cdot t \\ 0 & a_{M/S} \end{pmatrix}$ for a parameter $t \in k$,
 and $t \neq 0$ is isomorphic to original action;
 $t = 0$ is in the Zariski closure and corresponds to the direct sum.
- semisimple modules are the maximal objects.

The origin: Gabriel et al

Consequences:

- \leq_{deg} is a partial order on the set of isomorphism classes of A -modules:
 Transitivity: easy geometrically
 Antisymmetry: Auslander's lemma (Bongartz simplification).
- $S \leq M$, then $M \leq_{\text{deg}} S \oplus M/S$:
 $A \ni a$ acts by matrices $\begin{pmatrix} a_S & b_S \\ 0 & a_{M/S} \end{pmatrix}$.
 Deform this to $\begin{pmatrix} a_S & b_S \cdot t \\ 0 & a_{M/S} \end{pmatrix}$ for a parameter $t \in k$,
 and $t \neq 0$ is isomorphic to original action;
 $t = 0$ is in the Zariski closure and corresponds to the direct sum.
- semisimple modules are the maximal objects.
- $\text{Ext}_A^1(M, M) = 0 \Rightarrow M$ is minimal.
 (Voigt's lemma; open orbit in this case)

Zwara's breakthrough

Observe: degeneration is a geometric notion

Zwara's breakthrough

Observe: degeneration is a geometric notion

Goal: Characterise algebraically.

Zwara's breakthrough

Observe: degeneration is a geometric notion

Goal: Characterise algebraically.

Numerous weaker degeneration notions.

Zwara's breakthrough

Observe: degeneration is a geometric notion

Goal: Characterise algebraically.

Numerous weaker degeneration notions.

Theorem: (Riedmann 1986)

If there is an A -module Z and a ses:

$$0 \rightarrow Z \rightarrow M \oplus Z \rightarrow N \rightarrow 0$$

then $M \leq_{\deg} N$.

Zwara's breakthrough

Observe: degeneration is a geometric notion

Goal: Characterise algebraically.

Numerous weaker degeneration notions.

Theorem: (Riedmann 1986)

If there is an A -module Z and a ses:

$$0 \rightarrow Z \rightarrow M \oplus Z \rightarrow N \rightarrow 0$$

then $M \leq_{\deg} N$.

Zwara's breakthrough

Observe: degeneration is a geometric notion

Goal: Characterise algebraically.

Numerous weaker degeneration notions.

Theorem: (Riedmann 1986, Zwara 2000)

If there is an A -module Z and a ses:

$$0 \rightarrow Z \rightarrow M \oplus Z \rightarrow N \rightarrow 0$$

then $M \leq_{\deg} N$ and conversely degeneration implies the existence of Z and a ses as above.

Zwara's breakthrough

- Z is finite dimensional, but one may need to go to high dimension.

Zwara's breakthrough

- Z is finite dimensional, but one may need to go to high dimension.
-

$$M \leq_{\deg} N \Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0$$

Zwara's breakthrough

- Z is finite dimensional, but one may need to go to high dimension.
-

$$\begin{aligned} M \leq_{\deg} N &\Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0 \\ &\Leftrightarrow \exists Z' \text{ and ses } 0 \rightarrow N \rightarrow Z' \oplus M \rightarrow Z' \rightarrow 0 \end{aligned}$$

Zwara's breakthrough

- Z is finite dimensional, but one may need to go to high dimension.
-

$$\begin{aligned} M \leq_{\deg} N &\Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0 \\ &\Leftrightarrow \exists Z' \text{ and ses } 0 \rightarrow N \rightarrow Z' \oplus M \rightarrow Z' \rightarrow 0 \end{aligned}$$

- Z and Z' may be quite different in general

Zwara's breakthrough

- Z is finite dimensional, but one may need to go to high dimension.
-

$$\begin{aligned} M \leq_{\deg} N &\Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0 \\ &\Leftrightarrow \exists Z' \text{ and ses } 0 \rightarrow N \rightarrow Z' \oplus M \rightarrow Z' \rightarrow 0 \end{aligned}$$

- Z and Z' may be quite different in general
- and difficult to construct.

Where did I learn all this ?

Reading group first semester 2003/4
module varieties; around 10 lectures

Classical Theory: Drawbacks

Need

- algebraically closed fields

Classical Theory: Drawbacks

Need

- algebraically closed fields
- finite dimensional algebras

Classical Theory: Drawbacks

Need

- algebraically closed fields
- finite dimensional algebras
- module categories

Classical Theory: Drawbacks

Need

- algebraically closed fields
- finite dimensional algebras
- module categories

Want

- concept that works for general rings

Classical Theory: Drawbacks

Need

- algebraically closed fields
- finite dimensional algebras
- module categories

Want

- concept that works for general rings
- also for stable and derived categories

Classical Theory: Drawbacks

Need

- algebraically closed fields
- finite dimensional algebras
- module categories

Want

- concept that works for general rings
- also for stable and derived categories
- or even triangulated categories

Examples limiting our ambition

Recall an example due to Swan (1962):

Examples limiting our ambition

Recall an example due to Swan (1962):

Theorem: (Swan 1962)

Q_{32} the generalised quaternion group of order 32. Then there is an ideal \mathfrak{a} of $\mathbb{Z}Q_{32}$ such that

Examples limiting our ambition

Recall an example due to Swan (1962):

Theorem: (Swan 1962)

Q_{32} the generalised quaternion group of order 32. Then there is an ideal \mathfrak{a} of $\mathbb{Z}Q_{32}$ such that

$$\mathfrak{a} \not\simeq \mathbb{Z}Q_{32}$$

$$\mathbb{Z}Q_{32} \oplus \mathfrak{a} \simeq \mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}$$

Examples limiting our ambition

$$0 \rightarrow \overbrace{\mathbb{Z}Q_{32}}^Z \rightarrow \underbrace{\mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}}_{\mathbb{Z}Q_{32} \oplus \mathfrak{a}} \rightarrow \mathfrak{a} \rightarrow 0$$

Examples limiting our ambition

$$0 \rightarrow \overbrace{\mathbb{Z}Q_{32}}^Z \rightarrow \underbrace{\mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}}_{\mathbb{Z}Q_{32} \oplus \mathfrak{a}} \rightarrow \mathfrak{a} \rightarrow 0$$

Hence $\mathbb{Z}Q_{32} \leq_{\deg} \mathfrak{a}$.

Examples limiting our ambition

$$0 \rightarrow \overbrace{\mathbb{Z}Q_{32}}^Z \rightarrow \underbrace{\mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}}_{\mathbb{Z}Q_{32} \oplus \mathfrak{a}} \rightarrow \mathfrak{a} \rightarrow 0$$

Hence $\mathbb{Z}Q_{32} \leq_{\deg} \mathfrak{a}$.

$$0 \rightarrow \overbrace{\mathbb{Z}Q_{32}}^Z \rightarrow \underbrace{\mathbb{Z}Q_{32} \oplus \mathfrak{a}}_{\mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}} \rightarrow \mathbb{Z}Q_{32} \rightarrow 0$$

Hence $\mathfrak{a} \leq_{\deg} \mathbb{Z}Q_{32}$.

Examples limiting our ambition

$$0 \rightarrow \overbrace{\mathbb{Z}Q_{32}}^Z \rightarrow \underbrace{\mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}}_{\mathbb{Z}Q_{32} \oplus \mathfrak{a}} \rightarrow \mathfrak{a} \rightarrow 0$$

Hence $\mathbb{Z}Q_{32} \leq_{\deg} \mathfrak{a}$.

$$0 \rightarrow \overbrace{\mathbb{Z}Q_{32}}^Z \rightarrow \underbrace{\mathbb{Z}Q_{32} \oplus \mathfrak{a}}_{\mathbb{Z}Q_{32} \oplus \mathbb{Z}Q_{32}} \rightarrow \mathbb{Z}Q_{32} \rightarrow 0$$

Hence $\mathfrak{a} \leq_{\deg} \mathbb{Z}Q_{32}$.

What do we learn?

There are problems without Krull-Schmidt.

Examples limiting our ambition

A an algebra, M and N be two A -modules. $K := \bigoplus_{i=1}^{\infty} M \oplus N$.

Examples limiting our ambition

A an algebra, M and N be two A -modules. $K := \bigoplus_{i=1}^{\infty} M \oplus N$.

$$0 \rightarrow M \xrightarrow{(id \ 0)} M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow 0$$

Examples limiting our ambition

A an algebra, M and N be two A -modules. $K := \bigoplus_{i=1}^{\infty} M \oplus N$.

$$0 \rightarrow M \xrightarrow{(id \ 0)} M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow 0$$

Since

$$M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \simeq \bigoplus_{i=1}^{\infty} M \oplus N \simeq N \oplus \bigoplus_{i=1}^{\infty} M \oplus N$$

Examples limiting our ambition

A an algebra, M and N be two A -modules. $K := \bigoplus_{i=1}^{\infty} M \oplus N$.

$$0 \rightarrow M \xrightarrow{(id \ 0)} M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow 0$$

Since

$$M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \simeq \bigoplus_{i=1}^{\infty} M \oplus N \simeq N \oplus \bigoplus_{i=1}^{\infty} M \oplus N$$

we get $M \leq_{\deg} N$ for any two modules.

Examples limiting our ambition

A an algebra, M and N be two A -modules. $K := \bigoplus_{i=1}^{\infty} M \oplus N$.

$$0 \rightarrow M \xrightarrow{(id \ 0)} M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow \bigoplus_{i=1}^{\infty} M \oplus N \rightarrow 0$$

Since

$$M \oplus \bigoplus_{i=1}^{\infty} M \oplus N \simeq \bigoplus_{i=1}^{\infty} M \oplus N \simeq N \oplus \bigoplus_{i=1}^{\infty} M \oplus N$$

we get $M \leq_{\deg} N$ for any two modules.

What do we learn?

Be careful with embedding $Z \rightarrow Z \oplus M$

The algebraic degeneration in a triangulated setting

For modules

$$M \leq_{\deg} N \Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0$$

The algebraic degeneration in a triangulated setting

For modules

$$M \leq_{\deg} N \Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0$$

For objects in a triangulated category

The algebraic degeneration in a triangulated setting

For modules

$$M \leq_{\deg} N \Leftrightarrow \exists Z \text{ and ses } 0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0$$

For objects in a triangulated category

$$M \leq_{\Delta} N : \Leftrightarrow \exists Z \text{ and distinguished triangle } Z \rightarrow Z \oplus M \rightarrow N \rightarrow Z[1]$$

\leq_{Δ} is called the triangle degeneration.

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of \leq_{Δ} .

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of \leq_{Δ} .

Need to avoid the above counterexamples.

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of \leq_{Δ} .

Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let \mathcal{T} be a triangulated category with split idempotents.

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of \leq_{Δ} .

Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let \mathcal{T} be a triangulated category with split idempotents.

Suppose $\forall X \in obj(\mathcal{T}) : End_{\mathcal{T}}(X)$ is artinian.

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of \leq_{Δ} .

Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let \mathcal{T} be a triangulated category with split idempotents.

Suppose $\forall X \in obj(\mathcal{T}) : End_{\mathcal{T}}(X)$ is artinian.

Then \leq_{Δ} is reflexive and transitive.

The algebraic degeneration in a triangulated setting

Question: Order theoretic properties of \leq_{Δ} .

Need to avoid the above counterexamples.

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let \mathcal{T} be a triangulated category with split idempotents.

Suppose $\forall X \in \text{obj}(\mathcal{T}) : \text{End}_{\mathcal{T}}(X)$ is artinian.

Then \leq_{Δ} is reflexive and transitive.

The proof is a construction of iterated cones, then using Fitting's lemma in some sophisticated way (artinian endomorphism algebra).

The algebraic degeneration in a triangulated setting

How what anti-symmetry?

The algebraic degeneration in a triangulated setting

How what anti-symmetry?

This uses the *Hom*-order and Bongartz' proof for the module case.

What is the *Hom*-order?

$$M \leq_{\deg} N \Rightarrow \dim_k(\text{Hom}_A(U, M)) \leq \dim_k(\text{Hom}_A(U, N)) \forall U$$

Call this last property *Hom*-order \leq_{Hom} .

The algebraic degeneration in a triangulated setting

How what anti-symmetry?

This uses the *Hom*-order and Bongartz' proof for the module case.

What is the *Hom*-order?

$$M \leq_{\deg} N \Rightarrow \dim_k(\text{Hom}_A(U, M)) \leq \dim_k(\text{Hom}_A(U, N)) \forall U$$

Call this last property *Hom*-order \leq_{Hom} .

Auslander (1982), then Bongartz (1989) show that

$$\dim_k(\text{Hom}_A(U, M)) = \dim_k(\text{Hom}_A(U, N)) \forall U \Rightarrow M \simeq N$$

The algebraic degeneration in a triangulated setting

Get easily if \mathcal{T} is triangulated R -linear category, R a commutative ring, and if $\text{Hom}_{\mathcal{T}}(X, Z)$ is of finite R -length for all X, Z , then

$$M \leq_{\Delta} N \Rightarrow M \leq_{\text{Hom}} N.$$

The algebraic degeneration in a triangulated setting

Get easily if \mathcal{T} is triangulated R -linear category, R a commutative ring, and if $\text{Hom}_{\mathcal{T}}(X, Z)$ is of finite R -length for all X, Z , then

$$M \leq_{\Delta} N \Rightarrow M \leq_{\text{Hom}} N.$$

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let \mathcal{T} be a triangulated R -linear category with split idempotents, R a commutative ring, and $\text{Hom}_{\mathcal{T}}(X, Y)$ is of finite R -length for all X, Y .

The algebraic degeneration in a triangulated setting

Get easily if \mathcal{T} is triangulated R -linear category, R a commutative ring, and if $\text{Hom}_{\mathcal{T}}(X, Z)$ is of finite R -length for all X, Z , then

$$M \leq_{\Delta} N \Rightarrow M \leq_{\text{Hom}} N.$$

Theorem: (Bernt Tore Jensen, Xiuping Su, A.Z. 2004)

Let \mathcal{T} be a triangulated R -linear category with split idempotents, R a commutative ring, and $\text{Hom}_{\mathcal{T}}(X, Y)$ is of finite R -length for all X, Y . If there is an $n \in \mathbb{Z} \setminus \{0\}$ such that $\text{Hom}_{\mathcal{T}}(M, N[n]) = 0$, then

$$M \leq_{\text{Hom}} N \leq_{\text{Hom}} M \Rightarrow M \simeq N.$$

Where did I learn all this ?

Reading group February/March 2010
partial orders on isomorphism classes
of modules

Generic points, abstract description

We are still missing a geometric interpretation.

Generic points, abstract description

We are still missing a geometric interpretation. Yuji Yoshino gave an alternative scheme theoretic approach: M degenerates to N if N can be reached by a line starting in the orbit of M .

Generic points, abstract description

We are still missing a geometric interpretation. Yuji Yoshino gave an alternative scheme theoretic approach: M degenerates to N if N can be reached by a line starting in the orbit of M .

Definition (Yoshino)

Let A be a k -algebra. Then M degenerates to N along a dvr if there is a discrete valuation k -algebra V , maximal ideal $\wp = tV$ and $k = V/\wp$, and a V -flat $V \otimes_k A$ -module Q such that $Q/tQ \simeq N$ and $Q[\frac{1}{t}] \simeq M \otimes_k V[\frac{1}{t}]$ as $A \otimes_k V[\frac{1}{t}]$ -modules. Write $M \leq_{\text{dvr}} N$.

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

- following the second example (infinite sum) one has to be careful with the morphism $Z \rightarrow Z \oplus M$.

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

- following the second example (infinite sum) one has to be careful with the morphism $Z \rightarrow Z \oplus M$.

- the correct setting for modules is that

$$M \leq_{\text{Zwara} + \text{nil}} N : \Leftrightarrow \exists Z \text{ and ses}$$

$$0 \rightarrow Z \xrightarrow{(\begin{smallmatrix} \phi \\ \psi \end{smallmatrix})} M \oplus Z \rightarrow N \rightarrow 0 \text{ with } \psi \text{ nilpotent}$$

Generic points, abstract description

Yoshino analyzes (2004, 2011) that

- following the second example (infinite sum) one has to be careful with the morphism $Z \rightarrow Z \oplus M$.

- the correct setting for modules is that

$$M \leq_{\text{Zwara} + \text{nil}} N : \Leftrightarrow \exists Z \text{ and ses}$$

$$0 \rightarrow Z \xrightarrow{(\begin{smallmatrix} \phi \\ \psi \end{smallmatrix})} M \oplus Z \rightarrow N \rightarrow 0 \text{ with } \psi \text{ nilpotent}$$

- and for triangulated categories

$$M \leq_{\Delta+ \text{nil}} N : \Leftrightarrow \exists Z \text{ and distinguished triangle}$$

$$Z \xrightarrow{(\begin{smallmatrix} \phi \\ \psi \end{smallmatrix})} M \oplus Z \rightarrow N \rightarrow Z[1] \text{ with } \psi \text{ nilpotent}$$

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$.

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$. If A is in addition artinian, then we get \Leftrightarrow .

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$. If A is in addition artinian, then we get \Leftrightarrow .
- partial order properties for \leq_{dvr} .

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$. If A is in addition artinian, then we get \Leftrightarrow .
- partial order properties for \leq_{dvr} .

Maximal elements do not exist in the triangulated setting:

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$. If A is in addition artinian, then we get \Leftrightarrow .
- partial order properties for \leq_{dvr} .

Maximal elements do not exist in the triangulated setting:

$X \rightarrow 0 \rightarrow X[1] \xrightarrow{id} X[1]$ is distinguished triangle.

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$. If A is in addition artinian, then we get \Leftrightarrow .
- partial order properties for \leq_{dvr} .

Maximal elements do not exist in the triangulated setting:

$X \rightarrow 0 \rightarrow X[1] \xrightarrow{id} X[1]$ is distinguished triangle. Hence

$X \xrightarrow{0} U \oplus X \rightarrow U \oplus X \oplus X[1] \rightarrow X[1]$ is distinguished triangle

Generic points, abstract description

Yoshino shows (2004, 2011) that

- if A is any k -algebra then $M \leq_{\text{Zwara+nil}} N \Leftrightarrow M \leq_{\text{dvr}} N$
- for the stable category of maximal Cohen-Macaulay modules over a local commutative Gorenstein k -algebra A we get $M \leq_{\Delta + \text{nil}} N \Rightarrow M \leq_{\text{dvr}} N$. If A is in addition artinian, then we get \Leftrightarrow .
- partial order properties for \leq_{dvr} .

Maximal elements do not exist in the triangulated setting:

$X \rightarrow 0 \rightarrow X[1] \xrightarrow{id} X[1]$ is distinguished triangle. Hence

$X \xrightarrow{0} U \oplus X \rightarrow U \oplus X \oplus X[1] \rightarrow X[1]$ is distinguished triangle

and therefore $U \leq_{\Delta + \text{nil}} U \oplus X \oplus X[1]$

A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k -category \mathcal{C}_k° for a commutative ring k .

A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k -category \mathcal{C}_k° for a commutative ring k .

Recall that an element t of *the centre of a triangulated category* is a natural transformation $t : \text{id}_{\mathcal{C}} \rightarrow \text{id}_{\mathcal{C}}$.

A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k -category \mathcal{C}_k° for a commutative ring k .

Recall that an element t of *the centre of a triangulated category* is a natural transformation $t : \text{id}_{\mathcal{C}} \rightarrow \text{id}_{\mathcal{C}}$.

- May form the Gabriel-Zisman localisation $\mathcal{C}[t^{-1}]$ of \mathcal{C} inverting all t_X for all objects X of \mathcal{C} .

A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k -category \mathcal{C}_k° for a commutative ring k .

Recall that an element t of *the centre of a triangulated category* is a natural transformation $t : \text{id}_{\mathcal{C}} \rightarrow \text{id}_{\mathcal{C}}$.

- May form the Gabriel-Zisman localisation $\mathcal{C}[t^{-1}]$ of \mathcal{C} inverting all t_X for all objects X of \mathcal{C} .
- If \mathcal{C} is triangulated, $\mathcal{C}[t^{-1}]$ is as well.

A line in a triangulated category, jt with Saorin

We model Yoshino's setting in a general triangulated k -category \mathcal{C}_k° for a commutative ring k .

Recall that an element t of *the centre of a triangulated category* is a natural transformation $t : \text{id}_{\mathcal{C}} \rightarrow \text{id}_{\mathcal{C}}$.

- May form the Gabriel-Zisman localisation $\mathcal{C}[t^{-1}]$ of \mathcal{C} inverting all t_X for all objects X of \mathcal{C} .
- If \mathcal{C} is triangulated, $\mathcal{C}[t^{-1}]$ is as well.
- Comes with a triangle functor $\mathcal{C} \rightarrow \mathcal{C}[t^{-1}]$.

A line in a triangulated category, jt with Saorin

Definition

Let \mathcal{C}_k° be a triangulated k -category with split idempotents. A degeneration data for \mathcal{C}_k° is given by

A line in a triangulated category, jt with Saorin

Definition

Let \mathcal{C}_k° be a triangulated k -category with split idempotents. A degeneration data for \mathcal{C}_k° is given by

- triangulated k -categories \mathcal{C}_k , \mathcal{C}_V and \mathcal{C}_V° with split idempotents

A line in a triangulated category, jt with Saorin

Definition

Let \mathcal{C}_k° be a triangulated k -category with split idempotents. A degeneration data for \mathcal{C}_k° is given by

- triangulated k -categories \mathcal{C}_k , \mathcal{C}_V and \mathcal{C}_V° with split idempotents
- triangle functors

$$\begin{array}{ccc}
 \mathcal{C}_k^\circ & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^\circ & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

A line in a triangulated category, jt with Saorin

Definition

Let \mathcal{C}_k° be a triangulated k -category with split idempotents. A degeneration data for \mathcal{C}_k° is given by

- triangulated k -categories \mathcal{C}_k , \mathcal{C}_V and \mathcal{C}_V° with split idempotents
- triangle functors

$$\begin{array}{ccc}
 \mathcal{C}_k^\circ & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^\circ & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

- $t \in Z(\mathcal{C}_V)$

A line in a triangulated category, jt with Saorin

Definition

Let \mathcal{C}_k° be a triangulated k -category with split idempotents. A degeneration data for \mathcal{C}_k° is given by

- triangulated k -categories \mathcal{C}_k , \mathcal{C}_V and \mathcal{C}_V° with split idempotents
- triangle functors

$$\begin{array}{ccc}
 \mathcal{C}_k^\circ & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^\circ & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

- $t \in Z(\mathcal{C}_V)$
- such that $\forall M \in \mathcal{C}_k^\circ : \phi(t_{M \uparrow_k^V})$ is split mono and $\phi(\text{cone}(t_{M \uparrow_k^V})) \simeq M$

A line in a triangulated category, jt with Saorin

module setting ($A_V := V \otimes A$)

triangulated setting

A line in a triangulated category, jt with Saorin

module setting ($A_V := V \otimes A$)

$$\begin{array}{ccc}
 A - \text{mod} & \xrightarrow{\quad} & A - \text{Mod} \\
 \downarrow V \otimes_k - & \nearrow \text{restriction} & \downarrow V \otimes_k - \\
 A_V - \text{mod} & \xrightarrow{\quad} & A_V - \text{Mod}
 \end{array}$$

triangulated setting

$$\begin{array}{ccc}
 \mathcal{C}_k^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

A line in a triangulated category, jt with Saorin

module setting ($A_V := V \otimes A$)

$$\begin{array}{ccc}
 A - \text{mod} & \xrightarrow{\quad} & A - \text{Mod} \\
 \downarrow V \otimes_k - & \nearrow \text{restriction} & \downarrow V \otimes_k - \\
 A_V - \text{mod} & \xrightarrow{\quad} & A_V - \text{Mod}
 \end{array}$$

multiplication by uniformizer $t \in V$

triangulated setting

$$\begin{array}{ccc}
 \mathcal{C}_k^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

$t \in Z(\mathcal{C}_V)$

A line in a triangulated category, jt with Saorin

module setting ($A_V := V \otimes A$)

$$\begin{array}{ccc}
 A - \text{mod} & \xrightarrow{\quad} & A - \text{Mod} \\
 \downarrow V \otimes_k - & \nearrow \text{restriction} & \downarrow V \otimes_k - \\
 A_V - \text{mod} & \xrightarrow{\quad} & A_V - \text{Mod}
 \end{array}$$

multiplication by uniformizer $t \in V$

$$V[\frac{1}{t}] \otimes_k A - \text{Mod}$$

triangulated setting

$$\begin{array}{ccc}
 \mathcal{C}_k^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

$$t \in Z(\mathcal{C}_V)$$

$$\mathcal{C}_V[t^{-1}]$$

A line in a triangulated category, jt with Saorin

module setting ($A_V := V \otimes A$)

$$\begin{array}{ccc}
 A - \text{mod} & \xrightarrow{\quad} & A - \text{Mod} \\
 \downarrow V \otimes_k - & \nearrow \text{restriction} & \downarrow V \otimes_k - \\
 A_V - \text{mod} & \xrightarrow{\quad} & A_V - \text{Mod}
 \end{array}$$

multiplication by uniformizer $t \in V$

$$V[\frac{1}{t}] \otimes_k A - \text{Mod}$$

mult. by t is split mono over A

triangulated setting

$$\begin{array}{ccc}
 \mathcal{C}_k^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

$$t \in Z(\mathcal{C}_V)$$

$$\mathcal{C}_V[t^{-1}]$$

$\phi(t_{M \uparrow_k^V})$ is split mono

A line in a triangulated category, jt with Saorin

module setting ($A_V := V \otimes A$)

$$\begin{array}{ccc}
 A - \text{mod} & \xrightarrow{\quad} & A - \text{Mod} \\
 \downarrow V \otimes_k - & \nearrow \text{restriction} & \downarrow V \otimes_k - \\
 A_V - \text{mod} & \xrightarrow{\quad} & A_V - \text{Mod}
 \end{array}$$

multiplication by uniformizer $t \in V$

$$V[\frac{1}{t}] \otimes_k A - \text{Mod}$$

mult. by t is split mono over A

$$(V \otimes M)/(tV \otimes M) = V/tV \otimes M = M$$

triangulated setting

$$\begin{array}{ccc}
 \mathcal{C}_k^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_k \\
 \downarrow \uparrow_k^V & \nearrow \phi & \downarrow \uparrow_k^V \\
 \mathcal{C}_V^{\circ\circ} & \xrightarrow{\quad} & \mathcal{C}_V
 \end{array}$$

$$t \in Z(\mathcal{C}_V)$$

$$\mathcal{C}_V[t^{-1}]$$

$\phi(t_{M \uparrow_k^V})$ is split mono

$$\phi(\text{cone}(t_{M \uparrow_k^V})) \simeq M$$

Degeneration in a triangulated category, jt with Saorin

Recall that if $t \in Z(\mathcal{C}_V)$, then there is a triangle functor

$$\mathcal{C}_V \xrightarrow{p} \mathcal{C}_V[t^{-1}].$$

Degeneration in a triangulated category, jt with Saorin

Recall that if $t \in Z(\mathcal{C}_V)$, then there is a triangle functor

$$\mathcal{C}_V \xrightarrow{p} \mathcal{C}_V[t^{-1}].$$

Definition

$M, N \in \mathcal{C}_k^\circ$. Then $M \leq_{\text{cdeg}} N$ if

- there is a degeneration data $(\mathcal{C}_k, \mathcal{C}_V^\circ, t)$

Degeneration in a triangulated category, jt with Saorin

Recall that if $t \in Z(\mathcal{C}_V)$, then there is a triangle functor

$$\mathcal{C}_V \xrightarrow{p} \mathcal{C}_V[t^{-1}].$$

Definition

$M, N \in \mathcal{C}_k^\circ$. Then $M \leq_{\text{cdeg}} N$ if

- there is a degeneration data $(\mathcal{C}_k, \mathcal{C}_V^\circ, t)$
- and an object Q of \mathcal{C}_V°

Degeneration in a triangulated category, jt with Saorin

Recall that if $t \in Z(\mathcal{C}_V)$, then there is a triangle functor

$$\mathcal{C}_V \xrightarrow{p} \mathcal{C}_V[t^{-1}].$$

Definition

$M, N \in \mathcal{C}_k^\circ$. Then $M \leq_{\text{cdeg}} N$ if

- there is a degeneration data $(\mathcal{C}_k, \mathcal{C}_V^\circ, t)$
- and an object Q of \mathcal{C}_V°
- such that $p(Q) \simeq p(M \uparrow_k^V)$ in $\mathcal{C}_V^\circ[t^{-1}]$ and $\phi(\text{cone}(t_Q)) \simeq N$.

Degeneration in a triangulated category, jt with Saorin

Recall that if $t \in Z(\mathcal{C}_V)$, then there is a triangle functor

$$\mathcal{C}_V \xrightarrow{p} \mathcal{C}_V[t^{-1}].$$

Definition

$M, N \in \mathcal{C}_k^\circ$. Then $M \leq_{\text{cdeg}} N$ if

- there is a degeneration data $(\mathcal{C}_k, \mathcal{C}_V^\circ, t)$
- and an object Q of \mathcal{C}_V°
- such that $p(Q) \simeq p(M \uparrow_k^V)$ in $\mathcal{C}_V^\circ[t^{-1}]$ and $\phi(\text{cone}(t_Q)) \simeq N$.

This specialises to Yoshino in the obvious sense in his setting.

The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let \mathcal{C}_k° be a triangulated k -category with split idempotents. Let $M, N \in ob(\mathcal{C}_k^\circ)$.

The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let \mathcal{C}_k° be a triangulated k -category with split idempotents. Let $M, N \in ob(\mathcal{C}_k^\circ)$.

- Then $M \leq_{cdeg} N \Rightarrow M \leq_{\Delta + \text{nil}} N$.

The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let \mathcal{C}_k° be a triangulated k -category with split idempotents. Let $M, N \in ob(\mathcal{C}_k^\circ)$.

- Then $M \leq_{cdeg} N \Rightarrow M \leq_{\Delta + \text{nil}} N$.
- If \mathcal{C}_k° is the category of compact objects of a compactly generated algebraic triangulated k -category, then $M \leq_{cdeg} N \Leftarrow M \leq_{\Delta + \text{nil}} N$.

The result, jt with Saorin

Theorem (Saorin and Z. (2014))

Let k be a commutative ring and let \mathcal{C}_k° be a triangulated k -category with split idempotents. Let $M, N \in ob(\mathcal{C}_k^\circ)$.

- Then $M \leq_{cdeg} N \Rightarrow M \leq_{\Delta + \text{nil}} N$.
- If \mathcal{C}_k° is the category of compact objects of a compactly generated algebraic triangulated k -category, then $M \leq_{cdeg} N \Leftarrow M \leq_{\Delta + \text{nil}} N$.

Second part uses Keller's characterisation of those categories as derived categories of dg-categories.

Where did I learn all this ?

Happy birthday Serge !

